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ABSTRACT

We present the design of a routing system in which end-syssein
tags to select non-shortest path routes as an alternataptizit
source routes. Routers collectively generate these riytesing
tags as hints to independently deflect packets to neighhatdi¢

off the shortest-path. We show how this can be done simply, by

local extensions of the shortest path machinery, and safelthat
loops are provably not formed. The result is to provide eystesns
with a high-level of path diversity that allows them to bypasde-
sirable locations within the network. Unlike explicit soarouting,
our scheme is inherently scalable and compatible with ISReips
because it derives from the deployed Internet routing. &% silig-
gest an encoding that is compatible with common IP usageingak
our scheme incrementally deployable at the granularitydivid-
ual routers.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.Z2pmputer- Communication Networks]:
Network Protocols—Routing Protocols

General Terms
Design, Algorithms

Keywords

Routing deflections, path diversity, source routing

1. INTRODUCTION

Source routing, in which end-systems patrtially or fully cfe
the paths taken by their packets, is the basis of a varietgtefaes
to improve the reliability and performance of networks. Eram-
ple, the Detour study [17] and RON overlay [1] show that “leos
source route” style concatenations of default Internehpatay
possess lower latency or greater available bandwidth. |&iyi
SOSR [7] demonstrates that routing via a random point of-indi
rection can mask many Internet failures. And Perlman’s wark
sabotage-proof routing [13, 14] depends at its core on tHigyadif
sources to select their own routes to find one that works cthyre
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Source routing is a fundamental means of improving comnadnic
tions because it provides path diversity that reduces therdience
on a single network path with undesirable characteristics.

Despite these advantages, source routes are not in maimstre
use in the Internet today, perhaps due to several assogabee
lems. They do not scale to permit widespread use (excepivin tr
ial applications) because each end-system needs some ntiag@ of
overall network to formulate its preferred routes. Yet deth up-
to-date maps do not readily exist, and even simple listsaztions
for indirection are complicated by the need to maintainlatslity
and spread load. By letting users specify paths, sourcesald
not fit the Internet model in which ISPs set routing policy éxhs
primarily on destination addresses. And in some forms, sisdhe
IP loose source route option, they pose a security threataral
result are often disabled.

In this paper, we revisit source-controlled routes. Oul goto
find a design that provides much of the benefit of explicit seur
routes but addresses the problems we have identified so as to r
main practical. Our insight is that, to be useful, it is notessary
for the end-system to specify which of the exponentially ynaos-
sible routes to take. Instead, it is sufficient to provide alsiset
of diverse paths and let the end-system select from thens i¥hi
because many benefits of source routing stem from path dixers
An end-system can then test different paths without knowviireg
routes to which they correspond; even if the end-system iidaivk
the path it would often need to test it for reliability or bavidth.
And, as work on source routing for reliability has shown Eiinple
tests are sufficient to solve problems that depend on aypalirad
path rather than finding the optimal path. Thus, while thialéset
of diverse paths is less flexible than arbitrary source myute are
willing to adopt it in exchange for a practical scheme.

Our approach to construct these diverse paths draws on deflec
tion routing and hot-potato routing, in which routers ford/pack-
ets off the shortest path when it is not available [11, 2]. \&eetbp
routing deflectionrules that enable routers to independently deflect
packets and thereby collectively construct a diverse sefatlfs.
Our rules exercise the latitude routers have to forward @i=osff
the shortest path yet maintain loop-free connectivity. iRstance,

a well-known rule (on which we will improve) is that any route
can safely deflect packets to a neighbor that has a smalletacos
reach the destination. Then, sources access this pattsitivby
supplying a hint that affects the choice of deflection. Beeawut-

ing deflections build on the shortest path machinery and talter

its character, they scale well and fit the Internet model ating
that is based on destination addresses and ISP policy. Teey a
also incrementally deployable at routers within and act88s be-
cause different routers do not need to coordinate their ctefte
decisions.



determine which neighbors of a router can be used to forward a
packet; and 2) a signaling mechanism that lets end systems co
trol which of the available paths routers use for a given pack

this section, we use a motivating example to explain the eginc

of deflections within a single ISP. We describe the companent
the following sections, working up to deflections that chaige
selection of peering points across multiple ISPs.

2.1 Example

Figure 1 shows the backbone of Abilene, a US-based research
and education network, complete with link weights. We orné t
intra-POP details for simplicity. Consider packets semtfiSeattle
to Kansas City. The lowest-cost route (solid line) beginsdryding
the packets to Denver. However, observe that as an altegr{dot-
ted line) it is possible for the Seattle router to insteadvéod the
packets to Sunnyvale. This is because the remaining cosatihr
the destination falls, and so the packets will still arritekansas

Houston

Figure 1: The Abilene backbone network. Numbers give the link City without the possibility of a loop. Moreover, multipleuters
weights, which are symmetric. The solid line between Seagland along the path can safely deflect to neighbors in this marther;
Kansas City shows the lowest-cost route. The dotted line vi&un- cost to reach the destination will fall at every step and sodksti-
nyvale shows a deflected route, which avoids the Seattle-Dan link. nation must be reached eventually.

The map and weights were taken from the Abilene Observatory The example demonstrates a routing deflection rule thatsvork
(http:/fabilene.intemet2.edu/observatory/) on Dec 5, @0S. for all topologies: each router can deflect to any neighbdh i

lower cost to the destination than itself and the resultbélh loop-

. . . free path to the destination. In our example, the alterraiiemight

In the body of this paper, we present a design that provides pe sefyl to avoid the Seattle-Denver link if it were congéshad
sources access to path diversity via routing deflections.th&fe a relatively high error rate, etc. To allow end-systemsh@athan
evaluate our design on real, measured and random netwaslotop routers) to choose betwee’n the available paths, we tag{saska

gies. We find that, by using it, sources are very likely to have 5 oih’selection hint. For instance, a tag of 0 may indicate th
enough diversity to avoid an undesirable node, link or pggoint. lowest-cost path, and a tag of 1 an alternate path. The sdoes

We make two contributions. Th? f'rSF IS archltectural:. the. U.s not need to name any intermediate router to use these paths.
end-system tags to select path diversity as an alternatieqlicit The above rule is well-known and works for our simple scemari
source routes. Our tags are compact (10-bit in our desighylan ._However, it may not work when intra-POP structure is congde

not have gllobal meanings. We show how they can be enCOdeq MNas small uphill hops may be needed to switch egresses within a
a way that is Qompat!ble with common IP usage as well as carrie POP [8]. And it is not sufficient to construct many desirabitera
more clganly in a shim protopol layer. Routers can use whatev nate paths. Suppose, for instance, that we wished to aveideh-
mechanism is preferrc_ed to blnd_these tags to diverse pa]@s € vernode entirely. Then it would be necessary to reach KaDiggs
MPLS t_unnels or routing def_lectlons. '_I'he se_cond contrilpuitin on the lower route via Los Angeles and Houston. However, $unn
the design of rou.tmg deflections, and in particular two ne\I@s vale cannot safely deflect to Los Angeles because it will Itep

for constructing diverse paths that we prove to be loop-fiespite packet back. In the next section we give stronger routingedgdin

independent choices at different routers. These rulesianiéas rules that can, for example, forward along this lower roatavoid
to local route repair mechanisms [25, 19, 8] but more geriaral Denver entirely

the sense that concurrent deflections can be made, e.g.p&sdy
multiple failures, in arbitrary topologies and without tti@nger of 2.2 Advantages
loops. That is, routing deflections are akin to multi-pathtimg
schemes.

The rest of this paper is organized as follows. In Section 2 we
motivate routing deflections and path selector tags withkamele.
In Section 3 we present deflection rules that generate atepaths
within ISPs; we prove them to be loop-free in the appendix. In
Section 4 we describe how path selector tags are used fangout
In Section 5, we extend our rules to paths across multipls.|8P
Section 6, we evaluate the combination of path selector aads
deflection rules on various network topologies. We thenudisc
related work and conclude.

Routing deflections are conceptually simple, yet they gdner
ize shortest-path routing. With shortest-path routingaekpt may
be forwarded to any one of multiple equal lowest-cost neigbb
Similarly, with routing deflections, a packet may be forweddo
any neighbor in a largedeflection sethat is computed according
to the specific deflection rule. We restrict our attentiorhis paper
to sets that are computed via the shortest-path machineryhamn
include the lowest-cost neighbors, though other kinds @édgon
would be possible. With shortest-path routing, each rouay in-
dependently decide which packets to forward along whicthef t
equal-cost routes as a local matter, without causing loQusre-
spondingly, each router may decide its own deflection as alypur
2. DIVERSITY VIA DEFLECTIONS local matter without loops. Loop-freedom is important irr can-

The key idea of this paper is that a diverse set of end-to-end text because we allow end-systems to select paths even \vben t
paths may be constructed by allowing the routers of a netwmrk  are no transient repair events. So if deflections were toecaaps,

individually “deflect” packets by forwarding them off the ¢éwn they would be persistent steady-state loops that may disap
shortest path; end-systems can then select from the aleapaths nectivity.
by labeling their packets with hints. The design we presené h Deflections have several other desirable properties bygdesi

realizes this idea with two components: 1) deflection rukest t First, deployment is trivial because deflection choicescarapat-



ible with lowest-cost routing: individual routers can begrgded
across multiple ISPs with no need for coordination. Moreoeerd
systems need not know about the network topologies in owler t
explore alternative paths. This leads us to suggest howty z@s

in a manner that is compatible with common IP usage.

Second, deflections scale to real-world usage. This is lsecau
they are simple extensions of the shortest-path routinghimacy
that is already deployed at ISPs. They do not require additio
messages in the manner of other source routing schemesq27, 1
28, 6, 4, 3]. And they require no more than a constant factor of
added computation. For example, our rule above only resjirire
formation about its neighbors’ costs to compute its own détia
set. These costs are either already signaled in a distauterv
routing protocol or can be easily computed in a link-stateqarol.

Third, deflections are highly robust because they inheeit#ii-
ure tolerance of distributed routing algorithms. No celiteal pro-
cess is used to compute deflection routes, and hence theyasork
well as shortest-path routing when the network is partéahn

2.3 Applications

Our focus in this paper is on how to provide hosts with acoess t
a diverse set of Internet paths. However, deflections aedylio be
useful in other contexts such as local route repair, in whitdilure
is masked while new global routes converge. For instandede
tion paths could be selected by routers, rather than erdrgs
to locally bypass faults while news of their existence isbglty
suppressed. By construction, this would allow multipleltato
be bypassed without loops, whereas most local repair schi2fe
8, 19] target the common case of a single failure and may form
transient loops in other cases. However, deflections ara notn-
plete solution as they do not address transient loops dugctm#
sistent forwarding tables. Also, the price for their guaeanof
loop-freedom is that they may not be able to bypass as many sin
gle faults as schemes with weaker guarantees. Section 7atemp
deflections with specific schemes for local route repair.

3. DEFLECTION RULES

In this section, we present our deflection rules from the view
point of a single ISP network. We describe how deflections are
extended across multiple ISPs in Section 5.

Each rule generatedeflection sedf neighbors that a router can
use to reach particular destinations. Routers can thepamttently
select any neighbor in their deflection sets to use for fodimay,
we describe how hosts can tag packets to influence this meleat
the next section. We define our rules in terms of shortest-qasts.
Routers can compute the various shortest path costs asersiext
of whatever routing protocol they run to provide base raythe it
OSPF, ISIS or a distance vector style of protocol such as RtPv
EIGRP.

For each rule, the key issues we must consider are the coegsct

of its deflections and how effective they are at providingedsity.
By correct we mean that paths are loop-free (a safety comjliind
reach the destination (a liveness condition). We prove tineect-
ness in the appendix for arbitrary topologies with multiptpual-
cost paths and asymmetric link costs. We study effectivenes
simulations as part of our evaluation in Section 6.

For all rules, we let; for ¢ > 0 be the sequence of nodes along
a path, and letost(n;) be the shortest path cost to reach a given
destination from node;, by whichever neighbors are on the short-
est path. We omit the destination in the cost function, sindees
not change.

3.1 Rule 1 (One Hop Down)

Our first rule was used to motivate deflections, and serves as a
strawman for assessing the strength of our other rules:tarroan
send to any neighbor provided that the neighbor has a lovgitao
reach the destination. More formally:

Rule 1 (One Hop Down)The deflection set for a node; is
those neighbora;; for which cost(niy1) < cost(ns).

Intuitively, Rule 1 is loop-free to destinations because tbst
to a destination at each node is strictly decreasing, arlgtvehtu-
ally become zero. Lowest-cost forwarding or Equal Cost ldt
Path (ECMP) forwarding is a special case of Rule 1. We proge th
correctness of Rule 1 in Appendix A.

Rule 1 is simple to implement at routers. To run Rule 1, each
node needs to obtain costs for its neighbors as well as.it@éth
a distance vector protocol the cost information is alreaggaed
between neighbors. With a link-state protocol, it requirastiple
shortest-path computations, but does not require additimuting
messages. These computations may be run in the backgrowed si
shortest-path routes already provide basic connectivity.

Rule 1 is also trivial to deploy in an ISP network on a per route
basis: observe that Rule 1 generalizes shortest path gologirin-
cluding the shortest path neighbors in its deflection setsa Ae-
sult, any mixture of routers following either Rule 1 or slesttpath
routing are loop-free and reach the destination.

3.2 Rule 2 (Two Hops Down)

The first rule provides greater diversity than shortesh-paut-
ing, but it is limited because sometimes there will be veny fe
choices that cause cost to decrease. Our next rule providaseg
flexibility. It includes all choices allowed by Rule 1 plusattit al-
lows the cost to a destination to increase temporarily pledithat
the cost decreases sufficiently on the next hop.

Rule 2 (Two Hops Down)The deflection set for a node; is
those neighbors; 1 for which either of these conditions apply,
subject to the two caveats that follow:

1. cost(niy1) < cost(n;) [downhill]
2. cost(nit1) < cost(ni—1) [two-hop]

We remove the incoming interfacge_; from the deflection set
unless the set would otherwise be empty, and we expand the de-
flection set whem; is the initial node by treatingost(n;—1) as
infinity. Both are optimizations. The former case prunesuhia-
teresting deflection, in which a packet needlessly returasieigh-
bor only to take a different deflection. The latter case dipla
situation that permits all neighbors to be in the deflectiemn s

To see the power of this rule, reconsider our example. Rl
in sending from Seattle to Kansas City, Rule 1 could not tadkeg
round route via Los Angeles and avoid Denver entirely. BueRu
2 can. Los Angeles is a valid deflection, even though it nogmal
sends via Sunnyvale, because of the two-hop clause: itsloest
not rise as high as Seattle, which is two hops back. Continuin
on, Los Angeles can then forward to Houston using the downhil
clause, as the cost falls after crossing an expensive link.

In Appendix B, we prove Rule 2 to be loop-free in the sense that
a directional link can be crossed at most once in a deflectdim. p
Intuitively, on the forwarding path, the cost to a destioatmust
strictly decrease at every two hops. No two-node sequenteeca
peat. Hence, no link-level loop exists. Note that it is polesfor a
node to be visited more than once with this rule. We do notidens
this to be a problem because a packet will not be queued twice f
the same interface, and it is interfaces that are the keyrlyiig



resource. Rule 2 also satisfies the liveness property bethesle-
flection set always contains the shortest path neighborrefore,
a packet will eventually reach its destination.

Rule 2 has a slightly higher implementation cost than Rule 1.
Similar to Rule 1, each node must obtain costs for neighbbrs.
addition, forwarding decisions depend on the incoming (orkpre-
vious router) as well as the destination. This is similath® way
in which routers use source addresses or incoming linksreefa
along equal-cost paths and multicast paths [22].

As before, mixtures of nodes that follow Rule 2 or shortesttip
routes provide loop-free routes to their destinations.sThilows
because the shortest path neighbor satisfies the defleaten r

3.3 Rule 3 (Two Hops Forward)

With Rule 2, it is possible that a node will send uphill to agiei
bor that has no alternative but to return the packet. We naw co
struct a new rule that always provides an alternative to idiate
backtracking in the hope that it will increase diversity.

To state Rule 3, we define the following terms. In the forwagdi
path, we let; denote both directions of the incoming link used to
reachn;, i.e., the link connecting;_, andn;. Now we letG be the
overall network graph and'\l; be the same graph with the lirlk
removed. These other graphs with incoming links removedrere
key to our rule. To use them, we also need to extend the cost fun
tion to include the graph to which it applies, i.eost(G\l;, n;) is
the shortest path cost from the nogeto a given destination in the
graphG\l;.

Rule 3 (Two Hops Forward)The deflection set for a node;
is comprised of the neighbors;; for whichn;+1 # n,—1 and
either:

1. cost(G\li+1, nit1) < cost(G\l;, n;) [downhill]
2. cost(G\li+1,ni+1) < cost(G,n;—1) [two-hop]

Rule 3 eliminates the need of immediate backtracking, ksEau
if n;41 receives a packet from;, thencost(G\li+1,ni+1) must
not be infinity. It implies that:;+1 must have a path to reach the
destination without using the backtracking lihk . Therefore, we
can safely remove the backtracking node ; from the deflection
set for alln;s.

The first clause comparesst(G\li+1, ni+1) With cost(G\l;, n;)
rather tharcost(G, n;), which might be simpler. This is because
cost(G\l;,n;) is the larger quantity and leads to a larger deflec-
tion set; if we usedost(G,n;) then Rule 3 would actually have
been a subset of Rule 2. With our rule as stated, neither Robe 2
Rule 3 are subsets of each other, but Rule 3 does allow paths th
Rule 2 does not. In Figure 1, for example, the path Indianapol
Kansas City, Huston, Atlanta, is a valid deflection path videR3,
but not via Rule 2. This is because excluding the backtrachirk
forces the shortest path to follow a more roundabout patineo t
destination.

The cost of this increased flexibility of Rule 3 is a slightriease
in the implementation complexity over Rule 2. Specificalyjode
must now compute costs for its neighbors in related grapthera
than the same graph. This might be done incrementally inka lin
state implementation. And curiously, as before, we obséraé
distance vector protocols can already signal the requirfmtrna-
tion. This is because costs from all neighbors but one caséeé to
derive costs in the graph with the link to the one neighborawsd.

Implementation considerations also led us to the asymnietry
Rule 3. We deliberately do not use the gra@ki;—1 in the two-
hop clause, as might be expected, even though it would result
correct paths. This is because the current node will not irege

know the incoming link of the previous node unless it is sigda
with the packet.

As a variant of Rule 3, we observe that we can define an analo-
gous rule by removing the incoming node (rather than link)isT
places stronger connectivity demands on the underlyingloop:
it ensures that there is a path to the destination that doeseno
turn to the previous node, rather than one that does nobssthe
previous link. We have found that it produces otherwise Isimi
results, and so omit it from our evaluation due to space éitinhs.

The correctness proof of the link version of Rule 3 is given in
Appendix C. It is similar to that of Rule 2, and the node vemsio
follows by analogy. We also show that Rule 3 is compatiblehwit
shortest-path routing and hence trivially deployable.

4. TAG ARCHITECTURE

In this section, we describe a tag routing architecture pnat
vides end-systems with path diversity. Each packet caariag that
determines the path it takes through the network from thegmte
location to the destinatidn Thus tags act as selectors across a set
of network paths. They are an alternative to explicit souiczges
selected by hosts and label-switched paths selected by 15®s
describe our architecture, we begin with tags themselvesttaen
present two design variants: a shim protocol that fits betwBe
and higher protocol layers and cleanly signals tags; ancheode
ing of tags into IP packets that is compatible with common$P u
age.

4.1 Tag Properties

We require that tags have several properties to render tisem u
ful and practical for path selection. First, tags must bestsiant in
their path selections to the same extent as existing Iriteonges.
This allows end-systems to systematically explore thepageand
avoids adverse interactions with existing transports, pagket re-
ordering slows TCP.

Second, tags are opaque and lack global meaning exceptehat w
require a value of zero to correspond to the default Intepagh.
For other tag values, each ISP selects a path through itoretw
without the requirement that it communicate the choice tfipto
end-systems or other ISPs. This means that tag routes acg pol
compliant in the same manner as default routes, since e&hilS
apply its policies by definition. It also means that end-asyst must
send packets along tagged routes to discover them.

Third, different tags should select a diverse set of netvaitks.
By this we mean that union of all paths that can be selected be-
tween a source and destination covers a region of the netivatk
is significantly larger than the default Internet path (wergs not
used). This implies that it will usually be possible to avaidun-
desirable portion of the default Internet path. However,doaot
require that different tags select different paths. Thikesat eas-
ier to construct tag paths. It also enables incrementalogepgnt
because ISPs that have not been upgraded can be viewedadkytriv
mapping all tag values to the default path.

Given the above properties, tag routes are useful for egtjiins
that benefit from diverse paths, such as routing around tregitm
of a fault that might be a lossy link, point of congestion, Bgtine
failure, low capacity link, or high delay link. For this kiraf ap-
plication, it matters little that the route is not known agoii This
is because finding a good route will typically involve tegtam al-
ternative path to check that it does not suffer from lossaylelr
bandwidth problems, etc., regardless of whether the rawgrplic-

IClearly, tags could be defined for a connection-orientedorkt
too. Here we focus on extending IP.
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Figure 2: Shim Encoding. A shim header is inserted between IP and

the next higher layer to carry the tag and TTL range for which deflec-

tions are enabled. Figure 3: IP Encoding. The tag is carried in a subset of the Identifi-
cation field, deflections are switched on for a range of TTL vales, and

. L fragments are not deflected.
itly known. In these applications there tend to be many ptths

are acceptable, e.g., any path that avoids the fault, sarfiag
paths is a reasonable strategy. Conversely, tag routessaalit-
able for sending packets along particular routes to sasistyrity
or QoS policies, since the route must be found by trying thges

and< 200). Other initial TTL values, including those in common
use, will cause tag selection to be turned off and the defaaith
to be followed. Note that this scheme is not as flexible as tira s

4.2 Shim Layer Tag Encoding protocol, where an arbitrary subpath can be used for tagtsaie

Figure 2 shows how packets are tagged using a shim protocol but we will see that it is sufficient to provide useful diveysi

: ; o The advantage of this overloading is that it enables trueeinc
layer that sits between IP and the next higher layer. Taggirey -
simple insertion of two pieces of compact, fixed-length infa- mental deployment. Individual hosts and ISP networks canpbe

tion. First, the tag itself is carried in the clear. Ten baslécting grad_ed to use tag sele_ct|or_1 independent O.f all other pamt_asi_e-
among 1024 paths) are sufficient, and we round this up to 6 bit flection rules we consider in the next section allow routeithiw
for convenience. Note that this tég size is much smaller than an ISP to be individgally_upgraded too. An “pgf‘?‘deF‘ hOSF ban t
(exponentially large) number of possible source routeswever, use tags for path diversity even when communicating with st ho
there is no compelling reason to make the tag size large,sinean that has_not been upgrade_d. . .

the properties of tags, it must be searched by trial and.e8ec- The disadvantage of this method is that, like all such scseme
ond, range information is carried in the form of a start TTd atop no overloadlng ofIP is entirely backwards-cor.np.atlble. n case,
TTL values. This range signifies the portion of the path foialth the smal_l fraction of hosts tha_t do use TTLs within the tagestibn
tag selection is to be used. It enables the end-system towine range will have a small fraction of their packets re-routethén
region of faults, e.g., if a fault can be bypassed with tagating the IP identifier contains the flag value). This will not caadess

on the last half of a path then it must lie in the last half of pia¢h. ?k]: (;otnnectlwtty, but m‘% degragjf pterforrlwance.thA E)”rthe%?li
Given this encoding, tags are used at routers as followst, Fir at traceroute cannot be used 1o trace tag paihs becau e

the current TTL is checked to see if it lies within the rangé. | has been overloac_ied. _F_ina!ly, note that there are othemopatp
not, or if the tag is zero, the default route is used. We also us to overload the IP identifier field for |ncremental deployrmgng.,
the default route for IP fragments because only the initedfent CSFQ [_21] ar_1d IP traceback [18]) that, if adppted, would ”@F b
will contain the shim header. Otherwise, the tag is used lecte pompatlble with our usage. Non.etheless., while we .dq notmlgl

a possibly alternative path. This begs the question of hd®s|S IS th?db?[St thatt_can b_(t—:‘hfouhr_ldht(;ns encogllong Ehovzjs itis ple:mb
map tag values to paths. We give a procedure for doing soitater provide tag routing with a high degree of backwards-contyiy.

this section, for the case in which the diverse paths aregedby . .
deflections. However, ISPs could use any method they prefgr, 4.4 Mapplng Tags to Deflections

to map tags to MPLS [16] paths if they are available. When deflection routing is in use, we use the following proce-
. dure to map tags carried on packets to choices in the deflestip
We observe that it is possible to carry tag information ondBkp Tag Mapping Proceduret et the deflection set at a router given

ets themselves by overloading IP header fields in a manneistha by a rule containk’ members. Number these members pseudo-

compatible with common IP usage. The information is therduse randomly, starting with zero for the default shortest casghbor.

at routers in the same manner as for the shim protocol. A sampl Let the router also pseudo-randomly choose a small prime- num

encoding is shown in Figure 3. ber P from the first few primes (e.g., the first 10) greater than or
We use 10 of the IP identifier bits to encode the tag, setting th equal toK. Given a tag value of’ on a packet, the router should

remaining 6 bits to a well-known flag pattern. We then use TTL forward to the member of the deflection set identified by numbe

values to define the tag selection region, carrying it inighidoy N = (T mod P) mod K.

setting the initial TTL instead of separate start and stop falues. This rule uses modulo arithmetic to pick from the deflectien s

To do this, we define a rarely used portion of the TTL space to The outer mod operation produces a number in the right range.

indicate that tag selection should be used. Common inifidl T  The randomization is used to avoid correlated choices frdiit

values include 30, 32, 60, 64, 128, and 255, and Internetspath routers. The purpose of the inner mod operation is to produce

rarely exceed 40 hops [26]. This means that TTL values batwee further degree of freedom. It converts the input tag intoffecéve

128 and 215 are rarely seen in practice. We define the range 160tag value that is different for routers that chose diffeqaihes. In

to 200 to indicate that tag selection should be used. Hostthem this manner, the same tag values can be found to make differen
set their initial TTL value such that tag selection is apglie the choices at different routers, even when the routers havediefh
entire path (by using 200), only the end of the path (by usaiges sets of the same size. We find the inner mod operation to be valu

> 200) or only the beginning of the path (by using values160 able in terms of path diversity as part of our evaluation {i5ad®).
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Figure 4: Inter-domain deflections can switch peering points and AS-
PATHs. The solid line from source to destination shows the dault
path via ISPs A-B-D. The dotted line shows a deflection that dinges
the peering point but not the ASPATH. The dashed line shows aeflec-
tion that changes both peering point and ASPATH to ISPs A-C-D

5. INTER-DOMAIN RULES

We now show how to extend deflections across multiple ISPs
to provide peering point diversity. It is straightforwardr feach
ISP to independently use deflections to route to externatdfxes
advertised by BGP via one or more peering points. Deflectitag
then change the ISP egress point (and hence next ingres3 poin
compared to default routes.

For inter-domain routing, we consider each ISP in isolative
assume that all routers in the ISP run BGP (with some policy ch

the ASPATH and nexthop jointly; BGP does not bind an entife 1S
to an ASPATH before choosing nexthops. An important conmside
ation in this case, given that deflected paths are loop-frigginv
individual ISPs, is that they remain loop-free across mldtiSPs.
This will continue to be the case when ISPs use “prefer-cnstd
and “valley-free” routing policies, as is the common casbede
policies mean that any router of an ISP will only choose aeggr
point that advertises the most preferred ASPATH, barriteritSP
loops as long as there are no customer-provider loops. elstter
ingly, it is possible that the deflected ASPATH is one that wais
advertised downstream, but is nonetheless policy contpirits
construction. For instance, in Figure 4, the advertisedAA$Pto
dst by ISP A'is ISPs A-B-D, but the deflected one may be A-C-D.

6. EVALUATION

In this section we simulate our tag architecture and defiacti
rules to characterize the kinds of path diversity that theyvide.
A high degree of path diversity is desirable to increase tikty
of a source to avoid faulty links or nodes on their defaulhpaiVe
characterize path diversity in three respects: the defieqiaths
that exist between particular source and destination n{gles3;
the ability to route around particular nodes or links deeriaedty
(6.3); and the ability to switch peering points (6.4).

6.1 Methodology

We implemented a custom simulator to explore deflectiona®ut
and evaluate tag-based deflections.
Input TopologiesWe study a wide range of topologies because

sen by the ISP) as well as an IGP protocol such as OSPF or ISIS.deflection routes are a property of the network on which they a

Each router then forwards packets on the shortest path ttPthe
nexthop of the path selected by its BGP decision process. Witli
often result in different routers in the ISP sending to défe egress
points for a given destination because IGP cost metric isided

in the BGP decision process, e.g., early-exit routing. Thasom-
plication for our deflection rules is that the default egresiat and
hence cost metric for a destination may change unexpecidtin
the packet is deflected.

We can handle this complication to avoid intra-ISP loops oy e
tending the cost function. Revealing the destination patanthat
has been implicit, the cost metric so far has the feus¥(n, dst).

To capture the BGP decision process, we simply extend itve ha
the formcost(n, nexthop(n, dst)). Here,nexthop() models the
BGP decision process that selects the IP nexthop to a desting
addresslist. This decision process is part of BGP implementation
and should be the same for all routers in one ISP to prevert rou
ing inconsistencies. A node can compute theexthop() of any
neighbor as the inputs to theexthop() function: the BGP route
advertisements to the destinatidst and the IGP costs to the can-
didate nexthops in the BGP advertisements, are both known to
The former is known from iBGP relay sessions and the lattanfr
IGP. With this nexthop information, a node can compute the
costscost(ni+1,nexthop(ni+1,dst)). They are all a node needs
to know to compute a deflection set (Section 3). With thismesitan

of cost, all proofs in the appendix go through unchanged.

Inter-domain deflections provide two benefits in terms ohpat
diversity. Both are shown in Figure 4. First, the peeringnpased
between two ISPs may change; deflections are not limitedein th
diversity to intra-ISP changes. This can occur because kepac
heading for a given peering point may deflect to a router thefeps
a different peering point. In fact, the presence of multjpbering
points will tend to increase the deflection potential.

computed:

1. Real networks for which we can obtain topologies and link
weights. These are Abilene and GEANT, research and edueatio
networks based in the US and Europe, respectively. Thegs@riet
have relatively large capacities but relatively few nodes lnks.

2. Measured ISP topologies from Rocketfuel [20]. We use five
topologies (Sprint, Ebone, Tiscali, Exodus and Abovenat)gete
with link-weights that are inferred to match observed nogipat-
terns. (We exclude Telstra because the mapping is of lowtggal
These networks are substantially larger than Abilene andNBE

3. Topologies randomly generated with Brite [12]. We used tw
different models: Barabasi Albert (BA) and the Waxman model
(Waxman). The BA model generates graphs with a power-law de-
gree distribution, and the Waxman model generates grapthsawi
uniform degree distribution. For each model, we use linkagels
the cost metric for routing and generate low and high degragts.

The size and degree of all simulated networks are given in the
first column of Table 1. Networks within the same category are
ordered by average node degrees. Rule 3 refers to the lisione
of Rule 3 (Section 3). The node-version has similar resuits a
is omitted to save space. For Abovenet, we use and give figures
for the maximally connected component, since the networlots
connected otherwise.

Output Metrics: We compute several metrics for each network
and each deflection rule. They are summarized below, withéur
detail where the corresponding results are presented.

To measure the number of usable deflection paths, we compute
the number of neighbors in the deflection set at each routeis T
captures the number of opportunities there are to deflectheff
shortest path. We next compute the number of different deflec
tion paths between a source and a destination. This showsl&ow
flection opportunities at nodes are translated into defiagbaths

Second, and more generally, the next ISP may be changed. Thisthrough the network. Finally, we find the largest fractiontloé

is because the BGP decision process that is run at each chioi@ses

shortest path between a source and a destination that cap-be b
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Rule 2 and 3 produce more deflectioneighbors

than Rule 1. (Note that the lines for these rules overlap in th left graph.) Larger networks produce more deflection neigbors in which the majority
of routers have a choice of neighbor and some routers have artge number of deflection choices.

passed by deflections. This looks at how diverse the diffeten
flection paths are in terms of their component links and nodes

To measure the ability to route around faults, we consider in
dividual links and nodes instead of source-destinatiomspaVe
compute the fraction of shortest paths that can be re-rdotég-
pass a faulty link or node. We then consider how many of these
paths will be found when the source uses simple strategisstto
tag values.

To measure the ability to switch peering points, we pick séts
nodes to represent egress points, and compute how ofterr@sou
can arrive at an egress that is not its lowest-cost exit.issthiting,
the lowest-cost path is the shortest path to any egress. point

For each metric, larger is better. Some of the results aferdi
across runs since they depend on the pseudo-random ordétirey
deflection neighbors. When this is the case, we present trage
of 10 runs. We omit the deviation across runs unless otherwis
noted because it is generally too small to be visible.

The sections below describe our results. We summarize the av
erage metrics for all topologies in Table 1 and present theidi
bution of the metrics for Abilene, Exodus and Sprint. Thésee
networks have 11, 79 and 315 nodes, respectively. Theygeavi
sample of the results that allow us to see how deflectionsgehan
with the scale of the network. We also find that the resultsdor
domly generated networks are consistent with those fogdesli
ISP networks. This suggests that deflections are reasonatiigt
to variations in topology.

6.2 Deflection Paths

The first metric we consider is the number of neighbors in the
deflection setK. This number is the function of the router, the de-
flection rule, the destination, and the incoming interfaicmacket.
We compute the valu& for all legitimate combinations of router
interfaces and destinations. (Rule 1 and Rule 3 do not allbow a
combinations, since they will not use certain incoming rifatees
for a given destination.) Average results for all topolegiee sum-
marized in theDeflection Nbrcolumn of Table 1. Figure 5 shows
the cumulative distribution oK for Abilene, Exodus, and Sprint.

We make several observations. First, Rule 2 and Rule 3 are mor
flexible than Rule 1. They produce more deflection choicedlin a
simulated networks, usually by a substantial margin. Sectire
larger networks provide more opportunities to deflect, aasueed
by the size of the deflection set. Third, a large fraction efrduters
can deflect off the shortest path with Rules 2 and Rule 3. Mmp t
40% of routers havé< > 1 in all simulated topologies, and the
fraction is considerably higher for larger networks.

Next, we measure the number of different deflection paths a
packet can take between any two nodes in a network. Roughly,
this shows how tags convert deflection opportunities atiddal
routers into complete deflection paths. This measure algerats
on how a router maps a tag into a deflection neighbor and tends
to be larger for longer default paths. Again, average regattall
topologies are summarized in tieflection Pathcolumn of Ta-
ble 1 and distributions are given for Abilene, Exodus andr&m
Figure 6.

As before, we see that Rule 2 and Rule 3 outperform Rule 1
by a wide margin. In this case they have more deflection paths.
Even for a small network such as Abilene, more than 80% of node
pairs have a deflection path that differs from the defaultrteist
path with Rule 2 or Rule 3. For larger networks, nearly alleod
pairs have a deflection path. Moreover, in the case of Sprint w
see that many node pairs have close to the maximum number of
deflection paths, which &'° — 1 for our ten bit tag. This suggests
that our tag mapping rule does a good job of mapping different
tags to different routes. We also simulated a different tagpng
rule that does not use a pseudo-random modulo operation (Sec
tion 4.4). The number of deflection paths (averaged oveusdsr
and all topologies) is nearly four times less than that pcediby
our tag mapping rule. We also compared our deflection rulés wi
equal-cost multi-path (ECMP) routing. The average numlbet-o
ternative paths produced by ECMP on our input topologiegean
from O to 1.4, much smaller than that produced by our deflactio
rules (Table 1).

Finally, we measure how much the deflection paths differ from
the default shortest path. The more they differ, the moryik is
that a source can bypass faulty nodes or links that lie onefeautt
routing path. We compute differences as the largest fracifdhe
shortest path nodes and links, respectively, that can basswyl
with a single deflection. Suppose = (A, N1, Na,..., N,, B)
is the default shortest path routing between nddend B, P,
(A, My, My, ..., M, B) is a deflection path betweefiand B. If
N; does not appear iR;, then we count it as a node difference. If
there are a total af node differences, the fraction of node differ-
ences is computed ag'n. For each node pair, we record the maxi-
mum node difference among all deflection paths. This coordp
to the largest portion of the path that can be avoided. Sitpilae
also computed link difference. We omit results for link dittnces
to save space, since node differences provide the strggera one
node difference requires at least two link differences.

We present summary results for each topology inNleele Dif-
ferencecolumn of Table 1 and distributions of node difference for



Peering Bypassed

Network Rule | Deflection Nbr | Deflection Path | Node Difference | Node Bypassed| Link Bypassed |P|=2 \P|=5
Mean >1 | Mean Median| Mean Median| 10 tries All | 10tries All | 10 tries All | 10 tries All
Abilene 1 1.2 19% 1 1] 30% 0% 62% 64% 54%  64% 35% 37% 68% 69%
& Nodes: 11 2 1.6 43% 5 4 68% 100% 90% 95% 93% 95% 77% 81% 98% 98%
& Degree: 2.55 3 1.6 43% 4 3 69% 100% 90% 95% 97%  98% 7% 82% 98% 99%
Geant 1 1.4 33% 2 1] 51% 50% 0%  72% 67% 72% 43%  48% 76% TT%
Nodes: 23 2 21 53% 24 20 | 76% 100% 89%  94% 95%  97% 84%  93% 99% 99%
Degree: 3.22| 3 2.1 55% 18 16 | 76% 100% 90%  95% 96% 97% 84%  94% 99% 99%
Ebone 1 1.8 46% 11 3| 43% 40% 60% 61% 64% 61% 37%  40% 55% 57%
Nodes: 87 2 2.6 62% 311 258 70% 80% 77% 81% 87% 89% 69% 81% 84% 87%
Degree: 3.70 3 25 66% 167 112 72% 83% 78% 82% 88% 89% 70% 83% 86% 90%
Exodus 1 1.8 48% 26 6 53% 60% 68% 70% 65% 70% 41% 46% 55% 57%
}S Nodes: 79 2 2.6 63% 415 405| 79% 100% 87%  90% 92%  93% 67% 78% 84% 89%
7 | Degree: 3.72| 3 2.6 68% 300 253 | 81% 100% 88% 91% 93% 93% 69% 79% 85% 90%
S Tiscali 1 29 57% 74 22 60% 66% 68% 69% 69% 69% 43% 51% 65% 67%
= | Nodes: 161 2 4.0 67% 653 761 76% 85% 78% 80% 81% 83% 67% 81% 85% 88%
Degree: 4.07| 3 3.8 71% 488 506 | 76% 87% 78%  81% 81% 83% 69% 82% 86% 89%
Abovenet 1 2.7 70% 101 29 73% 100% 85%  89% 80% 89% 42% 53% 64% 69%
Nodes: 138 2 4.0 81% 734 867 | 89% 100% 94%  97% 95%  97% 71% 88% 90% 95%
Degree: 5.39 3 3.9 85% 629 711 89% 100% 94% 97% 96% 97% 70% 88% 90% 96%
Sprint 1 33 71% 61 25 73% 100% 75% 7% 8% T7% 48% 56% 71% 74%
Nodes: 315 2 5.9 79% 849 984 | 89% 100% 86%  90% 95%  96% 68% 87% 89% 95%
Degree: 6.17| 3 5.7 83% 808 952 | 90% 100% 87% 91% 95%  96% 68% 87% 90% 95%
BA-1 1 2.2 53% 14 6| 62% 100% 81% 83% 76% 83% 65% 73% 82% 83%
Nodes: 100 2 4.1 67% 488 516 | 92% 100% 97%  99% 97%  99% 90%  98% 98% 99%
Degree: 3.94 3 3.5 69% 240 230 93% 100% 98% 99% 98% 99% 91% 99% 99% 99%
g Waxman-1 1 1.9 55% 14 6 66% 100% 79% 81% 78% 81% 57% 65% 78% 79%
B Nodes: 100 2 3.0 69% 357 363 94% 100% 97% 99% 97%  99% 86% 97% 98% 99%
S | Degree: 4.00| 3 2.8 72% 218 208 | 94% 100% 97%  99% 98%  99% 89%  98% 99% 99%
BA-2 1 3.2 76% 38 19| 75% 100% 89%  90% 86% 90% 7%  82% 88% 89%
Nodes: 100 2 5.0 87% 606 642 93% 100% 98% 99% 99% 99% 94%  99% 99%  100%
Degree: 5.88 3 4.8 91% 470 488 93% 100% 99% 99% 99% 99% 94%  99% 99%  100%
Waxman-2 1 3.0 7% 46 9| 7% 100% 89%  90% 89%  90% 71%  78% 85% 85%
Nodes: 100 2 4.4 87% 554 584 | 93% 100% 99%  99% 99%  99% 93%  99% 99%  100%
Degree: 6.00| 3 4.4 90% 467 475| 93% 100% 99%  99% 99%  99% 94%  99% 99%  100%

Table 1: Summary of results for all simulated networks for all rules. Metrics other than medians and> 1 are averaged over all source-destination
pairs, nodes, links or peering trials, as appropriate from Eft to right. The node, link and peering bypass percentagesra intended to convey the
chance that a node, link or peering point could be avoided wit deflections.

our three example topologies in Figure 7. The value 100%eeorr
sponds to deflection paths that are node-disjoint with tluetekt
path (other than at source and destination). An ideal regalid

hug the x-axis then jump to one at 100%, meaning that everg nod

pair had a node-disjoint deflection path. For the networkshav
here, we see positive results. At least 60% of all node paive h
a node-disjoint deflection path under Rule 2 or Rule 3, withda
networks having near node-disjoint deflections even mdenof

6.3 Fault Tolerance

The results above show that deflections can provide significa
path diversity between source-destination pairs. We navsider
how well sources are able to harness this diversity by usigg to
avoid faults.

Specifically, we construct an experiment as follows. We @ick
random link or node to be faulty. This fault will lie on the deft
routing path of a set of (perhaps many) source-destinatars.p
For each pair, we simulate the source as it tries to bypasktiite
by selecting different tag values. To stress the tag meshanive
assume that a source tries at most ten tags before it assucaes i
not bypass the fault, since there is a cost to sending patkétg
tags. For each fault and node pair, we record whether thesour
can bypass the failure and the number of tries it takes.

We use a simple strategy to select tag values. In the firstfas t
the source chooses tags 1 through 5. This instructs eacér aut
try five pseudo-random deflections, if that many exist. (Relat
tag O is reserved to indicate the default routing path.) &l#st
five tries, the source randomly picks a tag value in the reimgin
tag space [6,1023]. The intent here is to try to decouplectfie
tag choices at each router, since the tag is likely to be nthppe

different values with different primes at different rougteiVe have
not studied tag search strategies in detail, and betteramedikely
to exist. However, they will only improve our results.

The results of this experiment are shown in Mede Bypassed
andLink Bypassedatolumns of Table 1 and Figures 8 and 9. The
summary results show that for nearly all topologies the regbor-
ity of node pairs (often exceeding 90%) can bypass single aod
link faults with deflections and that these deflections cafobed
by trying a small number of tags. The figures provide detaiften
distributions for our sample networks.

Figure 8 shows the distribution of the number of node paias th
can avoid a faulty node after 10 tries. The x-axis specifiatyfa
nodes that are on default routing paths. We rank these nades a
cording to the number of source-destination pairs that usen tfor
default routesR. We start with nodes that are on the most paths
because they are the most important ones to be able to byfizess.
vertical lines show the? values, and the points on each line show
how many node pairs can avoid the faulty node after tryingat)8.t
In the ideal situation, all points should stay on top of thetigal
lines, indicating all node pairs that are affected by thédtyauode
can avoid it. We see that in all three networks the black spénat
represent Rule 3 stay close to the top of the lines. This shioats
a large fraction of node pairs affected by a faulty node caidav
it. We also ran simulations for faulty links using the samehuod-
ology. These results are generally even better, since @ndehn to
avoid a faulty node than a faulty link. We omit them to savecepa

Figure 9 reports on the distribution of the number of trieat th
were made (with different tag values) to avoid the faultshiows
the fraction of the node pairs that could avoid a fault withvaeg
number of tries, averaged over the different possible$adlhis ap-
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Figure 6: The number of deflection paths between two nodes. An ideal rak would hug the x-axis until 210 and then rise vertically, such that all
node pairs have the maximum number of deflection paths. We sdbat most paths have deflections and larger networks have merdeflection paths.

Rule 1 -------
Rule 2
08l Rule3 —— R
5 st 5 5
k3] P g g
S 06 g 8
o Qo [
> 2 >
< o4t g g
£ N S 5 E
=1 3 =1
o 8] o
0.2
0 L L L L L 0 L L L L L 0 1 L L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fraction of node difference Fraction of node difference Fraction of node difference
(a) Abilene (b) Exodus (c) Sprint

Figure 7: The largest fraction of node differences between a deflectiopath and the default shortest path for every node pair. Shor vertical lines
with horizontal bars show the (very tight) standard deviations across runs. An ideal result would hug the x-axis then jum to one at 100%, meaning
that every node pair had a node-disjoint deflection path. We ee that most node pairs can deflect a large fraction of the shtast path nodes, with
larger networks being able to deflect more of the path more oftn.

all Total 1400 Total
40 + Rule 3 . Rule 3
Rule2 = 1200 H Rule2 =
© 35r Rulel x e Rulel  x 4
o S 1000 o
g 2 g s
N S s E
5 20 S 600 | 5
ol z I
£ E 400 E
Z 10t z z
200 H
5|
0 1 2 3 4 5 6 7 9 10 20 30 40 50 0 20 40 60 80 100 120
Node rank Node rank Node rank
(a) Abilene (b) Exodus (c) Sprint

Figure 8: The number of node pairs that can avoid a faulty node after 101ies. The x-axis shows the index of the faulty node. The vertal bars show
the total number of node pairs that have the faulty node on th& default routing paths. The points show how many node pairssuccessfully avoid the
faculty nodes. The closer the points are to the top of the lirgg the better. Rule 3 is consistently able to mostly or compiely avoid faults.

insignificant. This suggests that a source can quickly findltem-
native path to avoid a particular node (or link).

proximates the probability with which a source can avoidudtya
node after a given number of tries. Not all faults can be bypds
The column labeled “failed” shows the fraction of node pa#irat . .
needed more than 10 tries. The column labeled “unavoidable” 6.4 Inter-domain Deflections
shows the fraction of node pairs that cannot avoid a faultyeno It is difficult to assess the path diversity that deflectioriépro-
even if all tag values are tried. We see that, in all three agtsy a vide in the Internet. This is because it depends on interaiiom
significant fraction of node pairs can avoid faulty nodesQrtries, routing policies and peering patterns as well as ISP topedoand
especially for Rules 2 and 3. Moreover, most successes happe precious little data are publicly available. Instead, tngabasic
quickly, such that only one or two tags need to be tried in most understanding of deflections with multiple ISPs, we looka lof-
cases. The difference between trying ten tags and all tagisas ten they can change the peering points used between paB&ef |
We construct a simple experiment to do this as follows. Fohea
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Figure 9: The number of tags needed to bypass a fault. The y-axis givelse fraction of node pairs that can avoid a faulty node on theirshortest path
after the number of tries on the x-axis. The column labeled “ailed” shows the fraction of node pairs that needed more thari0 tries to bypass the
fault. The column labeled “unavoidable” shows the fractionof node pairs that cannot avoid a faulty node even if all tag viues are tried. The short
vertical bars show the standard deviation across differenhode faults. We see that most faults can be bypassed with onetao tag choices, and that

the difference between trying 10 tags and all tags is insigficant. Note the y-axis stops at 0.7 to show more detail.

network, we randomly choos@ nodes to be peering points, where
|P| =2,3,4,5. We assume that BGP policies have chosen this set
as the egress or peering points to an adjacent ISP. Eachnnivde
the network will have a default peering poimte P for which n

has the lowest IGP cost. This simulates the shortest patingou
mechanism inside the ISP.

We then run simulations to measure the fraction of nodes that
can switch their peering points away from their defaults. a%e
sume a node only tries ten tags to stress the design. Thefract
we compute is the likelihood that a node can bypass its degfest-
ing point if it considers the default faulty. It depends oritbthe
number of peering points and the specific points we choose. To
obtain an overall estimate, for each simulation, we fix thenber
of peering pointsP|, and choose 100 random sets (or as many
combinations as exist, if that is smaller). We record thetfom of
nodes that can change their peering points for each peesing, s
and average the results over all peering sets. As befordinile
results are averaged over 10 simulation runs to reduce tbet ef
the pseudo-random ordering of deflection neighbors.

ThePeering Bypassecblumn of Table 1 summarizes the results.
We only show the results when the number of peering points is
2 and 5, respectively. The sub-columi shows the fraction of
nodes that can bypass a peering point if all tags are triggir&i10
shows the results for 2, 3, 4, and 5 peering points for our @kam
networks. The x-axis shows the number of peering points. The
y-axis shows the fraction of nodes that can use a differesitipg
points after 10 tag tries.

Rule 2 and 3 consistently provide more peering choices than
Rule 1. With them, a significant fraction of nodes can chahgé t
peering points after only 10 tag tries. When the number ofipge
points is larger, this fraction is higher. When there areydmlo
peering points, more than 67% of nodes for all simulatedl®po
gies can use the alternative peering point. When there aredéer-
ing points, most topologies have more than 90% of nodes #rat ¢
choose a different peering point. We also note that tryihgaals
helps to bypass a peering point somewhat more than to bypass
faulty node or link that lies on the default routing path.

6.5 Summary

Overall, our results show that it is possible to construéiedéon
rules that provide good path diversity. In particular, outd® 2 and
3 are significantly better than the straightforward Rule ted®er
levels of diversity are available in designed networks #natlarger

in size as well as random networks that have higher averageele
Path diversity via deflections allows a peering point or dtfenode
(or link) to be avoided most of the time, even in small netvgork
Moreover, tags are effective to access path diversity. Aedgfin
that bypasses one fault can be found by trying a single tag ofios
the time, with a small number of faults requiring more tries.

7. RELATED WORK

Our work is motivated by results that show variants of source
routing to be beneficial. RON [1], Detour [17], and SOSR [wh
that overlay routing can improve end-to-end reliabilibyaughput,
latency, and loss rate. In early work, Perlman used sounatng
as an essential means to avoid Byzantine failures [13]. kGdar
al. [5] argue that end user control over provider-level esitias the
potential to create a competitive ISP marketplace.

Much work addresses the difficulties of implementing source
routes. In particular, to handle scaling issues, many sekame a
link-state like routing protocol to provide end systemshnatmap
of the network [27, 15, 28, 6, 4, 3]. In contrast, we build oe #x-
isting shortest-path machinery to capture ISP policy aimdiehte
the need for sources to obtain any map. Further, we do noireequ
end-systems to forward packets for each other, as do ogeray
install path-specific state at routers, as do schemes syshcést
reflection [9]. As a tradeoff, the region of the network ovérieh a
source can deflect its packets is restricted. Neverthedessesults
show most node and link failures can be bypassed in practice.

Other routing and forwarding schemes use short, fixed-telagt
bels to represent multiple paths. MPLS [16] is widely usedagk-
bone ISPs to split traffic along multiple paths. Bananas {58 a
32-bit hash of an AS path as a label. NIRA [27] uses hieragdlyic
allocated IPv6 addresses to represent provider-leve¢solinlike
deflections, all these mechanisms map a label to a uniqueapdth
so require additional sighaling messages to establish #ppimng.

Similar to deflections, some multi-path routing formulasaal-

a{ow a router to choose among multiple next hops to reach adest

nation without looping. OSPF and ISIS permit multi-paththog
among next hops with equal cost to a destination [22]. Vutyku
et al. propose a multi-path scheme similar to Rule 1 in which a
router can choose any neighbor with a cost less than itseleas
next hop [23, 24]. Our rules construct larger sets of paths.

Finally, work on local route repair explores the use of aitée
next hops to bypass faults before new routes have conve@ed.
going work in the IETF [19] studies the well-known Rule 1 and
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Figure 10: The fraction of nodes that can switch peering points after 1Qtag tries. The x-axis shows the number of peering points, whh are
randomly chosen. The short vertical bars show the standard eviation across different peering sets. We see that Rule 2 drRule 3 consistently

provide more peering choices.

variants that are similar to our Rule 2. The main distinci®that
this work targets a single fault and may result in loops if¢hare
multiple faults, whereas our deflections can be used safetyué
tiple locations. This IETF work is similar to earlier work byang
and Crowcroft [25]. More recently, lyer [8] studied re-rimgs that
are equivalent to Rule 1 and similar to Rule 2. However, thatw
places restrictions on the intra- versus inter-POP weitghts/oid
loops while we do not.

8. CONCLUSIONS

We have presented a practical system that provides the tsenefi

of source-controlled routes in the Internet without thebems as-
sociated with explicit source routes. It is a tag-basedimgurchi-
tecture that uses routing deflections to provide path diyetdsers
tag packets with hints, rather than explicit source rowes, ISPs
use these hints to select among alternative paths. Thesedade

encoded in a way that is compatible with common IP usage. ISPs

generate the underlying path diversity with the routingetgfons
that we have introduced. This mechanism is scalable, cabipat
with ISP policies and easily incrementally deployable. Valeate
the overall system, we performed simulations with real, sneed
and random network topologies. We found that deflectionsigeo
a high-level of path diversity and tags make effective usthisfdi-
versity. With our rules, a source can avoid most single nodmlo
faults by trying only a handful of tags, with better resutis farger
networks.

topologies to the format needed by our simulator, and the@yano
mous reviewers, our shepherd Bruce Davie, Nick Feamsigadg
Li, Xin Liu, and Junfeng Yang for providing useful feedback.
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APPENDIX

We prove that each rule provides paths that are loop-freeeauh
their destinations, even when shortest-path routers agept in
the network.

A. RULE 1 (ONE HOP DOWN)

Let the sequence of nodes on the forwarding path;der i > 0.
Consider the sequene®st(n;) for i > 0. By Rule 1 it strictly
decreases. Hence each node in the sequence must corregond t
different node so that the path is loop-free. To reach therdgon,
it suffices to show that the deflection set is not empty. Thisois
because shortest-path neighbors are always valid cho&zsibe
they have lower cost than the current node by the definitidris T
further implies that shortest-path routers make valid ggfias and
can be freely mixed with Rule 1 routeis.

B. RULE 2 (TWO HOPS DOWN)

To show loop-freedom, we prove that no directional link i
peat in the forwarding path. Define the cost of a directioml 4:;
that connects; andn;1 to be the maximum cost of its endpoints.
We now show that the cost of adjacent links is non-increasimg
do this we state link cost and substitute Rule 2 expressattiirsct
form as a maximum operator that combines its two clauses:

cost(uiy1) mazx(cost(niyi), cost(niyz))

Al

(
maz(cost(niyi), max(cost(nit1), cost(n;)))
mazx(cost(n;), cost(niy1))

cost(u;)

Next we show that the cost of every other link along a path is
strictly decreasing:
cost(niys) < mazx(cost(nit2),cost(nit1))
< maz(maz(cost(niti), cost(n;)), cost(niti))
= maz(cost(n;), cost(nit1))

= cost(u;) 1)
By the definition of Rule 2 and link costs we also have:
cost(niy2) < max(cost(n;),cost(nit1))
= cost(u;) 2)

Both cost(ni+2) andcost(ni+3) are less tharost(u;). Hence
by definition,cost(u;+2) < cost(u;). And from (1) and (2) it fol-
lows that on the forwarding path, the cost of any link., for
k > 1is strictly less than;. Therefore, any links; 5 with & > 1
cannot be the same as link. It remains to show that the adja-
cent linku;+1 cannot be the same as. This is true because these

two links start at different nodes. Thus, no directionakloan be
re-visited on the forwarding path; there are no link-lewelgs.

To see compatibility with shortest-path routers, obsehas the
shortest path neighbor is always valid deflection choicabse it
satisfies the downhill clause. Liveness follows from this, tas the
deflection set is non-empty, and a packet will eventuallxhets
destinationd

C. RULE 3 (TWO HOPS FORWARD)

Observe that removing links from the graph can only increase
the cost of paths that would otherwise use it, i.e.:
cost(G,n;) < cost(G\lj,n;) VY nodesn;, links;

®)

We now restate Rule 3 compactly and substitute (3) for thie bid
rectional incoming link; (that connects;—, andn;):

<
<

cost(G\li+1,ni+1) mazx(cost(G\li, n;), cost(G,ni—1))

max(cost(G\li, n;), cost(G\li—1,ni—1))

This has the same form we saw in Rule 2 when we consider
the sequenceost(G\li, n;) instead ofcost(n;). Hence we can
show loop-freedom in precisely the same manner, by defining a
analogous directional link cost and showing that no diogi link
is repeated. (We omit this to avoid repetition.)

To show that Rule 3 reaches destinations, it suffices to shatv t
the deflection set is not empty before the destination ishexhc
To do this, we will show that the shortest-path neighboi; is
always an allowed choice. Let this shortest-path neighkandne
n;+1 S0 that by definition we hav@st(G\li, ni+1) < cost(G\li, n;).
Next we show thaf:OSt(G\li+1, m+1) < COSt(G’\li7 ni+1). This
is becausen; 1 is n;'s shortest path neighbor. Its shortest path in
the graphG\l; cannot go back across the last incoming lipk; .
Hence, the cost ofi;11 in the graph that excludes both links
andliy1, i.e.,G\(ls, li+1), is the same asost(G\li, ni+1). Then
by using inequality (3), we can upper bouaekt(G\li+1,nit+1).

With these steps we have:
COSt(G\li+17 ni+1) COSt(G\(li7 li+1), m+1)

cost(G\li, ni+1)

cost(G\li, ni)

(VAN

A

4)

This inequality (4) satisfies Rule 3 because it is simply therd
hill clause. So the shortest-path neighboGiY is in the deflection
set as required.

Finally, to show compatibility with shortest-path routéssuf-
fices to show that the shortest path neighbor.oih G is an allow-
able deflection choice. By definition of the shortest neighbaq,
cost(G,niy1) < cost(G,n;). In addition, the shortest path from
n;+1 Will not go back across the incoming link,.1. Therefore, the
cost ofn;4+1 in the graphG\l;+1 is the same as iY. Combining
these facts we hawst(G\lit+1,nit1) < cost(G,n;). Applying
(3) we obtaincost(G\li+1,nit+1) < cost(G\ls,n;). This is sim-
ply the downhill clause of Rule 3. Thus shortest path fornwagd
satisfies Rule 3, as required.



