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ABSTRACT 

SOURCE LOCALIZATION 

VIA TIME DIFFERENCE OF ARRIVAL 

by 

Ciprian Romeo Comsa 

Accurate localization of a signal source, based on the signals collected by a number of 

receiving sensors deployed in the source surrounding area is a problem of interest in 

various fields. This dissertation aims at exploring different techniques to improve the 

localization accuracy of non-cooperative sources, i.e., sources for which the specific 

transmitted symbols and the time of the transmitted signal are unknown to the receiving 

sensors. With the localization of non-cooperative sources, time difference of arrival 

(TDOA) of the signals received at pairs of sensors is typically employed. 

 A two-stage localization method in multipath environments is proposed. During 

the first stage, TDOA of the signals received at pairs of sensors is estimated. In the 

second stage, the actual location is computed from the TDOA estimates. This later stage 

is referred to as hyperbolic localization and it generally involves a non-convex 

optimization. For the first stage, a TDOA estimation method that exploits the sparsity of 

multipath channels is proposed. This is formulated as an ℓ1-regularization problem, where 

the ℓ1-norm is used as channel sparsity constraint. For the second stage, three methods are 

proposed to offer high accuracy at different computational costs. The first method takes a 

semi-definite relaxation (SDR) approach to relax the hyperbolic localization to a convex 

optimization. The second method follows a linearized formulation of the problem and 

seeks a biased estimate of improved accuracy. A third method is proposed to exploit the 

source sparsity. With this, the hyperbolic localization is formulated as an an ℓ1-



ii 

regularization problem, where the ℓ1-norm is used as source sparsity constraint. The 

proposed methods compare favorably to other existing methods, each of them having its 

own advantages. The SDR method has the advantage of simplicity and low 

computational cost. The second method may perform better than the SDR approach in 

some situations, but at the price of higher computational cost. The ℓ1-regularization may 

outperform the first two methods, but is sensitive to the choice of a regularization 

parameter. The proposed two-stage localization approach is shown to deliver higher 

accuracy and robustness to noise, compared to existing TDOA localization methods. 

 A single-stage source localization method is explored. The approach is coherent 

in the sense that, in addition to the TDOA information, it utilizes the relative carrier 

phases of the received signals among pairs of sensors. A location estimator is constructed 

based on a maximum likelihood metric. The potential of accuracy improvement by the 

coherent approach is shown through the Cramer Rao lower bound (CRB). However, the 

technique has to contend with high peak sidelobes in the localization metric, especially at 

low signal-to-noise ratio (SNR). Employing a small antenna array at each sensor is shown 

to lower the sidelobes level in the localization metric. 

 Finally, the performance of time delay and amplitude estimation from samples of 

the received signal taken at rates lower than the conventional Nyquist rate is evaluated. 

To this end, a CRB is developed and its variation with system parameters is analyzed. It 

is shown that while with noiseless low rate sampling there is no estimation accuracy loss 

compared to Nyquist sampling, in the presence of additive noise the performance 

degrades significantly. However, increasing the low sampling rate by a small factor leads 

to significant performance improvement, especially for time delay estimation. 
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CHAPTER 1  

INTRODUCTION 

 EQUATION CHAPTER (NEXT) SECTION 1 

1.1 Source Localization in Wireless Systems 

The localization of a signal source has been a problem of interest in various fields such as 

wireless communications, radar, sonar, navigation, acoustics, geophysics, or other sensor 

networks for the past few decades, due to technology advances, [1-6], and new 

requirements in terms of accuracy and operating environments, [7]. For example, in the 

USA, it is required now by the Federal Communications Commission (FCC) that the 

wireless service providers must report the call initiating mobile station (MS) location to 

an Emergency 911 (E-911) at the public safety answering point with an accuracy of 100 

meters for 67% of all wireless E-911 calls. It is still expected that the required precision 

will be higher. But accurate localization is also desirable in many other applications. The 

wide range of applications, as well as that of conventional localization techniques, is 

summarized in many overviews in the literature, [8-20]. 

Localization techniques of wireless sources can be viewed as falling into two 

main categories, namely mobile-based (or forward link) localization systems, and 

network-based (or reverse link) localization systems, [15]. In the first case, the MS 

(serving as a receiver) determinates its own location by measuring the signal parameters 

of an external system such as the cellular system it operates on or the global positioning 

system (GPS). In the second case, the system determinates the position of the MS (as 

signal source) by measuring its signal parameters at the base stations (receiving sensors). 

The sensors measure the received signal and relay it to a fusion center for processing and 

estimation of the source location, as illustrated in Figure 1.1. The technique relies on 
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signal strength (RSS) technique calculates the distance measuring the energy of the 

received signal; the time of arrival (TOA) procedure is based on measurements of travel 

time of the signal converted into distance, while the time difference of arrival (TDOA) is 

different from TOA by utilizing a reference sensor. These methods can all be used 

depending on specific applications and environments, each of them having their own 

advantages and drawbacks: e.g., the AOA method requires antenna arrays at each sensor, 

which make it costly; for RSS the channel (path-loss) model needs to be known, while 

TOA requires synchronization with the source clock. 

The focus in this research is on the network-based localization within a plane. The 

source location space where the source is expected to be located is limited to some 

surveillance area, a priori known. The source is placed in the near-field of the sensors, 

i.e., the sensors are widely dispersed over the surveillance area. This means that both the 

bearing and range can be estimated for source localization, as opposed to the far-field 

case when only bearing (DOA) is typically estimated. Such source localization can be 

achieved either in one or two stages. 

1.2 Two-Stage Source Localization 

Typically, the source location is estimated in two stages. During the first stage, a measure 

of the received signal, usually the propagation time delay, is estimated at each sensor, [7, 

10, 21-28]. In the second stage, the actual location is computed from the time delay 

estimates. Time delay estimation (TDE) becomes challenging in multipath propagation 

environments, where the line-of-sight (LOS) signal component becomes obscured by 

multipath reflections.  Hence, accurate localization requires techniques capable of 

resolving the LOS signal component, [29-33]. When the transmitted signal and its 
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transmission time are known at a sensor, the TOA can be estimated by a variety of 

techniques. A classical method is to estimate the TOA from the timing of the peak of the 

cross-correlation (CC) between the transmitted and received signals, [21, 34]. The 

resolution of the TOA estimated in this case is limited by the width of the main lobe of 

the time autocorrelation function of the transmitted signal. This limitation makes the 

method unable to distinguish between the LOS signal and a reflected component when 

they are spaced closer than the resolution limit. Over the years, various techniques have 

been proposed to overcome this limitation.  An example is the root-MUSIC method, 

belonging to a larger class called super-resolution methods due to their high resolution 

capabilities, [6, 9, 35-39]. 

Recently, some potentially even higher resolution estimation techniques have 

been proposed, based on the observation that many propagation channels associated with 

multipath environments tend to exhibit a sparse structure in the time domain, i.e., the 

number of multipaths is much smaller than the number of samples of the received signal. 

This sparsity has been exploited in TOA estimation, [40], and other TOA-related 

applications, such as compressed channel sensing, [41, 42], underwater acoustic channel 

deconvolution, [43], or channel response estimation in CDMA systems, [44]. TOA 

estimation requires the transmitted signal to be known to the sensors. In many 

applications, the source may be non-cooperative or otherwise the signal and timing 

information may not be available at the receiving sensors. The common approach for 

such a case is to take one of the sensors as reference and measure the TDOA at each of 

the other sensors with respect to the chosen reference sensor. A method for TDOA 

estimation for sparse non-negative acoustic channels is presented in [45], based on the 
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cross-relation introduced in blind channel identification [46-48]. Similar method has been 

presented in [49] and [50]. However, a discussion about the conditions under which this 

method works was included in [51]. 

In the current work, a method for high resolution TDOA estimation for complex-

valued sparse multipath channels is developed and applied to source localization. The 

proposed method casts the TDOA estimation as a convex optimization problem that can 

be efficiently solved by conventional algorithms, [52]. In particular, the problem is 

formulated as an ℓ1-regularization problem, i.e., the ℓ1-norm is used to impose a sparsity-

constraint on the channel. While the proposed approach does not require the transmitted 

signal to be known at the sensors side, as it is the case in [40-43], the pulse shape is 

assumed known. Also, for simplicity, the reference sensor is considered single-path, i.e., 

the reference sensor receives only LOS signal component. 

For any pair of sensors, given their locations, the TDOA estimated at the first 

stage localizes the source on a hyperboloid with constant range difference between the 

two sensors. Since the source can occupy only a single point on the hyperbolic curve, 

TDOA measurements from the other sensors are used to resolve the location ambiguity. 

The process of finding a solution of the intersection of the hyperbolic curves is the 

second stage of the source localization, also referred to as hyperbolic localization, and is 

equivalent to solving a system of non-linear equations, [53], i.e., it is a non-convex 

optimization. Traditional solutions proposed in the literature for hyperbolic localization 

have generally poor robustness to errors in the TDOA estimates. More recent methods, 

which relax the non-convex problem to a convex optimization by applying a semi-

definite relaxation (SDR) method, were found to be more robust to TDOA errors than the 
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traditional methods. However, the SDR methods are not optimal in general. In this 

dissertation, three convex optimization methods with different computational costs are 

proposed to improve the hyperbolic localization accuracy. The first method takes an SDR 

approach to relax the hyperbolic localization to a convex optimization. The second 

method follows a linearized formulation of the problem and seeks a biased estimate of 

improved accuracy. The first two methods perform comparably when the source is inside 

the convex hull of the sensors. When the source is located outside, the second approach 

performs better, at the cost of higher computation. A third method is proposed by 

exploiting the source sparsity. With this, the hyperbolic localization is formulated as an ℓଵ-regularization problem, where the ℓଵ-norm is used as source sparsity constraint. 

Computer simulations show that the ℓଵ-regularization can offer further improved 

accuracy, but at the cost of additional computational effort.  

1.3 Single-Stage Source Localization 

Aside from the two-stage approach, the source location can be also estimated directly, in 

a single stage, by making use of the signal parameters without estimating them as an 

intermediary step. Conventional single-stage methods generally apply the maximum 

likelihood (ML) approach to exploit amplitude and/or time delay information contained 

in the envelope of the received signals, [6, 54-62]. RSS, TOA, and TDOA based are 

among the well-known localization techniques. Since these exploit only the envelope of 

the received signals, they are collectively referred to as non-coherent. An alternative 

approach, which is referred to as the coherent localization, is to additionally exploit the 

carrier phases of the received signals among pairs of sensors. This is possible when the 

carrier phase of the received signals is preserved and mutual time and phase 
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synchronization is achieved across sensors. The localization is accomplished by 

formulating a localization metric which is a joint statistic that incorporates the time delay 

and phase information contained in the received signals as if transmitted from various 

points of the source two-dimensional location space. In the non-coherent case, the phase 

information is not exploited. 

The two-stage and the single-stage localization approaches have in general 

comparable performance. However, the later requires higher computational effort. For 

example, the source location is typically estimated based on a grid search and the number 

of grid points, say ௚ܰ, is very high for a good resolution of the estimate. With the two-

stage approach most of the computational effort is spent to estimate a small number of 

TDOAs, proportional to the number of sensors, say ܯ. Estimation of each TDOA 

involves one search among ௚ܰ points, i.e., the overall computational effort is proportional 

to ܯ ௚ܰ. With the single-stage approach, the computational effort is proportional to ௚ܰଶ 

since a bi-dimensional search grid is required for location estimation. Nevertheless, with 

the modern computation capabilities, nowadays both two-stage and single-stage 

approaches are feasible. When comparing the one-stage non-coherent approach to the 

(one-stage) coherent one, the later can offer much higher accuracy, justifying the higher 

computational effort spent over the two-stage approach.  

The potential for significant accuracy gain of coherent processing over the non-

coherent has been shown in recent work on target localization employing active sensors, 

such as in MIMO (multiple input multiple output) radar systems [63-66]. As opposed to 

passive systems (of interest for the current problem) where all sensors receive the signal 

transmitted by the source to be located, in active systems, the signal usually travels a 
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round trip, i.e., a known signal transmitted by one sensor is reflected by the target and 

measured by the same or different sensor. The round trip and the reflectivity of the target 

make the received signal to noise ratio (SNR) lower than if the same receiving sensors 

would have to passively locate a signal source instead of the target. The great 

improvement in accuracy with coherent processing, particularly at high SNR, is due to 

the fact that the accuracy in coherent localization, as expressed by the Cramer Rao lower 

bound (CRB), is inverse proportional to the carrier frequency of the received signal, 

whereas for non-coherent localization, the accuracy is inversely proportional to the 

bandwidth of the received signal, [55, 63, 64, 67, 68]. This is referred to as coherency 

advantage in [64]. Beside the number of sensors, the localization accuracy is also 

strongly reliant on the received SNR and the relative geographical spread of the array 

sensors versus the source location. This dependence is referred to as spatial advantage.  

While coherent processing can facilitate source localization with very high 

accuracy, the localization technique has to contend with high peak sidelobes in the 

coherent localization metric [69-73]. At high SNR, these sidelobes have limited impact 

on the performance, but bellow a threshold SNR value, performance degrades quickly, 

being affected by large errors [26, 27, 74-77]. Thus, while at high SNR the localization 

performance can be predicted by using the CRB, at low SNR other lower bounds have to 

be used, e.g. the Ziv-Zakai bound (ZZB), [77]. The coherent localization also requires 

precise knowledge of the sensor locations and phase synchronization across sensors, [78-

81], which, although they are assumed given in this work, in practice may require 

additional self-calibration techniques.  
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1.4 Signal Parameters Estimation from Low Rate Samples 

In many localization applications the signals can be uniquely described by a small 

number of parameters, [1]. For example, a stream of short pulses of known shape can be 

fully defined by the time delays of the pulses and their amplitudes. Since the number of 

parameters describing these signals is small, such signals are referred to as signals of 

finite rate of innovation (FRI). The number of parameters describing the FRI signals 

determines the rate of innovation of the signals, which is usually much smaller than the 

number of signal samples taken at the Nyquist rate. This observation was exploited to set 

the grounds for sampling at rates lower than the Nyquist rate. To this end, a mechanism 

to sample at low rates streams of Diracs can be found in  [82], [83], and the references 

therein. A scheme for recovering the original stream from the samples was also proposed. 

A set of more recent works, e.g., [84] and [85], generalizes the approach to sampling at 

low rates streams of pulses of arbitrary shape. Furthermore, by contrast to [83], where the 

minimum sampling rate is dictated by the bandwidth of a sampling filter, the minimum 

sampling rate in [84] is given by the signal’s rate of innovation (ROI). ROI can be easily 

illustrated for a signal ݔோ(ݐ) for which any of its segments of length ܶ is uniquely 

determined by no more than 2ܭ parameters, e.g., ܭ time delays and ܭ amplitudes. Thus, ݔோ(ݐ) is said to have FRI. Specifically, its local ROI is 2ܭ ܶ⁄ , i.e., it has no more than 2ܭ 

degrees of freedom every ܶ seconds. The sampling scheme developed in [84] for such 

FRI signals takes samples at a rate as low as 2ܭ ܶ⁄ . It is then shown that from these 

samples the original signal can be perfectly recovered by some signal processing 

technique. However, it was found in [86] that the performance of the signal recovery 

from low rate (LR) samples can deteriorate in the presence of noise substantially more 
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than the recovery from samples taken at the Nyquist rate would deteriorate. However, 

with conventional Nyquist sampling, if the noise is continuous time, i.e., it is generated 

prior to sampling, oversampling does not help. By contrast, when sampling at ROI, 

increasing the sampling rate brings substantial signal recovery performance 

improvement.  

This dissertation investigates, among others, the performance of time delay and 

amplitude estimation from samples taken at low rates in the presence of additive noise 

affecting the transmission channel. To this end, a CRB is developed in general and 

particular settings. With low rate sampling in noise, the CRB shows higher performance 

degradation than if samples would be taken at the Nyqist rate. However, increasing a low 

sampling rate by a small factor leads to considerable performance improvement. For the 

particular setting considered, this improvement is proportional to the cube of the increase 

factor. The resolvability of two close paths is also shown to improve with the sampling 

rate and inter-path separation.  

1.5 General Framework and Signal Model 

With passive localization, the unknown ݕ-ݔ location ߦ଴ of an emitting source has to be 

estimated based on the signals collected by a number ܯ of sensors. The source is 

assumed to transmit an unknown lowpass signal ݏ଴(ݐ) modulating a carrier frequency ௖݂. 

The signal is assumed narrow-band in the sense that the carrier frequency is much higher 

than the signal’s bandwidth. The sensors are widely dispersed within a surveillance area, 

at precisely known arbitrarily fixed locations ߦ௞, forming a distributed sensor array. The 

source is in the near-field of the distributed array in the sense that it has a different 

bearing, and possibly a different range, with respect to each of the sensors. Ideal mutual 
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time and phase synchronization are assumed across the sensors. These allow complete 

source localization by coherent processing, i.e., by processing both the envelope and the 

carrier phase measurements at the sensors. Complete source localization is also possible 

by non-coherent processing, i.e., by processing only the envelope information at the 

sensors. The processing can be performed in two stages or in a single stage and is all 

carried out at a fusion center assumed linked via ideal communication links to the 

sensors. Both the envelope and the carrier phase measurements are related to the source 

location by the embedded time delay. The time delay between the source at ߦ଴ and a 

sensor at ߦ௞ is given by 

 ߬௞(ߦ଴) = ଵ௖ ݀௞(ߦ଴) = ଵ௖ඥ(ݔ௞ − ଴)ଶݔ + ௞ݕ) −  ଴)ଶ , (1.1)ݕ

where ܿ is the speed of light and ݀௞(ߦ଴) is the travelled distance between the two 

locations.  

When the propagation environment is multipath free, i.e., the sensors receive only 

the LOS component, the model for the signal received at a sensor is expressed  

(ݐ)௞ݎ  = ݐ଴൫ݏ௞ߙ − ߬௞(ߦ଴)൯ +  (1.2) , (ݐ)௞ݓ

where ߙ௞ is the complex-valued channel gain (pathloss due to source-sensor separation 

plus carrier phase shift) and ݓ௞(ݐ) is additive white Gaussian noise (AWGN), with 

variance ߪଶ, ݓ௞(ݐ) ∼ ࣨ(0,  ଶ). The system is assumed stationary over the observationߪ

time interval such that ߙ௞ and ߬௞ are time invariant over the aforementioned interval. The 

complex gain is expressed  

௞ߙ  = ݃௞݁ି௝ఠ೎ఛೖ(కబ) , (1.3) 
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where ߱௖ = ߨ2 ௖݂ and ݃௞ is the real-valued gain (in fact attenuation) of the transmitted 

signal through the propagation channel from the source to a sensor. With the assumption 

that the signal arrives at a sensor through the LOS path from the source, ݃௞ depends only 

on the free space propagation path loss, which varies with the source location. For 

example, for the free-space propagation the attenuation of the LOS component is 

typically related to the distance between transmitter and receiver as in [87]: 

 ݃௞ = ௖ସగ௙೎ ݀௞ି ଵ(ߦ଴) . (1.4) 

The carrier phase term ݁ି௝ఠ೎ఛೖ(కబ) in (1.3) is a demodulation residue and it depends on 

the carrier frequency and the unknown propagation delay, and thus on the source 

location. The variation of ݃௞ with the source location is observed to be much slower than 

that of the phase term. Furthermore with the signal model (1.2), ݃௞ can be roughly 

determined, for example by direct measurement of the received power (with respect to 

the transmitted power).  

Since source localization relies on the relation between the received signal 

parameters and the travel distance, for accurate localization it is desirable the travel path 

to be the LOS path. However, in many cases the propagation environment is multipath, 

meaning that the received signal is a superposition of signal components, each of them 

arriving with different delay, attenuation and phase shift. In general, the LOS component 

may be present among these or it may be missing due to some physical obstruction. It 

was shown in [31] that the non-line-of-sight (NLOS) components cannot help to source 

localization unless some a priori knowledge about them, e.g., their statistical distribution, 

is known. Otherwise, it is better to discard the NLOS components. Thus, one challenge is 

to separate the LOS component from the NLOS ones. If the LOS component is missing 
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completely, the only option to perform accurate source localization is to exploit the a 

priori knowledge about the NLOS components. Identifying and dealing with the NLOS-

only case was discussed in a number of publications, e.g., [32, 33]. Throughout the 

current work, whenever dealing with multipath propagation, it assumed that the received 

signal consists of a sum of the LOS and NLOS components: 

(ݐ)௞ݎ  = ݐ)଴ݏ௞ߙ − ߬௞) +
2

kP

p
 ݐ଴൫ݏ௞௣ߚ − ߬௞௣൯ +  (1.5) , (ݐ)௞ݓ

where ௞ܲ is the number of multipath components (LOS and NLOS) impinging the ݇୲୦ 

receiver. The LOS component parameters are the same as for the model (1.2), while for 

each of the ݌୲୦ NLOS component, the signal parameters are the time delay ߬௞௣ and the 

complex channel gain, 

௞௣ߚ  = ℎ௞௣݁௝థೖ೛, (1.6) 

with the attenuation ℎ௞௣, and the phase shift ߶௞௣. Note that for the NLOS components the 

phase shift doesn’t depend only on the carrier frequency ௖݂ and the travel time ߬௞௣, but it 

suffers from additional (difficult to predict) shifts caused by physical propagation 

phenomena, such as scattering.  

1.6 Outline 

This dissertation addresses the passive localization in plane of wireless non-cooperative 

sources, i.e., sources for which the actual signal and the time and phase of the transmitted 

signal are unknown to the sensors. The source is placed in the near-field of the sensors, 

meaning that both the bearing and range can be estimated for source localization. The 



14 

 

 

 

location processing is carried out at a fusion center assumed to have ideal communication 

links to the sensors. Mutual time synchronization across sensors is also required for non-

coherent processing. For coherent processing both time and phase synchronization across 

sensors is needed. The location is estimated based on the source-to-sensors distance 

information embedded into the received signal parameters. Thus for accurate localization 

the LOS signal component is assumed to reach all the sensors. These are the major 

assumptions used to approach the source localization problem. 

The aim of the Chapter 1 of the dissertation is to provide an introduction to the 

source localization problem. In order to bring a motivation for addressing this topic, a 

brief overview of the source localization techniques approached in the literature and their 

limitations is provided. The methods studied in this dissertation are also introduced, 

followed by the general framework for the source localization, including systemic 

aspects, main assumptions, and signal models. 

Chapter 2 discusses the two-stage localization approach and introduces new 

methods that exploit the sparse structure of multipath channels and of source location 

space. Each of the two stages is formulated employing standard convex optimization 

tools. The proposed methods are shown to deliver higher accuracy and robustness to 

noise, compared to existing conventional two-stage source localization methods. The 

main results of this chapter were also included in [88] and [89]. 

The single-stage source localization is treated in Chapter 3. The coherent 

localization is explored. A location estimator is constructed based on a maximum 

likelihood metric. The potential of accuracy improvement by the coherent approach is 

shown through the Cramer Rao lower bound. However, the technique has to contend with 
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high peak sidelobes in the localization metric, especially at low SNR. Employing a small 

antenna array at each sensor is one approach to minimize the sidelobes level. Some 

results of this chapter were also included in [24]. 

In Chapter 4, the performance of time delay and amplitude estimation from 

samples of the received signal taken at rates lower than the conventional Nyquist rate is 

evaluated. To this end, a Cramer Rao lower bound is developed and its variation with 

system parameters is analyzed. It is shown that while with noiseless low rate sampling 

there is no estimation accuracy loss compared to Nyquist sampling, in the presence of 

additive noise the performance degrades significantly. However, increasing a low rate 

sampling by a small factor leads to significant performance improvement, especially for 

time delay estimation. The main results of this chapter will be included also in [90]. 

Overall concluding remarks and avenues for future work are given in Chapter 5. 
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CHAPTER 2  

TWO-STAGE SOURCE LOCALIZATION 

Typically, the source location is estimated in two stages. During the first stage, a measure 

of the received signal, usually the propagation time delay, is estimated at each sensor. In 

the second stage, the actual location is computed from the time delay estimates. In Figure 

2.1 the layout of the source localization system based on TOA measurements is 

illustrated within the general framework described in the Chapter 1. The system based on 

TDOA measurements is similar, except that the source location is given by a intersection 

of hyperbolas instead of circles. 

 

Figure 2.1  Two-stage localization system layout. The fusion center estimates the TOAs 

at the three receiving sensors. The values of each TOA localizes the source on circle, thus 

the location of the source is given by the intersection of the three circles.  
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2.1 TDOA Estimation 

2.1.1 Signal Model 

Within the general framework presented, the model for the signal received at any sensor 

is expressed as the convolution between the transmitted signal, ݏ଴(ݐ), and the channel 

impulse response (CIR), ℎ௞(ݐ): 
(ݐ)௞ݎ  = ଴ݏ) ∗ ℎ௞)(ݐ) +  (2.1) ,(ݐ)௞ݓ

where ݓ௞(ݐ) is additive white Gaussian noise (AWGN), with variance ߪଶ . Time delay 

estimation is particularly challenging in multipath environments. For the two-stage 

approach, in general the carrier phase information is discarded, [26], so the multipath 

channel is modeled 

 ℎ௞(ݐ) = ݃௞ݐ)ߜ − ߬௞) +
2

kP

p
 ݐ൫ߜ௞௣ߚ − ߬௞௣൯, (2.2) 

where ߜ(∙) denotes the delta function, ௞ܲ is the number of paths of the channel observed 

at sensor ݇, ݃௞ is the LOS component real valued attenuation, and ߚ௞௣ is the complex 

valued channel gain of the NLOS components. The channel parameters ௞ܲ, ݃௞ and ߚ௞௣  

are unknown to the sensors.  

The localization method proposed in this chapter is based on the estimation of the 

TDOA at pairs of sensors, Δ߬௞௟(ߦ଴) = ߬௞(ߦ଴) − ߬௟(ߦ଴). The LOS propagation delay 

between the source located at ߦ଴ and any sensor at ߦ௞, ߬௞(ߦ଴), is proportional to the 

source-to-sensor distance: ߬௞(ߦ଴) = (1 ܿ⁄ )	ඥ(ݔ௞ − ଴)ଶݔ + ௞ݕ) −  ଴)ଶ, where ܿ is theݕ

speed of light. A TDOA measurement localizes the source on a hyperboloid with a 

constant range difference between the two sensors, ݇ and ݈. Since the source can occupy 
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only one point on the hyperbolic curve, TDOA measurements from the other sensors are 

used to resolve the location ambiguity. One of the sensors, say ݈ = 1, is chosen as 

reference such that the sensor pairs used for TDOA estimation are ሼ݇, 1ሽ, for ݇ =2,…  .ܯ,

2.1.2 Conventional TDOA Estimation 

For the estimation of the TDoAs, which is the first stage, one natural approach is using 

the ML estimation, which implies a maximization is performed for all the delays TDOA, 

e.g., [60]. It has been shown in [21] that for single path channel models this approach is 

equivalent to applying the generalized cross-correlation (GCC) technique with a Hannan-

Thomson (HT) processor. This takes the received signals ݎ௜, filters them by some 

function ܪ௜(݂) specified in [21], ߥ௜, ݅ ∈ ሼ݇, ݈ሽ being the signals obtained after filtering. 

Then it takes the cross-correlation ܴఔೖఔ೗ of the results and searches for its maxima. The 

corresponding time lag represents the TDOA. The cross-correlation ܴఔೖఔ೗(߬) is ׬ ߰௚(݂)	ܩఔೖఔ೗(݂)݁௝ଶగ௙ఛ݂݀ஶିஶ , where ߰௚(݂) = -ఔೖఔ೗(݂) is the cross power spectral density function (the Fourier transform of the crossܩ ௟∗(݂) is the HT processor andܪ(݂)௞ܪ

correlation ܴఔೖఔ೗(߬)) of the received signals ݎ௞(ݐ) and ݎ௟(ݐ). In practice, instead of the 

actual cross-correlation ܴఔೖఔ೗, an estimate is obtained from the finite observations ݎ௞ and ݎ௟. 
Aside from HT, other processors ߰௚(݂) have been suggested in the literature and 

tested for multipath channel models too, including the simple cross-correlator (CC), 

which assumes ߰௚(݂) = 1. The CC has the advantage of simple implementation, but 

unfortunately, it may lead to relative large biases, especially when it is used in narrow-
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band systems operating in a dense multipath environment. The ML estimator is 

asymptotically optimal (achieves the CRB bound, which by definition is the lower limit 

of the variance of an unbiased estimate [91, 92], asymptotically as SNR or the number of 

signal samples goes to infinity). However, it should be pointed out that in order for the 

ML estimator to achieve optimal performance, not only that the sample space should be 

large enough, but the environment should be multipath free. Furthermore, the spectra of 

the noise signals have to be known a priori. If anyone of these conditions is not satisfied, 

the ML algorithm becomes suboptimal, like other GCC members, [23]. 

Another option available for TDOA estimation is the application of super-

resolution techniques, e.g., [35]. The basic idea is to estimate the noise subspace through 

eigen-decomposition, and then to estimate the signal parameters by utilizing the fact that 

the signal vector is orthogonal to the noise subspace. Based on this, an objective function, 

say ࣭, is constructed such that its first largest, say ܮᇱ peaks offer a way to find the 

unknown parameter of interest, the TDOA, in this case. Root-MUSIC is one such 

technique that seems to offer good performance, especially at low SNR. In this case, the 

objective function takes the form of a polynomial, and it is necessary to find the ܮᇱ roots 

with the largest magnitude (closest to the unit circle) [1]. Root-MUSIC is 

computationally attractive since it employs only a one-dimensional search, compared to 

the ML estimation which requires a multi-dimensional search. 

However, in practical situations there are some difficulties that have to be 

overcome, [35]. First, the correlation matrix of the received signals is needed. The 

objective function for estimating the time delay is constructed based on the eigenvalues 

and eigenvectors of this correlation matrix. In practice, the correlation matrix has to be 
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estimated from the measured data samples. Limited length of the data snapshot results in 

accuracy loss in estimating the correlation matrix. Second, additional processing, e.g., 

forward-backward spatial smoothing, [93-95], is needed to decorrelate the signal 

components to fit the assumptions in MUSIC. Third, one of the most important 

difficulties is estimating the number of signal components, ܮᇱ, because it has decisive 

influence on the time delay estimation by MUSIC-like algorithms. Conventional order 

selection algorithms, e.g., AIC, MDL, hypothesis testing, Gerschgorin radii, or support 

vector machine, may be used, but their performance is still questionable, [35, 96-101]. 

2.1.3 TDOA Estimation for Sparse Channels 

Regardless of the difficulties enumerated with the super-resolution approaches, recent 

work has shown that channel estimation in general, and time delay estimation in 

particular, can be improved through sparsity regularization, [40-44]. In this section, an ℓ1-

regularization method for TDOA estimation is proposed, exploiting the sparsity of 

multipath channels.  

The ℓ1-regularization method 

Assuming for simplicity of presentation that the time-delays of the CIR are 

integer multiples of the sampling rate, define the received signal vector ࢘௞ =ሾݎ௞(1), … , ܳ)௞ݎ + ܮ − 1)ሿ், the CIR vector ࢎ௞ = ሾℎ௞(1), … , ℎ௞(ܮ)ሿ், and the noise 

vector ࢝௞ = ሾݓ௞(1), … ܳ)௞ݓ, + ܮ − 1)ሿ், where ܳ + ܮ −  and ܳ are the lengths of ,ܮ  ,1

the received signal vector, channel and transmitted signal vector, respectively. With 

these, the signal model (2.1) can be written as 

௞࢘  = ௞ࢎࡿ  ௞, (2.3)࢝+
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where ࡿ is the (ܳ + ܮ − 1) ×  ௞ to the࢘ matrix relating the received signal vectors ܮ

channel vectors ࢎ௞. Since typically ܮ ≫ ௞ܲ, the CIR, ࢎ௞, is a sparse vector. Sparsity of 

the CIR vector can be enforced by minimizing its ℓ0-norm, i.e., the number of non-zero 

elements. Minimization of the ℓ0-norm of ࢎ௞ is a non-convex optimization problem and it 

is NP-hard, which means that no known algorithm for solving this problem is 

significantly more efficient than an exhaustive search over all subsets of entries of ࢎ௞. In 

lieu of the ℓ0-norm, an approximation, e.g., the ℓ1-norm, can be used with 0 < ݍ ≤ 1. 

While smaller ݍ implies better approximation of the ℓ0-norm, ݍ = 1 is often used because 

minimization of the ℓ1-norm is a convex problem, and it can be efficiently solved by 

standard algorithms. Thus, assuming that the transmitted signal, and hence the matrix ࡿ, 

are known, the CIR estimation can be formulated as an ℓ1-regularization problem [43], 

 	minimize	ࢎೖ ௞࢘‖	 − ௞‖ଶଶࢎࡿ +  ௞‖ଵ, (2.4)ࢎ‖௞ߣ

where ‖࢜‖௤ = ඥ∑ ௜|௤௜೜ݒ|
 denotes the ݍ-norm of vector ࢜.  

The estimate of the CIR can be used to find the TOA as the timing of the earliest 

peak of the CIR. We now seek to formulate the problem of TDOA estimation. The 

TDOA has to be determined from a sufficient statistic involving signals received at two 

sensors. A common such statistic is cross-correlation of the received signals, implying 

that the TDOA has to be estimated from the cross-correlation of the CIR of two channels, 

e.g., from ℎ௞௟(ݐ). For a single channel, the TOA is determined as the time of the first path 

of the estimated channel. However, when cross-correlating two CIR’s, the time of the 

first path in the cross-correlation does not necessarily correspond to the TDOA. 

Assuming that for each of the channels, the line-of-sight path is the strongest, the TDOA 
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can be found from the time of the strongest component of the cross-correlation. Here, to 

simplify the situation, it is assumed that one of the sensors does not experience multipath, 

and use this sensor as reference for TDOA estimation. In this case, the TDOA is given by 

the delay of the first time component of ℎ௞௟(ݐ). Cross correlating the signal received at 

sensor ݇ with the reference sensor ݈, and dropping the noise term for simplicity,  

෥௞௟࢟  =  ௞௟, (2.5)ࢎௌࢣ

where ࢟෥௞௟ =  ௞௟ is࢟ is the unitary discrete Fourier transform (DFT) matrix, and ࡲ ,௞௟࢟ࡲ

the cross-correlation sequence of the received signal vectors ࢘௞ and ࢘௟. Let ܰ = 2ܳ ܮ2+ − 3 be the number of elements of the vector ࢟௞௟. The matrix ࢣௌ is a ܰ × ܰ 

transformation matrix relating the frequency domain cross-correlations of the received 

signals, ࢟෥௞௟, to the time-domain cross-correlations of the channels, ࢎ௞௟. It can be verified 

that ࢣௌ = diagሼ࢛෥ௌሽ	ࡲ, where ࢛෥ௌ is the power spectral density of the transmitted signal 

padded with ܮ − 1 zeros. 

The problem of TDOA estimation can be formulated as an ℓ1-regularization 

problem: 

 	minimize	ࢎೖ೗ ෥௞௟࢟‖	 − ௞௟‖ଶଶࢎௌࢣ +  ௞௟‖ଵ, (2.6)ࢎ‖௞௟ߣ

which may be efficiently solved with conventional convex optimization algorithms, [52]. 

Note the presence of the auto-correlation of the transmitted signal within the cost 

function. The proposed TDOA method utilizes auto-correlation information (for 

uncorrelated symbols, pulse shape information is sufficient), but the method is blind in 

the sense that it does not require knowledge of the transmitted symbols. 
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Formulating (2.3) with a denser sampled channel has the potential of a higher 

resolution TDOA estimate, but increases the complexity of the optimization algorithms. 

An iterative grid refinement approach is adopted to keep the complexity of the 

optimization algorithms in check. Initially, (2.6) is solved for the samples corresponding 

to a desired range of delays. A refined grid is obtained by taking a second set of samples 

focusing on a range of delays that are indicated by the first iteration to contain multipath. 

This corresponds to a higher sampling rate of the smaller area of interest. Samples of the 

second set are obtained by interpolating the original samples. The transformation matrix ࢣௌ is also recalculated to match the refined sample support of the correlation sequences. 

With the refined grid, (2.6) is solved again and a new TDOA estimate, of higher 

resolution, is obtained. The grid refinement procedure can be repeated until a desired 

resolution is attained. 

Discussion 

The cost function to be minimized in ℓ1-regularization problems, e.g., (2.4) and 

(2.6), has two terms: the first term is a measurement fidelity (or reconstruction error); the 

second term  is a regularization (or penalization) term, that imposes sparsity on the 

estimate by using its ℓ1-norm. The factor ߣ is a regularization parameter. The sparsity of 

the solution is governed by the choice of ߣ, which balances the fit of the solution to the 

measurements versus sparsity, [102]. A small regularization parameter corresponds to a 

good fit to the measurements, while too much regularization (over-penalization through a 

large ߣ) produces sparser results, but may fail to explain the measurements well. A 

number of methods have been studied in the literature for automated choice of ߣ (see 

[103] and the references therein). However, in practice an optimal value of ߣ is difficult 
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to select by any of these methods, and usually the choice of ߣ resorts to semi-empirical 

means, [102]. 

It is known that super-resolution methods, such as root-MUSIC, have the 

capability of asymptotically achieving optimal performance. However, in practice, with 

limited number of samples, or with highly correlated signal components, the accuracy 

performance often degrades away from the theoretical lower bounds, due to resolution 

limitations, [39]. In recent works, [43, 104], it was found that the ℓ1-regularization 

method may offer higher resolution than the super-resolution methods. Moreover, the 

sparse regularization has the advantage of producing good accuracy even at low signal-

to-noise ratios (SNR), i.e., it exhibits good robustness to noise, as it has been noted in 

[104]. In fact, it has been proved (see [105] and the references therein) that there is a 

fundamental connection between robustness and sparsity. Specifically, if some 

disturbance is allowed into the transformation matrix ࢣௌ or the measurements vector ࢟௞௟,  
finding the optimal solution in the worst case sense is equivalent to solving the problem 

in the ℓ1-regularization formulation, which imposes sparse solutions. 

The ℓ1-regularization continuously shrinks the estimate elements toward 0 as ߣ 

increases, leading to sparse solutions. However, the ℓ1-regularization shrinkage results in 

a small bias in the non-zero elements of the estimate, since the estimation of these 

elements is based on the measurement fidelity term, [106]. Thus, solving the problem of 

estimating ࢎ௞௟ from the measurements ࢟௞௟, (2.5), by employing an ℓ1-regularization 

formulation, (2.6), may lead to a sub-optimal solution for the non-zero elements of the 

estimate. However, despite this downside, with a reasonable choice of ߣ, the ℓ1-

regularization method still produces better TDOA estimation (and hence source 
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localization) accuracy than conventional techniques, especially at low SNR, as 

demonstrated by the results presented in Section 2.3. Moreover, the proposed method 

doesn’t necessary require knowledge of the number of the multipath components, as root-

MUSIC does. 

When the power spectral density of the transmitted signal is flat across the 

frequencies of interest, ࢣௌ in (2.5) has the form of a DFT matrix. In this case, the sparse 

estimate can be found with fewer equations than in (2.6), reducing the required 

computational effort. A procedure for selecting a subset of equations among those in 

(2.6) and the sufficient number of equations in the subset to ensure that the solution is not 

altered, can be found in [107].   

2.2 Hyperbolic Source Localization 

2.2.1 Methods for Hyperbolic Localization 

The hyperbolic localization term is used herein to denote the second of the two stages of 

the source localization via TDOA estimation. This section offers an overview of the 

existing hyperbolic localization algorithms. 

With hyperbolic localization, the estimated TDOAs are transformed, by 

multiplication with the known signal propagation speed, into range difference 

information for constructing a set of hyperbolic curves. Efficient algorithms are needed 

then to produce an accurate solution to the non-linear system of equations defining the 

hyperbolic curves, relying on the knowledge of the sensors locations. The solution 

provided by these equations is the estimated location of the source, but since the system 

of equations is generally non-linear, solving for it is not a trivial operation. 
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In the literature, there are mainly two traditional approaches to solve the 

hyperbolic localization problem. The first approach is based on the nonlinear least 

squares (NLS) framework [108] and implies finding the global minimum of a NLS 

objective function. Under the standard assumption that the TDOA estimates have 

Gaussian distribution, the global minimum of the objective function corresponds to a 

maximum likelihood (ML) location estimate, enjoying asymptotic optimality properties, 

[109]. Although optimum estimation performance can be attained, the algorithm 

converges to the correct solution only if it is initialized sufficiently close to the final 

solution. Otherwise, the estimate may be a local minimum, since the objective function 

may have multimodal features, i.e., the problem is non-convex. This is illustrated in 

Figure 2.2, where one realization of the multimodal objective function is shown for a case 

with 4 sensors. A second traditional approach is to transform the set of nonlinear 

equations into a set of linear equations by squaring them and introducing an intermediate 

variable, expressed as function of the source location, [53, 110-112]. A representative 

example of this approach is the two-step weighted least squares (WLS) method proposed 

in [53]. This method provides an approximation of the ML estimator for source location. 

However, this approximation holds only when the estimation errors are small, [113]. 

A third, more recent approach to hyperbolic localization is to relax the non-

convex problem to a convex one that can be efficiently solved by standard algorithms, 

[52]. This can be achieved by applying a semi-definite relaxation (SDR) method, [114]. 

While this approach doesn’t guarantee optimality, the solution is generally close enough 

to the optimal, to at least serve as initialization for a gradient algorithm solving. 

Moreover, the SDR approach has been found to be more robust to TDOA estimation 
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errors than traditional approaches. In the literature, various SDR methods, each with its 

own advantages and drawbacks, were proposed to solve different variations of the 

hyperbolic localization problem, [109, 113, 115, 116].  

 

Figure 2.2  Non-convex realization of the localization objective function. The NLS 

objective function is built on three TDOAs estimated from signals received at four 

sensors. 

In this chapter, three different methods are proposed to solve the nonlinear system 

of equations defining the hyperbolic localization problem. The proposed methods 

improve over existing methods in different scenarios, with different computational costs. 

The first method is an alternative to the WLS solution by formulating the hyperbolic 

localization problem as a constrained minimization and relaxing the quadratic relation 

between the intermediate variables introduced and the source location. The second 

method is to seek a biased estimate instead of the conventional unbiased estimate 

produced by the WLS method. This method is developed in a more general biased 

estimation context discussed in [117] and is also formulated as a constrained 
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minimization problem. Finally, the third method is to introduce a grid over the 

surveillance area and formulate an objective function related to the likelihood of the 

source to occupy a certain point on the grid. Exploiting the sparsity of the sources, the 

problem is formulated as an ℓଵ-regularization, solvable by standard convex optimization 

algorithms, [52]. 

2.2.2 System Model 

With the hyperbolic localization problem, the unknown location, ߦ଴ = ሾݔ଴,  ଴ሿ୘, of aݕ

signal source has to be estimated based on ܯ − 1 TDOAs estimated by a number ܯ of 

sensors, ܯ ≥ 3. The sensors are assumed dispersed within a surveillance area, at 

arbitrary but precisely known locations, ߦ௞ = ሾݔ௞ ,  ௞ሿ୘. Perfect time synchronization isݕ

assumed across sensors. One of the sensors, say the first, is used as reference. The 

estimates express the TDOA with respect to the reference sensor. It is further assumed 

that the TDOA estimates, ߬௞ଵ, are available at a fusion center, where the location 

estimation is performed. The location of the source is estimated by converting the TDOA 

estimates into range differences, i.e., ݀௞ଵ = ܿ߬௞ଵ, for ݇ = 2,…  where ܿ is the speed ,ܯ,

of light. Denoting the true distance (noise free) value of ݀ by ݀୥, the range differences 

are commonly modeled, [53], 

 ݀௞ଵ = ݀௞ଵ୥ (଴ߦ) + ݊௞ଵ, for ݇ = 2,…  (2.7) ,ܯ,

where ݀௞ଵ୥ = ௞ߦ‖ − ଴‖ଶߦ − ଵߦ‖ − ௞ߦ‖ ଴‖ଶ, withߦ − ଴‖ଶߦ = ඥ(ݔ௞ − ଴)ଶݔ + ௞ݕ) −  ଴)ଶݕ

denoting the Euclidean distance between the source and sensor ݇. The noise term ݊௞ଵ is 

usually modeled as a zero mean Gaussian random process. The covariance of ࢔ =ሾ݊௞ଶ, … , ݊௞ெሿ୘ is denoted by ࡽ௡ = ॱሼ࢔࢔୘ሽ, where ॱ is the expectation operator; ࡽ௡ is 
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assumed known up to a scalar.  Note that because of the common reference, in reality 

matrix ࡽ௡ is not a diagonal matrix. However, it is a common practice in the literature to 

model the range difference estimation errors as independent across sensor pairs and thus 

assume ࡽ௡ =  ௡ଶ is the range difference variance of any pair of sensorsߪ ெିଵ, whereࡵ௡ଶߪ

and ࡵெିଵ denotes the unity matrix of dimensions (ܯ − 1) × ܯ) − 1). 
For a number ܯ of sensors, a set of ܯ)ܯ − 1) 2⁄  TDOA estimated values can be 

obtained, referred to as the full TDOA set. Instead, by using only one sensor as reference, 

a set of ܯ − 1 TDOA estimates is obtained, referred here as the non-redundant TDOA 

set. It was shown in [118] that if the reference sensor is properly chosen, the non-

redundant TDOA set can result in the same localization accuracy as the full set. A 

procedure for properly choosing the reference sensor can be developed based on the CRB 

expression, [115, 118]. In this work, the proper choice of the reference sensor is assumed. 

2.2.3 An SDR Method for Hyperbolic Localization 

In this section, an SDR approach is proposed to solve for the source location ߦ଴ 

estimation from the system of non-linear Equations (2.7). First, both sides of equality 

(2.7) are squared and the resulting terms rearranged. By introducing three intermediate 

variables,  

ߩ  = ଵߦ‖ − ߥ  ,଴‖ଶߦ = ߛ  ଶ,  andߩ =  , (2.8)	଴‖ଶଶߦ‖

and denoting the noise term ݁௞ = ݊௞ଵ(2‖ߦ௞ − ଴‖ଶߦ + ݊௞ଵ), the following linear 

equations are obtained for ݇ = 2,…  :ܯ,

 (݀௞ଵଶ + 2݀௞ଵߩ + (ߥ − ൫‖ߦ௞‖ଶଶ − ଴ߦ௞୘ߦ2 + ൯ߛ = ݁௞	. (2.9) 
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By denoting the left hand side of (3) as Λ௞(ߦ଴), the dependence on  ߥ ,ߩ, and ߛ being 

implicit, and letting ઩(ߦ଴) = ሾΛଶ(ߦ଴), … , Λெ(ߦ଴)ሿ୘, ࢊ = ሾ݀ଶ, … , ݀ெሿ୘, and ࣈ =ሾߦଶ, … ,   ெሿ୘, it can be verified thatߦ

 ઩(ߦ଴) = traceሼࢊ୘ࢊ − ࣈ୘ࣈ + ߥ) − ெିଵሽࡵ(ߛ + ࢊߩ)2 +  (2.10) .(ࣈ଴୘ߦ

Then the source location ߦ଴ can be estimated by formulating the constrained 

optimization problem  

 	minimize	కబ,ఊ,ఘ,ఔ ‖઩(ߦ଴)‖૛, (2.11) 

                                           subject to (2.8). 

The minimization formulation (2.11) is non-convex, but it is amenable to SDR, i.e., the 

quadratic constraints in (2.8) can be relaxed by SDR, [114]. Thus, instead of (2.8), the 

following constraints are imposed: 

ߩ  = ଵߦ‖ − ଴‖ଶ,  ൤1ߦ ߩߩ ൨ߥ ≽ 0,  ൤ࡵଶ ଴୘ߦ଴ߦ ߛ ൨ ≽ 0, (2.12) 

where ࢄ ≽ 0 denotes positive semidefinite. With this, the localization problem reduces to 

an semidefinite programming (SDP), i.e., a convex minimization problem, solvable by 

standard convex optimization algorithms, [52], 

 	minimize	కబ,ఊ,ఘ,ఔ ‖઩(ߦ଴)‖૛, (2.13) 

                                           subject to (2.12). 

Note that formulation (2.13) is similar to that in [115], where a minimax 

formulation was used, i.e., ‖઩(ߦ଴)‖ஶ = max	௞ୀଶ,..,ெ	|Λ௞(ߦ଴)| was minimized to estimate ߦ଴, 

subject to the same constraints. However, minimizing the ℓ2-norm is equivalent to the LS 

formulation, which is known to be optimal given the Gaussian distribution of the TDOA 
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estimates. Indeed, the simulation results in Section 2.3 confirm that the ℓ2-norm 

minimization can offer better accuracy than the minimax formulation. 

2.2.4 MXTM Method for Hyperbolic Localization 

The aim of this section is to improve the localization accuracy over the traditional 

methods by incorporating the linearized version of the hyperbolic localization problem 

(traditionally solved by WLS), into a biased estimation framework discussed in [117, 

119]. First, the linearized equations and the conventional solution WLS are presented. 

Then the biased estimation framework is introduced and the proposed integration of the 

hyperbolic localization problem is presented and discussed.  

The non-linear equations (2.7) can be reorganized into a set of linear equations, 

by squaring and introducing an extra variable expressed as function of the source 

location, [53, 110-112]. Specifically, (2.7) can be rewritten 

 ݀௞ଵ + ଵߦ‖ − ଴‖ଶߦ = ௞ߦ‖ − ଴‖ଶߦ + ݊௞ଵ (2.14) 

By squaring both terms of the equality and introducing the new variable ߩ = ଵߦ‖ −  ,଴‖ଶߦ

(2.14) becomes 

௞ߦ)  − ଴ߦଵ)୘ߦ + ݀௞ଵߩ = ଵଶ ሾ(ߦ௞ − ௞ߦ)ଵ)୘ߦ + (ଵߦ − ݀௞ଵଶ ሿ + ݁௞	, (2.15) 

where ݁௞ = ݊௞ଵ(‖ߦ௞ − ଴‖ଶߦ + ݊௞ଵ 2⁄ ) is the noise term. Denoting ߠ = ሾߦ଴୘	ߩሿ୘ and 

neglecting the second order noise term, (2.15) can be written in a matrix form, 

ߠࡳ  = ࢎ +  (2.16) ,ࢋ
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where ࡳ = ቎ߦଶ୘ − ଵ୘ߦ ݀ଶଵ⋮ ெ୘ߦ⋮ − ଵ୘ߦ ݀ெଵ቏,   ࢎ = ቎ ଶߦ) − ଶߦ)ଵ)୘ߦ + (ଵߦ − ݀ଶଵଶ⋮(ߦெ − ெߦ)ଵ)୘ߦ + (ଵߦ − ݀ெଵଶ ቏, and ࢋ =
ሾ݊ଶଵ‖ߦଶ − ,଴‖ଶߦ … , ݊ெଵ‖ߦெ −  ሿ୘. Problem (2.16) is traditionally solved by	଴‖ଶߦ

minimization of a WLS objective function, as in [53]: 

෠ߠ  = 	argmin	ఏ ߠࡳ) − ௘ିࡽ୘(ࢎ ଵ(ߠࡳ −  (2.17)  ,	(ࢎ

where ࡽ௘ is an weighting matrix. Usually, the measurement noise ݊௞ଵ is small enough 

compared to the distances ‖ߦ௞ − ଴‖ଶ such that ݊௞ଵଶߦ 2⁄  can be neglected and the noise 

term ݁௞ can be modeled as a zero mean Gaussian random process with the covariance 

matrix ࡽ௘ = ࡮ where ,࡮௡ࡽ்࡮ = diagሼ‖ߦଶ − ,଴‖ଶߦ … , ெߦ‖ −  depends ࡮ ଴‖ଶሽ. Note thatߦ

on the unknown location ߦ଴ and thus the WLS problem (2.17) is first solved with ࡽ௘ = ௘ࡽ and then with ࡮ ௡ to obtain an estimate ofࡽ = ෡࡮௡ࡽ෡்࡮  to actually estimate ߠ. 

This method provides an approximation of the ML estimator for source location. 

However, this approximation holds only when the errors in the TDOA estimates are small 

enough. 

It was shown in [117, 120] that for linear systems such as (2.16) there exist biased 

estimates, which can provide better accuracy then the LS solution. The LS solution for 

linear systems is based on minimizing the ℓଶ-norm of the data error, ࢎ෡ − ෡ࢎ where ,ࢎ = ෠ߠ ,෠, rather than minimizing the size of the estimation errorߠࡳ −  To develop an .ߠ

estimation method that is based directly on the estimation error, an estimator ߠ෠ that 

minimizes the mean squared error (MSE) is desired. The MSE of an estimate ߠ෠ of ߠ is 

defined, [117], 

 MSE൫ߠ෠൯ = ॱ ቄฮߠ෠ − ฮଶଶቅߠ = var൛ߠ෠ൟ + ฮb൛ߠ෠ൟฮଶଶ, (2.18) 
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where var൛ߠ෠ൟ=	ॱ ቄฮߠ෠ฮଶଶቅ − ൫ॱ൛ߠ෠ൟ൯ଶ is the variance of the estimate and b൛ߠ෠ൟ = 	ॱ൛ߠ෠ൟ  an estimator cannot be chosen to directly minimize the MSE. A common approach is ,ߠ is the bias of the estimate. Since the bias generally depends on the unknown parameter ߠ	−

to restrict the estimator to be linear and unbiased and seek an estimator of this form that 

minimizes the variance var൛ߠ෠ൟ. It is well known that the LS estimator minimizes the 

variance of the estimate ߠ෠ among all unbiased linear estimates. However, this does not 

imply that the LS estimator has the smallest MSE. This motivates the approach of 

attempting to reduce the MSE by allowing some nonzero bias. Since the bias depends on 

the unknown ߠ, one solution is to exploit some a priori information on ߠ. For the 

localization problem, such information can consist in the limits of the surveillance area. 

With this, a biased estimation approach, denoted minimax total MSE (MXTM) in [117], 

can be employed to solve the hyperbolic localization problem. Assuming that the 

estimator is of form ߠ෠ = ℎ, for some 3ࢣ × ܯ) − 1) matrix ࢣ, and using it together with 

(2.16) in (2.18) it can be shown that the MSE of ߠ෠ is 

 MSE(ࢣ) = trace(ࡽࢣ௘ࢣ୘) + ଷࡵ)୘ߠ − ଷࡵ)୘(ࡳࢣ −  (2.19)  .ߠ(ࡳࢣ

Exploiting the information that limiting the surveillance area places a bound on ‖ߠ‖ଶ , 

e.g., ‖ߠ‖ଶ < ෠ߠ the estimator can be expressed ,ܮ =  ෡ℎ, whereࢣ

෡ࢣ  = 	arg	min	ࢣ max	‖ࢣ௛‖మழ௅	MSE(ࢣ). (2.20) 

Problem (2.20) seeks to minimize the worst-case MSE across all possible 

estimators of ߠ, of the form ࢣℎ, with the ℓ2-norm bounded by ܮ. To solve the problem, 

the worst-case MSE is first determined. By algebraic manipulations, it can be shown that 
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the worst-case MSE is  trace(ࡽࢣ௘ࢣ୘) +  ୫ୟ୶ is the maximum eigenvalueߣ ୫ୟ୶, whereߣଶܮ

of (ࡵଷ − ଷࡵ)୘(ࡳࢣ −   ୫ୟ୶ can be obtained byߣ It is known, [114], that .(ࡳࢣ

                     	minimize	  (2.21)  ,ߣ

                      subject to  ࡵߣଷ − ଷࡵ) − ଷࡵ)୘(ࡳࢣ − (ࡳࢣ ≽ 0. (2.22) 

By introducing (2.21) in (2.20), ࢣ can be estimated  by 

                     	minimize	 trace(ࡽࢣ௘ࢣ୘) +  ୫ୟ୶, (2.23)ߣଶܮ

                      subject to (2.22), 

with variables ࢣ and ߣ. The constrained minimization (2.23) is a standard quadratic 

constrained quadratic problem, [114], that can be relaxed to an SDP, 

                     	minimize	  (2.24)  ,ߚ

                      subject to 

               ൤ߚ − ߣଶܮ ࢍ்ࢍ ଷࡵ ൨ ≽ 0,   (2.25) 

 ൤ ଷࡵߣ ଷࡵ) − ଷࡵ୘(ࡳࢣ − ࡳࢣ ଷࡵ ൨ ≽ 0,  (2.26) 

with variables ߚ, ࢍ where ,ߣ and ,ࢣ = vec൛ࡽࢣ௘ଵ ଶ⁄ ൟ denotes the vector obtained by 

stacking the columns of  ࡽࢣ௘ଵ ଶ⁄
.  

Solving for (2.24)-(2.26) provides an estimate of ߠ = ሾߦ଴୘	ߩሿ୘. However, ߩ was 

introduced into the hyperbolic localization problem as an intermediate variable that 

depends on ߦ଴ through ߩ = ଵߦ‖ −  ଴‖ଶ. This needs to be used into the minimizationߦ

problem as an additional constraint. Introducing a new variable ࢨ = ෠ߠ using ,ߠ୘ߠ =  ,ℎࢣ

and employing SDR, it can be shown that the following two constraints can be introduced 
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into the minimization (2.24)-(2.26) to account for the relation between ߩ and ߦ଴ and keep 

the problem convex at the same time: 

 trace(ࢨࡼ) + ଵߦଵ୘ߦ − ℎࢣࡾଵ୘ߦ2 = 0, (2.27) 

 ൤ ࢨ ்(ℎࢣ)ℎࢣ 1 ൨ ≽ 0, (2.28) 

where ࡼ = diagሼ1, 1, −1ሽ, and  ࡾ = ቂ1 0 00 1 0ቃ.  
Thus, the location estimate of ߦ଴ is ࢣࡾ෡ℎ, where ࢣ෡ is obtained by solving the 

convex optimization problem 

                     	minimize	  (2.29)  ,ߚ

                      subject to (2.25), (2.26), (2.27), and (2.28), 

with variables ࢣ ,ߚ, and ߣ. 

The simulation results in Section 2.3 show that the MXTM method offers location 

estimates of higher accuracy than the previous estimation approach, particularly for the 

case when the source is placed outside the convex hull of the sensors. 

2.2.5 र૚-norm Regularization Method for Hyperbolic Localization 

The methods presented in the previous two sections offer high localization accuracy, as 

demonstrated by the simulation results shown in Section 2.3. However, they solve a 

linear approximation of the hyperbolic localization problem and are suboptimal. In this 

section a new approach that may offer even higher accuracy is proposed. This new 

approach exploits the source sparsity, i.e., the spatial sparsity. The localization problem is 

converted to a sparse framework by solving the system ૚ =  where ૚ is a unity vector ,ࢠ࡭

whose length equals the number ܯ − 1 of TDOA estimates, ߬௞ଵ, for ݇ =  is ࢠ and ,ܯ…,2
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a vector whose elements are associated with grid points, such that ࢠ௝ ≠ 0 if a source is 

present at the grid. The elements ࡭௜௝ are values of a function ݂ chosen such that ݂ ቀቚ߬௞ଵ(௝) − ߬௞ଵ	ቚቁ = 1, when the estimated TDOA associated with sensor ݇, ߬௞ଵ, equals 

the true TDOA, ߬௞ଵ(௝), calculated for sensor ݇ and grid point ݆. Function ݂ is chosen as a 

measure of the likelihood that the source is located at the grid point ݆. Thus, for grid 

points ݆ for which ߬௞ଵ(௝) ≠ ߬௞ଵ, function ݂ takes values smaller than 1, such that ݂ ቀቚ߬௞ଵ(௝) −߬௞ଵቚቁቚఛೖభ(ೕ)ஷఛೖభ is monotonic decreasing. Estimation of ࢠ yields then the source location. 

Solving the system ૚ =  by traditional LS produces poor estimates since the number ࢠ࡭

of unknowns, which equals the number of grid points, is usually much larger than the 

number equations, ܯ − 1, and thus matrix ࡭ is a fat matrix. The problem can be 

addressed by exploiting the source sparsity, which means that the size of the support of 

vector ࢠ, or otherwise number of non-zero elements, is small relative to the length of ࢠ. 

Thus, the localization problem is formulated as an ℓ1-regularization problem, i.e., 

the ℓ1-norm is used to impose a sparsity constraint on vector ࢠ, whose support indicates 

the source location: 

 	minimize	ܢ 	‖૚ − ଶଶ‖ࢠ࡭ +  ଵ ,  (2.30)‖ࢠ‖ߣ

where ߣ is a regularization parameter, balancing the fit of the solution ࢠ to the estimates ߬௞ଵ versus sparsity. This formulation is a convex optimization problem that can be 

efficiently solved by standard algorithms, [52]. 
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Formulating (2.30) with a denser sampled space has the potential of a higher 

resolution location estimate, but increases the complexity of the optimization algorithms. 

An iterative grid refinement approach is adopted to keep the complexity of the 

optimization algorithms in check. Initially, (2.30) is solved for the samples corresponding 

to a desired range of locations. A refined grid is obtained by taking a second set of 

samples focusing on an area that are indicated by the first iteration to include the source 

location. This corresponds to a higher sampling rate of the smaller area of interest. The 

transformation matrix ࡭ is also recalculated to match the refined sample support of the 

correlation sequences. With the refined grid, (2.30) is solved again and a new source 

location estimate, of higher resolution, is obtained. The grid refinement procedure can be 

repeated to improve the localization resolution. However, decreasing the grid spacing 

effects in high inter-column correlation in matrix ࡭. It is known, [121, 122], that as the 

inter-column correlation increases, the ℓ1-regularization solution may become 

suboptimal, i.e., it does not coincides with the solution of the minimization with the ℓ0-

norm constraint. This sets an empirical lower bound on the localization resolution.  

As demonstrated by the results in the Section 2.3, the ℓ1-regularization method 

has the potential of higher accuracy than the other two hyperbolic localization methods 

proposed. However, its performance depends on the choice of the regularization 

parameter. Also, a couple of iterations may be needed for grid refinement. Additionally, 

the localization resolution is limited by the grid spacing. 
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2.3 Numerical Results 

In this section, some simulation results are presented to demonstrate the performance of 

the proposed localization methods. For a typical setup, significant improvement in 

localization accuracy is shown, compared to conventional methods, such as cross-

correlation and root-MUSIC. 

The first simulation scenario 

 

Figure 2.4  Sensors layout. Sensor 1 is used as reference. 

The first set of simulations regards the TDOA estimation in some typical setup. 

The same setup is further used to determine source location by employing as hyperbolic 

localization method the ℓଶ-norm version of the SDR approach, proposed in Section 2.2.3. 

A system in which a number ܯ = 8 of sensors are approximately uniformly 

distributed around the source, on an approximately circular shape of radius 1	km, as in 

Figure 2.4, is considered. The source, which location is to be estimated, transmits a 

Gaussian Minimum Shift Keying (GMSK) modulated signal of bandwidth ܤ = 200	kHz 

that is received by the ܯ sensors through different multipath channels. For each sensor ݇ = ݈ ,the TDOAs are measured relative to the chosen reference sensor ,ܯ…,2 = 1. The 
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pulse shape is known at the sensors side and used to generate the auto-correlation of the 

transmitted signal. The wireless channels between the source and each of the sensors are 

modeled as (2.2). Specifically, a three-paths model is used, as in [40]. The first two paths 

are spaced well below the bandwidth resolution, while the separation between the second 

and the third path is higher, as it can be seen in Figure 2.5. The only exception is the 

reference sensor assumed to be an AWGN channel, i.e., no multipath. The simulation 

scenario also employs the same noise level across sensors. For ℓ1-regularization, the 

regularization parameter ߣ is chosen according to the noise level, as discussed in Section 

2.1.3. Originally, when solving problem (2.6), the sampling rate is 8 times the Nyquist 

rate. An oversampling factor of ×50 is used for grid refinement as previously explained 

in Section 2.1.3.  

 

Figure 2.5  True and estimated multipath components. The ℓ1-regularization with grid 

refinement estimated components are the closest to the true ones. 

Figure 2.5 shows the time-delays of the multipath components and their estimates 

at one of the sensors, for a received SNR of 15	dB per sample. The TDOA is given by the 
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earliest of these components. The estimate by the ℓ1-regularization approach with grid 

refinement is the closest to the true delays, when compared to the other methods 

considered. The result of the ℓ1-regularization without grid refinement is visibly biased 

due to the limited sampling rate. The CC and the root-MUSIC estimates show 

significantly larger errors particularly for the two close paths. 

 

Figure 2.6  Source localization accuracy in noise. The result obtained by the ℓ1-

regularization is more accurate than the conventional methods. 

Figure 2.6 illustrates the two-stage overall localization performance, in terms of 

root mean square error (RMSE) against SNR, of the proposed methods in the 

aforementioned scenario. The technique used for the second stage is the ℓ2-norm version 

of the SDR approach, as described in Section 2.2.3. The RMSE is obtained from Monte 

Carlo simulations with 100 runs per SNR value. The plot shows better accuracy of the 

proposed method over CC and root-MUSIC, at both high and low SNR. At high SNR, 

given the low separation between the first two multipaths, both CC and root-MUSIC 

provide biased estimates due to their limited resolution capabilities, though root-MUSIC 
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is better. The reason for the better accuracy at low SNR is that ℓ1-regularization is robust 

to noise, as discussed in Section 2.1.3. 

The second simulation scenario 

The second set of simulations regards the hyperbolic localization alone. The three 

methods proposed in Section 2.2, SDR based, MXTM, and ℓ1-regularization, have been 

applied to source localization based on TDOA measurements. Monte Carlo computer 

simulations were carried out for a number ܯ = 8 sensors placed in the plane according to 

the layout in Figure 2.7. Two cases were considered: one when the source is located 

inside the convex hull of the sensors and another one when the source is placed outside. 

The TDOA estimation errors were drawn from a zero-mean Gaussian distribution, with 

standard deviation ߪఛ, where ߪఛ was varied between 0 and 200	ns, i.e., the variance ߪ௡ of 

the range differences varied between 0 and 60	m. For each value of ߪఛ considered, 100 

runs were performed. A zero-mean Gaussian function,  

 ݂ ቀቚ߬௞ଵ(௝) − ߬௞ଵቚቁ = exp ൜− ቚ߬௞ଵ(௝) − ߬௞ଵቚଶ ଶൗߪ2 ൠ,  (2.31) 

was used for simulations of (2.30), with ߪ = 500	ns. The plots in Figure 2.8  and Figure 

2.9 show the root mean squared error (RMSE) of the methods proposed in this paper for a 

source placed with inside or outside of the convex hull of the sensors. The RMSE is 

plotted against the standard deviation of the TDOA estimation error. 

The first remark is that all the three methods proposed in this paper outperform, 

for the cases simulated, the minimax approach from [115], known to be already more 

robust to errors in the TDOA estimates than conventional NLS and WLS methods for 

hyperbolic localization. The SDR method presented in Section 2.2.3 and MXTM 

presented in Section 2.2.4 show similar accuracies when the source is placed inside the 
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convex hull of the sensors, while MXTM performs better when the source is outside the 

convex hull. Both methods solve a linearized approximation of the hyperbolic 

localization problem. Finally, the ℓ1-regularization outperforms for the simulated cases 

both the SDR and MXTM methods. In simulations, optimal choice of the regularization 

parameter was used. However, in practice a good choice of ߣ is difficult. A grid 

refinement procedure is needed if high resolution is desired, e.g., a number of five 

iterations were used in the simulations for a surveillance area of 1000 m by 1000 m, 

stopping at a grid resolution of 0.1 m. 

 

 

Figure 2.7  Sensors layout. The source may be located inside or outside the sensors 

footprint. 
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Figure 2.8  Hyperbolic source localization for the case when the source is located inside 

the footprint of the sensors. 

 

 

Figure 2.9  Hyperbolic source localization for the case when the source is located outside 

the footprint of the sensors. 
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2.4 Concluding Remarks 

A two-stage approach for source localization via TDOA estimation in multipath 

environments was developed. First, the sparsity of the channels is exploited and a grid 

refinement procedure was formulated to improve the resolution of the TDOA estimation. 

Second, the hyperbolic localization was addressed. Three methods for hyperbolic 

localization were proposed to offer high accuracy at different computational costs. All of 

them are computationally efficient and show better accuracy when compared to other 

existing techniques. 

The proposed overall two-stage localization approach compares favorably to the 

conventional cross-correlation and root-MUSIC techniques, in terms of TDOA and 

source location accuracy estimation. For dense multipath environments the proposed 

TDOA approach may succeed where conventional methods fail to resolve closely 

separated components. Therefore it is suitable for applications like source localization in 

multipath. Moreover, simulation results confirmed the noise robustness of the methods 

proposed within the approach. 
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CHAPTER 3  

SINGLE-STAGE COHERENT LOCALIZATION 

3.1 Signal Model 

With the single-stage approach to source localization, coherent processing, i.e., utilizing 

the relative carrier phases of the received signals among pairs of sensors, in addition to 

TDOAs, is possible when the sensors are synchronized in both time and frequency. The 

coherent localization is accomplished by formulating a localization metric which is a 

joint statistic that incorporates the phase information contained in the received signals as 

if transmitted from various points of the source location space, as illustrated in Figure 

3.1.  

 

Figure 3.1  Single-stage localization system layout. The fusion center estimates the 

location of the source by maximizing a localization metric over the source location space. 
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In this section the coherent (single-stage) source localization in the general framework 

described in the Chapter 1 is studied. In order to construct a maximum likelihood (ML) 

estimator and derive the CRB for source localization, a multipath free environment is 

considered. The signal model for this case is given by equations (1.2) and (1.3). 

For localization metric derivation, it is useful to model the system in the 

frequency domain. The received signal at the ݇௧௛ sensor, can be written in frequency by 

applying the Fourier transform on (1.2): 

 ܴ௞(߱) = Γ௞(߱)ܵ଴(߱) + ௞ܹ(߱), (3.1) 

where Γ௞(߱) = ݃௞݁ି௝ఠఛೖ(కబ)݁ି௝ఠ೎ఛೖ(కబ) and ௞ܹ(߱) is the frequency domain 

correspondent of the AWGN noise. Putting together the spatial samples from all the ܯ 

sensors into one frequency domain snapshot, a vectorial form of (3.1) can be written for 

each frequency bin of interest ߱, as 

(߱)ࡾ  = ડ(߱)ܵ଴(߱)  (3.2) ,(߱)ࢃ+

with ࡾ(߱) = ሾܴଵ(߱), … , ܴெ(߱)ሿ், ડ(߱) = ሾΓଵ(߱), … , Γெ(߱)ሿ், and ࢃ(߱) =ሾ ଵܹ(߱), … , ெܹ(߱)ሿ். 

3.2 ML Coherent Estimator 

Coherent processing of the collected signals for source location direct estimation 

involves a two-dimensional search for the maximum of a localization metric among all 

the possible plane locations of the source. Such a metric can be obtained based on the ML 

procedure. Due to the phase term in the received signal model (3.1), the derivation can be 

more conveniently carried in frequency domain. Joint probability density function (pdf) 

of the noise across the sensors, at frequency ߱  
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 ఠ݂൫ࢃ(߱)൯ = ଵగಾୢୣ୲൫ࡷೈ(ఠ)൯ expሼ−ࢃு(߱)ࡷௐିଵ(߱)ࢃ(߱)ሽ, (3.3) 

where ࡷௐ(߱) is the covariance matrix of the noise across the sensors, defined as  ॱሼࢃ(߱)ࢃு(߱)ሽ =  dimensional identity matrix. The signal-ܯ ெ being theࡵ ,ெࡵଶߪ

transmitted by source is deterministic and unknown, i.e., no statistical model is assumed 

for it. A discussion on the deterministic versus statistic ML estimation is included in 

[28].The signal model (3.2) is used in (3.3) to express the joint pdf of the received signals 

across sensors, for all frequencies ߱ within the set ܤ଴ of interest, given any source 

location ߦ and source signal ܵ଴(߱): 
,ߦ|ࡾ)݂  (଴ࡿ =

0B
 ఠ݂൫ࡾ(߱)หߦ, ܵ଴(߱)൯, (3.4) 

where it was considered that the received signal has independent distributions over  

frequencies of interest.  

The ML estimation of the source location is given by the following optimization: 

መ଴ߦ  = arg max


Λ(ߦ). (3.5) 

Here Λ(ߦ) is the log-likelihood function obtained by taking ln ,ߦ|ࡾ)݂  ଴) and droppingࡿ

source location invariant terms: Λ(ߦ) = −
0B

 ,ߦ)ܮ	 ߱), where 

,ߦ)ܮ  ߱) = ሾࡾ(߱) − ડ(߱)ܵ଴(߱)ሿுሾࡾ(߱) − ડ(߱)ܵ଴(߱)ሿ. (3.6) 

The maximization (3.5) of Λ(ߦ) is equivalent to the minimization of ߦ)ܮ, ߱) over the 

space of source locations and signal, for all ߱ bins. The minima of ߦ)ܮ, ߱) with respect 

to the source signal ܵ଴(߱) must satisfy (߲ܮ ߲ܵ଴∗⁄ )(߱) = 0. Hence the estimate of the 

source signal that yields to the minimum residue at any source location is given by 
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መܵ଴(߱) = ሾડு(߱)ડ(߱)ሿିଵડு(߱)ࡾ(߱). After substituting the estimate of ܵ଴(߱) in (3.6) 

and dropping location independent terms, the source location can be estimated by 

maximizing the log-likelihood 

    Λ(ߦ) =
0B

 ߱݀(߱)ࡾ(߱)ு(߱)ડ(߱)ડுࡾ =
0B

 ቤ
1

M

l
 ௟∗ܴ௟(߱)݁ି௝ఠఛ೗(క)ቤଶߙ ݀߱ (3.7) 

After expanding (3.7) and again keeping only the terms dependent on the source 

location, the log-likelihood to be maximized becomes 

 Λ(ߦ) =
01 1

M M

k l k B   
  Re൛ߙ௟∗ߙ௞ܴ௟(߱)ܴ௞∗(߱)݁ି௝ఠ୼ఛೖ೗(క)ൟ 	݀߱, (3.8) 

where Reሼ⋅ሽ denotes the real part. One may note that ܴ௟∗(߱)ܴ௞(߱) represents the discrete 

Fourier transform of the cross-correlation of signals ݎ௟(ݐ) and ݎ௞(ݐ), denoted ݔ௟௞(߬). With 

this, a localization metric for coherent processing is formulated in time domain as  

 Λ(ߦ) =
1 1

M M

k l k  
 Re൛݃௟݃௞ݔ௟௞∗ ൫Δ߬௞௟(ߦ)൯݁ି௝ఠ೎୼ఛೖ೗(క)ൟ	. (3.9) 

A scheme for implementing Equation (3.9) is plotted in Figure 3.2 , assuming the channel 

attenuation, ݃௞, a priori known. 

Equation (3.9) accounts for both the envelope and carrier phase of the collected 

signals.  A non-coherent system instead processes only the received envelopes. As such, 

for a non-coherent system the channel gain is real-valued, i.e., ߙ௞ = ݃௞. Consequently, a 

non-coherent localization metric is expressed 

 Λ(௡௖)(ߦ) =
1 1

M M

k l k  
 Re൛݃௟݃௞ݔ௟௞∗ ൫Δ߬௞௟(ߦ)൯ൟ. (3.10) 
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 var൛ߦመ௜ாൟ ≥ ሾ࡯஼ோ௅஻(ࣈா)ሿ௜,௜. (3.12) 

The parameter vector ࣈா 	contains here the source location ߦ଴, which is the 

parameter of interest, but includes also the real and imaginary parts of the signal emitted 

by the source, as nuisance, i.e., ࣈா = ,଴ݔൣ ,଴ݕ ܵ଴ଵோ , … , ܵ଴ேಷோ , ܵ଴ଵூ , … , ܵ଴ேಷூ ൧். The signal 

parameter set includes ிܰ frequency bins to account for the whole signal bandwidth ܤ଴. 

In (3.11), ࡶ(ࣈா) refers to the Fisher Information matrix (FIM) which can be easier 

calculated by introducing an alternative parameter vector, ࣂ = ൣ߬ଵ, … , ߬ெ, ܵ଴ଵோ , … , ܵ଴ேಷோ , ܵ଴ଵூ , … , ܵ଴ேಷூ ൧். Using the chain rule, ࡴ(ࣈா) =  ,்ࡴ(ࣂ)ࡶࡴ

where the relation between ߬௞ and ߦ଴ is described by (1.1) and the transformation matrix ࡴ is 

ࡴ  = ்ࣂಶࣈ∇ = − ଵ௖ 2x 2x 2

2 x 2 x 2

F

F F F

M N

N M N N

 
 
  

H O

O I
 , (3.13) 

with ∇ࣈಶ்ࣂ denoting the gradient of ்ࣂ with respect to ࣈா, ࡵଶேಷ×ଶேಷ being the 2 ிܰ by 2 ிܰ identity matrix, ࡻ the all-zero  matrix and ࡴ given by ࡴ = ሾࣇଵ, … , ெሿ. The pair  ሾcos߮௞ࣇ , sin߮௞ሿ், denoted by ࣇ௞ and defined as (ߦ௞ − (଴ߦ ݀௞(ߦ଴)⁄ , is a unit vector 

indicating the direction from the source to the ݇୲୦ sensor. Individually, the components of 

this unit vector, cos߮௞ and sin߮௞, can be expressed as (ݔ௞ − (଴ݔ ݀௞(ߦ଴)⁄  and (ݕ௞ − (଴ݕ ݀௞(ߦ଴)⁄ , respectively. 

With these, the FIM matrix can be written as of form 

(ாࣈ)ࡶ  = ଵ௖మ    

   
0

0 0 0

2x2 2x 2

2 x 2 2 x 2

F

F F F

T T

S
N

T

S S S
N N N

 



       
         

H J H H J

J H J

 

 
, (3.14) 
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where ࡶఛఛ(ࣂ), ࡶௌబఛ(ࣂ) and ࡶௌబௌబ(ࣂ) are sub-matrices of (ࣂ)ࡶ. Given that within the 

parameter set ࣈா only the source location coordinates ߦ଴ are of interest, let ࡯஼ோ஻(ߦ଴) be 

the matrix formed by the first two rows and two columns of ࡯஼ோ஻(ࣈா). Using the matrix 

theory, [123], based on (3.14), it can be shown that  

(଴ߦ)஼ோ஻࡯  = ܿଶൣࡴ	ࡶఛఛ(ࣂ)்ࡴ ௌబఛ்ࡶ	ࡴ− ௌబௌబି૚ࡶ	(ࣂ)	  ൧ିଵ. (3.15)்ࡴ	(ࣂ)ௌబఛࡶ	(ࣂ)

Following a procedure in frequency domain similar to that in [124], the elements of the 

sub-matrices ࡶఛఛ(ࣂ), ࡶௌబఛ(ࣂ) and ࡶௌబௌబ(ࣂ) can be determined in closed form expression. 

For this the AWGN noise and deterministic signal source assumptions are exploited. 

Also, equation (15.52) from [91] is used as 

 ሾࡶ(߱, ሿ௜,௝(ࣂ = 2Re ቊ
1

M

k
 ଵఙమ డௌೃೖ∗డఏ೔ (߱, (ࣂ డௌೃೖడఏೕ (߱,  ቋ, (3.16)(ࣂ

where ܵோೖ(߱, (ࣂ = Γ௞(߱)ܵ଴(߱) = ݃௞ܵ଴(߱)݁ି௝(ఠାఠ೎)ఛೖ. Thus, the expressions for the 

elements of the sub-matrices ࡶఛఛ(ࣂ), ࡶௌబఛ(ࣂ) and ࡶௌబௌబ(ࣂ) are given in Appendix A. 

For simplicity of the expressions, let the following two terms be defined: ߚఠ೎ =1 + ଴ଶߚ ߱௖ଶ⁄  and ܴܵܰ௞ = P ௌబ݃௞ଶ ⁄ଶߪ , where ߚ଴ is the effective bandwidth defined as  

଴ଶߚ = ׬ ߱ଶ|ܵ଴(߱)|ଶ݀߱஻బ ׬ |ܵ଴(߱)|ଶ݀߱஻బൗ , [125], and P ௌబ  is the transmitted power 

defined as P ௌబ = (1 ⁄ߨ2 ) ׬ |ܵ଴(߱)|ଶ݀߱஻బ . One may note that with the narrow-band 

signal assumption ߚఠ೎ ≈ 1 and that ܴܵܰ௞ stands for the received signal-to-noise ratio at 

the ݇୲୦ sensor. With these, expression (3.15) for ࡯஼ோ஻(ߦ଴) can be alternatively written as 

(଴ߦ)஼ோ஻࡯  = ோൣܼకబߟ − ܼௌబ൧ିଵ, (3.17) 
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where ߟோ = ܿଶ 2߱௖ଶߚఠ೎ൗ ,  ܼௌబ = (∑ ܴܵܰ௞ࣇ௞ெ௞ୀଵ )(∑ ܴܵܰ௟ࣇ௟்ெ௟ୀଵ ) ∑ ܴܵܰ௞ᇲெ௞ᇲୀଵ⁄ , and ܼకబ = ∑ ܴܵܰ௞ࣇ௞ࣇ௞்ெ௞ୀଵ . 

Using (3.17), it follows that the MSE of the source location estimation is lower 

bounded by 

        
2

0 0 0 0 0
ˆ ˆvar var var R Lx y         , (3.18) 

where 
   2

L x y x y xyq q q q p   
, given that 

  0 2

x xyR
CRB

xy yx y xy

q p

p qq q p


 

    
C , (3.19) 

with  

2

2

1 1
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' 1

1
sin sin

M M

x k k k kM
k k

k

k
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SNR

 
 



    
 

 


, (3.20) 

 

2

2

1 1
'

' 1

1
cos cos

M M
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q SNR SNR
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 
 



    
 

 


, (3.21) 
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

 



  

  
  
  



 


. (3.22) 

As discussed in [55] for the non-coherent case, equation (3.17) shows that also for 

the coherent localization the CRB with unknown source signal is always larger than that 

with known source signal. This is because it can be shown that the ܼௌబ matrix, which is 

the average of weighted ࣇ௞ vectors, is non-negative definite and it acts as a penalty term. 
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The lower bound on the source localization MSE given by (3.18) contains 

essentially two factors. The first one, ߟோ, shows the effect of the signal bandwidth and 

carrier frequency, which is similar to the case of high resolution MIMO radar, [65]. For 

narrow-band signals, i.e., ߚఠ೎ ≈ 1, the effect of the signal bandwidth is negligible. 

Instead, the inverse proportionality with ߱௖ leads to the conclusion that the coherent 

processing offers much higher accuracy capabilities than the non-coherent processing. 

However, this conclusion is based on the CRB, which is known as being a tight bound at 

high SNR only and being a bound of small errors, [65]. As such, it ignores effects that 

could lead to large errors, like those determined by the high sidelobes that are 

characteristic to the coherent processing, [69], [72].  

The second factor in (3.18), ߩ௅, shows the effect of the geometric relations 

between the source and the sensors, impacted by the number of sensors and the SNR at 

these sensors. This effect is similar to the non-coherent processing case, as discussed in 

[55]: the estimation variance is larger when the source is far away, since the ࣇ௞ vectors 

are similar in directions to generate a larger penalty matrix, i.e., the ࣇ௞ vectors add up. 

When the source is inside the convex hull of the sensor array, the estimation variance is 

smaller since ܼௌబ approaches the zero matrix, i.e., the ࣇ௞ vectors cancel each other.  

Beside lower bounding the MSE, another common measure for the attainable 

localization accuracy by the localization systems, for a given sensor layout, is the 

geometric dilution of precision (GDOP) metric, [126]: 

 GDOP = ඨvar൛ߦመ଴ൟ ଵெ
1

M

k
 varሼ߬̂௞ሽ൘ . (3.23) 
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Using the fact that ∑ varሼ߬̂௞ሽெ௞ୀଵ  can be written as trሼࡶఛఛି૚(ࣂ)ሽ, where trሼ⋅ሽ stands for the 

trace of a matrix, it can be easily shown based on (3.18) and the expression of ࡶఛఛ(ࣂ), 
that the GDOP for the non-cooperative source localization (non-coherent or coherent 

processing) is given by 

 GDOP = ඨߩܯ௅
1

M

k
 ଵௌேோೖൗ , (3.24) 

which becomes identical to the expression in [65] by fixing the sensors’ locations on a 

virtual circle around the source location. 

3.4 Numerical Examples 

While the best achievable performance of the estimation is indicated by the CRB, the 

MSE of the ML estimate is close to the CRB only at high SNR, [91]. A threshold effect 

was observed in location estimation systems, meaning essentially that there is a threshold 

value of the SNR, above which is the asymptotic region, where the estimation errors are 

small and the MSE is close to the CRB, [75], [77]. Otherwise, in the non-asymptotic 

region, the MSE rises quickly and deviates significantly from the CRB. This behavior can 

be observed in Figure 3.4, where a system of ܯ = 8  sensors has been employed to 

localize a GSM source (the transmitted signal is GMSK and has a bandwidth of 200	kHz, 

while the carrier frequency is ௖݂ = 980	MHz) situated within a known area of 50 m by 50 

m. The sensors have been randomly placed within a virtual circle with radius of 500 m 

around the source location. While the continuous line indicates the root-MSE, the dots 

denote the error for each of the 100 simulations performed for each of the SNR values 

considered. The threshold effect can be observed at  SNR = −3	dB. Below the threshold, 
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the root-MSE increases up to some value close to the limitation imposed by the a priori 

known area within which the source is placed.  

 

Figure 3.4  Localization accuracy for an array of 8 sensors. Sensors are randomly placed 

within the surveillance area.  

 

Figure 3.5  Localization accuracy for an array of 8 and 16 sensors, respectively. Sensors 

are uniformly placed on a virtual circle around the source.  

The root-MSE increasing as the SNR decreases below the threshold means that 

the large localization errors take the place of the small ones (see the vertical distribution 

of the dots in Figure 3.4 for different SNR values; each dot has the meaning of the 

localization error for an individual simulation, while the line is the average of 100 such 

simulations). As expected, above the threshold, the root-MSE follows closely the CRB 

-18 -16 -14 -12 -10 -8 -6 -4 -2 0
10

-4

10
-2

10
0

10
2

SNR [dB]

ro
o
t-

M
S

E
 [

m
]

 

 

Sim, M=8

CRLB, M=8

-30 -25 -20 -15 -10 -5 0 5 10

10
-4

10
-2

10
0

10
2

SNR [dB]

ro
o
t-

M
S

E
 [

m
]

 

 
Sim, M=8

Sim, M=16

CRLB, M=8

CRLB, M=16



58 

 

 

 

and one may note that these values are below 1 m, while for the non-coherent systems the 

best achievable performance is tens of meters, [24].  

 

Figure 3.6  The localization metric for an array of 8 and 16 sensors, respectively. Sensors 

are uniformly placed on a virtual circle around the source.  

While from the close form expression of the CRB (3.18) it may not be evident, by 

numerical evaluation, it can be shown that increasing the number of sensors improves the 

performance of the system. In Figure 3.5 it is shown that an increase from 8 to 16 in the 

number of sensors, under the systemic set-up aforementioned (except this time the 

sensors have been uniformly placed on a virtual circle with radius of 500 m around the 

source location), can bring, according to the CRB, a performance improvement of about 3 

dB in terms of MSE. The MSE also shows that the SNR threshold moved from -2 dB to -

15 dB by increasing the number of sensors from 8 to 16. This is sustained also by Figure 
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3.6, which shows that the sidelobes have been substantially lowered by increasing the 

number of sensors from 8 to 16, at SNR=5 dB. 

The spatial advantage, ߩ௅, is illustrated by Figure 3.7 and Figure 3.8, where the 

CRB is plotted for various sensor layouts. As such, it can be noticed that at high SNR, 

distributing sensors randomly within the surveillance area, (b), as well as clustering the 

sensors, (c), is not as good as having the sensors distributed uniformly on a circle around 

the source, (a). However, it has been shown in [77] that at moderate SNR the localization 

accuracy it is better when placing the sensors randomly, (b), rather than uniformly, (a). 

Layout (d) shows that the accuracy can be improved by increasing the number of sensors 

although they are grouped, as long as a reasonable separation is maintained. 

 

Figure 3.7  Different sensors layouts. a. Sensors are uniformly distributed on a virtual 

circle around the source. b. The sensors are randomly distributed around the source. c. 

The sensors are placed on a virtual arc around the source. d. The sensors are placed in 

groups on a virtual circle around the source. 
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It may be easier in practice to have some sensors grouped in clusters, e.g., a cluster would 

be formed by more sensors mounted on a vehicle. But by clustering the sensors, the 

spatial diversity advantage diminishes considerably (see Figure 3.7 and Figure 3.8). To 

overcome this issue, instead of increasing the number of sensors and simply clustering 

them, the same number of sensors can be used but employing small antenna-arrays at 

each sensor and performing some signal pre-processing, e.g., optimal beamforming, 

locally at each sensor. Such a system layout is illustrated in Figure 3.10. 

Assuming a small uniform linear array (ULA) of ܯ௔ antennas at each of the ܯ 

sensors, the signal received at the ݉୲୦ antenna of the ݇୲୦ sensor is modeled in a multipath 

free environment by modifying the signal model (1.2): 

(ݐ)௞,௠ݎ̃  = ܽ௞,௠൫ߠ௞(ߦ)൯ߙ௞ݏ଴൫ݐ − ߬௞(ߦ଴)൯ +  (3.25) , (ݐ)௞,௠ݓ

where ܽ௞,௠൫ߠ௞(ߦ)൯ = ݁ି௝ଶగ௙೎(௠ିଵ)೏౴೎ ୡ୭ୱఏೖ(క) are the elements of the steering vector ࢇ௞, 

 tested for source ߦ is the bearing angle of the of the ݇୲୦ sensor to the location (ߦ)௞ߠ ,[92]

presence, and ݀୼ is the spacing of the antennas at a sensor; ݀୼ is considered herein half 

the value of the carrier wavelength. 

The received signals at any sensor ݇ can be expressed in a compact form: 

(ݐ)෤௞࢘  = ݐ଴൫ݏ௞ߙ௞ࢇ − ߬௞(ߦ଴)൯ +  (3.26) , (ݐ)௞࢝

with ࢘෤௞(ݐ) = ,(ݐ)௞,ଵݎ̃ൣ … , ௞ࢇ ,൧்(ݐ)௞,ெೌݎ̃ = ൣܽ௞,ଵ൫ߠ௞(ߦ)൯, … , ܽ௞,ெೌ൫ߠ௞(ߦ)൯൧், and ࢝௞(ݐ) = ,(ݐ)௞,ଵݓൣ … ,  ൧். Employing the minimum power distortionless response(ݐ)௞,ெೌݓ

(MPDR) beamformer, [92], at each sensor, let the output of the beamformer be 

,ݐ)௞ݎ  (ߦ =  (3.27) , (ݐ)෤௞࢘	(ߦ)௞ுܞ
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for every test location ߦ. The MPDR weights are chosen such that to minimize the overall 

received power ܞ௞ு(ߦ)࡯௥ೖܞ௞(ߦ), while keeping unit gain in the direction of steering (the 

direction of the test location ߦ): 

(ߦ)௞ܞ   = argminܞ ሽ(ߦ)௞ࢇ(ߦ)௞ுܞsubject to  Reሼ  ,(ߦ)௞ܞ௥ೖ࡯(ߦ)௞ுܞ = 1 , (3.28) 

where ࡯௥ೖ denotes the sample correlation matrix at the ݇୲୦ sensor, [92]. The weights 

satisfying (3.28) are given by 

(ߦ)௞ܞ   =  ೖ(క) . (3.29)ࢇೝೖష૚࡯ೖಹ(క)ࢇೖ(క)ࢇೝೖష૚࡯

With these, the localization metric Λ(ߦ) used for source localization is the same 

as in (3.9), except that this time ݔ௟௞(߬) represents the cross-correlation of signals ݎ௟(ݐ,  (ߦ
and ݎ௞(ݐ,  .which are the result of the beamformers at sensors ݈ and ݇, (3.27) ,(ߦ

With multi-antenna sensors, simulation results show improved performance. For 

example, in Figure 3.11 it can be observed that the peak sidelobes located further away 

from the source are considerably smaller with multi-antenna sensors compared to single-

antenna sensors. In Figure 3.12 accuracy curves of localization in noise are plotted. The 

threshold effect is seen to be lowered by about 18	dB by using 5-antenna instead of 

single-antenna sensors. This means the system is more robust to noise when using multi-

antenna sensors. The accuracy versus average SNR when utilizing eigth 5-antenna 

sensors uniformly distributed on a circle around the source is observed to be about the 

same with the accuracy obtained by employing 24 single-antenna sensors uniformly 

distributed on a circle around the source. 
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3.6 Concluding Remarks 

This section has discussed a coherent processing technique for the planar localization of 

an unknown radio source in the near field of a widely distributed passive sensor array. A 

coherent localization metric for deterministic unknown signal source is proposed. The 

CRB for the MSE is also derived. The expression obtained is consistent with the results 

presented in literature for non-coherent processing using passive sensor arrays and for 

coherent processing using active arrays. As such, the accuracy of the localization is 

strongly dependent on the carrier frequency and the sensor layout. The numerical 

examples of CRB are in accordance with the computer simulations for the root-MSE. At 

low SNR, the performance is dominated by noise, with false peaks popping up in the 

localization metric anywhere in the a priori parameter space of the source location. At 

high SNR, the performance is ambiguity free and the CRB tightly bounds the MSE. 

Increasing the number of sensors increase the accuracy at high SNR and also expands the 

ambiguity free region. The same effect is obtained by employing receiving sensors with a 

small number of antennas instead of single-antenna sensors. 
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CHAPTER 4  

SIGNAL PARAMETERS ESTIMATION FROM LOW RATE SAMPLES 

EQUATION CHAPTER (NEXT) SECTION 1 

4.1  Motivation 

As described in Section 1.4, in many localization applications the received signals have 

finite rate of innovation (FRI), e.g., as it the case of streams of short pulses of known 

shape, and thus they can be sampled at rates lower than the conventional Nyquist rate. 

This section considers the sampling of FRI signals as presented in [84]. But rather than 

recovering the signal itself, the interest is on estimating specific signal parameters, i.e., on 

time delay estimation (TDE) and amplitudes estimation (AE). This is motivated by the 

fact that source localization can be performed based on these parameters. With the low 

rate (LR) sampling scheme proposed in [84], the signal recovery is equivalent to 

estimating all the unknowns parameterizing the signal, e.g., time delays and 

corresponding attenuations. By contrast, estimation of individual parameters may be 

performed independently, e.g., TDE does not require the estimation of amplitudes and 

thus its performance with system parameters may vary differently from that of signal 

recovery.  

As mentioned in Section 1.4, it was found in [86] that the performance of the 

signal recovery from LR samples can deteriorate in the presence of noise substantially 

more than the recovery from samples taken at the Nyquist rate would deteriorate. The 

first goal of this chapter is to determine if the performance of signal parameters 

estimation (SPE) from samples taken at LR also deteriorates in noise more than if 

samples taken at the Nyquist rate would be available and if sampling higher than rate of 

66 
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innovation (ROI) helps. The second goal is to analytically quantify the performance of 

SPE from LR samples and to identify the influence on the SPE performance of system 

parameters, e.g, the sampling rate and the inter-path separation. Finally, the third goal is 

to compare the SPE performance for different types of received signals. Specifically, let a 

periodic stream of pulses be transmitted through a multipath channel. Let us consider that 

the time delays are invariant with respect to the beginning of each period. The received 

signal is periodic if the amplitude of each path does not vary from period to period or is 

said to be semi-periodic if the amplitudes vary. Since these situations may be encountered 

in practice, it is of interest to compare the SPE performance in the two cases. To achieve 

the three goals enumerated, a Cramér-Rao bound (CRB) is developed for SPE from LR 

samples in a general setup. This can be used to numerically evaluate the performance of 

SPE from LR samples as the CRB developed in [86] was used for signal recovery 

performance evaluation. However, we go further and develop closed form CRB 

expressions for SPE from LR samples in a specific setup and particularize it for ܭ = 1 

and ܭ = 2, i.e., for the cases when there is no multipath and for the case when the signal 

propagates through two paths, respectively.  

With ܭ = 1, the first finding is that the performance of SPE from LR samples in 

noise is lower than if samples taken at the Nyquist rate would be available. This is similar 

to the results found in [86] for signal recovery. Additionally, if the sampling rate is 

increased by a factor ܲ over ROI, the TDE performance in terms of mean squared error 

(MSE) improves, i.e., it decreases, with a factor of ܲିଷ until it reaches the performance 

obtained with the same number of samples as if sampling at the Nyquist rate. By contrast, 

the AE performance improves only with ܲିଵ. The SPE CRB for the case of taking with 
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the scheme from [84] the same number of samples as if sampling at the Nyquist rate can 

be compared with the sampling scheme used in [83]. Thus, by considering the sampling 

filter in [83] as being equivalent to the filter that shapes the pulses in [84], the CRB 

expressions for the two cases become equivalent. At the same time, the CRB expression 

found herein for ܭ = 1, although in a different context, is similar to the results shown in 

[39] for parameter estimation, e.g., angle of arrival, by jointly processing the signals 

received with an array of sensors. This allows drawing parallels between the problems of 

TDE estimation from LR samples and angle of arrival estimation. Comparing the derived 

CRB expressions for periodic and semi-periodic received signals, it is found that the TDE 

performance does not change, while the AE performance worsens in the semi-periodic 

case.  

With ܭ = 2, the effect of time separation between the multipath components on 

the TDE resolution is found by numerical simulations to be similar to that on signal 

recovery in [86]. However, the analytical expression developed shows not only that the 

resolution increases with the time separation between the signal components, as in [86], 

but this improvement depends on the sampling rate. Thus, sampling in noise at rates 

higher than ROI also effects in better resolution of closely separated signal components. 

4.2 FRI Signals 

The FRI concept is characteristic to signals that support parametric modeling. A stream 

of pulses is such a parametric signal, uniquely defined by the time-delays of the pulses 

and their amplitudes. Let a pulse stream of finite-duration ܶ consist of ܭ pulses, whose 

time delays ሼ߬௞ሽ are known to be located within the ሾ0, ܶ) interval. For a known pulse ݃(ݐ), the stream can be expressed as 
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These are similar to the periodic signals defined by (4.2), except that the amplitudes vary 

from period to period. Signals from this class can be used to describe the propagation of a 

pulse with known shape ݃(ݐ) which is transmitted at a constant rate 1 ܶ⁄  through an 

environment consisting of ܭ paths. Each path has a constant delay ߬௞ and a time-varying 

gain ܽ௞ሾ݊ሿ, as illustrated in Figure 4.1. In this case, the signal is defined by ܭ time delays ሼ߬௞ሽ and by an infinite number of amplitudes ሼܽ௞ሾ݊ሿሽ. However, any segment of length ܶ 

is defined by ܭ time delays and ܭ amplitudes. Thus the local ROI is again finite, i.e., 2ܭ ܶ⁄ . 

The signals (4.1)-(4.3) can be thought of as belonging to a union of subspaces, 

where the delays ሼ߬௞ሽ determine an ܭ-dimensional subspace and the amplitudes ሼܽ௞ሽ 
describe the position within the subspace, [84, 127, 128]. The union of subspaces is 

infinite since there are infinitely many values that the parameters ߬ଵ, … , ߬௄ can take. The 

subspaces are shift invariant since the time delays do not vary with respect to the 

beginning of each segment of length ܶ. For signals of forms (4.1) and (4.2), the 

subspaces are finite-dimensional since the number of amplitudes is limited to ܭ. By 

contrast, for (4.3), each subspace is infinite-dimensional, as it is determined by an infinite 

number of amplitudes. Thus, once the subspace is selected (the delays are estimated) for 

(4.3) it is more difficult to identify the point within the subspace (to estimate the 

amplitudes) than for (4.2). Thus, performance of SPE is of interest to be evaluated in 

order to confirm this observation. When comparing the non-periodic (and finite-duration) 

stream (4.1) and the periodic stream (4.2), they are similar from the point of view of 

identifying the subspace and a point within the subspace, [86]. Performance differences 

between the two are however expected to occur in noise because of the different signal 
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energy. For example, if the signal segment of length ܶ is repeated ܰ times, where ܰ is 

large to fit model (4.2), the signal energy is increased by ܰ compared to (4.1). 

To measure and compare the best performance that can be attained for estimation 

of signal parameters from LR samples for different cases as those described above, i.e., 

non-periodic, periodic, and respectively semi-periodic streams of pulses, CRB 

expressions for SPE are developed in Section 4.4. But before that, the low rate sampling 

scheme adopted is described in the next section. 

4.3 Filter-bank LR Sampling of FRI Signals 

Sampling of FRI signals at low rates was first addressed by uniform sampling of the 

signal convolved with a sampling kernel (ݐ)ݏ. For example, in [82] and [83] a stream of 

Diracs repeated periodically every ܶ seconds is sampled using a Diricklet kernel of 

bandwidth ℬ௦, (ݐ)ݏ = ଵℬೞ் ୱ୧୬(గℬೞ௧)ୱ୧୬(గ௧ ்⁄ ), which is equivalent to a sinc function for ℬ௦ܶ ≫ 1. 

The result of the convolution is sampled at a rate ℬ௦. This sampling scheme relies on the 

observation that the time delays and amplitudes can be recovered from a set of signal’s 

Fourier series coefficients. This follows from the fact that in the frequency domain, the 

problem translates into estimating the frequencies and amplitudes of a sum of complex 

sinusoids, a problem that can be addressed by super-resolution parameter estimation 

methods, [35, 37, 39, 92, 129, 130]. The sampling scheme is such designed to determine 

the Fourier coefficients. While this works for periodic streams, for sampling non-periodic 

streams, compact sampling kernels, i.e., with finite time support, are desirable. A family 

of such sampling kernels was introduced in [131], defined as sum of sincs. Another class 

of compact support kernels that can be used to sample FRI signals is given by the family 
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of exponential reproducing kernels, presented in [132] and [133]. While these sampling 

techniques are simple, improved performance and lower sampling rates can be achieved 

at the cost of slightly more complex hardware. In particular, a filter-bank sampling 

scheme in which the signal ݔோ(ݐ) is convolved with ܲ different sampling kernels, ݏଵ∗(−ݐ),…,	ݏ௉∗(−ݐ), and the output of each channel is sampled at a rate of 1 ܶ⁄  is 

presented in [84, 85, 134]. The system is said to have a total sampling rate of ܲ ܶ⁄ . An 

alternative multichannel structure can be obtained in which the filter is replaced by a 

multiplier followed by an integrator, [135]. This alternative follows a similar path to the 

single channel method from [82] in the sense that the signal parameters are retrieved from 

a set of Fourier coefficients of the signal. The Fourier coefficients are obtained by the 

multichannel designed LR sampling scheme. This scheme can be used to treat all cases of 

FRI signals, non-periodic, periodic, semi-periodic, under the assumption that the pulse ݃(ݐ) is compactly supported. In contrast, the filter-bank approach from [84] can 

accommodate arbitrary pulse shapes ݃(ݐ), including infinite-length functions. This means 

that it is particularly beneficial for signals for which one can no longer speak of Fourier 

series, as is the case of signals that are not periodic and cannot be divided into distinct 

intervals.  

The filter-bank sampling scheme is presented in the followings for a semi-

periodic stream of pulses for which the pulse shape is not necessarily compact supported 

and thus pulses from different repetition intervals of length ܶ may overlap. For practical 

illustration, let us consider the case of transmitting a stream of amplitude modulated 

pulses through a multipath channel and sampling the received stream at LR. Such a 

transmitted stream is defined by a known pulse shape, ݃(ݐ), pulse repetition interval, ܶ, 
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ܭ2 ܶ⁄ . For signals with this feature, it was shown that in the absence of noise a filter-

bank LR sampling scheme allows perfect recovery of the received signal ݔோ(ݐ) as long as 

the number of samples ܲ per interval ܶ is in general at least 2[84] ,ܭ, but not higher than 2ܶℬ௚, where ℬ௚ is the single side bandwidth of the pulse shape (if band-limited), [136]. 

Combined, these lead to condition 2ܭ ≤ ܲ ≤ 2ܶℬ௚. Additional conditions for perfect 

recovery will be given later in this section.  

A system model for the case when the transmitted signal is affected by complex 

valued additive white Gaussian noise (AWGN), (ݐ)ߟ, of PSD Φഥఎ is illustrated in Figure 

4.2.a. For later use, let ߪఎଶ = Φഥఎ ܶ⁄  denote the power of the noise after passing through an 

ideal low pass filter of cut-off frequency 1 2ܶ⁄ . The sampling filter bank, detailed in  

Figure 4.2.b, and the estimation procedure are sequentially presented in the followings.  

The DTFT of the ݌-th sampling sequence corresponding to the ݌-th branch in  

Figure 4.2.b is 

௣൫݁௝ఠ்൯ܥ  = 1ܶ
m


฀

ܵ௣∗ ൬߱ − ൰ܺோ݉ߨ2ܶ ൬߱ − ൰݉ߨ2ܶ +	
															+ 1ܶ

m


฀

ܵ௣∗ ൬߱ − ൰ࣨ݉ߨ2ܶ ൬߱ − ,൰݉ߨ2ܶ (4.4)

 

where ܵ௣(߱), ܺோ(߱), and ࣨ(߱) denote the Fourier transform of ݏ௣(ݐ), ݔோ(ݐ), and (ݐ)ߟ 
respectively. Taking the Fourier transform of (4.3), 

 ܺோ(߱) =
1

K

k
 ௝ఠఛೖି݁(߱)ܩ௞൫݁௝ఠ்൯ܣ , (4.5)

 

where ܣ௞൫݁௝ఠ்൯ denotes the DTFT of the sequence ܽ௞ሾ݊ሿ, and ܩ(߱) denotes the Fourier 

transform of ݃(ݐ). Substituting (4.5) into (4.4), 
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௣൫݁௝ఠ்൯ܥ  =
1

K

k
 ௞൫݁௝ఠ்൯݁ି௝ఠఛೖܣ 1ܶ

m


฀

ܵ௣∗ ൬߱ − ൰݉ߨ2ܶ ∙ 																							
																								∙ ܩ ൬߱ − ൰݉ߨ2ܶ ݁௝ଶగ்௠ఛೖ + 1ܶ

m


฀

ܵ௣∗ ൬߱ − ൰ࣨ݉ߨ2ܶ ൬߱ − .൰݉ߨ2ܶ (4.6)

 

Focusing, as proposed in [84], on sampling filters (ݐ−)∗ݏ with finite support in 

the frequency domain, e.g., contained in the range ℱ = ሾ−ܲߨ ܶ⁄ , ߨܲ ܶ⁄ ሿ, (4.6) becomes 

௣൫݁௝ఠ்൯ܥ  =
1

K

k
 ௞൫݁௝ఠ்൯݁ି௝ఠఛೖܣ 1ܶ

1

P

q
 ܵ௣∗൫߱ + ߱௤൯ ∙ 													

																										∙ ൫߱ܩ + ߱௤൯݁ି௝ఠ೜ఛೖ + 1ܶ
1

P

q
 ܵ௣∗൫߱ + ߱௣൯ࣨ൫߱ + ߱௣൯,	 (4.7)

 

where ߱௤ = ݍ)ߨ2 − 1 − ܲ 2⁄ ) ܶ⁄ . Note that all the expressions in the DTFT domain are 2ߨ ܶ⁄  periodic and ߱ is restricted to the interval ሾ0, ߨ2 ܶ⁄ ). Let ࢉ൫݁௝ఠ்൯ denote the 

length ܲ column vector whose ݌-th element is ܥ௣൫݁௝ఠ்൯, ࢃ൫݁௝ఠ்൯ the ܲ × ܲ matrix 

whose ݍ݌-th element is ௣ܹ௤൫݁௝ఠ்൯ = ଵ் ܵ௣∗൫߱ + ߱௤൯ܩ൫߱ + ߱௤൯, ࣆ൫݁௝ఠ்൯ the length ܲ 

column vector whose ݍ-th element is ߤ௤൫݁௝ఠ்൯ = ∑ ݁ି௝൫ఠାఠ೜൯ఛೖ௄௞ୀଵ	௞൫݁௝ఠ்൯ܣ , and ࢿ൫݁௝ఠ்൯ the length ܲ column vector whose ݌-th element is ߝ௣൫݁௝ఠ்൯ = ଵ் ܵ௣∗൫߱ + ߱௣൯ ࣨ൫߱ + ߱௣൯. With these, (4.7) can be written in matrix form as 

൫݁௝ఠ்൯ࢉ  = ൫݁௝ఠ்൯ࣆ൫݁௝ఠ்൯ࢃ +  ൫݁௝ఠ்൯. (4.8)ࢿ

Further, ࣆ൫݁௝ఠ்൯ can be written 

൫݁௝ఠ்൯ࣆ  = ,൫݁௝ఠ்ࡰ(࣎)ࡺ  ൫݁௝ఠ்൯, (4.9)ࢇ൯࣎
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where ࣎ = ሾ߬ଵ, … , ߬௄ሿ୘, (࣎)ࡺ is a ܲ × (࣎)matrix with elements ௤ܰ௞ ܭ = ݁ି௝ఠ೜ఛೖ, 

,൫݁௝ఠ்ࡰ ൯࣎ = diag൛ൣ݁ି௝ఠఛభ , … , ݁ି௝ఠఛ಼൧ൟ, and ࢇ൫݁௝ఠ்൯ = ,ଵ൫݁௝ఠ்൯ܣൣ … ,  ௄൫݁௝ఠ்൯൧୘. Byܣ

denoting the ܭ dimensional vector ࢈൫݁௝ఠ்൯ = ,൫݁௝ఠ்ࡰ  ൫݁௝ఠ்൯, (4.9) becomes in theࢇ൯࣎

time domain 

ሾ݊ሿࣆ  = ݊	∀,ሾ݊ሿ࢈(࣎)ࡺ ∈ ℤ. (4.10) 

One may note that  (࣎)ࡺ has a Vandermonde structure and thus super-resolution 

techniques, e.g., MUSIC, [35, 37], or ESPRIT, [129, 130], traditionally used in frequency 

and direction of arrival (DOA) estimation, can be employed with (4.10) to estimate the 

time delays ࣎, where the number of multipaths ܭ is a priori known, [84]. Disregarding 

the noise, the values of ࣆሾ݊ሿ are obtained from (4.8) by taking ିࢃଵ൫݁௝ఠ்൯ࢉ൫݁௝ఠ்൯. 

Thus, the matrix ࢃ൫݁௝ఠ்൯ needs to be stable invertible, leading to the recovery 

conditions (i) that ݃(ݐ) needs to satisfy 0 < ܽ ≤ |(߱)ܩ| ≤ ܾ < ∞, almost everywhere ߱ ∈ ℱ, and (ii) that the filters (ݐ−)∗ݏ  should be chosen in such a way that they form a 

stable invertible ܲ × ܲ matrix ࡿ൫݁௝ఠ்൯, with elements ܵ௣௤൫݁௝ఠ்൯ = ଵ் ܵ௣∗൫߱ + ߱௤൯. One 

example of filters satisfying this condition and which is adopted throughout this work is 

 ܵ௣(߱) = ൝ܶ, for ߱ ∈ ൤߱௣, ߱௣ + ,൨0ߨ2ܶ otherwise. (4.11)
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4.4 Performance Lower Bound 

The accuracy of an estimate ࣂ෡ of a column vector parameter ࣂ is typically measured by 

its mean squared error (MSE), defined as MSE൛ࣂ෡ൟ = ॱ ቄฮࣂ −  ෡ฮଶቅ, where ॱ denotes theࣂ

expectation taken with respect to the probability density function (pdf) of ࢉ parameterized 

by ࣂ, i.e., ॱ ቄฮࣂ − ෡ฮଶቅࣂ = ࣂฮ׬ − ;ࢉ)෡ฮଶ݂ࣂ ࣂand ฮ ,ࢉd(ࣂ − ෡ฮଶࣂ = ൫ࣂ − ࣂ෡൯ு൫ࣂ −  .෡൯, [137]ࣂ

To assess the performance of any estimation method, it is useful to find 

theoretical limits on this performance. For this purpose, CRB for a vector ࣂ that 

parameterizes the samples ࢉሾ݉ሿ, ݉ ∈ ℤ, is a matrix, say (ࣂ)࡯, that provides a lower 

bound on the covariance of any unbiased estimate ࣂ෡, i.e., ॱ ቄ൫ॱ൛ࣂ෡ൟ − ෡ൟࣂ෡൯൫ॱ൛ࣂ − ෡൯ୌቅࣂ  where “≥” is here an element-wise operator. An unbiased estimate is an estimate ,(ࣂ)࡯≤

for which ॱ൛ࣂ෡ൟ =  and thus its MSE equals its variance. Thus, the MSE of any unbiased ࣂ

estimate ࣂ෡ is lower bounded by the trace of (ࣂ)࡯ and the MSE of any element ݅ of ࣂ෡, ߠ෠௜, 
is lower bounded by the ݅-݅ element of matrix (ࣂ)࡯, i.e., CRB(ߠ௜) = ሾ(ࣂ)࡯ሿ௜,௜. 

By definition, the CRB matrix can be determined as the inverse of the Fisher 

Information Matrix (FIM), (ࣂ)࡯ =  whose elements are given [138],  by ,(ࣂ)ଵିࡶ

 ሾ(ࣂ)ࡶሿ௜,௝ = ॱቊ߲ଶ ln ;ࢉ)݂ ௜ߠ߲(ࣂ ௝ߠ߲ ቋ. (4.12)

 

A CRB for the signal reconstruction from LR samples was discussed in [86]. Here 

a CRB in closed form expression for SPE from LR samples is presented and discussed. 

This is given in a general form by Theorem 1. To bring some analytical insight on the 

SPE performance variation with system parameters, the CRB for TDE and AE in a 

particular setting, given in Theorem 2, is developed. 
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Theorem 1. Let ݔோ(ݐ) be a semi-periodic stream of short-length pulses of form 

(4.3), received by a sensor in the presence of complex valued AWGN noise (ݐ)ߟ. The 

observation interval is limited to ܰ intervals of length ܶ.  The power of the noise passing 

through an ideal low pass filter with cut-off frequency 1 2ܶ⁄  is ߪఎଶ. Let ࢉ൫݁௝ఠ்൯ be the 

DTFT domain samples of ݔோ(ݐ) obtained according to the sampling scheme illustrated in 

Figure 4.2 and described by (4.8). Let ࣂ be a deterministic unknown vector that 

parameterizes the signal ݔோ(ݐ) and its samples ࢉ൫݁௝ఠ்൯. Then, the FIM for estimating ࣂ 

from ࢉ൫݁௝ఠ்൯ is given for large ܰ by 

(ࣂ)ࡶ  = ߨܶ න Re൛ࢣୌ൫݁௝ఠ்൯ࡷఌି ଵ൫݁௝ఠ்൯ࢣ൫݁௝ఠ்൯ൟd߱,గ ்⁄
ିగ ்⁄ 	 (4.13)

 

where ࢣ൫݁௝ఠ்൯ is a matrix with lines ݅ defined as ߲ࢉ൫݁௝ఠ்൯ ⁄௜ߠ߲  and ࡷఌ൫݁௝ఠ்൯  ൫݁௝ఠ்൯ are determined by theࡿ  of matrix ݍ-݌ ൫݁௝ఠ்൯. The elementsࡿఎ൫݁௝ఠ்൯ࡷୌ൫݁௝ఠ்൯ࡿ=

sampling filters ܵ௣൫߱ + ߱௤൯ and ࡷఎ൫݁௝ఠ்൯ is the noise covariance matrix ߪఎଶॴ௉, with ॴ௉ 

denoting the ܲ × ܲ identity matrix. 

Proof: See Appendix B for the proof. 

 

Corollary 1. In the signal model (4.8), ࢿ൫݁௝ఠ்൯ refers to the continuous-time 

transmission noise (ݐ)ߟ, filtered by the sampling filters ݏ௣∗(−ݐ). Usually the noise term ࢿ൫݁௝ఠ்൯ has to account also for the discrete-time quantization noise that appears during 

the sampling process. If this is the case, then ࡷఌ൫݁௝ఠ்൯ becomes ࡿୌ൫݁௝ఠ்൯ࡷఎ൫݁௝ఠ்൯ࡿ൫݁௝ఠ்൯ +  ௗ൫݁௝ఠ்൯ is the covariance matrix ofࡷ ௗ൫݁௝ఠ்൯, whereࡷ

the discrete-time sampling noise. However, the sampling noise can be in general 
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mitigated by increasing the gain of the sampling filters, resulting in a signal-to-sampling-

noise-ratio improvement. Thus, the transmission noise is of more interest for the SPE 

performance analysis. 

 

Corollary 2. Under the settings of Theorem 1, let the amplitudes sequence be of 

form ܽ௞ሾ݊ሿ =  ሾ݊ሿሽ is an arbitrary known sequence. The vector ofݔሾ݊ሿ, where ሼݔ௞ߙ

unknown parameters of the received signal is then ࣂ = ሾ߬ଵ, … , ߬௄, ଵୖߙ , … , ௄ୖߙ , ,ଵ୍ߙ … ,  ,௄୍ሿ୘ߙ

where ߙ௜ୖ = Reሼߙ௜ሽ is the real part of ߙ௜ and ߙ௜୍  is the imaginary part of ߙ௜. With this, a 

compact form expression can be written for matrix ࢣ൫݁௝ఠ்൯, which is of size ܲ ×  ,ܭ3

i.e., ࢣ൫݁௝ఠ்൯  ఈ౎൫݁௝ఠ்൯൧, whereࢣ݆		ఈ౎൫݁௝ఠ்൯ࢣ		ఛ൫݁௝ఠ்൯ࢣൣ =

ఛ൫݁௝ఠ்൯ࢣ  = ఠ൫݁௝ఠ்൯ࢃ൫݁௝ఠ்൯ൣݔ ,൫݁௝ఠ்ࡰ(࣎)ࡺ൫݁௝ఠ்൯൧ࢃ⊙ ఈࡰ൯࣎ ఈ౎൫݁௝ఠ்൯ࢣ	, = ,൫݁௝ఠ்ࡰ(࣎)ࡺ൫݁௝ఠ்൯ࢃ൫݁௝ఠ்൯ݔ ,൯࣎ (4.14)

 

where ⊙ denotes the element wise product of two matrices, ࡰఈ = diagሼߙଵ, … ,  ௄ሽ andߙ

the elements of the ܲ × ܲ matrix ࢃఠ are ሾࢃఠሿ௣௤ = −݆൫߱ + ߱௤൯. Note that ݔ൫݁௝ఠ்൯ is a 

scalar.  

Proof: The proof of (4.14) is straightforward by taking the derivatives of ࢉ൫݁௝ఠ்൯ 

as expressed by (4.8), with respect to ߬௜, ߙ௜ୖ , and ߙ௜୍ , respectively, and then grouping 

them to get a matrix form expression.  

 

Discussion. A generic expression of the FIM for estimating ࣂ was also given in 

[86]. While similar to (4.13), the latter is expressed in the frequency domain which is 

advantageous for taking it further and particularize it for certain sampling filters, e.g., of 

form (4.11). Closed form expressions of the FIM for different parameters estimation were 
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also presented in other works, e.g., in [20, 27, 39, 139-141]. However, those considered a 

different signal model, not dealing with LR sampled signals.  By using (4.14) in the 

general expression (4.13), the FIM for SPE can be numerically computed for any choice 

of the sampling filters ܵ௣(߱), any pulse shape ݃(ݐ), any known sequence ሼݔሾ݊ሿሽ, and any 

noise model with known covariance matrix ࡷఌ൫݁௝ఠ்൯. An expression similar to (4.14) 

can be easily determined for the case of unknown sequence ሼݔሾ݊ሿሽ. However, the aim is 

to get more analytical insight on the influence of the system parameters on the SPE 

performance. For this the is focus on a specific setting. 

 

Theorem 2. Let ࢉ൫݁௝ఠ்൯ be the samples taken in the context of Theorem 1 from a 

signal ݔோ(ݐ) of form (4.3). Furthermore, let a particular setting be defined by the 

following assumptions. Let the pulse shape ݃(ݐ) be ideal, in the sense that ܩ(߱) = 1 for ߱ ∈ ,ℬ௚ߨ2−ൣ (߱)ܩ ℬ௚൧ andߨ2 = 0 everywhere else.  Let the amplitudes be of form ܽ௞ሾ݊ሿ = (߱)ሾ݊ሿሽ is an arbitrary known sequence. Let Φ௫ݔሾ݊ሿ, where ሼݔ௞ߙ =หݔ൫݁௝ఠ்൯หଶ, where ݔ൫݁௝ఠ்൯ is the DTFT of the sequence ሼݔሾ݊ሿሽ, and let us assume Φ௫(߱) is constant within the frequency range of interest. Furthermore, for a long bipolar 

sequence ሼݔሾ݊ሿሽ௡ୀଵே , where the +1 and −1 symbols are equiprobable, Φ௫ = ܰ, [142]. 

Let the propagation environment be multipath free, i.e., ܭ = 1. Then, with the choice 

(4.11) of sampling filters, the CRBs for TDE and AE from samples ࢉ൫݁௝ఠ்൯ are: 

 CRB(߬ଵ) = ଶߨ32 ଵ|ଶߙ|ఎଶΦ௫ߪ ܶଶܲଷ, (4.15)

 CRB(ߙଵ) = ఎଶΦ௫ߪ 1ܲ. (4.16)
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Proof: See Appendix B for the proof.  

 

Discussion. The CRB expression (4.15) shows that the performance of TDE 

improves with the signal to noise ratio (SNR), i.e., it improves as the signal power or the 

observation interval increases and it decreases with higher noise power. The same 

observation stands for the CRB expression (4.16) for AE. The best TDE MSE is relative 

to the repetition interval ܶ, i.e., the MSE of estimating ߬ଵ ܶ⁄  is constant with ܶ. Finally, 

the CRB on TDE improves with the cube of the number of sampling filters, i.e., it varies 

with ܲିଷ. This means that increasing the number of sampling filters quickly improves the 

performance of TDE. By contrast, the CRB on AE improves only with ܲିଵ. 

Relation to DOA estimation. The CRB expressions (4.15) and (4.16) can be 

further validated by comparison with other CRB expressions existing in the literature for 

other systems. For instance, the bound developed in [39] for estimating the angle of 

arrival of a plane waveform impinging on a linear uniform narrow-band array of ܲ 

sensors is 6 ܲଷܰ	SNR⁄ . This is very similar to (4.15) with the observation that SNR is 

equivalent to 1 ⁄ఎଶߪ  while the number of symbols ܰ is embedded into Φ௫. A (ܶ ⁄ߨ2 )ଶ 

factor accounts for the angle-to-time transformation. Obtaining similar performance on 

parameter estimation with the two systems makes sense since they have strong 

similarities. As such, in [39] the signal is received by ܲ sensors, each of them takes 

samples at a rate 1 ܶ⁄ , and then all the samples are jointly processed for signal’s 

parameter estimation. On the other side, expression (4.15) is for the case when the signal 

received at one sensor is filtered by ܲ filters each followed by sampling at a rate 1 ܶ⁄ . 

The samples are then also jointly processed. However, the difference is that in the first 

case the signal is a conventional stream of modulated pulses of bandwidth 1 ܶ⁄  with a 
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symbol interval ܶ, while for the later case, the signal is a train of short pulses, e.g., of 

bandwidth ℬ௚ ≪ ܶ, separated by an interval equal to ܶ. The gain ܶ of the sampling filters 

(4.11) does not affect the comparison since it affects both the noise and signal the same 

way. 

 

Relation to LR sampling of a stream of Diracs. In [83] a ܶ-periodic stream of 

Diracs is sampled at low rates by using a single Dirichlet sampling filter of total 

bandwidth ℬ௦ (equivalent	to	a	sinc	filter	for	large	ܶℬ௦). The gain of the filter is 1 ܶℬ௦⁄  

for frequencies inside the bandwidth and 0 outside. For this system, a CRB expression for 

TDE is given in [83]. Scaling the noise variance in [83] by 1 (ܶℬ௦)ଶ⁄  to match the signal 

model where the noise was generated before the sampling filter, their CRB expression 

becomes (3 ⁄ଶߨ ଶߪ)( ܶℬ௦⁄ )(ܶଶ ܶℬ௦(ܶଶℬ௦ଶ − 1)⁄ ). Compared to (4.15), firstly the 1 2⁄  

factor is missing because the received signal is real in [83] versus complex in this case, 

[138]. Then ߪଶ ܶℬ௦⁄ =  ఎଶ because the ratio between the bandwidths of the filtersߪ

filtering the noise in the two cases is ܶℬ௦. Finally, for ܶℬ௦ ≫ 1, ܶଶ ܶℬ௦(ܶଶℬ௦ଶ − 1)⁄ ≅ܶଶ ܶଷℬ௦ଷ⁄ . The Φ௫ term is missing in  [83] because the observation interval is restricted 

to ሾ0, ܶ), rather than ሾ0, ܰܶ), and thus Φ௫ = 1. With these, for ܲ = ܶℬ௦ the CRB 

expression presented in [83] is equivalent to (4.15). With the same observations as for 

TDE, it can be shown that CRB expression on AE given in [83] is ߪఎଶ ܶℬ௦⁄ , where the 

amplitudes are real valued. Thus, it is equivalent to (4.16) for ܲ = ܶℬ௦. 
 

Relation to sampling at Nyquist rate. The signal model in [83] is similar to (4.3) 

by considering instead of the stream of Diracs in [83] a stream of pulses ݃(ݐ) of same 

bandwidth with the Dirichlet filter. However, the sampling scheme from [83]  applied to 
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this modified signal model would not be low rate anymore, but Nyquist rate equivalent. 

The two sampling schemes differ in the sense that in [83] a single sampling filter is used 

and the sampling rate is ℬ௦, whereas herein ܲ sampling filters are used, each followed by 

a sampling operation at rate 1 ܶ⁄ . The advantage of the sampling scheme with multiple 

sampling filters is that it can perform sampling of the signals at rates lower than ℬ௦, i.e., 

using a number of sampling filters ܲ < ܶℬ௦. However, our result shows that its 

performance is lower than in the Nyquist equivalent rate case, unless ܲ = ܶℬ௦, as shown 

later in Figure 4.5 and Figure 4.6. 

 

Periodic vs. semi-periodic stream of pulses. The CRB expressions (4.15) and 

(4.16) were determined for the signal model described by Equation (4.3), with ܽ௞ሾ݊ሿ  ሾ݊ሿሽ is an arbitrary known sequence and Φ௫(߱) is constant across theݔሾ݊ሿ, where ሼݔ௞ߙ=

frequency. At limit, ݔሾ݊ሿ can be the all-ones sequence and thus the signal model (4.3) 

reduces to that of a periodic stream of pulses, as described by (4.2). For this case, it can 

be easily shown that Φ௫ is ܰ in (4.15) and (4.16). Thus, the SPE performance shows 

explicit dependence on the number of repetition intervals, improving with ܰିଵ. 

It is of interest to compare the SPE performance for LR sampling of the periodic 

stream versus the semi-periodic one, (4.3), where the unknown parameters to be 

estimated are the time delays ሼ߬௞ሽ and amplitudes ሼܽ௞ሾ݊ሿሽ (both the ሼ߬௞ሽ and ሼݔሾ݊ሿሽ are 

unknown and cannot be separated). One may find a direct comparison between the 

periodic and semi-periodic streams unfair because the number of degrees of freedom and 

thus the ROI is different. That is, while the periodic stream has ܭ time delays and ܭ 

amplitudes to be estimated, for the semi-periodic stream there are ܭ time delays and ܰܭ 

amplitudes to be determined (where the observed time was limited to ܰܶ). In [86], to 
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make the comparison fair from this consideration, an effort was made to equalize the ROI 

for the two cases, before comparing the signal recovery performance. To this end, while 

the overall unknown parameter number was the same, the semi-periodic signal was 

described by less time delays and more amplitudes than the periodic signal. The finding 

was a lower bound on signal recovery from LR samples in the case of the semi-periodic 

signal, outlying the idea that estimating the time delays is more challenging than 

estimating amplitudes. 

For the SPE, comparing a periodic stream with a semi-periodic one for the same 

number of time delays, same length and repetition interval ܶ, although they have 

different ROI is preferred, because the interest is in the performance of estimating 

individual parameters, rather than recovering the signal. For simplicity of expressions, the 

two cases for ܭ = 1 are compared. Repeating the steps in Appendix C, for the semi-

periodic signal with unknown = ቂ߬ଵ, ܽଵୖ ሾ݉ሿ, … , ܽଵୖ ሾ݉ሿ, ܽଵ୍ሾ݉ሿ, … , ܽଵ୍ሾ݉ሿቃ୘, the CRB can 

be determined as 

 CRB(߬ଵ) = ଶߨ32 ଵ|ଶߙ|ఎଶܰߪ ܶଶܲଷ, (4.17)

 CRB(ܽଵሾ݊ሿ) = ఎଶߪ 1ܲ , ∀ ݊ ∈ ℤ. (4.18)

 

By comparing (4.17) with (4.15) and (4.18) with (4.16), one may note that the 

performance bound on TDE is the same (with Φ௫ = ܰ), while the bound on estimating 

one amplitude in the periodic case is ܰ times lower than estimating one amplitude in the 

semi-periodic case. Thus, for TDE it does not matter if the signal is periodic or semi-
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periodic, while for AE, the periodic one would be preferred. The result is in accordance 

with the explanation from [86] that TDE is equivalent to identifying a subspace and AE 

to determining a point within the subspace. Identifying the subspace is equally difficult 

for the two signals since it is determined by the same number of time delays. Determining 

a point within the subspace is more difficult in the semi-periodic case since the point is 

determined by ܰ times more amplitudes than in the periodic case. 

4.5 Numerical Results 

Behavior with SNR. In general, the CRB for SPE can be numerically evaluated based on 

the expression (4.13) for the FIM matrix. For the multipath free case and with the 

simplifying assumptions of Theorem 2, the CRB for SPE can be evaluated based on 

(4.15) and (4.16). For this case, the linear variation of TDE accuracy expressed by the 

MSE with the SNR, defined as 1 ⁄ఎଶߪ  can be observed in Figure 4.3 for ܰ = 100 

symbols, ܲ = 10 sampling channels, Φ௫ = ଵߙ ,ܰ = 1, and ܶ =  It may also be .ݏߤ10

noticed that for high SNR, the MSE obtained by averaging over 1000 runs asymptotically 

approaches the CRB confirming that the CRB as given by (4.15) is a tight lower bound 

for the TDE case considered. At low SNR, the TDE experiences a threshold effect, i.e., 

the simulated MSE departs from the linearity of CRB.  
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Figure 4.3  Accuracy of TDE from noisy LR samples.  

 

 

Figure 4.4  Accuracy of AE from noisy LR samples.  

This is because, as the SNR decreases, the estimation enters a so called “large-errors” 

region, where the time delay estimates are subject to ambiguities resulting from the 

oscillatory  nature of the signal sample correlation, [74]. For the given TDE problem the 

time delay values are however bounded by ܶ and thus a plateau region occurs at very low 

-30 -20 -10 0 10 20 30
-90

-80

-60

-40

-20

0

1/
2 [dB]

M
S

E
( 

1
/T

) 
[d

B
]

 

 

Sim(
1
)

CRB(
1
)

MSE( ߬ ଵ
ܶ⁄) 	ሾ dB

ሿ   

1 ⁄ఎଶߪ 	ሾdBሿ  

-30 -20 -10 0 10 20 30
-60

-40

-20

0

20

1/
2 [dB]

M
S

E
( 

1
) 

[d
B

]

 

 
CRB(

1
)

Sim(
1
)

Sim(a
1
[m])

1 ⁄ఎଶߪ 	ሾdBሿ  

MSE( ߙ
ଵ) 	ሾ dBሿ

  



87 

 

 

 

SNR. The CRB is a local or “small-errors” bound in the sense that it cannot predict this 

estimation behavior at low SNR and is realizable only at high SNR. For low SNR there 

are other bounds that are realizable, such as Weiss-Weinstein, [75], or Ziv-Zakai, [67, 

77]. 

The linear variation of AE accuracy expressed by the MSE with the SNR can be 

observed in Figure 4.4  for the same setup as for TDE. Both the periodic and semi-

periodic cases are represented. It can be observed that CRB(ߙଵ) is ܰ times (the periodic 

case) lower than CRB(ܽଵሾ݊ሿ) (the semi-periodic case). From the simulated MSE it can 

also be observed that the threshold effect characteristic to TDE appears in the AE only in 

the periodic case. For the semi-periodic signal, the AE errors are already too high to 

reflect the threshold effect manifested in TDE. In other words, an erroneous choice of the 

subspace does not introduce AE errors higher than those made when the subspace would 

be exactly chosen. 

Number of sampling filters. Based on (4.15) and (4.16), the performance of TDE 

improves with ܲିଷ when ܲ varies from 2ܭ to 2ܶܤ௚, while the AE performance improves 

only with ܲିଵ. When ܲ =  ௚, the estimation performance of the multiple samplingܤ2ܶ

filters scheme equals the one of the single filter scheme described in [83] sampling the 

signal model (4.3) at a Nyquist equivalent rate, i.e., taking the same number of samples as 

with a conventional Nyquist sampling scheme. This can be observed in Figure 4.5, and 

Figure 4.6, where for LR sampling the simulated MSE and CRB are plotted against the 

number of sampling filters ܲ. The CRB for Nyquist equivalent rate is marked for ܶܤ௚ = 10, being the same as the CRB for LR sampling with ܲ = 20. 
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Figure 4.7  TDE accuracy with inter-path separation.  

Compared to the multipath free case, the estimation is penalized by two categories of 

cross-terms: one describing the ࢻ-࣎ interactions and a second one describing the ߬ଵ-߬ଶ 

interaction. The later is expressed essentially a term (ߩఛ in (C.22)) which shows the 

explicit dependence of the performance penalty with the paths separation Δ߬ଵଶ. Thus, as 

the separation increases, i.e., Δ߬ଵଶ → ఛߩ ,∞ → 0 and the penalty terms can be neglected. 

However, the argument of the trigonometric functions defining ߩఛ (C.12) depends not 

only on Δ߬ଵଶ, but also on ܲ. Thus, the rate at which the penalty terms tend to vanish 

when increasing the inter-path separation depends on the number of sampling filters, i.e., 

the greater ܲ is, the faster the rate is. This behavior can be observed in Figure 4.7, where 

simulated MSE and CRB are plotted for ܲ = 10 and ܲ = 20, varying Δ߬ଵଶ.  

At the other extreme, when the inter-path separation is very small, i.e., Δ߬ଵଶ → 0, 

the two paths are inseparable and thus a system model with ܭ = 1 would be better than 

the model with ܭ = 2 considered. Due to this inaccurate modeling, both the CRB and the 

employed ESPRIT estimation technique indicate very high error rates. For Δ߬ଵଶ → ఛߩ ,0 → ଶߚ 3⁄  which for ߙଶ = 1 leads to a rank 1 non-invertible matrix ࡶఛ(ࣂ). In practice, 
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for Δ߬ଵଶ lower than a certain threshold the model should be modified from ܭ = 2 to ܭ = 1 and with this the performance would attain (4.15) as Δ߬ଵଶ → 0, rather than 

increasing to arbitrary high values. A similar analysis can be carried out for AE, with 

similar conclusions. In [136] a radar system based on LR samples is presented and the 

resolution reported for target localization (which is based on TDE) is better than when 

using traditional match-filtering techniques with Nyquist sampling. By contrast, the 

results in Figure 4.7 show that sampling at lower rates, i.e., with small ܲ, effects in 

resolution loss. Thus, the best resolution that can be attained is for Nyquist equivalent 

sampling, i.e., ܲ =  ௚. However, it is known that the match-filtering techniques haveܤ2ܶ

resolution capabilities limited by the bandwidth of the pulse, [88]. Thus, the good results 

reported in [136] are motivated by the use of a super-resolution technique, rather than by 

the use of a LR sampling scheme.  

Too low sampling rate. It has been shown in [84] that perfect signal recovery is 

possible even when sampling at rates lower than 2ܭ ܶ⁄ . Specifically, if the received 

signal is uncorrelated from one repetition interval ܶ to another, then super-resolution 

estimation techniques can be applied directly and the minimum sampling rate needed is (ܭ + 1) ܶ⁄ . This is similar to the findings in source localization, where the maximum 

number of sources that can be uniquely localized is at best equal to the number of 

receiving sensors, [143, 144]. For received signals with high correlation, smoothing 

techniques, are required, [145, 146], and at least 2ܭ samples are needed every ܶ, [84]. 

Thus, with LR sampling at a rate ܲ ܶ⁄ , with ܲ < ܭ + 1, unique parameter identification 

is not possible from the samples, irrespective to the correlation of the signal. This is 

shown for ܭ = 2 and ܲ = 2 in Figure 4.7 where the simulated MSE for TDE has very 
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high values (limited only by ܶ as the maximum possible value for time delays). Note that 

the CRB does not accurately reflect this effect because the CRB assumes there exists a 

unique solution to the estimation problem, which is not the case for ܲ < ܭ + 1. 

4.6 Concluding Remarks 

In this section, the performance of SPE from LR samples of FRI signals has been 

addressed. In particular, a CRB expression for the case of using multiple parallel 

sampling filters was developed. With some simplifying assumptions, closed form 

expressions were determined for one and two multipath signal components. The 

estimation performance was shown to significantly deteriorate in noise, unless the 

number of sampling filters is increased from the one indicated by the rate of innovation to 

moderate this deterioration. However, depending on the performance requirements, an 

acceptable performance may be attained by a small increase in the number of sampling 

filters. The inter-component separation was also found to impact the estimation 

performance, but weighted by the number of sampling filters. 
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CHAPTER 5  

CONCLUSIONS 

 EQUATION CHAPTER (NEXT) SECTION 1 

This dissertation has addressed the topic of passive source localization in plane of 

wireless non-cooperative sources. To this end, localization methods based on TDOA 

estimates have been studied. 

A two-stage localization has been discussed in Chapter 2. With the first stage, the 

TDOA at pairs of sensors are estimated, while during the second stage, the actual source 

location is estimated based on the TDOA values previously determined. Accurate TDOA 

estimation is especially challenging in multipath propagation environments, where 

resolving the multipath components is needed. A new method exploring the sparse 

structure of the channel was introduced. Simulation results have showed higher resolution 

capabilities compared to conventional existing methods. 

With the second stage, three new methods have been proposed for hyperbolic 

localization, i.e., for estimating the source location based on TDOA measurements. The 

first method is based on an SDR approach, the second method, MXTM, seeks a biased 

estimate through a linearized formulation of the localization problem, and the third 

method formulates the localization problem as an ℓ1-regularization, by exploiting the 

sparsity of the source location. The proposed methods compare favorably with other 

existing methods, each of them having its own advantages. The SDR method has the 

advantage of simplicity and low computational cost. The MXTM may perform better 

than the SDR approach in some situations, but at the price of higher computational cost. 

The ℓ1-regularization may outperform the first two methods, but is sensitive to the choice 

of the regularization parameter. 
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In Chapter 3, the source localization has followed a direct approach. That is, 

rather than intermediately estimating the TDOAs, a localization metric that implicitly 

includes the TDOAs has been constructed. Specifically, a ML approach was taken to 

derive such a localization metric. The approach is coherent in the sense that beside the 

time delays, the phase of the received signal is also considered. For performance 

benchmarking, a CRB expression has been also developed. A coherence gain due to 

inclusion of the carrier phase in the metric and a spatial gain due to proper sensors 

placement over the surveillance field, have been demonstrated. A cause of potential 

accuracy deterioration, especially at low SNR, has been identified in the false peaks 

popping up in the localization metric anywhere within the surveillance area. These high 

sidelobes far away from the actual source location are particularly encountered with the 

coherent processing. One solution to lower the level of the sidelobes is to increase the 

number of receiving sensors or to employ at each sensor a small multi-antenna array. 

Chapter 4 departs from the localization approaches in the previous chapters in the 

sense that rather than using signals sampled at or above the Nyquist rate, a technique for 

time delay estimation from samples taken at lower rates has been explored. Specifically, 

it was shown in [84] and [86] that for FRI signals, the original signal can be perfectly 

recovered from LR samples while in the presence of noise, the signal recovery may 

deteriorate more than it would deteriorate if the samples would be taken at the Nyquist 

rate. In Chapter 4 it has been shown that also the performance of time delay and 

amplitude individual estimation from LR samples deteriorates in noise significantly more 

compared to the estimation from samples taken at the Nyquist rate. However, depending 

on the performance requirements, an acceptable performance level may be attained by a 
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small increase in the sampling rate, especially for TDE. That is because according to the 

CRB expression developed, with TDE, the estimation accuracy varies exponentially with 

the number of samples per time interval. For multipath environments, the inter-

component separation has been also found to impact the estimation performance, but 

weighted by the sampling rate.  

This dissertation aimed at filling some gaps in the source localization field. 

However, naturally, with the new methods proposed also more questions have arisen that 

can be subject of future research. In Chapter 2, exploiting the channel and source space 

sparsity has been shown to have high resolution potential. However, one drawback, 

characteristic to sparse techniques is lack of good methods for automated choice of some 

parameters such as the regularization parameter. Another topic of future research is the 

accuracy and resolution limits of sparse methods relative to the choice of the grid points 

involved in solving a sparse problem. 

Chapter 3 has been proved the high accuracy capabilities of the coherent 

processing approach. However, this approach has to contend with the high sidelobes 

popping up in the localization metric anywhere within the surveillance area. Moreover, 

the technique is very sensitive to synchronization errors. Thus calibration techniques are 

necessary for accurate coherent localization. 

Sampling at LR is a promising approach to lower the communication and 

potentially computational burden of the localization methods. The performance of other 

LR sampling schemes than that discussed in Chapter 4 and their application to other 

classes of signals is another possible avenue of future research. 
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APPENDIX A  

DERIVATION OF THE FIM ELEMENTS FOR COHERENT LOCALIZATION 

EQUATION CHAPTER (NEXT) SECTION 1 

The sub-matrices ࡶఛఛ(ࣂ), ࡶௌబఛ(ࣂ) and ࡶௌబௌబ(ࣂ) needed to determine the FIM matrix 

(3.14) are calculated in the followings.  

A.1. Calculation of  
xM M  J   

Using the general form (3.16) for  
,

,
i j

  J  , the elements of  , J   can be written 

      
*

2

,

1
2 Re , , , for 

,

0, for .

Ri Ri

i i ii j

S S
j i

j i



 
   

   
        

 

J
 

  (A.1) 

Employing equation (3.1) in (A.1), the non-diagonal elements of  J   result all zero, 

while the diagonal elements are calculated in the sequel: 

 

   

   

   
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*
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d
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S g d
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   
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

       

        
     
  







J J 
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                      8
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
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

 

 

 





 
   

 
 

   
 



 


P

 (A.2) 

Note that   2

0 0S d





  


  since the quantity under the integral is an odd function.  
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A.2. Calculation of  
0 0 2 x2F F

S S
N N

  J   

The sub-matrix  
0 0S SJ   at its own is composed by four sub-matrices: 

  
   

   
0 0 0 0

0 0

0 0 0 0

x x

x x
2 x 2

F F F F

F F F F

F F

RR RI

S S S S
N N N N

S S IR II

S S S S
N N N N

N N

                  

J J

J

J J

 


 
. (A.3) 

Using the general form (3.16) for  
,

,
i j

  J  , the elements of  
0 0

,RR

S S J   can be 

determined as 

      
0 0

*

2
1 0 0,

1
2Re , , , for 
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M
Rk Rk
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
J

 
  (A.4) 

Employing equation (3.1) in (A.4), the non-diagonal elements of  
0 0

RR

S SJ   are all zero, 

while the diagonal elements are calculated in the sequel: 
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   (A.5) 

Note that in (A.5) the integral  1

2
d






 

  was approximated with a sum for all frequency 

bins, and by derivation to 0 f

R

nS  only the terms depending on the fn -th frequency bin are 

non-zero. 

Similarly to  
0 0

RR

S SJ  , the non-diagonal terms of  
0 0

II

S SJ  ,  
0 0

IR

S SJ   and  
0 0

RI

S SJ   

are all zeros, while the diagonal elements are calculated in the sequel. 
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From (A.4) and (A.5)-(A.8), it results that 
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2
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A.3. Calculation of   
0 2 xF

S
N M

  J   

The sub-matrix  
0S J   at its own is composed by two sub-matrices: 
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Using the general form (3.16) for  
,

,
i j

  J  , the elements of  
0

,R

S  J   can be 

determined as 
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Employing equation (3.1) in (A.11), the non-diagonal elements of  
0

R

S J   can be 

calculated as follows: 
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where 
fn  denotes the fn -th angular frequency bin, 

2
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n
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
  , sF  being the sampling 

frequency and FN  the total number of frequency samples. 

 Similarly, the elements of  
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APPENDIX B  

PROOF OF THEOREM 1 

EQUATION CHAPTER (NEXT) SECTION 1 

The proof of Theorem 1 starts from the definition (4.12) of the FIM and ends with a 

general expression for calculating the FIM for estimating ࣂ from samples ࢉ൫݁௝ఠ்൯. Using 

the time samples domain version of the signal model (4.8),  

ሾ݊ሿࢉ  = ෥ሾ݊ሿࣆ + ,ሾ݊ሿࢿ (B.1)

 

where ࣆ෥ሾ݊ሿ is the inverse DTFT of ࢃ൫݁௝ఠ்൯ࣆ൫݁௝ఠ்൯, the pdf ݂(ࢉ;  used in (4.12) is (ࣂ

given by 

;ࢉ)݂  (ࣂ = 1det൫ࡷߨఌಿ൯ (෥ಿࣆಿିࢉ)ഄషಿభࡷౄ(෥ಿࣆಿିࢉ)ି݁ , (B.2)

 

where ࢉே୘ = ሾࢉ୘ሾ1ሿ, … , ෥ே୘ࣆ ,ሿ	୘ሾܰሿࢉ = ሾࣆ෥୘ሾ1ሿ, … ,  ሿ, and the observation interval is	෥୘ሾܰሿࣆ

limited to ሾ0, ܰܶ). The matrix ࡷఌಿ denotes the ܰܲ × ܰܲ covariance matrix of the noise 

vector ࢿே୘ = ሾࢿ୘ሾ1ሿ, … ,  ሿ. With (B.2), equation (15.52) from [138] can be applied	୘ሾܰሿࢿ

to reduce  (4.12) to 

 ሾ(ࣂ)ࡶሿ௜,௝ = 2Re ቊ߲ࣆ෥ேୌ߲ߠ௜ ఌಿିଵࡷ ௝ߠ෥ே߲ࣆ߲ ቋ + tr ቊࡷఌಿିଵ ௜ߠఌಿ߲ࡷ߲ ఌಿିଵࡷ ௝ߠఌಿ߲ࡷ߲ ቋ,	 (B.3)

 

where trሼ∙ሽ denotes the trace of a matrix. However, the information in the considered case 

is in the mean of the received signal, not in its covariance. That is, the data signal ࢉሾ݊ሿ is 

deterministic rather than bayesian, i.e., there is no prior information on its statistical 

distribution or otherwise the covariance matrix ࡷఌಿ does not depend on parameter ࣂ. For 

this case, [26, 28, 130], 
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 ሾ(ࣂ)ࡶሿ௜,௝ = 2Re ቊ߲ࣆ෥ேୌ߲ߠ௜ ఌಿିଵࡷ ௝ߠ෥ே߲ࣆ߲ ቋ. (B.4)

 

The evaluation of (B.4) would be greatly simplified if matrix ࡷఌಿis diagonal (or 

block diagonal). This can be achieved by replacing the data vector ࢉே by the vector of its 

Fourier coefficients (obtained by applying the DTFT to ࢉே, when ܰ → ∞) since the 

Fourier coefficients are asymptotically uncorrelated, [25, 147]. With these, it was shown 

in  [124] that (B.3) has for large ܰ a simple expression in the discrete Fourier transform 

(DFT) domain, given by equation (B.2) from [124]. Considering its equivalent in the 

DTFT domain, (B.4) asymptotically becomes 

 ሾ(ࣂ)ࡶሿ௜,௝ = ߨܶ න Re ቊ߲(ࣆୌࢃୌ)߲ߠ௜ ൫݁௝ఠ்൯ࡷఌି ଵ൫݁௝ఠ்൯ ௝ߠ߲(ࣆࢃ)߲ ൫݁௝ఠ்൯ቋ d߱,గ ்⁄
ିగ ்⁄ 	 (B.5)

 

where ࡷఌ൫݁௝ఠ்൯ is a ܲ × ܲ matrix of elements ൣܭఌ൫݁௝ఠ்൯൧௣,௤ given by the DTFT of the 

cross-correlation of sequences ቂߝ௣ሾ1ሿ, … , ,௤ሾ1ሿߝ௣ሾܰሿቃ and ቂߝ … ,  ,௤ሾܰሿቃ. For simplicityߝ

given that the noise ࢿሾ݊ሿ does not depend on the parameter vector ࣂ, equation (B.5) can 

be written as (4.13), concluding the proof of Theorem 1. 
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APPENDIX C  

CRB DERIVATION FOR SPE FROM LR SAMPLES 

EQUATION CHAPTER (NEXT) SECTION 1 

While the general expression (4.13) can be used in conjunction with (4.14) to numerically 

evaluate the FIM and then the CRB, it is of interest to derive simple closed form FIM and 

CRB expressions for particular cases. Such a case is that defining the setup of Theorem 2. 

Within this context, in the followings the focus is on determining a CRB in closed form 

expression for each parameter ߠ௜, continuing from equation (B.5). 

With the choice (4.11) of sampling filters, ࡷఌ൫݁௝ఠ்൯ becomes ൫ߪఎଶ ܶଶ⁄ ൯diagሼ| ଵܵ(߱ + ߱ଵ)|ଶ, … |ܵ௉(߱ + ߱௉)|ଶሽ. Furthermore, the choice of an ideal 

pulse shape ݃(ݐ), in the sense that ܩ(߱) = 1 for ߱ ∈ ൣ−ℬ௚, ℬ௚൧ and ܩ(߱) = 0 

everywhere else, determines matrix ࢃ൫݁௝ఠ்൯ to become a ܲ × ܲ identity matrix. Thus, 

(B.5) is further simplified, 

 ሾ(ࣂ)ࡶሿ௜,௝ = ߨܶ න ෍ ఎଶߪ1 Re ቊ߲ߤ௣∗߲ߠ௜ ൫݁௝ఠ்൯ ௝ߠ௣߲ߤ߲ ൫݁௝ఠ்൯ቋ d߱௉
௣ୀଵ

గ ்⁄
ିగ ்⁄ .	 (C.1)

 

To determine the elements of the FIM, ࣂ = ሾ߬ଵ, … , ߬௄, ଵୖߙ , … , ௄ୖߙ , ,ଵ୍ߙ … , ௣൫݁௝ఠ்൯ߤ  ௄୍ሿ୘ andߙ = ∑൫݁௝ఠ்൯ݔ ௞݁ି௝൫ఠାఠ೛൯ఛೖ௄௞ୀଵߙ  are used. FIM is formed by sub-matrices, 

(ࣂ)ࡶ   =    
   H

J J

J J

 

 

 
 
  

θ θ
θ θ

=

     
     
     

R I

R R R I

I R I I

H

H H

J J J

J J J

J J J

  

   

   

 
 
 
  

θ θ θ
θ θ θ
θ θ θ

. (C.2) 

The following relations will be used: 
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௣∗߲߬௜ߤ߲ ൫݁௝ఠ்൯ = ݆൫߱ + ߱௣൯ݔ∗൫݁௝ఠ்൯݁௝൫ఠାఠ೛൯ఛ೔ߙ௜ , (C.3)

௣߲ߤ߲ ௝߬ ൫݁௝ఠ்൯ = −݆൫߱ + ߱௣൯ݔ൫݁௝ఠ்൯݁ି௝൫ఠାఠ೛൯ఛೕߙ௝ , (C.4)

௞ୖߙ௣߲ߤ߲ ൫݁௝ఠ்൯ = ൫݁௝ఠ்൯݁ି௝൫ఠାఠ೛൯ఛೖݔ , (C.5)

௞୍ߙ௣߲ߤ߲ ൫݁௝ఠ்൯ = ൫݁௝ఠ்൯݁ି௝൫ఠାఠ೛൯ఛೖݔ݆ , (C.6)

ℓୖߙ߲∗௣ߤ߲ ൫݁௝ఠ்൯ = ൫݁௝ఠ்൯݁௝൫ఠାఠ೛൯ఛℓ∗ݔ , (C.7)

ℓ୍ߙ߲∗௣ߤ߲ ൫݁௝ఠ்൯ = ൫݁௝ఠ்൯݁௝൫ఠାఠ೛൯ఛℓ∗ݔ݆− . (C.8)

 

Also, the following notations will be used to keep the complexity of the 

expressions in check: 

 Υ௫ = 2ܲΦ௫ ⁄ఎଶߪ , ଶߚ = ܲଶߨଶ ܶଶ⁄ , Δ߬௜௝ = ߬௜ − ௝߬ , (C.9)ܵ௔,௜௝ = ܶsin൫ܲߨΔ߬௜௝ ܶ⁄ ൯ Δ߬௜௝ൗߨܲ , (C.10)ܥ௔,௜௝ = ൫cos൫ܲߨΔ߬௜௝ ܶ⁄ ൯ − ܵ௔,௜௝൯ Δ߬௜௝ൗ , (C.11)ߩఛ,௜௝ = ଶܵ௔,௜௝ߚ + ௔,௜௝ܥ2 Δ߬௜௝⁄ , (C.12)		ߩఈ,௜௝ = ௔,௜௝ଶܥ ൫1 − ܵ௔,௜௝ଶ ൯ൗ . (C.13)

 

Further, the elements of each of the sub-matrices from (ࣂ)ࡶ are calculated.  

1). The elements of sub-matrix ࡶఛ(ࣂ) are determined by using (C.3) and (C.4) in 

(C.1): 
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ሾࡶఛ(ࣂ)ሿ௜,௝ = ఎଶߪߨܶ න෍Reቊ߲ߤ௣∗߲ߠ௜ ൫݁௝ఠ்൯ ௝ߠ௣߲ߤ߲ ൫݁௝ఠ்൯ቋ d߱ =௉
௣ୀଵ

గ்
ିగ்

= ఎଶߪߨܶ ෍ නRe ቄ൫߱+߱௣൯ଶหݔ൫݁௝ఠ்൯หଶߙ௜∗ߙ௝݁௝൫ఠାఠ೛൯୼ఛ೔ೕቅ dωగ்
ିగ் 		௉

௣ୀଵ
= ఎଶߪΦ௫ߨܶ ෍ න Re൛߱ଶߙ௜∗ߙ௝݁௝ఠ୼ఛ೔ೕൟdωఠ೛ାగ்

ఠ೛ିగ்
௉

௣ୀଵ =	
= ߨܶ Φ௫ߪఎଶ Reቐ න ߱ଶߙ௜∗ߙ௝݁௝ఠ୼ఛ೔ೕdω௉గ ்⁄

ି௉గ ்⁄ ቑ, (C.14)

 

where the assumption that Φ௫(߱) = หݔ൫݁௝ఠ்൯หଶ is flat across the frequency bins was 

made. Computing (C.14) for ݅ = ݆ and for ݅ ≠ ݆, 
 ሾࡶఛ(ࣂ)ሿ௜,௝ = ቊΥ௫ߚଶ|ߙ௜|ଶ 3⁄ , for ݅ = ݆Υ௫ߩఛ,௜௝Re൛ߙ௜∗ߙ௝ൟ, for ݅ ≠ ݆. (C.15)

 

2). The elements of sub-matrix ࡶఈ౎(ࣂ) are determined by using (C.5) and (C.7) in 

(C.1): 

 

൧ℓ,௞(ࣂ)ఈ౎ࡶൣ = ఎଶߪߨܶ ෍ නReቊ߲ߤ௣∗߲ߙℓோ ൫݁௝ఠ்൯ ௞ோߙ௣߲ߤ߲ ൫݁௝ఠ்൯ቋ d߱గ்
ିగ்

௉
௣ୀଵ =	

= ൜Υ௫ , for ℓ = ݇Υ௫ܵ௔,ℓ௞, for ℓ ≠ ݇. (C.16)

 

3). The elements of sub-matrix ࡶఈ౅(ࣂ) can be shown to equal those of ࡶఈ౎(ࣂ). 
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4). The elements of sub-matrix ࡶఈ౎ఈ౅(ࣂ) are determined by using (C.6) and (C.7) 

in (C.1): 

 

൧ℓ,௞(ࣂ)ఈ౎ࡶൣ =	 ఎଶߪߨܶ ෍ නReቊ߲ߤ௣∗߲ߙℓோ ൫݁௝ఠ்൯ ௞ூߙ௣߲ߤ߲ ൫݁௝ఠ்൯ቋ d߱గ்
ିగ்

௉
௣ୀଵ = 0.	 (C.17)

 

5). The elements of sub-matrix ࡶఛఈ౎(ࣂ) are determined by using (C.3) and (C.5) 

in (C.1): 

 

൧௜,௞(ࣂ)ఛఈ౎ࡶൣ = ఎଶߪߨܶ ෍ නReቊ߲ߤ௣∗߲߬௜ ൫݁௝ఠ்൯ ௞ோߙ௣߲ߤ߲ ൫݁௝ఠ்൯ቋ d߱గ்
ିగ்

௉
௣ୀଵ =	

									= ൜ 0, for ݇ = ݅Υ௫ܥ௔,௜௞Reሼߙ௜ሽ, for ݇ ≠ ݅. (C.18)

 

6). The sub-matrix ࡶఛఈ౅(ࣂ) can be shown to equal ࡶఛఈ౎(ࣂ). 
 

Based on the expressions determined for the sub-matrices forming (ࣂ)ࡶ, the later 

can be particularized for different number of multipath components, ܭ. Then, the CRB 

for estimating only the parameters of interest can be determined. That is, the CRB for 

time delays ࣎ = ሾ߬ଵ, … , ߬௄ሿ୘ can be calculated as a ܭ × (ࣂ)ఛ࡯ :matrix ܭ = ఛି̅ࡶ ૚(ࣂ), 
where ̅ࡶఛ(ࣂ) = (ࣂ)ఛࡶ − ఛఈୌࡶ	(ࣂ)ఈିଵࡶ	(ࣂ)ఛఈࡶ ࢻ The CRB for amplitudes .(ࣂ) =ሾߙଵୖ , … , ௄ୖߙ , ,ଵ୍ߙ … , ܭ௄୍ሿ୘ can be calculated as a 2ߙ × (ࣂ)ఈ࡯ :matrix ܭ2 = (ࣂ)ఈ̅ࡶ where ,(ࣂ)ఈି૚̅ࡶ = (ࣂ)ఈࡶ − ఛఈୌࡶ ఛିࡶ	(ࣂ) ଵ(ࣂ)ࡶఛఈ(ࣂ)	. 

i). Thus, for ܭ = 1, 
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௄ୀଵ|(ࣂ)ࡶ  = Υ௫ 22

1 3 0 0

0 1 0

0 0 1

  
 
 
 
 

. (C.19) 

This leads to CRB(߬ଵ)|௄ୀଵ = ሾ࡯ఛ(ࣂ)ሿଵ,ଵ = 3 Υ௫ߚଶ|ߙଵ|ଶ⁄  or by replacing back the 

notations (C.9),  

 CRB(߬ଵ)|௄ୀଵ = ଶߨ32 ଵ|ଶߙ|ఎଶΦ௫ߪ ܶଶܲଷ. (C.20)

 

Similarly, CRB(ߙଵ)|௄ୀଵ = ሾ࡯ఈ(ࣂ)ሿଵ,ଵ + ሾ࡯ఈ(ࣂ)ሿଶ,ଶ = 2 Υ௫⁄  or by replacing back the 

notations (C.9),  

 CRB(ߙଵ)|௄ୀଵ = ఎଶΦ௫ߪ 1ܲ. (C.21)

 

With equations (C.20) and (C.21) the proof of Theorem 2 is concluded. 

 

ii). For ܭ = 2, dropping the indices ݆݅ in notations (C.9)-(C.13) since they are fixed as ݅ = 1 and ݆ =   can be particularized as (ࣂ)ఛ̅ࡶ and (ࣂ)ࡶ ,2

 

 

௄ୀଶ|(ࣂ)ࡶ = Υ௫ 

ଵ|ଶߙ|ଶߚ  3⁄ ଶୖߙଵோߙఛߩ 0 ଵோߙ௔ܥ 0	 ଵோߙ௔ܥ 	 ଶୖߙଵோߙఛߩ   ଶ|ଶߙ|ଶߚ 3⁄ ଶୖߙ௔ܥ− 0 ଶୖߙ௔ܥ− 	 0	
0 ଶୖߙ௔ܥ− 1 ܵ௔ 0	 ଵோߙ௔ܥ	0 0 ܵ௔ 1 0	 0	
0 ଶୖߙ௔ܥ− 0 0 1	 ܵ௔ ଵோߙ௔ܥ	 0 0 0 ܵ௔ 	 1	 (C.22)
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௄ୀଶ|(ࣂ)ఛ̅ࡶ  = Υ௫		 ଶߚ)ଵ|ଶߙ| 3⁄ − (ఈߩ ଶୖߙଵோߙ					 ఛߩ) − ଶୖߙଵோߙ	(ఈܵ௔ߩ ఛߩ) − (ఈܵ௔ߩ ଶߚ)ଶ|ଶߙ| 3⁄ − 	(ఈߩ

(C.23)

From this, ࡯ఛ(ࣂ) = ఛି̅ࡶ ૚(ࣂ) and the CRB bounding the time delays estimation variance is 

given by CRB(߬ଵ)|௄ୀଶ = ሾ࡯ఛ(ࣂ)ሿଵ,ଵ and CRB(߬ଶ)|௄ୀଶ = ሾ࡯ఛ(ࣂ)ሿଶ,ଶ, resulting in: 

 ൜CRB(߬ଵ)|௄ୀଶ = ଶߚ) 3⁄ − ଶ|ଶߙ|(ఈߩ ⁄CRB(߬ଶ)|௄ୀଶ		୼ߩ = ଶߚ) 3⁄ − ଵ|ଶߙ|(ఈߩ ⁄,	୼ߩ 	  (C.24) 

whith ߩ୼ = Υ௫(|ߙଵߙଶ|ଶ(ߚଶ 3⁄ − ఈ)ଶߩ − ఛߩ)ଶ(ଶோߙଵோߙ) −  .(ఈܵ௔)ଶߩ
Equation (C.24) gives a closed form expression of the CRB for TDE for ܭ = 2 

paths, favoring the analysis of the CRB variation with the inter-path separation. 
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