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ABSTRACT

The recently developed i-vector framework for speaker recogni-
tion has set a new performance standard in the research field. An
i-vector is a compact representation of a speaker utterance extracted
from a low-dimensional total variability subspace. Prior to classi-
fication using a cosine kernel, i-vectors are projected into an LDA
space in order to reduce inter-session variability and enhance speaker
discrimination. The accurate estimation of this LDA space from
a training dataset is crucial to classification performance. A typi-
cal training dataset, however, does not consist of utterances acquired
from all sources of interest (ie., telephone, microphone and interview
speech sources) for each speaker. This has the effect of introduc-
ing source-related variation in the between-speaker covariance ma-
trix and results in an incomplete representation of the within-speaker
scatter matrix used for LDA.

Proposed is a novel source-normalised-and-weighted LDA algo-
rithm developed to improve the robustness of i-vector-based speaker
recognition under both mis-matched evaluation conditions and con-
ditions for which insufficient speech resources are available for ade-
quate system development. Evaluated on the recent NIST 2008 and
2010 Speaker Recognition Evaluations (SRE), the proposed tech-
nique demonstrated improvements of up to 31% in minimum DCF
and EER under mis-matched and sparsely-resourced conditions.

Index Terms— speaker recognition, linear discriminant analy-
sis, i-vector, total variability, source variability

1. INTRODUCTION

A speaker recognition framework based on i-vectors was recently
developed by Dehak et al. [1, 2] offering superior recognition to the
widely adopted joint factor analysis (JFA) approach [3]. This frame-
work involves extracting i-vectors from a low-dimensional total vari-
ability subspace, enhancing discrimination using linear discriminant
analysis (LDA) and within-class covariance normalisation (WCCN),
and performing classification using a cosine kernel. While the total
variability subspace is responsible for containing between-utterance
variability in the i-vectors, it is ultimately the role of LDA to define
the space in which speakers are discriminated from one another.

In the context of the i-vector framework, LDA attempts to find a
reduced set of axes onto which i-vectors can be projected such that
the within-speaker variability is minimised and the between-speaker
variability is maximised. Within-speaker variability occurs due to
the different transmission channels, microphones, acoustic environ-
ments, speaking styles, methods of speech acquisition, etc., that con-
tribute the differences observed between utterances from the same
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speaker [4]. In contrast, between-speaker variation is due to the dif-
ferences between true speaker characteristics and is the key variation
to be maximised in the LDA process. LDA, therefore, relies on the
accurate calculation of the scatter matrices in order to determine a
set of axes optimised for speaker discrimination.

Speaker recognition using conversational telephony speech has
long been the focus in the research field, resulting in an abundance
of data available for system development and tuning. It is only in re-
cent years that the NIST speaker recognition evaluations (SRE) [5, 6]
have incorporated microphone and interview-sourced speech, both
of which have limited resources available for system development.
Consequently, robust speaker recognition is challenging when non-
telephone speech is encountered during system evaluation, partic-
ularly in the case of mis-matched trials (ie., train on microphone
speech and test on interview speech) [7, 3].

Insufficient speech resources directly reduces the effectiveness
of LDA due to the inaccurate estimation of the scatter matrices from
the training data. As detailed in this work, a typical training dataset,
in which a speaker has only utterances available from a limited num-
ber of different sources, results in an incomplete representation of the
within-speaker variability and a between-speaker scatter that is ad-
versely influenced by source-related variation. Unless sufficient data
representing this variability is available for LDA, the scatter matrices
will not be optimal for task of speaker discrimination.

This paper presents a novel algorithm to robustly estimate the
LDA scatter matrices from a training dataset in which few or
no multi-source utterances are available per speaker, but multiple
sources are available through different speaker collections. Tele-
phone, microphone and interview-style speech sources are consid-
ered. A source-normalised-and-weighted (SNAW) average is used
to estimate the between-speaker scatter, thereby, reducing the ad-
verse bias of variation attributed to the speech source. The within-
speaker scatter is given by residual of the total variability in the i-
vector space. This has the effect of emphasising variation due to dif-
ferent speech sources in the within-speaker scatter and alleviates the
need to gather a speakers’ utterances from multiple speech sources.
The proposed approach is validated on the recent NIST 2008 and
2010 SRE’s.

This paper is structured as follows. Section 2 describes the i-
vector framework for speaker recognition. Section 3 details the stan-
dard LDA algorithm and is followed by the proposal of SNAW-LDA
in Section 4. The experimental protocol and corresponding results
are given in Sections 5 and Section 6.

2. THE I-VECTOR FRAMEWORK FOR SPEAKER
RECOGNITION

This section describes the stages involved in the i-vector framework
developed by Dehak et al. [2]. Given the centralised Baum-Welch
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statistics from all available speech utterances [3], these stages in-
clude total variability subspace training, LDA, WCCN and classifi-
cation using a cosine kernel function.

2.1. The Total Variability Subspace

The total variability subspace training regime assumes that an ut-
terance can be represented by the Gaussian mixture model (GMM)
mean supervector,

M = m+ Tw, (1)

where M consists of a speaker- and session-independent mean su-
pervector m from the universal background model (UBM) and a
mean offset Tw. The supervector M is assumed to be normally
distributed with mean m and covariance TT t, where T is the low-
rank, total variability subspace. This subspace is trained via factor
analysis over a set of centralised Baum-Welch statistics [3] and rep-
resents the space in which the majority of between-utterance vari-
ability is observed. The low-rank vector w has a standard normal
distribution N(0, 1) and is referred to as the i-vector. Extracting an
i-vector from the total variability subspace is essentially a maximum
a-posteriori adaptation of w in the space defined by T . An efficient
procedure for the optimisation of the total variability subspace T and
subsequent extraction of i-vectors is described by [3] and [2].

2.2. Inter-session Compensation

The subspace from which i-vectors are extracted bounds both
speaker-intrinsic or speaker-extrinsic. Consequently, i-vectors in
their raw form are not optimised for speaker discrimination and are,
therefore, subject to inter-session variability compensation prior to
classification. Two techniques are utilised for this purpose in the
i-vector framework: LDA and WCCN.

LDA aims to find a reduced set of axes A that minimises the
within-speaker variability observed in the i-vector space while si-
multaneously maximising the between-speaker variability. This pro-
cess is covered in detail in Section 3 with a novel source-normalised-
and-weighted (SNAW) LDA algorithm proposed in Section 4.

The secondary stage, within-class covariance normalisation
(WCCN) [4], normalises the residual within-speaker variance re-
maining in LDA-reduced i-vectors. The WCCN matrix B is found
through the Cholesky decomposition of W−1 = BBt where the
within-class covariance matrix is calculated as,

W =
1

S

S∑

s=1

Ns∑

i=1

(Atws
i − μ̂s)(A

tws
i − μ̂s)

t, (2)

where S is the number of speakers that each provide Ns i-vectors
in the training dataset, and the mean of the LDA-reduced i-vectors
from speaker s is equated as μ̂s = 1

Ns

∑Ns
i=1 A

tws
i .

2.3. Cosine Distance Scoring

The cosine distance score for a trial between a set of i-vectors w1

and w2 is given by the dot product 〈ŵ1 · ŵ2〉 between the inter-
session-compensated and normalised vectors,

ŵi =
BtAtwi

‖BtAtwi‖ . (3)

In this work, normalisation of the cosine kernel is performed
using the approach described by [8] in which the cosine kernel is
normalised with respect to the impostor score space using,

score(ŵ1, ŵ2) =
(ŵ1 −wimp)

t(ŵ2 −wimp)

‖Cimpŵ1‖‖Cimpŵ2‖ . (4)

Fig. 1. An example of vectors used to calculate within- and between-
speaker covariance matrices from a typical training dataset.

Here, a set of impostor i-vectors are subjected to (3) and used to
estimate an impostor mean wimp in the cosine kernel space and a
diagonal covariance matrix Σimp = (Cimp)

2.

3. LINEAR DISCRIMINANT ANALYSIS

In the context of the i-vector framework, LDA serves the purpose
of enhancing discrimination between i-vectors corresponding to dif-
ferent speakers. LDA minimises the within-speaker variability ob-
served in a training dataset while maximising the between-speaker
variability through the eigenvalue decomposition of SBv = λSWv,
where the between-speaker and within-speaker covariance matrices,
SB and SW respectively, are calculated as,

SB =
S∑

s=1

Ns(μs − μ)(μs − μ)t (5)

SW =
S∑

s=1

Ns∑

i=1

(ws
i − μs)(w

s
i − μs)

t. (6)

The i-vector mean μ is a null vector when using the same training
dataset for the total variability subspace and the LDA matrix (as is
done in this work) due to the factor analysis assumption of normally
distributed and zero-mean factors [2, 7].

3.1. Discussion

The effectiveness of LDA relies on the correct calculation of scat-
ter matrices SB and SW . The current algorithm for calculating the
scatter matrices, however, neglects two major issues with regards
to speaker recognition: the common use of an insufficient train-
ing dataset to completely define the within-speaker variability and
the influence of source-related variation on the observed between-
speaker scatter. Figure 1 depicts a graphical interpretation of these
phenomena using four different speakers (defined by unique shapes)
who each provide several utterances in the training dataset (depicted
as repetitions of the speakers’ shape). The three speech sources of
interest are depicted with respect to the sample mean μ.

The arrows in Figure 1(a) indicate the vectors used to calcu-
late within-speaker scatter in this example. It can be observed that
the lack of multi-source i-vectors from each speaker in the dataset
results in a limited representation of source variation in the within-
speaker scatter matrix. This desired variation is instead represented
in the between-speaker scatter as shown in Figure 1(b). Although
this diagram emphasises the difference between speech sources in
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the i-vector space, it illustrates that speech acquisition methods have
the potential to influence the observable between-speaker variation.

One approach to addressing the above issues is through the se-
lection of a training dataset in which each speaker provides at least
one sample from each source of interest. In practice, however, such
a dataset is difficult to acquire. Proposed in the following section is
a novel algorithm to counteract the aforementioned shortcomings of
the current LDA approach for the purpose of speaker discrimination.

4. SOURCE-NORMALISED-AND-WEIGHTED LINEAR
DISCRIMINANT ANALYSIS

Proposed is an approach that addresses the issues highlighted in the
previous section regarding the sub-optimal estimation of LDA scat-
ter matrices from insufficient resources in the i-vector framework.

As discussed in Section 3.1, the between-speaker scatter calcu-
lated using the standard LDA approach can be influenced by source
variation. This influence can be reduced by estimating the between-
speaker scatter using source-normalised vectors that are calculated
with respect to their corresponding source mean. This normalisation
process is depicted in Figure 1(c) such that the vectors used to calcu-
late the scatter are considerably less affected by source variation than
in Figure 1(b). The source-normalised SB can then be composed of
the source-dependent between-speaker scatter matrices such that

SB =
∑

Ssrc
B (7)

Ssrc
B =

Ssrc∑

s=1

Ns(μs − μsrc)(μs − μsrc)
t, (8)

where μsrc = 1
Nsrc

∑Nsrc
n=1 wsrc

n and Nsrc designates the number of
speech samples taken from source src. It can be noted that in this
approach, a speakers’ utterances acquired from different sources are
assumed to belong to disjoint speakers.

Based on the assumption that SB no longer captures the within-
speaker variability due to different methods of speech acquisition,
the residual variability in the i-vector space should, therefore, com-
prise the within-speaker scatter. Specifically, the total variance in
the training i-vectors is given by ST =

∑N
n=1 wnw

t
n (the i-vector

mean is not required since the source-independent i-vector mean is a
null vector) and is composed such that ST = SW + SB . Thus, the
within-speaker scatter is given by,

SW = ST − SB . (9)

The advantage to this approach is that the scatter is no longer de-
pendent on the availability of multi-source utterances per speaker as
is the case when calculated via (6). The use of SW and SB from
equations (9) and (7) in the LDA optimisation will be referred to as
source-normalised LDA (SN-LDA) for the remainder of this study.

Extending on (7), a weighting scheme can be introduced to
bias the between-speaker scatter toward the most reliably estimated
source-normalised covariance matrix Ssrc

B . Motivation here comes
from the inherently better representation of between-speaker scat-
ter expected when it is calculated from a larger collection of i-
vectors. The source-normalised-and-weighted (SNAW) between-
speaker scatter matrix for use in LDA is calculated as,

SB =
∑ Nsrc

N
Ssrc

B . (10)

For the remainder of this study, SNAW-LDA will denote the use of
SW and SB from equations (9) and (10) in the LDA optimisation.

A fully-weighted LDA algorithm was recently presented in [7]
in which the authors calculated SB and SW as an empirically
weighted average of within- and between-speaker scatter matrices

individually estimated from telephone and microphone speech. The
SNAW approach proposed in this section differs in several aspects.
Most significantly is that SW is not calculated explicitly via (6) nor
is it composed of weighted within-speaker scatter matrices. Further,
the microphone and telephone between-speaker covariance matri-
ces in [7] were calculated under the assumption of a null i-vector
mean thus potentially capturing source variation. The proposed ap-
proach weights the between-speaker scatters as the proportion of i-
vectors from which they were calculated rather than empirically as-
signing weights. Section 6 compares the performance offered by
fully-weighted LDA to that of the proposed SN- and SNAW-LDA.

5. EXPERIMENTAL PROTOCOL

The proposed approaches were evaluated on the recent NIST 2008
and 2010 SRE corpora. Results are reported for four evaluation con-
ditions on each corpora with particular focus on mis-matched trials.
The SRE’10 conditions correspond to det conditions 2-5 in the eval-
uation plan [6], and include int-int, int-mic, int-tel, and tel-tel trials.
Performance was evaluated using the equal error rate (EER) and a
normalised minimum decision cost function (DCF) calculated using
CM = 1, CFA = 1 and PT = 0.001 for SRE’10 results. The
extended evaluation protocol was used in which the number of tri-
als ranged from 416119 (tel-tel) to more than 2.8 million (int-int)
with 0.5-1.7% target trials. For SRE’08, det conditions 3-5 and 7 [5]
were evaluated corresponding to int-int, int-tel, tel-int, and tel-tel
(English-only) trials. The DCF was calculated using CM = 10 and
PT = 0.01 for SRE’08 results.

Fully-weighted LDA was implemented as in [7] such that SB

and SW were normalised by the number of training utterances rather
than using (5) and (6) in this work. This aided performance in the
under-resourced same-source conditions for which it was developed.
The empirically determined weights for fully-weighted LDA were
[Ptel, Pmic, Pint] = [0.1, 0.45, 0.45]. In all approaches, the number
of LDA dimensions retained was evaluated in steps of 50 in order
to minimise the average of (DCF + 10× EER) across the evaluated
conditions of SRE’10 and (DCF + EER) for SRE’08.

Speech activity detection (SAD) was implemented using a 2-
component GMM trained on the log-energy of a given speech file.
Samples of low energy were iteratively removed from the speech
signal and the GMM re-trained until the standard deviation of the
speech Gaussian was less than five times that of the non-speech
Gaussian. A speech threshold was then defined based on the speech
Gaussian parameters. Dual-SAD was used for SRE’10 interview
segments such that an interviewee speech frame was retained if it’s
normalised energy was at least 5dB greater than the corresponding
interviewer frame. The NIST supplied SAD files were utilised as a
pre-processing step for SRE’08 interview segments.

Gender-dependent UBMs consisting of 512-components were
trained on 60-dimensional, feature-warped MFCCs (including deltas
and double-deltas) extracted from the NIST 2004, 2005, and 2006
SRE corpora and LDC releases of Fisher English, Switchboard II:
phase 3 and Switchboard Cellular (parts 1 and 2). A single, gender-
dependent dataset was used as total variability subspace, LDA and
WCCN training data and for cosine kernel normalisation. This was
sourced from the aforementioned corpora along with additional in-
terview data. Interview data was taken from the NIST 2008 SRE
follow-up corpus for use in SRE’10 evaluations and from a subset of
the 3-minute interview segments of the NIST 2010 SRE corpus for
SRE’08 evaluations. The segment counts Ntel, Nmic and Nint were
on average 15770, 2665, and 1784, respectively. Segments from
each source were implicitly assumed to belong to different speakers.
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Optimised int-int int-tel tel-int tel-tel
LDA Algorithm LDA Dim. DCF EER DCF EER DCF EER DCF EER

Standard LDA 200 .0159 4.06% .0308 6.02% .0252 5.12% .0227 4.23%
Fully-Weighted LDA 200 .0149 3.88% .0318 6.38% .0244 5.59% .0255 4.72%
Source-Normalised LDA 150 .0160 4.07% .0243 4.74% .0190 3.80% .0221 4.32%
Source-Normalised-And-Weighted LDA 150 .0137 3.78% .0222 4.65% .0174 3.54% .0209 4.23%

Table 1. SRE’08 results using standard, fully-weighted, source-normalised and SNAW LDA approaches.

Optimised int-int int-tel int-mic tel-tel
LDA Algorithm LDA Dim. DCF EER DCF EER DCF EER DCF EER

Standard LDA 250 .5942 4.86% .6756 5.47% .4714 3.69% .6139 4.67%
Fully-Weighted LDA 250 .6110 4.58% .7079 5.51% .4996 3.52% .6509 4.84%
Source-Normalised LDA 150 .5510 4.07% .5796 4.29% .4312 2.98% .6242 4.52%
Source-Normalised-And-Weighted LDA 150 .5377 3.58% .5579 4.36% .4167 2.70% .6147 4.44%

Table 2. SRE’10 (extended protocol) results using standard, fully-weighted, source-normalised and SNAW LDA approaches.

6. RESULTS

6.1. NIST 2008 SRE Evaluations

Table 1 presents the SRE’08 results using the standard, fully-
weighted, source-normalised (SN) and source-normalised-and-
weighted (SNAW) LDA techniques. Fully-weighted LDA was found
to provide performance improvements over the standard LDA tech-
nique in the under-resourced int-int conditions for which it was de-
veloped, however, it offered no additional robustness to mis-matched
conditions. This is expected to be due to the phenomena described
in Sections 3.1 and 4. Source-normalised LDA offered consider-
able relative improvements of 21–26% compared to the standard
LDA results in mis-matched trials, however, no gains were observed
in same-source trials. This demonstrates that the within-speaker
scatter can be reliably estimated as the total variation not repre-
sented by the source-conditioned between-speaker covariance ma-
trices when speakers in the training dataset provide no multi-source
examples. The additional weighting of between-speaker scatter ma-
trices through SNAW-LDA provided further improvements in all
conditions. The int-int trials found relative improvements of 14%
in minimum DCF and 7% in EER over the use of SN-LDA, thus,
demonstrating that weighting of the between-speaker scatter ma-
trices using (10) adds robustness to speaker recognition in under-
resourced conditions. The most noteworthy relative improvement
obtained using SNAW-LDA over the standard LDA approach was
31% in both minimum DCF and EER in the tel-int condition.

6.2. NIST 2010 SRE Evaluations

Results from trials on the SRE’10 extended protocol are presented in
Table 2. As in the SRE’08 trials, fully-weighted LDA provided no
advantage over standard LDA in mis-matched evaluation conditions.
Source-normalised LDA proved highly beneficial to mis-matched
trials and interview-only trials such that relative improvements of 9–
10% in minimum DCF and 17–20% in EER performance statistics
were observed over the standard LDA results. SNAW-LDA provided
the best overall classification performance with improvements of up
to 17% in minimum DCF and 27% in EER under mis-matched eval-
uation conditions relative to the standard LDA approach. It can be
noted that, in accounting for under-resourced speech, SNAW-LDA
did not reduce performance in the telephone-only conditions of both
SRE’08 and SRE’10 trials, and often provided marginal improve-
ments over standard LDA results. It is also evident that a reduced
and consistent number of LDA dimensions was optimal for perfor-
mance across the evaluated corpora when using the proposed SN-
and SNAW-LDA algorithms compared to the alternate approaches.

7. CONCLUSION

A novel source-normalised-and-weighted (SNAW) LDA technique
was proposed for the i-vector framework for speaker recognition.
The shortcomings of the standard LDA algorithm for enhancing
speaker discrimination were highlighted. These included the influ-
ence of source-related variation on the between-speaker covariance
matrix and an incomplete representation of the within-speaker scat-
ter due to commonly insufficient multi-source utterances per speaker.
The proposed approach reduced the influence of source variation on
the between-speaker scatter through normalisation of the i-vectors
with respect to the source means, along with a weighting criterion
for the final scatter. The within-speaker scatter was calculated as the
residual variation not captured by the source-normalised between-
speaker scatter matrices, thereby improving estimation of the scatter
from insufficient resources. When evaluated on recent NIST 2008
and 2010 SRE corpora, SNAW-LDA demonstrated significant im-
provements of up to 31% in performance statistics relative to the
standard LDA approach for mis-matched trial conditions and condi-
tions for which limited system development speech was available.
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