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Source representation strategy
for optimal boundary control problems

with state constraints

F. Tröltzsch and I. Yousept

Abstract. A state-constrained optimal boundary control problem governed by a
linear elliptic equation is considered. In order to obtain the optimality conditions
for the solutions to the model problem, a Slater assumption has to be made that
restricts the theory to the two-dimensional case. This difficulty is overcome by a
source representation of the control and combined with a Lavrentiev type regular-
ization. Optimality conditions for the regularized problem are derived, where the
corresponding Lagrange multipliers have L2-regularity. By the spectral theorem for
compact and normal operators, the convergence result of [22] is extended to a higher
dimensional case. Moreover, the convergence for vanishing regularization parameter
of the adjoint state associated with the regularized problem is shown. Finally, the
uniform boundedness of the regularized Lagrange multipliers in L1(Ω) is verified by
a maximum principle argument.
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1. Introduction

The study of optimal control problems with pointwise state-constraints has
become much more of a challenge in recent years. One of the major difficulties
when dealing with such problems is the lack of regularity of the corresponding
Lagrange multipliers. Mainly, due to the presence of pointwise state-constraints,
Lagrange multipliers are in general nonregular and might have measure type
components, see Casas [5, 6], Alibert and Raymond [1] and Bergounioux and

F. Tröltzsch: Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin,
Str. des 17. Juni 136, Germany ( troeltz@math.tu-berlin.de).
I. Yousept: Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin,
Str. des 17. Juni 136, Germany ( yousept@math.tu-berlin.de).
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Kunisch [3]. Therefore, a direct application of semismooth Newton methods, or
equivalently primal-dual active set strategies (cf. [8, 13]) to infinite dimensional
optimal control problems with state-constraints is not possible.

To overcome this difficulty, two regularization concepts were proposed in re-
cent years. First, Ito and Kunisch [12] suggested the use of a ”Moreau-Yosida”
type regularization approach, which removes the pointwise state inequality con-
straints by adding a penalty term to the objective functional. Hereafter, the
penalized problems are solved in an efficient way. We also refer to [2, 4, 9, 11].
Secondly, a ”Lavrentiev” type regularization (cf. [16]) to the pointwise state
inequality constraints was introduced by Meyer, Rösch and Tröltzsch in [19].
In contrast to the first method, it preserves, in some sense, the structure of the
state-constrained problem. In the case of distributed control, the Lavrentiev
type regularization has been successfully applied, see [10, 18, 19]. However, it
cannot be directly used in case of boundary control since the domain of the
control and that of the state do not fit together. This obstacle was overcome in
[22] by a generalization of the Lavrentiev type regularization concept. We also
refer to [15], where a virtual control concept is introduced.

Let us state the model problem that we focus on in this paper.

(P ) minimize J(u, y) :=
1

2

∫
Ω

(y(x)− y
d
(x))2 dx+

κ

2

∫
Γ

u(x)2 ds

subject to the elliptic boundary value problem

(1)
−∆y = 0 in Ω

∂νy + y = u on Γ

and to the pointwise state constraint

(2) y(x) ≤ ψ(x) for almost all x in Ω.

Here, the domain Ω ⊂ RN , N ≥ 2, is assumed to be bounded with a C0,1

boundary Γ. The functions yd, ψ and the cost parameter κ > 0 are assumed
to be given data. The first difficulty involved in this problem is basically the
derivation of the Karush-Kuhn-Tucker (KKT) type optimality conditions. To
obtain them, a Slater assumption has to be made. This is natural, since even the
proof of Fritz-John type theorems is based on the requirement that the cone of
non-negative functions of the space of constraints has a non-empty interior, see
Luenberger [17]. This restricts, however, the theory to the two-dimensional case,
since the control-to-state mapping u 7→ y is defined from L2(Ω) to C(Ω)∩H1(Ω)
only for N = 2, see [1, 6]. If N = 2, then the KKT type optimality conditions
for (P ) follow from [1, 6]. As elements of the dual space C(Ω)∗, the Lagrange
multipliers associated with the state constraint (2) are in general only Borel
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measures. Our method to overcome these two difficulties consists of a source
representation of the boundary control as the image of a ”distributed” control
v ∈ L2(Ω), by means of the adjoint control-to-state operator.

(3) u = S∗v.

Here, we denote by S : L2(Γ) → L2(Ω) the control-to-state operator S : u 7→ y
with range in L2(Ω). Hereafter, we approximate the pointwise state constraint
(2) by a mixed-control-state constraint, i.e., we consider

λv + y ≤ ψ a.e. in Ω,

where we used the new auxiliary control v instead of u.

The necessary optimality conditions of the regularized problem can be
stated without the Slater assumption and we obtain them for every dimension
N ≥ 2. Additionally, the Lagrange multipliers associated with the regular-
ized problem have a L2-regularity. However, the convergence of the regularized
solutions to the optimal solution of (P ) was shown in [22] under a Slater as-
sumption. In other words, the restriction to N = 2 was needed. The main goal
of the present paper is to extend the convergence result from [22] to dimensions
N > 2. This extension is possible by an application of the spectral theorem for
compact and normal operators. We also show the convergence of the adjoint
state associated with the regularized problem. Moreover, by a maximum prin-
ciple argument, the uniform boundedness of regularized Lagrange multipliers in
L1(Ω) is verified. The paper is organized as follows: First of all, we introduce
the general assumptions as well as the notation used in this paper. Afterwards,
the regularization of the model problem is presented in Section 3. We show
the convergence of the regularized control towards the optimal solution of the
original problem in Section 4. Hereafter, the investigation of the adjoint state
and Lagrange multiplier associated with the regularized problem is carried out.

2. Problem formulation

Let us first introduce the general assumptions for the model problem (P ) in-
cluding the notation used troughout the paper. We consider a bounded domain
Ω ⊂ RN , N ≥ 2, with a C0,1-boundary Γ. The upper bound ψ ∈ C(Ω) and the
desired state y

d
∈ L2(Ω) are assumed to be fixed. We denote further by (·, ·)

Ω

and (·, ·)
Γ

the inner products of L2(Ω) and L2(Γ), respectively. If V is a linear
normed function space, then we use the notation ‖ · ‖V for the standard norm
used in V . Further, let us define the solution operator to the elliptic equation
(1) by G : L2(Γ) → H1(Ω) that assigns to each u ∈ L2(Γ) the weak solution
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y = y(u) ∈ H1(Ω) of

−∆y = 0 in Ω,

∂νy + y = u on Γ,

where ∂ν denotes the normal derivative with respect to the outward unit normal
vector. The solution operator G with range in L2(Ω) is denoted by S : L2(Γ) →
L2(Ω), i.e., we set S = i0G where i0 is the compact embedding operator from
H1(Ω) to L2(Ω). Hereafter, the control problem (P ) can be expressed as follows:

(P )


minimize f(u) := 1

2
‖Su− yd‖2

L2(Ω) + κ
2
‖u‖2

L2(Γ)

over u ∈ L2(Γ)

subject to Gu ≤ ψ a.e. in Ω.

One can show that, independently of the dimension N ≥ 2, the problem (P )
admits a unique solution ū ∈ L2(Γ) provided that the admissible set {u ∈
L2(Γ) | G(u) ≤ ψ a.e. in Ω} is not empty. In the rest of the paper, we assume
hence that the admissible set for (P ) is not empty and denote the optimal
solution to (P ) by ū with the associated state ȳ = Gū. As pointed out in
the introduction, to obtain the optimality conditions for (P ), we require the
following assumption:

Assumption 2.1. Assume that N = 2. Then, we say that the Slater assump-
tion is satisfied, if there exists a function u0 ∈ L2(Γ) (a so-called Slater point)
such that

G(u0)(x) < ψ(x) ∀ x ∈ Ω.

This assumption makes only sense in the two-dimensional case, since the
solution operator G is defined from L2(Ω) to H1(Ω) ∩ C(Ω) only for N = 2,
cf [1, 6]. In the following, we present the optimality system for (P ) in an
appropriate sense defined in [1, 6].

Theorem 2.1 (First-order optimality conditions for (P )). Let Assumption 2.1
be satisfied. Then, ū is optimal for (P ) if and only if there exists an adjoint
state p ∈ W 1,s(Ω) for all 1 ≤ s < N

N−1
and a Lagrange multiplier µ ∈ C∗(Ω)

such that

−∆ȳ = 0 in Ω,
∂ν ȳ + ȳ = ū on Γ,

−∆p = ȳ − yd + µ|Ω in Ω,
∂νp+ p = µ|Γ on Γ,

(4) p+ κū = 0 on Γ,

< µ, ȳ − ψ >C∗,C= 0, < µ, w >C∗,C≥ 0 ∀w ∈ C(Ω) with w ≥ 0.
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Notice that < ·, · >C∗,C stands for the duality pairing between C∗(Ω) and
C(Ω). In the case of N > 2, the state y = y(u) associated to the boundary
data u ∈ L2(Ω) is in general not continuous. Therefore, we do not know how
to derive the KKT type optimality condition for the solution to (P ) for N > 2
under reasonable assumptions.

3. Source representation and regularization

We overcome the difficulties mentioned above by using the source representa-
tion:

(5) u = S∗v,

with a new distributed control v ∈ L2(Ω). The adjoint operator S∗ is defined
from L2(Γ) → L2(Ω), which is represented by S∗v = w|Γ where w(v) = w ∈
H1(Ω) is defined as the solution of the following problem:

(6) −∆w = v in Ω, ∂νw + w = 0 on Γ.

Hence for each v ∈ L2(Ω), the state y(v) = y ∈ H1(Ω) is given by the solution
of

−∆y = 0 in Ω, ∂νy + y = w on Γ,

−∆w = v in Ω, ∂νw + w = 0 on Γ.

Hereafter, we approximate the pointwise state constraint in (P ) by the following
mixed pointwise control-state constraint:

(7) λv + SS∗v ≤ ψ a.e. in Ω.

Finally, as introduced in [22], the complete regularization of the boundary con-
trol problem (P ) is given by

(Pλ)


minimize g̃(v) :=

1

2
‖SS∗v − yd‖2

L2(Ω) +
κ

2
‖S∗v‖2

L2(Γ) +
ε(λ)

2
‖v‖2

L2(Ω)

over v ∈ L2(Ω)
subject to λv + SS∗v ≤ ψ a.e. in Ω,

with positive regularization parameters ε(λ), λ. Here, the objective functional g̃

can also be written as g̃(v) = f(S∗v) + ε(λ)
2
‖v‖2

L2(Ω). Recall that f : L2(Γ) → R
is the control reduced objective functional of (P ), which is given by f(u) =
1
2
‖Su− yd‖2

L2(Ω) + κ
2
‖u‖2

L2(Γ).
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Approaching the control problem (P ) in a such way, we obtain the optimal-
ity conditions for (Pλ) without any restriction on the dimension. Moreover, the
associated Lagrange multipliers of the regularized problem have a better regu-
larity then those of (P ). As demonstrated in [22], for each λ > 0 and ε(λ) > 0,
there exists a unique solution to (Pλ) which satisfies the following optimality
conditions:

Theorem 3.1 (First-order optimality conditions). Let λ > 0 and ε(λ) > 0 be
arbitrarily fixed and let vλ be the optimal solution to (Pλ). Then, there exist
Lagrange multiplier µλ ∈ L2(Ω) and adjoint states pλ, qλ ∈ H1(Ω) such that the
following optimality system is satisfied:

(8)
−∆yλ = 0 in Ω

∂νyλ + yλ = w on Γ,
−∆wλ = vλ in Ω

∂νwλ + wλ = 0 on Γ,

(9)
−∆pλ = yλ − yd + µλ in Ω

∂νpλ + pλ = 0 on Γ,
−∆qλ = 0 in Ω

∂νqλ + qλ = κwλ + pλ on Γ,

ε(λ)vλ + qλ + λµλ = 0 a.e. in Ω,(10)

λvλ + yλ ≤ ψ a.e. in Ω,(11)

(12) µλ ≥ 0, (µλ, λvλ + yλ − ψ)L2(Ω) = 0.

4. Convergence analysis

For vanishing regularization parameter λ → 0, the convergence of the regular-
ized solutions was studied in [22]. The strong convergence of (S∗v̄λ)λ>0 to the
optimal solution ū of (P ) in L2(Γ) was shown under the Slater assumption and
the assumption that the parameter ε(λ) satisfies

ε(λ) = c0λ
1+c1

with some constants c0 > 0 and 0 ≤ c1 < 1. However, the result was restricted
to the two dimensional case, since the continuity of the state was needed.

Our goal now is to extend the convergence result from [22] to dimensions
N > 2. In fact, we are able to show the convergence without the Slater condi-
tion, which leads to the fact that the convergence result is true for every choice
of dimension N ≥ 2.

Throughout this section, we denote by I
Ω

and I
Γ

the identity operators on
L2(Ω) and L2(Γ), respectively. Notice that the operator SS∗ : L2(Ω) → L2(Ω) is
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positive semidefinite and compact. For this reason, Fredholm’s theorem implies
that the operator (λI

Ω
+SS∗) : L2(Ω) → L2(Ω) is continuously invertible for all

λ > 0. By the same argumentation, the operator (λI
Γ

+ S∗S) : L2(Γ) → L2(Γ)
is continuosly invertible for all λ > 0. We start with the following auxiliary
result.

Lemma 4.1. Let λ > 0. Then, the identity

(λI
Ω

+ SS∗)−1S = S(λI
Γ

+ S∗S)−1

holds true.

Proof. Let λ > 0 and u ∈ L2(Γ). We define ũ = (λI
Γ

+ S∗S)−1u and write

(λI
Ω

+ SS∗)Sũ = λSũ+ SS∗Sũ = S(λI
Γ

+ S∗S)ũ.

Consequently, we have

Sũ = (λI
Ω

+ SS∗)−1S(λI
Γ

+ S∗S)ũ,

which implies, due to the definition of ũ, that

S(λI
Γ

+ S∗S)−1u = (λI
Ω

+ SS∗)−1Su.

Henceforth, let {λn}∞n=1 be a sequence of positive real numbers converging to
zero. Since the operator S∗S : L2(Γ) → L2(Γ) is self-adjoint and compact,
the spectral theorem for normal compact operators implies the existence of an
orthonormal system {ei}∞i=1 of L2(Γ) consisting of eigenvectors of S∗S. We
denote here by σi the corresponding eigenvalue of the eigenvector ei, i.e.

(13) S∗Sei = σiei ∀i ∈ N.

In the following, we prove an auxiliary result that is essential for our conver-
gence analysis. It should be underlined that the particular construction of the
auxiliary sequence below (14) is adapted from [18], Lemma 3.1.

Theorem 4.1. Let {v̂n}∞n=1 be the sequence in L2(Ω) defined by

(14) v̂n := (λnIΩ
+ SS∗)−1ȳ,

where ȳ = Sū ∈ H1(Ω) denotes the optimal state of (P ). Then, for each n ∈ N,
v̂n is a feasible control of (Pλn) and {S∗v̂n}∞n=1 converges strongly to ū in L2(Γ)
as n→∞.
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Proof. Since ȳ satisfies the state constraints in (P ), v̂n is obviously a feasible
control of (Pλn) for every n ∈ N. Now, let us verify that {S∗v̂n}∞n=1 converges
strongly to ū as n→∞. To this aim, we write first

S∗v̂n − ū = S∗(λnIΩ
+ SS∗)−1ȳ − ū = S∗(λnIΩ

+ SS∗)−1Sū− ū.

Thus, by Lemma 4.1, one finds that

S∗v̂n − ū = S∗S(λnIΓ
+ S∗S)−1ū− ū

= S∗S(λnIΓ
+ S∗S)−1ū− (λnIΓ

+ S∗S)(λnIΓ
+ S∗S)−1ū

= (S∗S − λnIΓ
− S∗S)(λnIΓ

+ S∗S)−1ū

= −λn(λnIΓ
+ S∗S)−1ū.

(15)

By Parseval’s identity, we infer from (15) that

‖S∗v̂n − ū‖2

L2(Γ)
= ‖λn(λnIΓ

+ S∗S)−1ū‖2

L2(Γ)

=
∞∑

k=1

(
λn(λnIΓ

+ S∗S)−1ū, ek

)2

Γ

=
∞∑

k=1

(
ū,

λn

λn + σk

(λnIΓ
+ S∗S)−1(λn + σk)ek

)2

Γ

=
∞∑

k=1

(ū, ek)
2
Γ
(

λn

λn + σk

)2.

Hence, we obtain

(16) ‖S∗v̂n − ū‖2

L2(Γ)
=

∞∑
k=1

(ū, ek)
2
Γ

( λn

λn + σk

)2
.

For each k ∈ N, we define now a continuous and non-negative function fk : R →
R+

0 by fk(x) = (ū, ek)
2
Γ

(
x

x+σk

)2
. Notice that σk ≥ 0 holds true for all k ∈ N, since

the operator S∗S is positive semidefinite. For this reason, sup
x∈R

|fk(x)| ≤ (ū, ek)
2
Γ

holds true for all k. Further, Parseval’s identity implies that

∞∑
k=1

(ū, ek)
2
Γ

= ‖ū‖2

L2(Γ)
,

and hence the function series
∑∞

k=1 fk converges uniformly. Therefore, we obtain
finally from (16):

lim
n→∞

‖S∗v̂n − ū‖2

L2(Γ)
= lim

n→∞

∞∑
k=1

fk(λn) =
∞∑

k=1

lim
n→∞

fk(λn) =
∞∑

k=1

fk(0) = 0.
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Lemma 4.2. The sequence {λn‖v̂n‖2

L2(Ω)
}∞n=1 converges to zero, as n→∞.

Proof. Lemma 4.1 implies that

λn‖v̂n‖2
L2(Ω) = λn(v̂n, v̂n)

Ω
= (λn(λnIΩ

+ SS∗)−1Sū, v̂n)
Ω

= (λnS(λnIΓ
+ S∗S)−1ū, v̂n)

Ω

= (λn(λnIΓ
+ S∗S)−1ū, S∗v̂n)

Γ
.

Hence by (15), we have

λn‖v̂n‖2
L2(Ω) = (ū− S∗v̂n, S

∗v̂n)
Γ
≤ ‖S∗v̂n − ū‖L2(Γ)‖S∗v̂n‖L2(Γ).

Therefore, the lemma is verified by Theorem 4.1.

For the parameter ε(λ), we make the following assumption:

Assumption 4.1. The regularization parameter ε = ε(λ) satisfies

(17) ε = c0λ
1+c1

with some constants c0 > 0 and 0 ≤ c1 < 1.

Let now {vn}∞n=1 be the sequence of the optimal solutions of (Pλn). Further,
we define the corresponding sequence of optimal states to (Pλn) by {yn}∞n=1.

Lemma 4.3. Let Assumption 4.1 be satisfied. Then, the sequence {S∗vn}∞n=1

is uniformly bounded in L2(Γ).

Proof. Since v̂n is a feasible control of (Pλn), it holds that

f(S∗vn) +
ε(λn)

2
‖vn‖2

L2(Ω) ≤ f(S∗v̂n) +
ε(λn)

2
‖v̂n‖2

L2(Ω).

By Theorem 4.1, we also know that S∗v̂n converges strongly to ū. For this
reason, due to Assumption 4.1, Lemma 4.2 implies that there exists a constant
ĉ > 0 independent of n such that

(18) f(S∗vn) +
ε(λn)

2
‖vn‖2

L2(Ω) ≤ f(S∗v̂n) +
ε(λn)

2
‖v̂n‖2

L2(Ω) ≤ ĉ ∀n ∈ N.

Therefore, in a view of the presence of the Tikhonov parameter κ > 0 in the
objective functional f , the assertion is verified.

By the preceding lemma, we can find a subsequence of {S∗vn}∞n=1, denoted
w.l.o.g. again by the same symbol {S∗vn}∞n=1, converging weakly to some ũ ∈
L2(Γ). Our goal now is to show that ũ minimizes the original unregularized
problem. For this purpose, we show first the feasibility of ũ for (P ), i.e., Sũ ≤ ψ
a.e. in Ω.
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Lemma 4.4. Let Assumption 4.1 be satisfied. Then every weak limit of any
subsequence {S∗vnk

} is feasible for (P ).

Proof. We know that it holds

λnvn + SS∗vn ≤ ψ ∀n.
Therefore, it suffices to show that λnvn converges to zero. By (18), we have

ε(λn)

2
‖vn‖2

L2(Ω) ≤ ĉ ∀n,

and hence
ε(λn)

2λ2
n

‖λnvn‖2
L2(Ω) ≤ ĉ ∀n.

From Assumption 4.1, we infer then

‖λnvn‖2
L2(Ω) ≤

2ĉλ2
n

ε(λn)
≤ λ1−c1

n

2ĉ

c0
.

This implies λnvn → 0 in L2(Ω) as n→∞ and hence the Lemma is shown.

Now, we are able to prove our main result that shows convergence without
Slater condition, independently of the dimension N .

Theorem 4.2. Let Assumption 4.1 be satisfied, then the sequence {S∗vn}∞n=1

converges strongly in L2(Γ) to the (unique) optimal control ū ∈ L2(Γ) of the
unregularized problem (P ).

Proof. Since vn is the optimal solution to (Pλn) and v̂n is feasible for (Pλn), we
have

(19) f(S∗vn) ≤ f(S∗vn) +
ε(λn)

2
‖vn‖2

L2(Ω) ≤ f(S∗v̂n) +
ε(λn)

2
‖v̂n‖2

L2(Ω).

By Theorem 4.1, S∗v̂n converges strongly to ū. Consequently, thanks to As-
sumption 4.1, Lemma 4.2 implies that

(20) lim
n→∞

{f(S∗v̂n) +
ε(λn)

2
‖v̂n‖2

L2(Ω)} = f(ū).

Finally applying the lower semicontinuity of f , we infer from (19) and (20):

f(ũ) ≤ lim inf
n→∞

f(S∗vn) ≤ lim sup
n→∞

f(S∗vn)

≤ lim sup
n→∞

{
f(S∗v̂n) +

ε(λn)

2
‖v̂n‖2

L2(Ω)

}
= f(ū).

Hence, since ũ is a feasible control of (P ), see Lemma 4.4, and the optimal
solution of (P ) is unique, one obtains ũ = ū. Notice that the latter equality
limn→∞ f(S∗vn) = f(ū) implies the convergence of {S∗vn}∞n=1 in norm and
hence, together with the weak convergence, the strong convergence of {S∗vn}∞n=1

to ū in L2(Ω) is verified.
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5. Discussion on the adjoint states and Lagrange multi-
pliers

In the following, we study the behavior of the adjoint state and Lagrange mul-
tiplier associated with (Pλ) for λ → 0. Basically, the result below follows
again from the spectral theorem for compact normal operators. Let us define
the sequences of corresponding adjoint states of (Pλn) by {qn}∞n=1 and {pn}∞n=1.
Moreover, {µn}∞n=1 denotes the sequence of associated Lagrange multipliers as-
sociated with the mixed control-state constraint of (Pλn). We point out again
that all the results in this section hold true without the Slater assumption.
Therefore, the results are again true without any restriction on the dimension
N .

Theorem 5.1. Let Assumption 4.1 be satisfied. Then, the sequence {qn}∞n=1

converges strongly in L2(Ω) to zero.

Proof. According to the optimality conditions for (Pλn), see Theorem 3.1, the
functions qn, pn are given by the solutions of

−∆qn = 0 in Ω,
∂νqn + qn = κS∗vn + pn on Γ,

−∆pn = yn − yd + µn in Ω,
∂νpn + pn = 0 on Γ.

Applying the solution operator S and the adjoint operator S∗ (see (6)), we
obtain from the equations above:

qn = S(κS∗vn + pn|Γ),

pn|Γ = S∗(yn − y
d
+ µn),

(21)

and hence

(22) qn = S(κS∗vn + S∗(yn − y
d
+ µn)).

By the optimality condition, (10), this is equivalent to

qn = S(κS∗vn + S∗(yn − y
d
− 1

λn

qn −
ε(λn)

λn

vn))

= SS∗(yn − y
d
) + (κ− ε(λn)

λn

)yn −
1

λ
SS∗qn,

which implies that

(λnIΩ
+ SS∗)qn = λn{SS∗(yn − y

d
) + (κ− ε(λn)

λn

)yn}.
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Notice that we have used the relation yn = SS∗vn. Let us define now an
auxiliary sequence {zn}∞n=1 by

zn = SS∗(yn − y
d
) + (κ− ε(λn)

λn

)yn.

Since {yn}∞n=1 converges strongly to ȳ in L2(Ω) (Theorem 4.2), Assumption 4.1
implies that

(23) lim
n→∞

zn = SS∗(ȳ − y
d
) + κȳ := z̄ in L2(Ω).

Now, qn can equivalently be written as

(24) qn = λn(λnIΩ
+SS∗)−1zn = λn(λnIΩ

+SS∗)−1(zn−z̄)+λn(λnIΩ
+SS∗)−1z̄.

Since the operator SS∗ : L2(Ω) → L2(Ω) is self-adjoint and compact, the spec-
tral theorem for normal compact operators implies the existence of an orthonor-
mal system {ẽi}∞i=1 of L2(Ω) consisting of eigenvectors of SS∗. Here, we denote
by τi the corresponding eigenvalue of the eigenvector ẽi. Notice that τk ≥ 0 for
all k, since SS∗ is positive semidefinite. Now, by the completeness relation of
{ẽi}∞i=1, we have

‖λn(λnIΩ
+ SS∗)−1(zn − z̄)‖2

L2(Ω) =
∞∑

k=1

(λn(λnIΩ
+ SS∗)−1(zn − z̄), ẽk)

2
Ω

=
∞∑

k=1

(zn − z̄,
λn

λn + τk
(λnIΩ

+ SS∗)−1(λn + τk)ẽk)
2
Ω

=
∞∑

k=1

(zn − z̄, ẽk)
2
Ω
(

λn

λn + τk
)2

≤
∞∑

k=1

(zn − z̄, ẽk)
2
Ω

= ‖zn − z̄‖2
L2(Ω).

Thus by (23), it holds that

lim
n→∞

λn(λnIΩ
+ SS∗)−1(zn − z̄) = 0 in L2(Ω).

On the other hand, analogously to the proof of Theorem 4.1, we have

lim
n→∞

λn(λnIΩ
+ SS∗)−1z̄ = 0 in L2(Ω).

Therefore, thanks to (24), the assertion of the theorem is justified.
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Our next goal is to show the uniform boundedness of {µn}∞n=1 in L1(Ω). In
fact, assuming higher regularity on the boundary Γ, we are able to show the
boundedness. It should be underlined here that the result is derived without
the Slater assumption. Let us start with the following maximum principle. For
the proof, we refer the reader, e.g., to [14].

Lemma 5.1 (Maximum principle). Let ξ ∈ R+ \{0} and u ∈ L2(Γ) with u ≥ ξ
a.e. on Γ. Then, the weak solution y = y(u) of

(25)
−∆y = 0 in Ω,

∂νy + y = u on Γ,

satisfies y ≥ ξ a.e. in Ω.

Theorem 5.2. Let Assumption 4.1 be satisfied and suppose that the boundary
Γ is a class of C1,1. Then, {µn}∞n=1 ⊂ L2(Ω) is uniformly bounded in L1(Ω).

Proof. First, we define by 1 ∈ C∞(Ω) the constant function: z(x) = 1 for all
x ∈ Ω. By the assumption, the boundary Γ is a class of C1,1 and hence for
s ∈ (1, N

N−1
) and r = s

s−1
, the map

T : W 2,r(Ω) → W 1+ 1
s
,r(Γ)×W

1
s
,r(Γ), z 7→ (z|Γ, ∂νz)

is surjective, see [6], Lemma 4.4, which is based on [7] and [20]. Hence, there
exists ŵ ∈ W 2,r(Ω) such that

(26) ŵ = 1 on Γ, ∂νŵ = −1 on Γ.

Notice that since s < N
N−1

, it holds that r > N ≥ 2. For this reason, there
exists v̂ ∈ L2(Ω) with

(27) −∆ŵ = v̂ in Ω, ∂νŵ + ŵ = 0 on Γ.

Consequently, see definition of S∗ in (6), S∗v̂ = ŵ|Γ = 1|Γ and hence by the
maximum principle, Lemma 5.1, it holds that

(28) 1 ≤ SS∗v̂ a.e. in Ω.

Recall from (22) that qn is given by

qn = S(κS∗vn + S∗(yn − y
d
+ µn)) = κyn + SS∗(yn − y

d
) + SS∗µn.

Hence, taking account of Theorem 4.2 and Theorem 5.1, we have

(29) lim
n→∞

SS∗µn = −κȳ − SS∗(ȳ − y
d
) in L2(Ω).
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Since µn ≥ 0 holds true for all n ∈ N, one finds from (28) that

‖µn‖L1(Ω) = (µn,1)L2(Ω) ≤ (µn, SS
∗v̂)L2(Ω) = (SS∗µn, v̂)L2(Ω)

≤ ‖SS∗µn‖L2(Ω)‖v̂‖L2(Ω).

In view of (29), we finally arrive at the conclusion that there exists a constant
c > 0 independent of n such that

‖µn‖L1(Ω) ≤ c ∀n ∈ N.

Thus, the assertion of the theorem is justified.

Remark 5.1. We point out that, based on the preceding theorem, one can
show the existence of a subsequence {µnk

}∞k=1 converging weakly∗ in C(Ω)∗ to
some µ∗ ∈ C(Ω)∗. However, since yn converges strongly to ȳ in general only
in L2(Ω), we cannot expect that a weak limit of the subsequence {µnk

}∞k=1 is a
Lagrange multiplier associated with the state constraint in (P ).

In the last part of this section, we show the boundedness of {pn}∞n=1 in
W 1,s(Ω) with 1 ≤ s < N

N−1
. For this purpose, we make use of some results on

elliptic problems with measure-valued data which has been studied in [1, 5, 6].
We also refer to [21]. Let us consider the following elliptic problem with measure
data π ∈ C(Ω)∗:

(30)

{
−∆p = π|Ω in Ω,

∂νp+ p = π|Γ on Γ.

A function p ∈ W 1,s(Ω) with s ≥ 1 is called a (weak) solution of (30) if

(31)

∫
Ω

∇p∇z dx+

∫
Γ

pz ds =< π, z >C∗,C ∀z ∈ C1(Ω).

In the following, we provide some important results concerning the solvability
of (30), see for instance [21, p. 274-275].

Lemma 5.2. Let π ∈ C(Ω)∗. Then, (30) admits a unique solution p ∈ W 1,s(Ω)
with 1 ≤ s < N

N−1
. Furthermore there exists a constant c(Ω) > 0 depending

only on Ω such that
‖p‖W 1,s(Ω) ≤ c(Ω)‖π‖C(Ω)∗ .

Based on this result and by Theorem 5.2, we state in the following the uniform
boundedness of {pn}∞n=1 in W 1,s(Ω) with 1 ≤ s < N

N−1
.

Corollary 5.1. Let Assumption 4.1 be satisfied and suppose that the boundary
Γ is a class of C1,1. Then, the sequence {pn}∞n=1 is uniformly bounded in W 1,s(Ω)
with 1 ≤ s < N

N−1
.
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Proof. We recall that for each n ∈ N, pn is given by the solution of{
−∆pn = yn − yd + µn in Ω,

∂νpn + pn = 0 on Γ.

By Theorem 4.2, we know that yn converges strongly in L2(Ω) to ȳ. In par-
ticular, {yn}∞n=1 is uniformly bounded in L2(Ω). For each n ∈ N, we consider
µn ∈ L2(Ω) as an element of C(Ω)∗. More precisely, for each z ∈ C(Ω):

< µn, z >C∗,C= (µn, z)L2(Ω)

Hence, utilizing Lemma 5.2, it suffices to show that {µn}∞n=1 is uniformly bounded
in C(Ω)∗.

‖µn‖C∗(Ω) = sup
‖y‖C(Ω)=1

| < µn, y >C∗,C |

= sup
‖y‖C(Ω)=1

|(µn, y)Ω
|

≤ sup
‖y‖C(Ω)=1

‖µn‖L1(Ω)‖y‖C(Ω) ≤ ‖µn‖L1(Ω).

Therefore, by Theorem 5.2, we have just verified that {µn}∞n=1 is uniformly
bounded in C(Ω)∗ and hence the assertion of the theorem is justified by Lemma
5.2.
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