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Abstract

Multiple sensor arrays provide the means for highly accurate localization of the
(x, y) position of a source. In some applications, such as microphone arrays receiv-
ing aeroacoustic signals from ground vehicles, random fluctuations in the air lead to
frequency-selective coherence losses in the signals that arrive at widely-separated sen-
sors. We present performance analysis for localization of a wideband source using
multiple, distributed sensor arrays. The wavefronts are modeled with perfect spatial
coherence over individual arrays and frequency-selective coherence between distinct
arrays, and the sensor signals are modeled as wideband, Gaussian random processes.
Analysis of the Cramér-Rao bound (CRB) on source localization accuracy reveals that
a distributed processing scheme involving bearing estimation at the individual arrays
and time-delay estimation (TDE) between sensors on different arrays performs nearly
as well as the optimum scheme, while requiring less communication bandwidth with a
central processing node. We develop Ziv-Zakai bounds for TDE with partially coher-
ent signals in order to study the achievability of the CRB. This analysis shows that a
threshold value of coherence is required in order to achieve accurate time-delay esti-
mates, and the threshold coherence value depends on the source signal bandwidth, the
additive noise level, and the observation time. Results are included based on processing
measured aeroacoustic data from ground vehicles to illustrate the frequency-dependent
signal coherence and the TDE performance.

Keywords: Acoustic arrays, array signal processing, delay estimation, sensors, imperfect
spatial coherence, decentralized signal processing, source localization, statistical performance
bounds.
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1 Introduction

We are concerned in this paper with estimating the location of a source using a network

of sensors. We assume that the sensors are placed in an “array of arrays” configuration

containing several small-aperture arrays distributed over a wide area. Each array contains

local processing capability and a communication link with a fusion center. A standard

approach for estimating the source locations involves bearing estimation at the individual

arrays, communication of the bearings to the fusion center, and triangulation of the bearing

estimates at the fusion center (e.g., see [1, 2, 3, 4, 5]). This approach is characterized

by low communication bandwidth and low complexity, but the localization accuracy will

generally be inferior to the optimal solution in which the fusion center jointly processes

all of the sensor data. The optimal solution requires high communication bandwidth and

high processing complexity. The amount of improvement in localization accuracy that is

enabled by greater communication bandwidth and processing complexity is dependent on

the scenario, which we characterize in terms of the power spectra (and bandwidth) of the

signals and noise at the sensors, the coherence between the source signals received at widely

separated sensors, and the observation time (amount of data). We present a framework to

identify scenarios that have the potential for improved localization accuracy relative to the

standard bearings-only triangulation method. We propose an algorithm that is bandwidth-

efficient and nearly optimal that uses beamforming at small-aperture sensor arrays and time-

delay estimation (TDE) between widely-separated sensors. The sensor signals are modeled

as Gaussian random processes, allowing the inclusion of deterministic as well as random

propagation effects.

Accurate TD estimates using widely-separated sensors are required to achieve improved

localization accuracy relative to bearings-only triangulation. We present results in this paper

for the application of aeroacoustic tracking of ground vehicles using a collection of microphone

arrays. In aeroacoustics, the signal coherence is known to degrade with increased sensor

separation for low frequency sounds (10–300 Hz) propagating through the air, e.g., [6, 7].

Thus it is important to understand the fundamental limitations on TD estimation when

the signals are partially coherent, and we provide a detailed study of this question in this
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paper. Our results quantify the scenarios in which TDE is feasible as a function of signal

coherence, SNR per sensor, fractional bandwidth of the signal, and time-bandwidth product

of the observed data. The basic result is that for a given SNR, fractional bandwidth, and

time-bandwidth product, there exists a “threshold coherence” value that must be exceeded

in order for TDE to achieve the CRB. The analysis is based on Ziv-Zakai bounds for TDE,

using the results in [8, 9]. Time synchronization is required between the arrays for TDE.

Previous work on source localization with aeroacoustic arrays has focused on angle of

arrival estimation with a single array, e.g., [10]–[12]. The problem of imperfect spatial

coherence in the context of narrowband angle-of-arrival estimation with a single array was

studied in [13]–[19] and [6]. Pauraj and Kailath [13] presented a MUSIC algorithm that

incorporates nonideal spatial coherence, assuming that the coherence losses are known. Song

and Ritcey [14] provided maximum-likelihood (ML) methods for estimating the angles of

arrival and the parameters in a coherence model, and Wilson [6] incorporated physics-based

models for the spatial coherence losses. Gershman et al. [15] provided a procedure to jointly

estimate the spatial coherence loss and the angles of arrival. In the series of papers [16]–[19],

stochastic and deterministic models were studied for imperfect spatial coherence, and the

performance of various bearing estimators was analyzed. The problem of decentralized array

processing was studied in [20]-[21]. Wax and Kailath [20] presented subspace algorithms

for narrowband signals and distributed arrays, assuming perfect spatial coherence across

each array but neglecting any spatial coherence that may exist between arrays. Stoica,

Nehorai, and Soderstrom [21] considered maximum likelihood angle of arrival estimation

with a large, perfectly coherent array that is partitioned into subarrays. Weinstein [22]

presented performance analysis for pairwise processing of the wideband sensor signals from

a single array, and he showed that pairwise processing is nearly optimal when the SNR is

high. In [23], Moses et. al. studied autocalibration of sensor arrays, and for aeroacoustic

arrays the loss of signal coherence at widely-separated sensors impacts the performance of

autocalibration.

The results in this paper are distinguished from [10]–[22] in that our primary focus is a

performance analysis that explicitly models partial spatial coherence in the signals at different

sensor arrays in an array of arrays configuration, along with an analysis of decentralized
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processing schemes for this model. The previous works have considered wideband processing

of aeroacoustic signals using a single array with perfect spatial coherence [10]–[12], imperfect

spatial coherence across a single array aperture [6], [13]–[19], and decentralized processing

with either zero coherence between distributed arrays [20] or full coherence between all

sensors [21, 22].

This paper is organized as follows. Section 2 contains the sensor data model and the

CRB analysis of various distributed processing schemes. Performance bounds for time-delay

estimation with partially-coherent signals are developed in Section 3. Numerical examples

as well as results from measured data are included in Sections 2 and 3. The paper concludes

in Section 4 with a summary and concluding remarks.

2 Data Model and CRBs

A model is formulated in this section for the discrete-time signals received by the sensors in

an array of arrays configuration. To begin, suppose a single non-moving source is located

at coordinates (xs, ys) in the (x, y) plane, and consider H arrays that are distributed in the

same plane, as illustrated in Figure 1. Each array h ∈ {1, . . . , H} contains Nh sensors and

has a reference sensor located at coordinates (xh, yh). The location of sensor n ∈ {1, . . . , Nh}

is at (xh + ∆xhn, yh + ∆yhn), where (∆xhn, ∆yhn) is the relative location with respect to the

reference sensor. If c is the speed of propagation, then the propagation time from the source

to the reference sensor on array h is

τh =
dh

c
=

1

c

[
(xs − xh)

2 + (ys − yh)
2
]1/2

, (1)

where dh is the distance from the source to array h. We model the wavefronts over individual

array apertures as perfectly coherent plane waves. Then in the far-field approximation, the

propagation time from the source to sensor n on array h is expressed by τh + τhn, where

τhn ≈ −1

c

[
xs − xh

dh

∆xhn +
ys − yh

dh

∆yhn

]
= −1

c
[(cos φh)∆xhn + (sin φh)∆yhn] (2)

is the propagation time from the reference sensor on array h to sensor n on array h, and φh is

the bearing of the source with respect to array h. Note that while the far-field approximation
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(2) is reasonable over individual array apertures, the wavefront curvature that is inherent in

(1) must be retained in order to model wide separations between arrays.

The time signal received at sensor n on array h due to the source will be denoted as

sh(t − τh − τhn), where the vector s(t) = [s1(t), . . . , sH(t)]T contains the signals received at

the reference sensors on the H arrays. The elements of s(t) are modeled as real-valued,

continuous-time, zero-mean, jointly wide-sense stationary, Gaussian random processes with

−∞ < t < ∞. These processes are fully specified by the H × H cross-correlation matrix

Rs(τ) = E{s(t + τ) s(t)T}, (3)

where E denotes expectation, superscript T denotes transpose, and we will later use the no-

tation superscript ∗ and superscript † to denote complex conjugate and conjugate transpose,

respectively. The (g, h) element in (3) is the cross-correlation function

rs,gh(τ) = E{sg(t + τ) sh(t)} (4)

between the signals received at arrays g and h. The correlation functions (3) and (4) are

equivalently characterized by their Fourier transforms, which are the cross-spectral density

(CSD) functions in (5) and CSD matrix in (6),

Gs,gh(ω) = F{rs,gh(τ)} =

∫ ∞

−∞
rs,gh(τ) exp(−jωτ) dτ (5)

Gs(ω) = F{Rs(τ)}. (6)

The diagonal elements Gs,hh(ω) of (6) are the power spectral density (PSD) functions of the

signals sh(t), and hence they describe the distribution of average signal power with frequency.

The model allows the PSD to vary from one array to another to reflect propagation and source

aspect angle differences.

The off-diagonal elements of (6), Gs,gh(ω), are the CSD functions for the signals sg(t)

and sh(t) received at distinct arrays g �= h. In general, the CSD functions have the form

Gs,gh(ω) = γs,gh(ω) [Gs,gg(ω)Gs,hh(ω)]1/2 , (7)

where γs,gh(ω) is the spectral coherence function for the signals, which has the property

0 ≤ |γs,gh(ω)| ≤ 1. Coherence magnitude |γs,gh(ω)| = 1 corresponds to perfect correlation
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between the signals at sensors g and h, while the partially coherent case |γs,gh(ω)| < 1

models random effects in the propagation paths from the source to sensors g and h. Note

that our assumption of perfect spatial coherence across individual arrays implies that the

random propagation effects have negligible impact on the intra-array delays τhn in (2) and

the bearings φ1, . . . φH .

The signal received at sensor n on array h is the delayed source signal plus noise,

zhn(t) = sh(t − τh − τhn) + whn(t), (8)

where the noise signals whn(t) are modeled as real-valued, continuous-time, zero-mean, jointly

wide-sense stationary, Gaussian random processes that are mutually uncorrelated at distinct

sensors, and are uncorrelated from the signals. That is, the noise correlation properties are

E{wgm(t + τ)whn(t)} = rw(τ) δghδmn and E{wgm(t + τ)sh(t)} = 0, (9)

where rw(τ) is the noise autocorrelation function, and the noise PSD is Gw(ω) = F{rw(τ)}.

We then collect the observations at each array h into Nh×1 vectors zh(t) = [zh1(t), . . . , zh,Nh
(t)]T

for h = 1, . . . , H , and we further collect the observations from the H arrays into a vector

Z(t) =
[

z1(t)
T · · · zH(t)T

]T
. (10)

The elements of Z(t) in (10) are zero-mean, jointly wide-sense stationary, Gaussian random

processes. We can express the CSD matrix of Z(t) in a convenient form with the following

definitions. The array manifold for array h at frequency ω is

ah(ω) =




exp(−jωτh1)
...

exp(−jωτh,Nh
)


 =




exp
[
j ω

c
((cosφh)∆xh1 + (sin φh)∆yh1)

]
...

exp
[
j ω

c
((cosφh)∆xh,Nh

+ (sin φh)∆yh,Nh
)
]

 , (11)

using τhn from (2) and assuming that the sensors have omnidirectional response. Let us

define the relative time delay of the signal at arrays g and h as

Dgh = τg − τh, (12)

where τh is defined in (1). Then the CSD matrix of Z(t) in (10) has the form

GZ(ω) =

(13)
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a1(ω)a1(ω)†Gs,11(ω) · · · a1(ω)aH(ω)† exp(−jωD1H)Gs,1H(ω)
...

. . .
...

aH(ω)a1(ω)† exp(+jωD1H)Gs,1H(ω)∗ · · · aH(ω)aH(ω)†Gs,HH(ω)


+Gw(ω)I.

Recall that the source cross-spectral density functions Gs,gh(ω) in (13) can be expressed in

terms of the signal spectral coherence γs,gh(ω) using (7).

Note that (13) depends on the source location parameters (xs, ys) through the bearings

φh in ah(ω) and the pairwise time-delay differences Dgh. However, (13) points out that

the observations are also characterized by the bearings φ1, . . . , φH to the source from the

individual arrays and the relative time delays Dgh between pairs of arrays.1 Therefore, one

way to estimate the source location (xs, ys) is first to estimate the bearings φ1, . . . , φH and the

pairwise time delays Dgh, and then to estimate the source location (xs, ys) by triangulation

with the equations

cos(φh) =
xs − xh

[(xs − xh)2 + (ys − yh)2]1/2
, h = 1, . . . , H (14)

sin(φh) =
ys − yh

[(xs − xh)2 + (ys − yh)2]1/2
, h = 1, . . . , H (15)

Dgh =
1

c

[
(xs − xg)

2 + (ys − yg)
2
]1/2 − 1

c

[
(xs − xh)

2 + (ys − yh)
2
]1/2

,
h = 2, . . . , H
g = 1, . . . , h − 1

.(16)

2.1 Cramér-Rao Bound (CRB)

The Cramér-Rao bound (CRB) provides a lower bound on the variance of any unbiased

estimator. The problem of interest is estimation of the source location parameter vector

Θ = [xs, ys]
T using T samples of the sensor signals Z(0),Z(Ts), . . . ,Z((T − 1) · Ts), where Ts

is the sampling period. The total observation time is T = T ·Ts. Let us denote the sampling

rate by fs = 1/Ts and ωs = 2πfs. We will assume that the continuous-time random processes

Z(t) are band-limited, and that the sampling rate fs is greater than twice the bandwidth of

the processes. Then it has been shown [24, 25] that the Fisher information matrix (FIM) J

for the parameters Θ based on the samples Z(0),Z(Ts), . . . ,Z((T − 1) · Ts) has elements

Jij =
T
4π

∫ ωs

0

tr

{
∂ GZ(ω)

∂ θi

GZ(ω)−1∂ GZ(ω)

∂ θj

GZ(ω)−1

}
dω, i, j = 1, 2, (17)

1In order to recover the source location (xs, ys) from the bearings φ1, . . . , φH and the relative time delays
Dgh, the array geometry must be such that the set of equations (14) to (16) are uniquely invertible.
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where “tr” denotes the trace of the matrix. The CRB matrix C = J−1 then has the property

that the covariance matrix of any unbiased estimator Θ̂ satisfies Cov(Θ̂) − C ≥ 0, where

≥ 0 means that Cov(Θ̂) − C is positive semidefinite. Equation (17) provides a convenient

way to compute the FIM for the array of arrays model as a function of the signal coherence

between distributed arrays, the signal and noise bandwidth and power spectra, and the

sensor placement geometry.

Let us consider the CRB for an acoustic source that has a narrowband power spectrum,

i.e., the PSD Gs,hh(ω) of the signal at each array h = 1, . . . , H is nonzero only in a narrow

band of frequencies ω0 − (∆ω/2) ≤ ω ≤ ω0 + (∆ω/2). If the bandwidth ∆ω is chosen small

enough so that the ω−dependent quantities in (17) are well approximated by their value at

ω0, then the narrowband approximation to the FIM (17) is

Jij ≈
T∆ω

ωs
tr

{
∂ GZ(ω0)

∂ θi
GZ(ω0)

−1∂ GZ(ω0)

∂ θj
GZ(ω0)

−1

}
. (18)

The quantity T∆ω
ωs

multiplying the FIM in (18) is the time-bandwidth product of the obser-

vations. In narrowband array processing, the T time samples per sensor are often segmented

into M blocks containing T/M samples each. Then the discrete Fourier transform (DFT) is

applied to each block, and the complex coefficients at frequency ω0 (at each sensor) are used

to form M array “snapshots”. In this case, the quantity T∆ω
ωs

is approximately equal to M ,

the number of snapshots. The narrowband approximation in (18) is most useful when the

coherence is zero between all array pairs, γs,gh(ω0) = 0. As we will show in Section 3, the

coherence is difficult to exploit when the signals are narrowband.

The CRBs presented in (17) and (18) provide a performance bound on source location

estimation methods that jointly process all the data from all the sensors. Such processing

provides the best attainable results, but also requires significant communication bandwidth

to transmit data from the individual arrays to the fusion center. Next we develop approx-

imate performance bounds on schemes that perform bearing estimation at the individual

arrays in order to reduce the required communication bandwidth to the fusion center. These

CRBs facilitate a study of the tradeoff between source location accuracy and communication

bandwidth between the arrays and the fusion center. The methods that we consider are

summarized as follows.
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1. Each array estimates the source bearing, transmits the bearing estimate to the fusion

center, and the fusion processor triangulates the bearings to estimate the source lo-

cation. This approach does not exploit wavefront coherence between the distributed

arrays, but it greatly reduces the communication bandwidth to the fusion center.

2. The raw data from all sensors is jointly processed to estimate the source location. This

is the optimum approach that fully utilizes the coherence between distributed arrays,

but it requires large communication bandwidth.

3. Combination of methods 1 and 2, where each array estimates the source bearing and

transmits the bearing estimate to the fusion center. In addition, the raw data from one

sensor in each array is transmitted to the fusion center. The fusion center estimates

the propagation time delay between pairs of distributed arrays, and triangulates these

time delay estimates with the bearing estimates to localize the source.

Consider the simplest scheme (method 1) in which each array transmits only its bearing

estimate to the fusion center. The fusion center then triangulates the bearings φ1, . . . , φH

to estimate the source location (xs, ys) using (14) and (15). This scheme processes the data

from each array separately to estimate the bearings, and it ignores coherence that may exist

between the signals arriving at different arrays. It is difficult to incorporate ignored data in

the CRB, so we proceed by considering the case in which there is no coherence between arrays,

γs,gh(ω) = 0 for all g < h and all ω. Then the CSD matrix in (13) is block diagonal, which

we denote by G
(B)
Z (ω). Evaluating the CRB in (17) using G

(B)
Z (ω) provides a lower bound on

triangulation of bearings2 when γs,gh(ω) = 0. If the sensor data contains coherence between

arrays, and if an algorithm exploits the coherence, then the variance may be lower than the

CRB based on G
(B)
Z (ω). The “joint CRB” (method 2) provides a lower bound for algorithms

that exploit coherence between the arrays. The CRB based on block diagonal CSD G
(B)
Z (ω)

is useful because in many acoustic scenarios, the signal bandwidth and coherence are such

2The block diagonal CSD matrix G(B)
Z (ω) corresponds to the case in which each array transmits its

covariance matrix to the fusion center. While transmitting the covariance matrix requires slightly more
communication bandwidth than transmitting the bearing, it is significantly less than transmitting the raw
data from all sensors. The decentralized scheme in which covariance matrices are transmitted from each array
was studied in [20], and this method is shown to be slightly more accurate than triangulation of bearings.
The CRB based on the CSD matrix G(B)

Z (ω) is a lower bound on triangulation of bearings.
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that the block-diagonal CSD represents the best achievable performance. We use this CRB

to bound the performance of triangulation with bearing estimates.

Next consider method 3, in which each array transmits its bearing estimate and the T

samples from one sensor to the fusion center. We assume that the sensor whose samples are

transmitted is located at the reference location (xh, yh) for the array. In this case the fusion

center is able to exploit signal coherence at distributed arrays by estimating the time delays

Dgh. However, coherence between arrays is not exploited in the estimation of the bearings.

We approximate the performance bound for this scheme as follows. To simplify the

modeling, we assume the existence of an additional independent sensor that is colocated at

the reference location (xh, yh) of each array. The samples from this independent sensor are

transmitted to the fusion center, but they are not used for bearing estimation. Similar to

(8), the observations at these additional sensors are modeled as

z̄h(t) = s̄h(t − τh) + w̄h(t), h = 1, . . . , H, (19)

where the noise w̄h(t) is independent from the noise at all other sensors and shares the

common noise PSD Gw(ω). We define a vector z̄(t) = [z̄1(t), . . . , z̄H(t)]T and a larger vector

Z̄(t) = [Z(t)T , z̄(t)T ]T that collects all of the sensor signals in this model. In order to reflect

the fact that the signal coherence is not exploited in the bearing estimation using Z(t) while

it is exploited in the estimation of the time delays Dgh using z̄h(t), the cross-spectral density

matrix of Z̄(t) is modeled as

GZ̄(ω) =

[
G

(B)
Z (ω) 0

0 G
(TD)
z̄ (ω)

]
, (20)

where G
(B)
Z (ω) is formed from (13) assuming incoherent signals for bearing estimation

G
(B)
Z (ω) =




a1(ω)a1(ω)†Gs,11(ω) · · · 0
...

. . .
...

0 · · · aH(ω)aH(ω)†Gs,HH(ω)


+ Gw(ω)I, (21)

and G
(TD)
z̄ (ω) includes the signal coherence to allow time-delay (TD) estimation

G
(TD)
z̄ (ω) =




Gs,11(ω) + Gw(ω) · · · e−jωD1Hγs,1H(ω) (Gs,11(ω)Gs,HH(ω))1/2

...
. . .

...

e+jωD1Hγs,1H(ω) (Gs,11(ω)Gs,HH(ω))1/2 · · · Gs,HH(ω) + Gw(ω)


 .

(22)
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We obtain the FIM for estimation of the source location parameters (xs, ys) using this

scheme by inserting GZ̄(ω) in (20) into the general expression (17). In practice, the use of

the same sensor for bearing estimation and time-delay estimation will have little effect on the

estimation performance. Note that the model assumes that the fusion processor estimates

the time-delays Dgh for h = 2, . . . , H, g = 1, . . . , h, jointly based on the time samples

z̄(1), . . . , z̄(T ). A practical time-delay estimation method is likely to estimate only the H−1

time delays D12, . . . , D1H through independent, pairwise processing of the sensor samples.

Such a pairwise processing scheme cannot perform better than the CRB based on (20).

However, results of Weinstein [22] regarding pairwise processing of sensor signals on a single

array suggest that the performance degradation is negligible as long as the SNR is greater

than 0 dB. It is possible to obtain an exact CRB for pairwise time delay estimation using

our model by following Weinstein’s approach [22]. However, the exact CRB is considerably

more complicated and is valuable only for low SNR scenarios.

2.2 Examples

Next we present numerical examples that evaluate the CRB on localization accuracy in (17)

for a narrowband and a wideband source. We also show measured aeroacoustic data from a

ground vehicle and evaluate the spectral coherence of the source at widely separated sensors.

2.2.1 CRB evaluation

We evaluate the CRBs for the three schemes described above for a narrowband source and

a wideband source in this section. We will refer back to these examples in Section 3 after

developing the threshold coherence analysis for TDE. The analysis in Section 3 will show that

the CRBs for the narrowband source case are unachievable when there is any appreciable

loss of signal coherence between arrays, while the CRBs for the wideband source case are

achievable when moderate coherence losses occur.

Consider H = 3 identical arrays, each of which contains N1 = · · · = NH = 7 sensors. Each

array is circular with 4-ft radius, and six sensors are equally spaced around the perimeter and

one sensor is in the center. We first evaluate the CRB for a narrowband source with a 1 Hz

bandwidth centered at 50 Hz and SNR = 10 dB at each sensor. That is, Gs,hh(ω)/Gw(ω) = 10
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for h = 1, . . . , H and 2π(49.5) < ω < 2π(50.5) rad/sec. The signal coherence γs,gh(ω) = γs(ω)

is varied between 0 and 1. We assume that T = 4000 time samples are obtained at each

sensor with sampling rate fs = 2000 samples/sec. The source localization performance is

evaluated by computing the ellipse in (x, y) coordinates that satisfies the expression

[
x y

]
J

[
x
y

]
= 1, (23)

where J is the FIM in (17). If the errors in (x, y) localization are jointly Gaussian distributed,

then the ellipse (23) represents the contour at one standard deviation in root-mean-square

(RMS) error. The error ellipse for any unbiased estimator of source location cannot be

smaller than this ellipse derived from the FIM.

The H = 3 arrays are located at coordinates (x1, y1) = (0, 0), (x2, y2) = (400, 400),

and (x3, y3) = (100, 0), where the units are meters. One source is located at (xs, ys) =

(200, 300), as illustrated in Figure 2a. The RMS error ellipses for joint processing of all

sensor data for coherence values γs(ω) = 0, 0.5, and 1 are also shown in Figure 2a. The

coherence between all pairs of arrays is assumed to be identical, i.e., γs,gh(ω) = γs(ω) for

(g, h) = (1, 2), (1, 3), (2, 3). The largest ellipse in Figure 2a corresponds to incoherent signals,

i.e., γs(ω) = 0, and characterizes the performance of the simple method of triangulation

using the bearing estimates from the three arrays. Figure 2b shows the ellipse radius =

[(major axis)2 + (minor axis)2]
1/2

for various values of the signal coherence γs(ω). The

ellipses for γs(ω) = 0.5 and 1 are difficult to see in Figure 2a because they fall on the

lines of the × that marks the source location, illustrating that signal coherence between the

arrays significantly improves the CRB on source localization accuracy. Note also that for

this scenario, the localization scheme based on bearing estimation with each array and time-

delay estimation using one sensor from each array performs equivalently to the optimum,

joint processing scheme. Figure 2c shows a closer view of the error ellipses for the scheme of

bearing estimation plus time-delay estimation with one sensor from each array. The ellipses

are identical to those in Figure 2a for joint processing.

Figures 2d– 2f present corresponding results for a wideband source with bandwidth 20

Hz centered at 50 Hz and SNR 16 dB. That is, Gs,hh/Gw = 40 for 2π(40) < ω < 2π(60)

rad/sec, h = 1, . . . , H . T = 2000 time samples are obtained at each sensor with sampling
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rate fs = 2000 samples/sec, so the observation time is 1 second. As in the narrowband case in

Figures 2a– 2c, joint processing reduces the CRB compared with bearings-only triangulation,

and bearing plus time-delay estimation is nearly optimum.

The CRB provides a lower bound on the variance of unbiased estimates, so an important

question is whether an estimator can achieve the CRB. We show in Section 3 that the coher-

ent processing CRBs for the narrowband scenario illustrated in Figures 2a– 2c are achievable

only when the the coherence is perfect, i.e. γs = 1. Therefore for that scenario, bearings-only

triangulation is optimum in the presence of even small coherence losses. However, for the

wideband scenario illustrated in Figures 2d– 2f, the coherent processing CRBs are achievable

for coherence values γs

∼
> 0.75.

2.2.2 Coherence in measured data

Next we present results from measured aeroacoustic data to illustrate typical values of signal

coherence at distributed arrays. The experimental setup is illustrated in Figure 3a, which

shows the path of a moving ground vehicle and the locations of four microphone arrays

(labeled 1, 3, 4, 5). Each array is circular with N = 7 sensors and 4-ft radius, as in the

previous example. We focus on the 10 second interval indicated by the �’s in Figure 3a, and

we process the data in 1 second segments to reduce the effects of the source motion. Figure 3b

shows the mean power spectral density (PSD) of the data measured at arrays 1 and 3. The

mean PSD in Figure 3b is computed over the 10 second interval by averaging the PSDs from

each 1 second data segment. Note the dominant harmonic at 39 Hz. Figure 3c shows the

estimated coherence between arrays 1 and 3 during the 10 second segment. The coherence

is approximately 0.85 at 40 Hz, which demonstrates the presence of significant coherence

at widely-separated microphones. Figure 3d shows the estimated coherence between two

sensors on array 1, spaced by 8 feet. Note that the coherence is close to unity for frequencies

in the range from about 40 to 200 Hz, so our model of perfect signal coherence over individual

arrays seems reasonable. An anti-aliasing filter accounts for the coherence drop above ≈ 300

Hz.

The Doppler effect due to source motion was compensated prior to the coherence esti-

mates shown in Figure 3c. Without Doppler compensation, the coherence is significantly
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reduced, as shown in Figure 3e. The time-varying radial velocity of the source with respect

to each array in Figure 3a is plotted in the top panel of Figure 3f for a 30 second interval

that is centered on the �’s in Figure 3a. If s(t) is the waveform emitted by the source that is

moving with radial velocity v with respect to the sensor, then the sensor receives a waveform

with the form s(αt), where the scaling factor α is

α = 1 − v

c
(24)

and c is the speed of wave propagation. The scaling factor α is plotted in the bottom panel

of Figure 3f. Note that for this data set, 0.98 < α < 1.02, which corresponds to a Doppler

frequency shift of approximately ±1 Hz for an emitted tone at 50 hertz. We use a digital

resampling algorithm to compensate for the Doppler effect.

Arrays 1 and 3 are separated by approximately 200 m in Figure 3a. We have performed

a similar analysis for arrays 1 and 5, which are separated by 500 m, and the coherence is

negligible in this case.

3 Time Delay Estimation (TDE)

The CRB results presented in Section 2.2.1 indicate that time delay estimation between

widely-spaced sensors is an effective way to improve the source localization accuracy with

joint processing. Fundamental performance limits for passive time delay and Doppler esti-

mation have been studied extensively for several decades, e.g., see the collection of papers in

[26]. The fundamental limits are usually parameterized in terms of the signal-to-noise ratio

(SNR) at each sensor, the spectral support of the signals (fractional bandwidth), and the

time-bandwidth product of the observations. When a collection of microphone arrays is used

for aeroacoustic tracking of ground vehicles, signal coherence degrades with increased spatial

separation between the sensors due to random scattering caused by atmospheric turbulence

[6, 7]. This coherence loss significantly affects the time delay estimation accuracy.

In this section, we quantify the effect of partial signal coherence on time delay estimation.

We present Cramér-Rao and Ziv-Zakai bounds that are explicitly parameterized by the signal

coherence, along with the traditional parameters of SNR, fractional bandwidth, and time-
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bandwidth product. This analysis of TDE is relevant to method 3 in Section 2.2.1. We focus

on the case of H = 2 sensors, and then we outline the extension to H > 2 sensors.

Let us parameterize the model in (13) by the bearings φh and the time-delay differences

Dgh, and consider first the case of H = 2 sensors. Then the signals at the reference sensors

are modeled as

z1(t) = s1(t) + w1(t) (25)

z2(t) = s2(t − D) + w2(t), (26)

where D = D21 is the differential time delay. Following (13), the CSD matrix of the sensor

signals in (25) and (26) is

CSD

[
z1(t)
z2(t)

]
= GZ(ω) = (27)[

Gs,11(ω) + Gw(ω) e+jωDγs,12(ω) [Gs,11(ω)Gs,22(ω)]1/2

e−jωDγs,12(ω)∗ [Gs,11(ω)Gs,22(ω)]1/2 Gs,22(ω) + Gw(ω)

]
.

The signal coherence function γs,12(ω) describes the degree of correlation that remains in the

signal emitted by the source at each frequency ω after propagating to sensors 1 and 2. Next,

we develop an SNR-like expression for the two-sensor case that appears in all subsequent

expressions for fundamental limits on TDE. We begin with the magnitude-squared coherence

(MSC) [26] of the observed signals z1(t), z2(t) as a function of the signal coherence magnitude,

|γs,12(ω)|, and other spectral density parameters:

MSCz (|γs,12(ω)|) =
|CSD[z1(t), z2(t)]|2

PSD[z1(t)] · PSD[z2(t)]
=

|γs,12(ω)|2 Gs,11(ω)Gs,22(ω)

[Gs,11(ω) + Gw(ω)] [Gs,22(ω) + Gw(ω)]

=
|γs,12(ω)|2[

1 +
(

Gs,11(ω)

Gw(ω)

)−1
] [

1 +
(

Gs,22(ω)

Gw(ω)

)−1
] ≤ 1 (28)

Then the following SNR-like expression, which we denote by SNRTD, is well-known to char-

acterize the performance of TDE [26]:

SNRTD (|γs,12(ω)|) =
MSCz (|γs,12(ω)|)

1 − MSCz (|γs,12(ω)|) (29)

=

{
1

|γs,12(ω)|2

[
1 +

(
Gs,11(ω)

Gw(ω)

)−1
][

1 +

(
Gs,22(ω)

Gw(ω)

)−1
]
− 1

}−1

(30)

≤ |γs,12(ω)|2

1 − |γs,12(ω)|2
. (31)
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The standard analysis of TDE is based on (28)-(30) with perfect signal coherence, γs,12 =

1. Our formulation shows the effect of partial signal coherence on these quantities. The

inequality (31) shows that signal coherence loss (|γs,12(ω)| < 1) severely limits the SNRTD

quantity that characterizes performance, even if the SNR per sensor Gs,ii(ω)/Gw(ω) is very

large.

3.1 Bounds for TDE

We can use (27) in (17) to find the CRB for TDE with H = 2 sensors, yielding

CRB(D) =
2π

T

[∫ ωs

0

ω2 SNRTD (|γs,12(ω)|) dω

]−1

, (32)

where T is the total observation time of the sensor data and SNRTD (|γs,12(ω)|) is defined in

(30). Let us consider the case in which the signal PSDs, the noise PSD, and the coherence are

flat (constant) over a bandwidth ∆ω rad/sec centered at ω0 rad/sec. If we omit the frequency

dependence of Gs,11, Gs,22, Gw, and γs,12, then the integral in (32) may be evaluated to yield

the following CRB expression:

CRB(D) =
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
]

SNRTD (|γs,12|)
(33)

=
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
]
{

1

|γs,12|2

[
1 +

(
Gs,11

Gw

)−1
] [

1 +

(
Gs,22

Gw

)−1
]
− 1

}

>
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
] [ 1

|γs,12|2
− 1

]
. (34)

The quantity
(

∆ω·T
2π

)
is the time-bandwidth product of the observations,

(
∆ω
ω0

)
is the frac-

tional bandwidth of the signal, and Gs,hh/Gw is the SNR at sensor h. Note from the high-SNR

limit in (34) that when the signals are partially coherent, so that |γs,12| < 1, increased source

power does not reduce the CRB. Improved TDE accuracy is obtained with partially coherent

signals by increasing the observation time T or changing the spectral support of the signal,

which is [ω0 − ∆ω/2, ω0 + ∆ω/2]. The spectral support of the signal is not controllable in

passive TDE applications, so increased observation time is the only means for improving
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the TDE accuracy with partially coherent signals. Source motion becomes more important

during long observation times, and we have extended the model to include source motion in

[27].

The analysis in this paper is focused on passive TDE, but similar results are obtained in

active systems, such as medical ultrasound with partially correlated speckle signals [28, 29].

Since the medical ultrasound systems are active, the designer has much more control over the

SNR and bandwidth of the signals. Of course, in passive aeroacoustics, there is no control

over the source.

With perfectly coherent signals, it is well-known that the CRB on TDE is achievable only

when the SNRTD expression in (30) (with |γs,12(ω)| = 1) exceeds a threshold [8, 9]. Next we

show that for TDE with partially coherent signals, a similar threshold phenomenon occurs

with respect to coherence. That is, the coherence must exceed a threshold in order to achieve

the CRB (32) on TDE. We state the threshold coherence formula for the following simplified

scenario. The signal and noise spectra are flat over a bandwidth of ∆ω rad/sec centered at

ω0 rad/sec, and the observation time is T seconds. Further, assume that the signal PSDs

are identical at each sensor, and define the following constants for notational simplicity:

Gs,11(ω0) = Gs,22(ω0) = Gs, Gw(ω0) = Gw, and γs,12(ω0) = γs. (35)

Then the SNRTD expression in (30) has the form

SNRTD(|γs|) =

[
1

|γs|2

(
1 +

1

(Gs/Gw)

)2

− 1

]−1

. (36)

The Ziv-Zakai bound developed by Weiss and Weinstein [8, 9] shows that the CRB is at-

tainable only if SNRTD exceeds a threshold value that is a function of the time-bandwidth

product
(

∆ω·T
2π

)
and the fractional bandwidth

(
∆ω
ω0

)
. The condition for CRB attainability

and the threshold value is given by [8, 9]

SNRTD(|γs|) ≥ SNRthresh =
6

π2
(

∆ωT
2π

) ( ω0

∆ω

)2
[
ϕ−1

(
1

24

(
∆ω

ω0

)2
)]2

, (37)

where ϕ(y) = 1/
√

2π
∫∞

y
exp(−t2/2) dt. If we substitute (36) into (37) and rearrange so that

|γs|2 is on the left side, then the following inequality defines a threshold coherence value that
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must be exceeded for CRB attainability:

|γs|2 ≥

(
1 + 1

(Gs/Gw)

)2

1 + 1
SNRthresh

, so |γs|2 ≥
1

1 + 1
SNRthresh

as
Gs

Gw
→ ∞. (38)

Since |γs|2 ≤ 1, (38) is useful only if Gs/Gw > SNRthresh. Note that the threshold coherence

value in (38) is a function of
(

∆ω·T
2π

)
and

(
∆ω
ω0

)
through the formula for SNRthresh in (37).

Figure 4a contains a plot of (38) for a particular case in which the signals are in a band

centered at ω0 = 2π50 rad/sec and the time duration is T = 2 seconds. Figure 4a shows

the variation in threshold coherence as a function of signal bandwidth, ∆ω. Note that

nearly perfect coherence is required when the signal bandwidth is less than 5 Hz (or 10%

fractional bandwidth). The threshold coherence drops sharply for values of signal bandwidth

greater than 10 Hz (20% fractional bandwidth). Thus for sufficiently wideband signals, e.g.,

∆ω ≥ 2π10 rad/sec, a certain amount of coherence loss can be tolerated while still allowing

unambiguous time delay estimation. Figure 4b shows corresponding results for a case with

twice the center frequency and half the observation time.

Figures 5a, b, and c contain plots of the threshold coherence in (38) as a function of

the time-bandwidth product
(

∆ω·T
2π

)
, SNR Gs

Gw
, and fractional bandwidth

(
∆ω
ω0

)
. Note that

Gs

Gw
= 10 dB is nearly equivalent to Gs

Gw
→ ∞, and that very large time-bandwidth product is

required to overcome coherence loss when the fractional bandwidth is small. For example, in

Figure 5a with fractional bandwidth 0.1, the time-bandwidth product must exceed 100 for

coherence 0.9. The variation of threshold coherence with fractional bandwidth is illustrated

in Figure 5d. For threshold coherence values in the range from about 0.1 to 0.9, each doubling

of the fractional bandwidth reduces the required time-bandwidth product by a factor of 10.

Let us examine a scenario that is typical in aeroacoustics, with center frequency fo =

ωo/(2π) = 50 Hz and bandwidth ∆f = ∆ω/(2π) = 5 Hz, so the fractional bandwidth is

∆f/fo = 0.1. From Figure 5a, signal coherence |γs| = 0.8 requires time-bandwidth product

∆f · T > 200, so the necessary time duration T = 40 sec for TDE is impractical for moving

sources.

Larger time-bandwidth products of the observed signals are required in order to make

TDE feasible in environments with signal coherence loss. As discussed previously, only the
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observation time is controllable in passive applications, thus leading us to consider source

motion models in [27] for use during long observation intervals.

We can evaluate the threshold coherence for the narrowband and wideband scenarios

considered in Section 2.2.1 for the CRB examples in Figure 2. The results are as follows,

using (37) and (38).

• Narrowband case: Gs/Gw = 10, ω0 = 2π50 rad/sec, ∆ω = 2π rad/sec, T = 2 sec

=⇒ Threshold coherence ≈ 1

• Wideband case: Gs/Gw = 40, ω0 = 2π50 rad/sec, ∆ω = 2π · 20 rad/sec, T = 1 sec

=⇒ Threshold coherence ≈ 0.75

Therefore for the narrowband case, joint processing of the data from different arrays will

not achieve the CRBs in Figures 2a– 2c when there is any loss in signal coherence. For the

wideband case, joint processing can achieve the CRBs in Figures 2d– 2f for coherence values

≥ 0.75.

The remainder of this section contains examples of TDE with partial spatial coherence. A

simulation example is presented in Section 3.2 that verifies the CRB and threshold coherence

values. In Section 3.3, we discuss the extension from H = 2 sensors to TDE with H > 2

sensors, and Section 3.4 contains examples of TDE with measured aeroacoustic data.

3.2 TDE simulation examples

Consider TDE at H = 2 sensors with varying signal coherence γs. Our first simulation exam-

ple involves a signal with bandwidth ∆f = 30 Hz centered at f0 = 100 Hz, so the fractional

bandwidth ∆f/f0 = 0.3. The signal, noise, and coherence are flat over the frequency band,

with SNR Gs/Gw = 100 (20 dB). The signals and noise are band-pass Gaussian random

processes. The sampling rate in the simulation is fs = 104 samples/sec, with T = 3 × 104

samples, so the time interval length is T = 3 sec.

Figure 6a displays the simulated RMS error on TDE for 0.2 ≤ γs ≤ 1.0, along with the

corresponding CRB from (33). The simulated RMS error is based on 100 runs, and the TDE

is estimated from the location of the maximum of the cross-correlation of the sensor signals.

The threshold coherence for this case is 0.41, from (38) and (37). Note in Figure 6a that
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the simulated RMS error on TDE diverges sharply from the CRB very near to the threshold

coherence value of 0.41, illustrating the accuracy of the threshold coherence in (38).

Next we consider TDE with a narrowband signal with ∆f = 2 Hz centered at f0 = 40 Hz.

The signal, noise, and coherence are flat over the frequency band, with SNR Gs/Gw = 100

(20 dB). The signals and noise are band-pass Gaussian random processes. Figure 6b displays

the simulated RMS error on TDE (based on 1,000 runs) for coherence values 0.7 ≤ γs ≤ 1.0.

As in the previous wideband signal example, the TDE is obtained by cross-correlation.

The threshold coherence value is ≈ 1 for this narrowband case. Figure 6b illustrates the

divergence of the simulated RMS error from the CRB, except at γs = 1.

3.3 TDE with H > 2 sensors

We can extend the analysis of the H = 2 sensor case to TDE with H > 2 sensors following

the approach of Weinstein [22], leading to the conclusion that pairwise TDE is essentially

optimum for cases of interest with reasonable signal coherence between sensors. By pairwise

TDE we mean that one sensor, say H , is identified as the reference, and only the H − 1

time differences D1H , D2H , . . . , DH−1,H are estimated. Under the conditions described below,

these H − 1 estimates are nearly as accurate for source localization as forming all pairs of

TDEs Dgh for all g < h.

Extending (35) and (36) to H > 2 sensors, let us assume equal Gs,hh/Gw at all sensors

h = 1, . . . , H and equal coherence γs between all sensor pairs, so that the SNR(|γs|) in (36)

is equal for all sensor pairs. Then as long as H · SNR(|γs|) � 1, it follows from (67) in [22]

that forming all TDE pairs Dgh potentially improves the source localization variance relative

to pairwise processing by the factor

V =
H
(
1 + 2 · γs

1−γs

)
2
(
1 + H · γs

1−γs

) . (39)

Clearly V → 1 as γs → 1, and V < (3H)/[2(1 + H)] < 1.5 for γs > 0.5. Therefore the

potential accuracy gain from processing all sensor pairs is negligible when the coherence

exceeds the threshold values that are typically required for TDE.

This result suggests strategies with moderate communication bandwidth that potentially
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achieve nearly optimum localization performance. The reference sensor, H , sends its raw

data to all other sensors. Those sensors h = 1, . . . , H − 1, locally estimate the time differ-

ences D1,H , . . . , DH−1,H, and these estimates are passed to the fusion center for localization

processing with the bearing estimates φ1, . . . , φH . A modified scheme with more communi-

cation bandwidth and more centralized processing is for all H sensors to communicate their

data to the fusion center, with TDE performed at the fusion center.

3.4 TDE with measured data

First we present an illustration based on processing the measured data for the source in

Figure 3a that was discussed in Section 2.2.2. Figure 7 shows results of cross-correlation

processing of the data for a 2 second segment. Figure 7a is obtained by cross-correlating

the signals received at one sensor from each of arrays 1 and 3, for which the coherence

is appreciable only over a narrow band near 39 Hz (see Figure 3c). A peak in the cross-

correlation is not evident, which is expected based on the preceding analysis, since nearly

perfect coherence is needed for narrowband time delay estimation in this scenario. Figure 7b

is obtained by cross-correlating the signals received at two sensors on array 1, where the

coherence is large over a wide bandwidth (see Figure 3d). The peak is clearly evident in the

cross-correlation in Figure 7b.

Next we present a TDE example based on data that was measured by BAE Systems

using a synthetically-generated, non-moving, wideband acoustic source. The PSD of the

source is shown in Figure 8a, which indicates that the source bandwidth is about 50 Hz with

center frequency 100 Hz. With reference to the sensor locations in Figure 8b, the source is

at node 2 and the two receiving sensors are at nodes 0 and 1. The source and sensors form a

triangle, with dimensions as follows: the distance from the source (node 2) to sensors 0 and

1 is 233 feet and 329 feet, respectively, and the distance between sensors 0 and 1 is 233 feet.

The PSD and coherence magnitude estimated from 1-second segments of data measured at

sensors 0 and 1 is shown in Figure 8c. Note that the PSDs of the sensor signals do not have

their maxima at 100 Hz due to the acoustic propagation conditions. However, the coherence

magnitude is roughly 0.8 over a 50 Hz band centered at 100 Hz.

Figure 4b shows the threshold coherence computed with (37) and (38) for the signal
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in Figure 8a that is centered at ω0/2π = 100 Hz and T = 1 sec observation time. For

bandwidth ∆ω/2π = 50 Hz, the threshold coherence in Figure 4b is approximately 0.5. The

actual coherence of 0.8 in Figure 8c significantly exceeds the threshold value, so TDE between

sensors 0 and 1 should be feasible. Figure 8d shows that the generalized cross-correlation

has its peak at zero lag, which is the correct location because the sensor data is time-aligned

before processing. This example shows the feasibility of TDE with acoustic signals measured

at widely-separated sensors, provided that the SNR, fractional bandwidth, time-bandwidth

product, and coherence meet the required thresholds.

Figure 9 contains another example from the same data set using the sensor locations in

Figure 8b and the wideband source with spectrum in Figure 8a. In this example, the source

is at node 0, and the receiving sensors are at nodes 1 and 3. Note the difference in the PSD

shapes in Figure 9a, which is similar to our observation about the PSDs in Figure 8c. The

signal coherence between nodes 1 and 3 is shown in Figure 9b, indicating high coherence

over an appreciable bandwidth. The cross-correlation is shown in Figure 9c, and the peak is

clearly evident at the correct location.

Figures 9d and 9e contain a final example using this data. The source is at node 0

and measurements are recorded at nodes 1, 2, and 3 (see Figure 8b for the node locations).

Differential time delays are estimated using the signals measured at nodes 1, 2, and 3, and the

time delays are hyperbolically triangulated to estimate the location of the source. Figure 9d

shows the hyperbolas obtained from the three differential time delay estimates, and Figure 9e

shows an expanded view near the intersection point. The triangulated location is within 1

foot of the true source location, which is at (−3, 0) feet.

We conclude this section with an example based on a different set of aeroacoustic data

that was measured in an open field. The source in this data is a heavy-tracked vehicle that

is moving at a range of approximately 140 m from a collection of H = 3 sensor arrays. The

sensor arrays are located along a straight line with labels A, B, and C. Array A is in the

center, and the distance from array B to A is 15 m, and the distance from array C to A is 8

m. The source is moving parallel to the line connecting the three arrays. Figure 10 shows the

signal coherence between pairs of arrays in (a) and the cross-correlations in (b). The PSDs

at each array are not shown in Figure 10, but they exhibit strong harmonic components.
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The coherence in Figure 10a is high over a rather large bandwidth, so the cross-correlation

functions in Figure 10b have a clear peak at the correct location.

4 Summary and Concluding Remarks

We have presented in this paper an analysis of source localization with sensors arranged in

an “array of arrays” configuration. We have paid particular attention to aeroacoustical lo-

calization of ground vehicles, where the signals measured at widely-separated sensors are not

perfectly coherent due to random propagation effects. We analyzed an algorithm that com-

bines bearing estimation from individual arrays with pairwise time delay estimation between

separate arrays. This scheme incorporates distributed processing and data compression so

that the communication bandwidth with a fusion center is reduced, with little loss in localiza-

tion accuracy versus optimal processing. We provided an analysis based on Ziv-Zakai bounds

that quantifies the requirements on signal to noise ratio, signal bandwidth, signal coherence,

and observation time so that joint (coherent) processing of widely-spaced sensor data pro-

vides improved localization accuracy. We presented computer simulations and results from

processing measured data to illustrate and support the theoretical developments.

Many array processing algorithms have considered subarray processing, such as ESPRIT

[30] and its extensions [31]-[33]. ESPRIT is not directly applicable to the model we have

studied in this paper. The standard ESPRIT algorithm assumes narrowband signals, small

displacement (< half-wavelength) between identical subarrays, and perfect signal coherence

at the subarrays. In this paper, the distinct arrays are widely separated, so the source is

near-field with respect to the overall “array of arrays.” ESPRIT has been extended to near-

field [34] and wideband [35] cases, but the partial signal coherence in our model complicates

the application of ESPRIT. We have studied subspace processing for our partial coherence

model in [27].
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Figure Captions

Figure 1: Geometry of non-moving source location and an array of arrays. A communi-

cation link is available between each array and the fusion center.

Figure 2: RMS source localization error ellipses based on the CRB for H = 3 arrays and

one narrowband source in (a)-(c) and one wideband source in (d)-(f).

Figure 3: (a) Path of ground vehicle and array locations for measured data. (b) Mean

PSD at arrays 1 and 3 estimated over the 10 second segment � in (a), where top panel

is Gs,11(f) and bottom panel is Gs,33(f). (c) Mean short-time spectral coherence γs,13(f)

between arrays 1 and 3, with Doppler compensation. (d) Mean spectral coherence for two

sensors on array 1 that are spaced by 8 feet. (e) Spectral coherence as in (c), but Doppler is

not compensated. (f) Radial velocity and Doppler scaling factor α in (24) for source in part

(a).

Figure 4: Threshold coherence versus bandwidth based on (38) for (a) ω0 = 2π50 rad/sec,

T = 2 sec and (b) ω0 = 2π100 rad/sec, T = 1 sec for SNRs Gs/Gw = 0, 10, and ∞ dB.

Figure 5: Threshold coherence value from (38) versus time-bandwidth product
(

∆ω·T
2π

)
and SNR Gs/Gw for fractional bandwidth values

(
∆ω
ω0

)
(a) 0.1, (b) 0.5, and (c) 1.0. In

(d), the high SNR curves Gs/Gw → ∞ are superimposed for several values of fractional

bandwidth.

Figure 6: Comparison of simulated RMS error for TDE with CRBs and threshold

coherence value. (a) Wideband signal with ∆f = 30 Hz centered at f0 = 100 Hz. (b)

Narrowband signal with ∆f = 2 Hz and fundamental frequency f0 = 40 Hz.

Figure 7: (a) Cross-correlation of signals at arrays 1 and 3 in Figure 3a for source during

a 2 second time segment. (b) Cross-correlation of signals at two sensors on array 1, separated

by 8 feet.

Figure 8: (a) Frequency spectrum of wideband signal. (b) Location of nodes where

transmitters and receivers are placed. (c) Power spectral density (PSD) and coherence for

29



synthetically-generated wideband source located at node 2 and measured at nodes 0 and 1.

(d) Generalized cross-correlation of 1-second segments from node 0 with a 10-second segment

from node 1. The data is time-aligned so the true peak location is zero lag.

Figure 9: (a) PSDs at nodes 1 and 3 when transmitter is at node 0. (b) Coherence between

nodes 1 and 3. (c) Generalized cross-correlation between nodes 1 and 3. (d) Intersection

of hyperbolas obtained from differential time delays estimated at nodes 1, 2, and 3. (e)

Expanded view of part (d) near the point of intersection.

Figure 10: Results for a heavy tracked vehicle moving at range 140 m from three arrays

A, B, and C. (a) Signal coherence between pairs of arrays. (b) Cross-correlations between

pairs of arrays.
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Notes on Electronic Files for Figures

In this file, each plot is imported as a separate file, and the callouts are generated within

the figure. For example, Figure 2(a) is imported from the file fig2a.eps, and Figure 2(b)

is imported from the file fig2b.eps In order to place Figure 2(a) next to Figure 2(b), an

additional file named fig2ab.ps is included that contains both figures as well as the callouts,

according to the guidelines at

www.ieee.org/organizations/pubs/transactions/eic-guide.pdf

We have included the files for the individual figures (fig2a.eps and fig2b.eps) and the

combined figures with callouts (fig2ab.ps).

The following files should be used to generate the figures according to the guidelines.

fig1.eps

fig2ab.ps, fig2cd.ps, fig2ef.ps

fig3ab.ps, fig3cd.ps, fig3ef.ps

fig4ab.ps

fig5ab.ps, fig5cd.ps

fig6ab.ps

fig7ab.ps

fig8ab.ps, fig8cd.ps

fig9ab.ps, fig9c.ps, fig9de.ps

fig10ab.ps
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Figure 1: Geometry of non-moving source location and an array of arrays. A communication
link is available between each array and the fusion center.
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Figure 3: (a) Path of ground vehicle and array locations for measured data. (b) Mean PSD at arrays 1 and
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(c), but Doppler is not compensated. (f) Radial velocity and Doppler scaling factor α in (24) for source in
part (a). 34
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signal with ∆f = 2 Hz and fundamental frequency f0 = 40 Hz.
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Figure 7: (a) Cross-correlation of signals at arrays 1 and 3 in Figure 3a for source during a
2 second time segment. (b) Cross-correlation of signals at two sensors on array 1, separated
by 8 feet.
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Figure 8: (a) Frequency spectrum of wideband signal. (b) Location of nodes where trans-
mitters and receivers are placed. (c) Power spectral density (PSD) and coherence for
synthetically-generated wideband source located at node 2 and measured at nodes 0 and
1. (d) Generalized cross-correlation of 1-second segments from node 0 with a 10-second
segment from node 1. The data is time-aligned so the true peak location is zero lag.
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Figure 9: (a) PSDs at nodes 1 and 3 when transmitter is at node 0. (b) Coherence between
nodes 1 and 3. (c) Generalized cross-correlation between nodes 1 and 3. (d) Intersection
of hyperbolas obtained from differential time delays estimated at nodes 1, 2, and 3. (e)
Expanded view of part (d) near the point of intersection.

39



0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
COHERENCE BETWEEN SENSORS A, B, C, WITH DOPPLER

FREQUENCY (Hz)

C
O

H
E

R
E

N
C

E

γAB
γ
AC

γ
BC

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000
−5

0

5

10
x 10

8

INDEX

CROSS−CORRELATION                        

X
C

or
r 

of
 X

a,
 X

b

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000
−5

0

5
x 10

8

INDEX

X
C

or
r 

of
 X

a,
 X

c

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000
−1

0

1

2
x 10

9

INDEX

X
C

or
r 

of
 X

b,
 X

c

(a) (b)

Figure 10: Results for a heavy tracked vehicle moving at range 140 m from three arrays A,
B, and C. (a) Signal coherence between pairs of arrays. (b) Cross-correlations between pairs
of arrays.

40


