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Abstract†

A new method for source localization is described that is
based on a modification of the well-known MUSIC algo-
rithm. In classical MUSIC, the array manifold vector is
projected onto an estimate of the signal subspace, but
errors in the estimate can make location of multiple sources
difficult. Recursively applied and projected (RAP) MUSIC
uses each successively located source to form an interme-
diate array gain matrix, and projects both the array mani-
fold and the signal subspace estimate into its orthogonal
complement. The MUSIC projection is then performed in
this reduced subspace. Using the metric of principal
angles, we describe a general form of the RAP-MUSIC
algorithm for the case of diversely polarized sources.
Through a uniform linear array simulation, we demon-
strate the improved Monte Carlo performance of
RAP-MUSIC relative to MUSIC and two other sequential
subspace methods, S and IES-MUSIC.

1. Introduction

The multiple signal classification (MUSIC) [1, 2]
method for source localization is a computationally attrac-
tive alternative to least-squares, since the locations of each
source can be found separately, thus avoiding high dimen-
sional searches of non-convex cost functions. Two prob-
lems, however, often arise in practice. First, errors in
estimating the signal subspace can make it difficult to dif-
ferentiate “true” from “false” peaks in the MUSIC metric.
Second, automatically finding several local maxima in the
MUSIC metric becomes difficult as the dimension of the
source space increases.

We develop here an algorithm, RAP-MUSIC, that
overcomes these problems by using a recursive procedure
in which each source is found as the global maximizer of a
different cost function. In essence, the method works by
applying a MUSIC search to a modified problem in which
we first project both the estimated signal subspace and the
array manifold vector away from the subspace spanned by
the sources that have already been found. We describe the
RAP-MUSIC method usingprincipal angles [3] which
provide a framework for comparing signal subspaces and
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have previously been used in other related subspace signal
processing problems [4, 5, 6].

In Section 2 and 3 we describe the problem formula-
tion, and for comparative purposes, we describe classical
MUSIC in terms of principal angles. We then develop
RAP-MUSIC in Section 4 for the general case of
“diversely polarized” sources [1, 2]. A comparison of this
method, both in terms of formulation using principal angles
and Monte-Carlo performance evaluation, is presented for
two alternative sequential algorithms, S- and IES-
MUSIC [7, 8].

2. Background

We consider the problem of estimating the parameters
of  sources impinging on an  sensor element array.
Each source is represented by an  (possibly complex)
array manifold vector . Each source parameter  may
be multidimensional, and the collection of the  manifold
parameters is designated . The manifold
vectors collectively form an  array transfer matrix

(1)

which we assume to be of full column rank  for any set of
 distinct source parameters , i.e., no array ambiguities

exist. Associated with each array vector is a time series
, and the data are acquired as ,

where  is the vector of  time series at time . The data
are assumed to be white, i.e., the additive noise vector
has zero mean and covariance ,
where superscript “H” denotes the Hermitian transpose.

The autocorrelation of  can be partitioned as

(2)

where we have assumed that the time series  are uncor-
related with the noise. We assume that the correlation of the
s igna l  t ime  ser ies  y ie lds  a  fu l l  rank  mat r i x

, and  can be eigende-
composed as , such that = .
The  eigenvalues of this decomposition combine with the
noise covariance to form , with the eigen-
values in the diagonal  arranged in decreasing order.
The diagonal  comprises the  repeated eigenval-
ues . Thus(2) represents the well-known partitioning of
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the covariance matrix intosignal subspace( ) and
noise-only subspace( ) terms.

Let  denote the sample covariance matrix estimate
of  obtained by averaging the outer products of the data
vectors. Accordingly, we designate the first  eigenvectors
of  as , i.e., a set of vectors which span our estimate
of the signal subspace; similarly we designate the estimated
noise-only subspace  using the remaining eigenvectors.

Finally, we generalize the array manifold vector for the
case of vector sources representing, for instance, diverse
polarization [1, 2] in conventional array processing or cur-
rent dipoles in EEG and MEG source localization [9, 10,
11]. In this case, the array manifold vector is the product of
an array matrix and a polarization or orientation vector,

(3)

and we may view the parameter set for each source as
, comprising quasi-linear orientation parame-

ters  and nonlinear location parameters .

3. MUSIC and principal angles

The MUSIC algorithm [1, 2] finds the source locations
as those for which the corresponding array vector is nearly
orthogonal to the noise-only subspace, or equivalently,
projects almost entirely into the estimated signal subspace.
For the diversely polarized case, the problem becomes
more complex since the signal or noise-only subspaces
must be compared with the entire span of the gain matrix

. A natural way to compare these two subspaces is
through use ofprincipal angles[3] or canonical correla-
tions (i.e. the cosines of the principal angles) (cf. [6]).

Let  denote the minimum of the ranks of two matri-
ces  and . The “subspace correlation” is a vector con-
taining the cosines of the  principal angles that reflect the
similarity between the subspaces spanned by the columns
of the two matrices. The elements of the subspace correla-
tion vector are ranked in decreasing order, and we denote
the cosine of the smallest principal angle (i.e., the largest
canonical correlation) as

(4)

If , then the two subspaces have at
least a one dimensional subspace in common. Conversely,
if , then the two subspaces are
orthogonal. These subspace correlations are readily com-
puted using SVDs as described in [3] and reviewed in [9].

The MUSIC algorithm finds the source locations as
those for which the principal angle between the array vec-
tor and the noise-only subspace is maximum. Equivalently
the sources are chosen as those that minimize the
noise-only subspace correlation  or
equivalently maximize the signal subspace correlation

. Since the first argument is a vector

and the second is already orthogonalized, the square of this
signal subspace correlation is easily shown to be

(5)

where the right hand side is the standard metric used in
MUSIC [1, 2]. Practical considerations in low-rank E/MEG
source localization lead us to prefer the use of the signal
rather than the noise-only subspace [9, 11, 12]. The devel-
opment below in terms of the signal subspace is readily
modified to computations in terms of the noise-only sub-
space.

Principal angles can also be used to represent the
MUSIC metric for diversely polarized sources [1, 2] and
E/MEG dipole localization [10]. In this case, the algorithm
must compare the entire space spanned by the gain matrix

 with the signal subspace. It is again straightforward
to equate the subspace correlation with Schmidt’s diversely
polarized MUSIC solution,

, (6)

where  is the orthogonalization of  and
is the maximum eigenvalue of the enclosed expression.

The source locations  can be found as those for
which (6) is approximately unity. The quasi-linear parame-
ters  can then be found as the eigenvector corresponding
to the maximum eigenvalue in(6). Equivalently, the singu-
lar vectors from the SVDs performed to compute

 can be used to form  (see the appendix in
[9] for further details).

4. RAP-MUSIC

If the -dimensional signal subspace is estimated per-
fectly, then the sources are simply found as the  global
maximizers of(6). Errors in our estimate  reduce(6) to
a function with a single global maximum and at least

 local maxima. Finding the first source is simple:
over a sufficiently densely sampled grid of the nonlinear
parameter space , find the global maximum of(6),

(7)

We then extract the corresponding eigenvector to form the
quasi-linear parameter estimate . The estimate of the
parameters of the first source is denoted
and the first estimated array manifold vector is formed as

(8)

Identifying the remaining local maxima becomes more
difficult since nonlinear search techniques may miss shal-
low or adjacent peaks and return to a previous peak. We
also need to locate the  best peaks, rather than any  local
maxima. Numerous techniques have been proposed in the
past to enhance the “peak-like” nature of the spectrum (cf.
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[4]), so that identifying these peaks becomes simpler.
Nonetheless, “peak-picking” algorithms rapidly become
complex and subjective as the number of sources increases
and the dimensionality of  increases.

The novelty of RAP-MUSIC is to avoid this peak-pick-
ing problem entirely. We instead remove the component of
the signal subspace that is spanned by the first source, then
perform a search to find the second source as the global
maximizer over this modified subspace. In this way we
replace the problem of finding  local maxima with one in
which we recursively find the sources by finding  global
maxima.

The method can be viewed simply in terms of the sub-
space correlation functions described above. Define the
orthogonal projection operation for  as

(9)

and apply this operator to both arguments of the
 function. The second source is then found as

the global maximizer

(10)

Here we have projected both our signal subspace esti-
mate and the multidimensional array manifold away from
the first solution, then found the maximum subspace corre-
lation (minimum principal angle) between these two pro-
jected spaces. After the maximization, the quasi-linear
parameters are again easily extracted and the second array
manifold vector estimated as . We then
form the orthogonal projection operator for the combina-
tion of the first two sources, and proceed recursively.

By extension, the th recursion, , of
RAP-MUSIC is

(11)

where we define

(12)

as formed from the array manifold estimates of the previ-
ous  recursions, and

(13)

is the orthogonal projection operator for this matrix.

5. Other sequential forms of MUSIC

In [9], we introduced a preliminary version of
RAP-MUSIC that we now refer to as R-MUSIC†, develop-
ing the algorithm from a subspace “distance” perspective
[3], with specific application to the E/MEG source localiza-

†In [9, 13], we referred to R-MUSIC as RAP-MUSIC, and while related,
these two methods are distinct.

tion problem. Successful demonstration of R-MUSIC in a
blind test for E/MEG source localization can be found in
[13], and a more complete description of the application of
R-MUSIC to the E/MEG problem can be found in [11].

To demonstrate the promise of RAP-MUSIC, we
present here a comparison with classical MUSIC and two
other “sequent ia l ”  methods:  S-MUSIC [7]  and
IES-MUSIC [8]. While the RAP-MUSIC method is appli-
cable to any problem for which MUSIC can be used, we
restrict our discussion here to a scalar source parameter
and to two sources. All of the methods used in our compar-
ison find the first source in the same way, i.e. as the global
maximizer of . The manner in which
the second source is found differs for each method.

In S-MUSIC [7], we apply the projection operator(9)
only to the array manifold and find the second source as

, where

(14)

In IES-MUSIC [8], the denominator of(14) is dropped
and the following modification used

(15)

This measure is equivalent to S-MUSIC for  and
MUSIC for . In [8], an optimal scalar  is derived
for the case of two sources, but this scalar requires knowl-
edge of the two sources  and . Since these parameters
are unknown, IES-MUSIC first obtains the estimated loca-
tions  and  from another approach, such as MUSIC,
from which it forms the estimate . After this step
is maximized to find the second source.

These algorithms may be summarized and compared
using the subspace correlation function as follows.

MUSIC :
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IES-MUSIC  (  defined in [8]):
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RAP-MUSIC :

(19)

In (17) and(18), the first argument is a vector and the
second argument is already orthogonal. Thus(17) and(18)
are readily seen to be equivalent to(14) and(15), respec-
tively. Conversely, by explicitly forming the orthogonaliza-
tions required in(19), we may express RAP-MUSIC in a
form comparable to(14) and(15) as

(20)

To form this equivalence we have orthogonalized the pro-
jected signal subspace using an SVD as

(21)

and retained only the non-zero singular value components
of (21). We note that

, (22)

and substitution using(22) and the idempotent property of
projection operators yields(20).

When viewed in terms of the subspace correlations, we
see that the clear difference between RAP-MUSIC and the
other sequential forms is that the projection operator is
applied to both arguments before computing the subspace
correlation, rather than just to the array manifold as in the
case of S and IES MUSIC.

6. Simulation

We have followed the simulations in [8] in order to
draw performance comparisons between these various
forms of recursive MUSIC. The sensor array is the conven-
tional uniform linear array of sensors spaced a half-wave-
length apart. The sources are far-field narrow-band and
impinging on the array from scalar direction . The array
manifold vector may therefore be specified as

, (23)

where  is broadside to the array, and  = .
The source time series are assumed to be complex
zero-mean Gaussian sequences with covariance matrix .
We assume fifteen sensor elements and two sources at
and degrees. The source covariance matrix is specified
as

(24)

where  determines the degree of correlation between
these two sources of equal power. The variance of the noise
is set to unity, such that the signal to noise power ratio is
also unity.

We simulate  samples of both the signal and noise,
form the estimated data covariance matrix, then extract the
matrix  comprising the two estimated signal subspace
vectors. The noise variance is estimated as the mean of the
noise-only subspace eigenvalues. For each realization, we
find the maxima of the MUSIC measure in a region about
each of the true solutions. The source with the better corre-
lation was considered source . The second source

was then found by maximizing the appropriate measure,
(16)-(19). Since IES-MUSIC is a “two-pass” algorithm,
i.e., it requires an initial estimate of both source parame-
ters, we used the RAP-MUSIC source estimates for the ini-
tial estimate, as the RAP-MUSIC solution was on average
superior to the MUSIC and S-MUSIC estimates. We also
ran as a comparison IES-MUSIC with  set to the true
optimal value using the true source angles.

In [8], closed-form formulae are presented for calcu-
lating the theoretical error variance of MUSIC, S-MUSIC,
and IES-MUSIC. For each estimator, we also calculated a
numerical root mean squared (RMS) error,

(25)

where  represents the estimate from the th Monte
Carlo run. In each of these runs, we determined which of
the two MUSIC peaks in the regions about the true answer
was greater and declared this source as . We then esti-
mated the second source, then tabulated the actual number
of runs used for both  or  degrees, which is
approximately evenly split at about 250 Monte Carlo runs
each.

In Table 1, we held the number of time samples con-
stant at  and varied the degree of correlation
between the two sources. For uncorrelated sources, ,
all measures performed similarly, as also demonstrated in
[8]. The differences in performance begin to arise at

, as tabulated in our table, where we observe that
IES-MUSIC and RAP-MUSIC have RMS error about 25%
better than MUSIC and S-MUSIC. At , we see
that RAP-MUSIC continues to have performance compara-
ble to that of perfect IES-MUSIC, but that estimated
IES-MUSIC is beginning to degrade in comparison;
MUSIC and S-MUSIC have RMS error almost twice that
of IES-MUSIC and RAP-MUSIC at this point. By

, all methods are experiencing comparable dif-
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ficulty in estimating the sources. MUSIC is particularly
poor at this correlation, since in many trials an adequately
detectable peak did not occur in the region around the true
answer.

In general, the RMS error of MUSIC and S-MUSIC
match the theoretical bounds established in [8] quite well,
and our RMS errors agree well with those presented in [8]
for their comparable cases. RAP-MUSIC consistently
maintains an improved RMS error  over that  of
IES-MUSIC, and we note again that IES-MUSIC depends
on some other technique in order to arrive at an initial set
of source estimates. IES-MUSIC performance using the
optimally designed  agrees quite well with the theoretical
bounds, but this performance obviously requires prior
knowledge of the true solution.

These RMS errors were calculated at a relatively large
number of time samples. We also tested small sample per-
formance, in which we held the correlation constant at

 and varied the number of time samples; for brev-
ity we do not include the table of results. At lower numbers
of time samples, we generally had a difficult task determin-
ing a second MUSIC peak, and the MUSIC results were
unreliable. As in Table 1, RAP-MUSIC consistently main-
tained improved performance over the other methods, and
the performances were generally in good agreement with
the theoretical bounds established by [8].
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Table 1: Comparison of Analytic Std. Devs. and RMS error. The number of time samples remains constant at 1000, and the
correlation  between the two sources is varied. For each of the 500 Monte Carlo realizations, source 1 (either 25 or 30
degrees) was selected as the source with the highest MUSIC peak. The theoretical and root mean squared (RMS) error of the
second source is tabulated. IES-MUSIC is shown both with its scalar  set using the true parameters and with its scalar
estimated. MUSIC was unreliable in locating the second peak for ,

n 1000 1000 1000 1000 1000 1000

0.975 0.950 0.925 0.900 0.800 0.700

θ2 (deg) 25 30 25 30 25 30 25 30 25 30 25 30

Runs 254 246 236 264 270 230 242 258 241 259 231 269

MUSIC (deg)
Theoretical 0.531 0.555 0.294 0.308 0.215 0.224 0.174 0.182 0.110 0.116 0.088 0.092

RMS err - - - - 0.494 0.389 0.214 0.232 0.165 0.171 0.105 0.115 0.087 0.088

S-MUSIC
Theoretical 0.534 0.559 0.297 0.310 0.216 0.226 0.175 0.183 0.111 0.116 0.089 0.093

RMS err 0.834 0.818 0.278 0.283 0.184 0.202 0.146 0.160 0.101 0.112 0.082 0.086

IES-MUSIC

Theoretical 0.083 0.087 0.065 0.069 0.062 0.064 0.060 0.063 0.059 0.062 0.059 0.061

RMS err, 0.461 0.484 0.074 0.077 0.070 0.069 0.066 0.065 0.066 0.071 0.062 0.067

RMS err, 0.946 0.919 0.189 0.184 0.110 0.116 0.084 0.084 0.071 0.075 0.063 0.068

RAP-MUSIC RMS err 0.879 0.863 0.150 0.153 0.083 0.093 0.070 0.070 0.067 0.069 0.061 0.065
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