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SUMMARY 
We use a numerical simulation to investigate the response of sediment-filled valleys 
to P-SV seismic excitation. The calculation is carried out using the discrete 
wavenumber-boundary integral equation method. We study in particular the case of 
explosion sources located within a basin or in its vicinity. We show that large 
amplification or defocusing effects are related to the source location and to the 
shape of the basin. In the case of complex basins made up of several sedimentary 
layers, waves propagating along the various interfaces play an important role in 
shaping the seismic response of the basin. 

Key words: boundary integral method, defocusing, diffraction, explosion, heteroge- 
neous media, wavenumber. 

1 INTRODUCTION 

The underground geological structure has a great influence on the observed seismic waveforms and can greatly affect the 
displacement amplitude as illustrated for instance by the work of Tucker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& King (1984), or by the ground motion observed 
around Mexico City during the great 1985 Michoactin earthquake. In parallel with these observations, theoretical investigations 
have shown the important effects of the geometry of sedimentary basins and valleys on seismic motion (Aki & Larner 1970; 
Sinchez-Sesma & Esquivel 1979; Bard & Bouchon 1980a, 1980b, 1985; Bard & Gariel 1986; Campillo 1987; SBnchez-Sesma, 
Chhvez-Garcia & Bravo 1988; Kawase & Aki 1989). The aim of the present study is to extend these theoretical investigations 
to the case where the seismic excitation is a P-SV source, such as an explosion, and where the geological structure includes 
several irregular layers. We use the discrete wavenumber-boundary integral equation method previously described in an SH 
formulation (Bouchon, Campillo & Gaffet 1989). Following the study made on the topographic effects at short distances 
(Gaffet & Bouchon 1989) we investigate the effects of the source location and of the basin interface shape on the displacement 
field recorded by surface receivers at short distances from the source. The modifications induced on the diffracted field by the 
strong attenuation included in real structures are not studied. The investigations are only made for perfectly elastic media to 
give a good description of both the phase amplifications and the phase generations directly related to the heterogeneities. 

2 DESCRIPTION OF THE METHOD 

The method is described in the case of a semi-infinite space underlying a valley made up of a stack of laterally varying layers 
and bounded by a flat free surface (Fig. 1). The displacement field is computed frequency by frequency from the displacement 
potentials given by Lamb (1904) for horizontal and vertical forces acting at a point (x,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzp)  of an infinite homogeneous elastic 
space. These compressional and shear potentials are written in a half-space formulation to directly cancel the tractions at the 
free surface. Following the approach developed by Bouchon & Aki (1977), we introduce a horizontal spatial periodicity X ,  of 
the application point of force. This spatial periodicity induces a wavenumber space sampling with a step Ak = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2x/X,. Two 
distributions of couples of horizontal and vertical forces located on the upper {i.e. [QEYexp  (iwt); Q;Yarexp (iwt)]}  and 
lower {i.e. exp (iwt); QiT exp (irot)]} sides of each interface I are used to represent the upward and downward elastic 
diffracted fields. These couples are regularly spaced at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAx sampling interval along the interfaces 1 (I = 1, . . . , L). This sampling 
leads to a periodic wavenumber space restricting the wavenumber range to [ - x / A x ;  +n/Ax]. The representation of the 
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342 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGaffet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand M .  Bouchon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 I=1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1=2 1=3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I=L-I I=L 1  axis 

Free surface 

,/' 

1 I=1 1=2 1=3 I I=L-I I=L 1  axis 
Free surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Z axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1. Medium geometry and description of the different notations. The medium is described by I = 1, . . . , L interfaces defining 
rn = 1, . . . , L + 1 layers. The interface sampling step is Ax along the x axis. The periodicity of the medium is X ,  (see text for explanations). 

diffracted field can be made as precise as desired when reducing Ax. The amplitudes Q::"', QiY"', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQEY, and QZT are 
determined to ensure the continuity of the displacement-traction field across the interfaces. 

Using the formulation given by Gaffet & Bouchon (1989), the compressional and shear displacement potentials for a 
distribution of P, horizontal forces regularly spaced along an interface I in a periodic elastic homogeneous half-space are given 

by 

_ .  ~. 
vtl: 'pace = F C Q;, C (-sign ( z  - z p ~ ~ n p l  + R,,u,,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 R,,W,,~~) H , , ~ ~ .  

p,=l n = - M  "n 

Similarly we obtain for a distribution of Pr vertical forces 

with 

F = 1/2X,wzp, E n p i =  ~ X P  (-ivn 12 - zP,l), 

Tnpl= exp[-iv,(z - zpl)l, 

Grip, = exp (-iyn Iz - zPlI), 

H,,, = exp [-ik,(x - x p J ] ,  unpi = ~ X P  [-iYn(z - zpJ1,  (5 )  

Vnp,=exp(-iv,z -iy,,zp,), Wnp,=exp(-iynz - v,zpJ, 

where M = n / ( A k  Ax) ,  k ,  = 2 n n / X L ,  v', = w 2 / g  - k:, y; = w2/P2 - k:, 9m(vn)  5 0 and 9m(yn) 5 0. w denotes the angular 
frequency, (Y and B are the compressional and the shear wave velocities, and p is the density. R,,, R,, R,,, and R,, are the 
reflection coefficients of the potentials at the free surface and are dependent upon k,, v,, and y,. The horizontal and vertical 
displacements in a 2-D Cartesian space are obtained using Helmholtz' formulae: 

(6) 
a(@h + @v) + a(l#h + v v )  

ax dz at 3.X 7 w(x,  z ) =  
a(@h + @v) - a ( v h  + q v )  u(x,  2) = 

The stress tensor components are obtained using Hooke's law. Defining the terms 

a z  = (A + 2p)k: + Av:, a: = 2pknv,, b:x = 2pknyn, b? = p(k:  - y:), 
(7) 

C,,, = 2 cos [k,(x - x~,)], SnP, = -2' 1 . [kn (x - xp$] > 

we obtain the displacements and tractions for each point (x ,  z )  of the space for (i) a distribution of P, horizontal forces 
regularly spaced along an interface I: 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Source location and valley shape effects on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-SV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA343 

(9) 

(10) 

(11) 

(12) 

and (ii) for a distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl vertical forces 

where 

The forces applied on the upper and lower sides of an interface must ensure the continuity of the displacement-traction 
field across this interface. We define a displacement-traction vector $7' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[U:?); T$)(ni")) IT, where 

U$) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[U(=")(XI, ,  z,,), . . . , u, (m ) (XS, 24)' u!m)(xll, ZlJ, . . . , u!m)(x4, zq)l 

is the displacement vector and where u~")(xPl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzpJ and u!"')(xpr, z,,) are the horizontal and vertical components of the 
displacement in medium m at each sampling point (xPr, zpr) of the interface 1 and produced by a source s located in medium m. 

is the traction vector for which each component is defined as the product of the stress tensor u induced by a source s acting in 
medium m by the unit vector nj") normal to the interface 1 and pointing outward relatively to medium m at the point (xpr,  zpJ, 
i.e. 
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344 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGaffet and M .  Bouchon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Assuming the existence of one or more source(s) in each medium, we have to solve the following linear matrix system: 

where Sg'  is the displacement-traction vector acting on the sampling points of the interface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 in medium m and due to the 
source located in medium m. A$?h QYfper is the displacement-traction vector acting on the sampling points of the interface 12 
in medium m and due to the force distribution Qupper applied on the upper side of interface 11. A,'T'2QEwer is the 
displacement-traction vector acting on the sampling points of interface 12 in the medium m and due to the force distribution 
Qiower applied on the lower side of interface fl. 

are deduced from equations (8) to (12), and (14) to (19). To solve this system leads us 
to determine the vectors QI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (QYpFr; a:""") which contain the unknown forces applied on the upper or lower sides of the 
interfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 1, . . . , L. The general solution is given by the following recurrent algorithm: 

The coefficients of the matrix 

where bl is a 4P, x 2Pl+1 matrix and bpwer represents the 2P1+, x 2P1+1 square matrix extracted from the lower part of bl. pI is 
the number of sampling points of the interface I (Fig. 1). The algorithm has been here described in the tutorial case of 
non-intersecting layers. The method is however not restricted to this case and can be developed for more general 
configurations (e.g. for intersecting or non-intersecting layers as well as for cross bed or horizontal irregular stratum). 

The use of (21) requires to formulate the terms SZj for different kinds of source (e.g. explosion or double couple 
sources). We give here the expressions of the compressional and of the shear displacement potentials for an explosion which 
occurred at a point (xm,  z,) of the half-space. The explosive source is made up of two force dipoles orthogonal to each other. 
That is to say the potentials of this source derive from the potentials given by Lamb (1904) for horizontal and vertical forces. 
Thus 

where k ,  = w / a  and where Neon, is the summation limit that ensures the convergence of the series at the observation point 
(x, 2) .  Similarly the displacement potentials for a double couple source in the reference axes given in Fig. 1 are 

with d, = -sin (26) and d, = -cos (26) and where 8 is the counterclockwise angle between the horizontal axis and the double 
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Source location and valley shape eflects on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-SV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA345 

Medium 

1 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

couple orientation; we then obtain 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP V a 
( k m / s )  (km/s l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(g/cm31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.000 1.100 2.200 0.28 

5.000 2.800 2.800 0.27 

3 APPLICATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 Tests of the method 

The displacement fields computed in the case of plane P- and SV-waves vertically incident upon the valley depicted in Fig. 2 
are displayed in a contour map form Figs 3 and 4. In order to check the method we use it in the medium configuration given 

O f f s e t 0  - - - - - - - - - - - - - - - - 1 2 h  

I v 1 .0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

0.5 km 

0 

Source: Incident  p l a n e  wave 

Figure 2. Medium geometry for the first computation and location of the receiver array from offset 0 to offset 12 km. The medium is made up 
of a thin and flat sedimentary valley whose elastic parameters are summarized in the table. Medium 1 corresponds to the valley, and medium 2 
to the underlying bedrock. The sources considered are vertically incident plane P- and SV-waves. a, /3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, and Y correspond respectively to the 
P- and S-wave velocities, to the density and to the Poisson's ratio of each medium. 

N o r m a l  i n c i d e n t  p l a n e  P - w a v e  -- T y p e  II  v a l l e y  - _ _  

10 

5 

0 
5 10 km 

H o r i z o n t a l  c o m p o n e n ;  

10 

5 

0 I I I I I ,  , J  - _ _ _  

5 1 0  km 
Ver t i ca l  c o m p o n e n  t 

Fmre 3. Contour map representations for the horizontal (left-hand) and the vertical (right-hand) components of the displacement field 
recorded by the surface receivers depicted in Fig. 2. The source is a vertically incident plane P-wave having a Ricker time dependence in 
displacement with a characteristic period of 1.16 s. 
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346 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGaffet and M .  Bouchon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N o r m a l  incident plane SV-wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- Type I I  valley - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

0 
5 10 km 

Horizontal cornponen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. Same as Fig. 3 for a vertically incident plane SV-wave. 

10 

5 

5 10 km 

Vertical component 

Fig. 2 that corresponds to the low velocity contrast valley type I1 considered by Bard & Bouchon (1980b). In both Figs 3 and 4 
the left- and the right-hand sides show respectively the horizontal and the vertical components of the ground motion. The time 
window associated with the vertical axis is 15 s long and the station offsets are presented on the horizontal axis in kilometre 
units. The source time function is a Ricker wavelet having a characteristic period of 1.16s. (i) In the case of the vertically 
incident plane P-wave (Fig. 3) we observe besides the direct arrival two surface wavetrains with a 1.2Hz almost stationary 
frequency. The maximum amplitude of these waves travels across the basin with a phase velocity of 1.15 km s-*. These waves 
have been generated at each edge of the valley and correspond to the fundamental mode of the Rayleigh wave (see the phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a1 

$1 

. . .  . .  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  . . . .  . .  . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  

. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . . . . . . . . . . . .  . . . . . . . . . . . .  
. .  

. .  . .  
. .  . . . .  

0.5 1.0 1.5 

Frcquencg Wzl 
Figure 5. Phase and group velocities (the thick bold lines, c, and the thin broken ones, u respectively) versus frequency diagram computed for 
a medium equivalent to the medium given in Fig. 2 and made up of a layer having a thickness of 0.5 km overlying a half-space. The elastic 
characteristics of the layer and of the half-space are the same as those described in Fig. 2. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
6
/2

/3
4
1
/6

9
0
1
6
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Source location and valley shape effects on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-SV 347 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAna zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1.0  Km 

1 
0.5 Km 

-1 Source: Incident plane wave 

6.062 3.500 3.300 0.25 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Medium geometry and location of the 16 receivers. The medium is made up of a sediment-filled valley whose elastic parameters are 
summarized in the table. The notations are the same as in Fig. 2. 

Time window: 23.50 s e c .  - Source frequency: 0 . 7 0  Hz 

0 . 2 9  

0.21 - 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

11 

12 

13 

1 4  

15 

16 

Total Displacement Field 

Figure 7. Representation of the horizontal H and vertical Z displacement components recorded at the 16 receivers displayed in Fig. 6. The 
time duration is 23.5 s long and the Ricker frequency equals 0.7 Hz. See explanation in the text concerning the notation 11, 12, R1, and W .  
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348 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGaffet and M .  Bouchon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and group velocities versus frequency diagram given Fig. 5). This mode prevails in the diffracted field but the first higher mode 
of the Rayleigh wave slightly appears in the earlier part of the horizontal component. This phase has been emphasized by the 
R1 mark drawn on the horizontal map (Fig. 3). (ii) The diffracted field obtained in the case of the vertically incident plane 
SV-wave (Fig. 4) is more complex. This can be explained by the greater excitation of the first higher mode of the Rayleigh 
wave for an incident SV-plane wave. This mode propagates with a 1.9 km s-' phase velocity at a 1.4 Hz frequency. This mode 
which is well observed on the horizontal displacement component (i.e. the phase marked Rl ) ,  is reflected at the edges of the 
basin (1.e. see the mark Rl).  The amplitude of this horizontally polarized mode is now comparable to the amplitude of the 
fundamental mode that continues to prevail on the vertical component. 

We now check the method with a configuration that illustrates the completeness of the computed diffracted displacement 
field. The medium corresponds to the high velocity contrast valley type I (Fig. 6) defined by Bard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bouchon (1980b). The 
seismograms are computed over a time window of 23.5 s at 16 receivers with a Ricker source time dependence having a 0.7 Hz 
central frequency. The elastic parameters of the model are recalled in Fig. 6. The source is a vertically incident plane P-wave. 
The seismograms are presented in Fig. 7. Besides the direct P arrival one can see two different types of propagating waves 
emphasized by the thin broken line signed P,,, and by the thick bold broken lines denoted R1 and R2. The Psurf marked phase 
propagates with the basin P-wave velocity. It has a prevailing horizontal component and corresponds to the surface P-wave 
described by Lapwood (1949) and Bouchon (1978). This phase generated at the edge of the basin has an amplitude equal to 
two thirds of the amplitude of the phases R1. The phases R1 travelling across the basin with a 0.65 km s-' phase velocity have 
a predominant vertical motion and correspond to two Rayleigh waves symetrically generated at the two edges of the basin. 
These two surface waves interfere at the centre of the basin resulting in a strong increase of the Rayleigh pulse at the receiver 1 
(see the mark I1 Fig. 7). Each Rayleigh phase (i.e. R1) is reflected at each edge and backpropagates across the valley (see the 
mark R2 Fig. 7), generating a new interference at the receiver 1 (see the mark I2 Fig. 7). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 . 0 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.600 1 .790  0.30 

4 .570  2.640 2.500 0.25 

3.2 Effect of source location within the basin 

The medium considered here corresponds to the profile across the central region of Yucca Flat valley, Nevada, given by 
Ferguson (1988). The basin interface used is an idealized interpolation of the interface between the Tertiary volcanic rocks and 
the Palaeozoic basement. The basin is assumed to be filled only with Tertiary volcanic saturated materials. Neither the water 
table nor the alluvium layer are taken into account in the model in order to focus the attention on the influence of the source 
location within the basin on the displacement field at short distances. The medium geometry and the elastic parameters are 
those given by Ferguson (1988) and are depicted in Fig. 8. The four maximum slope angles observed from the left-hand side to 
the right-hand side of the basin interface are 21", 9", 6", and 40". Four explosions of same energy and buried at 600 m depth 
(i.e. A, B, C, and D) are used for this study. The computed seismograms are displayed in Figs 9(a), (b), (c) and (d). The time 
window is 15 s long and the source time function in displacement is a Ricker pulse having a 0.75 Hz central frequency. T h e  
seismogram displays have been normalized for each receiver. The absolute amplitude scales are given at the left of each 
receiver for all detonations to allow us to directly compare all the seismogram amplitudes. The receiver spacings are 
reproduced to clearly show the existing phases. 

The large maximum amplitude variations observed between the different configurations [i.e. the factor 1.78 observed at 
receiver h Fig. 9(c)] is correlated to the vicinity of the basement straight below explosion C. For this explosion, the absolute 
amplitudes of the field diffracted inside and in the right side of the basin are greater than in the case of the three other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d b c d e f  g h i j  k 1 
V V v v v v  v v v v  V V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
0 . 5  km 

Figure 8. Medium geometry and location of the 12 receivers and of the four detonations considered for the calculation. 
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A B C D 
Figure 9. Representation of the horizontal H and vertical Z components of the seismograms computed at the 12 surface receivers for the 
explosions A, B, C, and D detonated in the medium defined in Fig. 8. The time window lasts for 15 s, the central Ricker source frequency is 
0.75 Hz. The relative amplitudes are used to draw the seismograms and the amplitudes written at the left of the traces are the absolute ones for 
the four explosions studies. (a), (b), (c), and (d) correspond respectively to the A, B, C, and D detonations depicted in Fig. 8. 

explosions. However, the relative amplitudes observed inside the basin for the explosion C are close to the ones observed for 
the other detonations. These two observations imply a loss of energy under the explosion C. Thus, the diffracted field 
magnified by the vicinity of the interface appears to be defocused by this interface. The observed defocusing attenuation effect 
can be explained as well by the vicinity and by the convex shape of this interface. 

The fields that propagate inside the basin for explosions C and D are mainly composed of well-formed Rayleigh wavetrains 
[see receivers f, e ,  d, and c, Figs 9(c) and (d)]. These wavetrains are clearly magnified in the left-hand side ascent region of the 
basin. This region also enhances the later arrivals, inducing a lengthening and a slight dispersion of the Rayleigh wavetrain. 
These effects cannot be as well observed for the explosions A and B as the wavetrains are not sufficiently well formed before 
arriving in this area. The amplitude of the displacement fields emitted in the left-hand side of the basin by all the explosions are 
comparable (see receivers a and b Fig. 9). But in the right-hand side of the basin (i.e. for the receivers k and 1) the 
displacement field amplitude for explosion C (Fig. 9c) is 2 times the displacement for explosion A and B, and 30 per cent 
higher than that of explosion D. We finally notice for all explosions the lengthening of the emitted surface waves after a long 
travel in the basin (e.g. at receivers k and I explosion A, and at receivers a and b for explosions C and D). 

3.3 Diffracted field by a multilayered basin 

The aim is here to study a way of coda wave generation in a two-layer basin. The model is described in Fig. 10. Thirty-four 
receivers are regularly distributed at the surface with an interstation spacing of 0.33 km. Four explosions (A, B, C, and D) are 
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Source: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExplosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. Multilayered medium geometry and location of the 34 receivers. The four explosions considered are denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, B, C, and D in 
the first, second and third layers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
detonated in the left region of the three media at 50, 400, 625, and 1000 m depth respectively. The corresponding displacement 
fields generated are displayed in Figs l l (a), (b), (c), and (d). The displacements are given at 1 Hz and 1.8Hz, which 
correspond to the S- and to the P-wave resonant frequencies, and at 3.8Hz which is close to 2 times the P- and 4 times the 
S-wave resonant frequencies of medium 1. The horizontal axes show the 5 s duration time window and the vertical axes the 
offsets of the receivers from the source location. Non-causal signals are apparent before the first arrival [e.g. see the vertical 
component at 3.8Hz Figs l l (a)  and (b)]. They illustrate the aliasing effects related to an over-reduction of the spatial 
periodicity X ,  (see Section 2). 

Different diffracted fields appear with the varying depths of burial. In the case of the explosion C (Fig. l lc )  the 
corresponding phases are well separated, therefore we use this case to describe the notations. Different phases are labelled. (i) 
The first observable arrival (i.e. following the non-visible direct P-wave) corresponds to the surface P-wave, Psurfr which 
propagates outside of the basin as described by Lapwood (1949), and Bouchon (1978). This phase, observed on the horizontal 
component at all frequencies for negative offsets and at high frequencies for positive ones, has been diffracted by the edges of 
the basin. Following the P,,,,-wave (ii) a surface wave, R,,  is observed. This phase corresponds to the Rayleigh wavetrain that 
travelled across the basin before being emitted outside of the basin. This surface wave can be observed for both positive and 
negative offsets. (iii) Then two phases, R, and R,, well observed at 1.8 Hz, arrive after a 1 s duration gap of ground motion. 
Because these phases do not continue inside and only appear at the edge of the basin, they can be interpreted as Rayleigh 
waves which may result from two successive interface P-waves that have backpropagated along the two interfaces from the 
right edge to the left side of the basin. The first one (i.e. R2)  has propagated along the second interface with the P-wave 
velocity of the third medium and arrives half a second before the phase R ,  which has propagated along the first interface with 
the P-wave velocity of the second medium. 

For the explosion A buried at 50 m depth the surface P-wave and the first Rayleigh wave are the main phases appearing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat 
all frequencies. The phase R,, corresponds to the previously described phases R, and R,. The prominant phase inside the 
basin is a Rayleigh wave, whatever the frequency is. On the contrary in the case of explosion B buried at 400m depth (Fig. 
l lb )  the Rayleigh wave is replaced by a head P-wave, Phead, for the frequency 3.8 Hz. In this case the phases R2 and R, are 
well separated. We also notice at 3.8Hz that the phase R, observed for positive offsets results from a Rayleigh wave for 
explosion A while it results from a head P-wave for explosion B. 

In the case of explosion C (Fig. l l c )  detonated in the second medium the direct P-wave, P ,  is the main phase present 
inside the basin at 1.8 and 3.8 Hz while the Rayleigh wave stays predominant at 1 Hz. Besides the R ,  branch observed at all 
frequencies, a Psud branch is also diffracted for positive offsets. At 3.8 Hz the phase R ,  remains the major phase observed for 
negative offsets. This last observation can also be made in the case of explosion D (Fig. l ld) .  In this last case, the fields 
observed are essentially made of the direct P-wave, P ,  and of the Rayleigh wave R,. 

4 CONCLUSIONS 

We have described the discrete wavenumber-boundary integral equation method in the case of a medium made up of a 
half-space underlying a stack of irregularly bedded deposit layers. The method used to determine the force distribution has 
been detailed in the case of seismic sources located anywhere in the medium. The source site influence on the displacement 
field has been analysed for local distances. This study has given prominence to the defocusing effect that can be observed for 
certain source location versus medium geometry configurations. We also have shown the importance of the waves propagating 
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along the various interfaces. These waves cross the basin along its basement and reappear at its edges where they are diffracted 
as Rayleigh surface waves. 
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