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SOURCE-SUPERPOSITION METHOD OF SOLUTION OF
A PERIODICALLY OSCILLATING WING AT SUPERSONIC SPEEDS*

BT

H. J. STEWART and TING-YI LI
California Institute of Technology

Introduction and summary. In a recent paper Evvard (Ref. 1) discussed the linearized
theory of the non-steady motion of three dimensional wings by methods which he had
previously developed for the treatment of the corresponding steady flow problems
(Refs. 2 and 3). Evvard represented the wing by a distribution of sources, and the
important result of his steady state theory concerned the determination of the flow in
a region influenced by a subsonic leading edge or wing tip. He showed that the influence
of the flow around this subsonic edge of a flat lifting wing on the velocity potential at

X

Fig. 1. Geometry of Wing.

a point within the region of influence of this edge is exactly equal to and of opposite
sign to the contribution to the potential from the sources distributed over a simply
determined region of the wing. In his paper on non-steady motion, he was able by similar
methods to determine an explicit formula for the velocity potential; however he could
not express the results in a similar, "equivalent area", form.

The present paper is concerned with the same problem of the non-steady lift of
finite wings at supersonic speeds, particularly in regions which are influenced by subsonic
leading edges or wing tips. It is shown that the simple "equivalent area" theorem de-
veloped by Evvard for the steady state case is also valid for oscillating wings. The
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theorem is not extended to arbitrary non-steady motions, and an example where the
theorem in this simple form is apparently not valid is demonstrated.

The basic differential equation and boundary conditions. Consider a wing in a steady
supersonic flow of velocity U and Mach number M in the direction of the x-axis. Then
the velocity potential <p which governs any small, possibly non-steady, disturbance pro-
duced by the wing satisfies the linearized differential equation

i ,2U&p_ ,(&_ i^_3V m
a2 df + a2 dx dt + \ a2 / dx2 dy2 + dz2' ^ '

where (x, y, z) are cartesian coordinates, t is the time variable and a is the speed of sound
in the undisturbed flow so that U = Ma. The wing is assumed to be near the plane
z = 0.

With the approximation of the linear equation, it is permissible to replace the
boundary conditions at the point (x, y, z) on the actual wing surface by the same boundary
conditions applied on the plane z = 0 at the point (x, y, 0). In order to express the
boundary conditions it is necessary in general to divide the wing surface into two different
types of regions (see Fig. 1). The origin of the coordinate system is taken at the point
0 where the Mach line Ov is tangent to the leading edge. The leading edge is thus divided
into two segments, the segment OA which is defined by x = (y) or y = y, (x) and is
a supersonic leading edge and the segment OS which is defined by x = x2(y) or y — y2(x)
and is a subsonic leading edge. As a matter of convenience it is assumed that the trailing
edge, x = x3 (y), is a supersonic trailing edge where the Kutta condition need not apply.
The Mach line Ou then divides the wing into two regions. Region I, which is bounded
by a; = x^y), x = x3(y) and Ou, may be referred to as a purely supersonic region. Region
II, which is bounded by a: = x2(y), x = x3(y) and Ou may be referred to as a mixed
supersonic region (Ref. 4).

At any point on the surface of the wing the flow must be tangential to the surface
at any instant. This boundary condition, linearized, and applied to an oscillating condi-
tion is

•\
-J1 = wT(x, y, + 0) exp {ivt) = UkT{x, y, + 0) exp (ivt), (2)dz

dz = wB(x, y, — 0) exp (ivt) — —UAB(x, y, — 0) exp (ivt), (2a)

where, except for the time factor, w(x, y, z) is the z component of the velocity and A
is the effective slope of the streamline and v is the frequency of oscillation. The subscript
T refers to the top of the wing and the subscript B refers to the bottom of the wing. In
general wT and wB (or AT and AB) need not be related. A sign convention for Ar and As ,
adopted in Ref. 1 is also used here and is shown in Fig. 2.

From the definition of a purely supersonic region, there can be no disturbance in the
flow ahead of the line x = x^y). For any point P in Region I the velocity w is thus
known at every point on the plane z = 0 in the forward Mach cone from the point P.
On the wing w is given by Eq. 2 or Eq. 2a, ahead of the wing w = 0.

For a point Q in Region II conditions are more complex. As before, the velocity w
is given for that portion of the plane z = 0 in the forward Mach cone from Q which is
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covered by the wing by Eq. 2 or 2a. Also w = 0 and <p = 0 ahead of the line segments
x = x1(y) and Ov. Since x = x2(y) is a subsonic leading edge, there is, in general, an in-
teraction between the upper and lower surfaces which produces an upwash across the
plane z = 0 in Region III which is bounded by x = x2(y) and (to. This upwash cannot,
in general, be specified in advance. For this region the pressure must be continuous
across the plane z = 0 so the linearized boundary condition for this region is thus

(3)at ox dt dx

The boundary conditions on the plane z = 0 for a point Q in Region II are thus of a
mixed type, involving w over the wing, pressure over Region III and no disturbance
ahead of the lines Ov and x = a\(y).

u

Fig. 2. Sign convention of A's.

Elementary oscillating source potential. Elementary solutions of Eq. 1 which can be
superimposed to obtain more complex solutions can easily be obtained by the method
of separation of variables. For this purpose it is convenient to introduce the following
coordinate transformation:

r=[x2- fiV + z2)]1/2

W+i!)"1"I -
]-l/2

'

03 = tan (z/y), r = tfa[t -

(4)

where /32 = M2 — 1.

These space variables were found useful in the treatment of steady conical flows (Ref. 5).
The time transformation is similar to a combined Lorentz and Galilean transformation
and has been used by Miles (Ref. 6). In these coordinates Eq. 1 is

n2
=r2^ I 9,^ + 1

dr2 dr2 + dr + dfj.
(1 — 2\ ̂ 1 j_ 1 d2y> . .
" M ) a.. J + i _ „2 3..2- (5)dy.J 1 — yu da>

This is identical with the form of the classical wave equation in spherical coordinates.
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The solutions of Eq. 5, obtained by the method of separation of variables are

(cos mu) (P:GO) (r-1/2J_n_1/2(Zr)j
¥> = I] AlmA X (\ ? exp (±Ut), (6)

(sin mw) (0:W) ir'U2Jn+lJlr) )

where Z, m and n are the separation parameters. Pn(jx) and QTAp) are Associated Legendre
functions and J,(n+U2)(lr) is a Bessel function of order ±(n + 1/2).

For m = n = 0, a simple solution of Eq. 6 is

Vl = Ar~1/2J-i/t(lr) exp (ilr). (7)

If r is replaced by the physical time variable from Eq. 4, the Bessel function is written
in the trigonometric form and I is eliminated by the relation v = Iffa, Eq. 7 becomes

Ai (vr \ X. / Ux\
•" = - coswexp A'-w?) (8)

where At is a new arbitrary constant. Equation 8 may be considered as defining a super-
sonic oscillating source. This basic solution has been used in this form by Miles (Ref. 7).
If the basic solutions used by Garrick and Rubinow (Ref. 4) or by Evvard (Ref. 1) are
applied to oscillating problems, they can be reduced to this same form. It may be noted
that for v — 0 Eq. 8 reduces to the usual steady state source potential. The complete
velocity potential field for an oscillating source is defined by Eq. 8 in the downstream
Mach cone and as zero outside the Mach cone.

Velocity potential of an oscillating wing. For a point in the purely supersonic region
the velocity potential due to the wing can readily be obtained by replacing the wing

z

(?,y,z)

y i,  - (x-pz,y,o)

Fig. 3. Singularities or sources in the x, y plane, that affect conditions at (x, y, z) at instant t.

by a distribution of sources over the wing surface. If the region of dependence of a given
point includes only that portion of the wing which is purely supersonic, the velocity
potential for z > 0 due to the source distribution is thus

Hx, y, z, t) = /J Ar(V) exp ?)]} cos (^) ^ (9)

where
n = [(* - f)2 - fi2(y - v)2 - fcT2. (10)

Here AT(£, rj) is the source strength per unit area at the coordinate (£, on the wing
surface. The region of dependence, which determines the region of integration on the
wing surface, is bounded on the downstream side by the line r, = 0 (Fig. 3).
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If the source strength AT(ij, 17) can be chosen so the boundary conditions for the
purely supersonic region are satisfied, Eq. 9 is the proper solution. In order to do this
it is convenient to replace the integration variable 17 by

Ky ~ v) = ~r3 sin 6, (11)

where

r2 = [(* - £)2 - W2. (12)

With this notation Eq. 9 becomes

H%, V, z, t) = 1 exp (ivt) exp 0 ~ £>] $

X J y + ^ sin ej cos cos 0^ dd,
(13)

where & is the least value of £ on the leading edge. Since

dr2 ffz
dz r,'

3$ = —ttAt(x — fiz, y) exp (ivt)
az

(14)

l»x—pz r 'ivjj
- pz exp (ivt) exp [-^2 (a: - £)

x y +1 Bi° °)cos (fa cos').

i« (15)
I 2

dd.

If the function A r(£, 17) is continuous in the neighborhood of the point (x, y), the magni-
tude of the double integral in Eq. 15 is finite for sufficiently small values of z; so

f d$\lim I— j = — tAt(x, y) exp (ivt). (16)
e-* + 0 \uZ /

By comparison of Eqs. 16 and 2, it is seen that

At(x, y) = -- wT(x, y, + 0) = AT(x, y, + 0). (17)
7T 7T

For a point below the wing, z < 0, a similar analysis shows that

AB(x, y) = - wB(x, y, - 0) = —— \B(x, y, - 0) (17a)
7T IT

The required source strength, A (x, y) in the plane z = 0 is thus completely determined
for any point in the purely supersonic region. On the wing A(x, y) is given by Eq. 17 or
Eq. 17a. Ahead of the wing the disturbance (d$/dz)2_0 is zero; so A(x, y) = 0 in this
region. With these values of A(x, y), Eq. 9 defines the velocity potential and thus the
velocity components and the pressure on the wing. This analysis was given in a similar
form by Miles in Ref. 6 (some errors in his presentation were corrected in Ref. 7).
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The results of this analysis may be summarized in the following two theorems:

Theorem 1. The strength of the source at any point at any instant on the surface of
an oscillating wing is linearly dependent on the downwash at that point and at that
instant and is independent of the downwash of the neighboring points.

Theorem 2. The velocity potential at instant t, at a point P in the purely supersonic
region of the surface of a three-dimensional oscillating wing (Fig. 1) may be computed by

$(x, y, ± 0, t) = —^ exp (ivt) J exp j^-tV (x -J)]
(9a)

r+«,-f>„ Urfc v)\ cos {(y/ffaMx - Q' - ?(y - ,)»r1*-"" I"'"" cos \W(fa)[{x - & - 0\y - yf]U2\ ,
W, J [{x - *]2 - "2{y - ")2]1/2

top

X

where z = ±0 refers to the surface of the wing.

A mixed supersonic region may be converted into a "psuedo-purely supersonic region"
by Eward's procedure of inserting a diaphragm into Region III of Fig. 1 which is an
extension of the wing having the following properties:

a) It does not change the flow over the wing

b) It sustains no lift

With this supposition, the top and bottom surfaces of the wing may again be considered
to be independent so that Eq. 9a applies; however the diaphragm slope is in general an
unknown function which must be determined.

A part of the wing in Fig. 1 is shown enlarged in Fig. 4. In order to compute the

v=v,(u)
x = xi(y)

(xo,yD)
K,vd)

(x,y)
(Uw,vw)

X
Fig. 4. A portion of the wing in Figure 1

velocity potential at the point Q, it is convenient to first consider a point D located on
the trace of the upstream facing Mach cone from Q, in the diaphragm plane. Let the
unknown downwash and the effective slope of the streamline on the top surface of the
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diaphragm be wDT(xD , yD) and ADT(xD , yD) respectively. Then, by Eqs. 9 and 17, it is
found that

, Vn , + 0, t) = — - exp (ivt)
7T

X ff ft \ cos {(v/p2a)[(xD - £)2 - 0\yD - y)2]l/2\ ,
JJ Wr(k' V> [(*„ - f)2 - p\yD - jj)2]1/2 exp \iv(U/p2a2)(xD - £)]Ck ^
8 w

(18)
— - exp (ivt)

IT

v /T (t x cos {(y//3 a)[(x D - £) - p (yD - y) ) } , ,
X JJ wDt(H, n) [{XD _ Qi _ -,{yD _ ^ exp mu/^){xd _ {)] ̂  dV)

Sd

where Sw is the region of the wing and SD is the region of the diaphragm included in
the upstream facing Mach cone from D(xd , yD , + 0), at instant t. The regions of inte-
gration Sw and SD are most easily expressed in terms of the oblique u, v coordinates
defined as follows:

« = ^ ft - Pv), ? = (P + u),
or (19)

v = Yp ft + Pv), v = (t> - u),

With these coordinate transformations, the point (xD , yD) is transformed into (uD , vD),
where

M , /3 ,
Ud = 28 ^Xd ~~ Xd = M ^Vd U'

M , , „ . 1 ,
y° = 20 ^ Vd ^ M (Vd ~~ Ud)

(20)

The surface integral $D7. in Eq. 18 will now be integrated in the u, v plane. Then,
Eq. 18 becomes

du1 rD
$dt(Ud , VD , + o, t) = jtM exp (ivi> Jo (uB~ m)1/2 exp [(«V/^a)(w0 — u)]

 M/3a)[(MP — u){vD
(vD — i>)1/2 exp [(iv/0a)(vD — i>)]

r(u' Wr(u, v) cos {(2v/Mda)[(uD - u)(vD - v)]W2, ,
X  — ~/2 U- ..M   (''V

J (u)

(21)
du1 .

7xM 8Xp J0 (uD — u)W2 exp [(iv/fla)(uD — u)]

rD WDt(u, V) cos {(2v/Mpa)[(uD — u)(vD — t>)]'/2} ,
i„(«) (fc - f)I/2 exp [(iv/Pa)(vD — »)]

where wT(u, v) is the downwash on the top surface of the wing, wDt(u, v) is the down-
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wash on the top surface of the diaphragm, the area bounded by 0 < u < uD and v, (u) <
v < v2(u) is Sw , and the area bounded by 0 < u < uD and v2(u) < v < vD is SD (Fig. 4).

Similarly, for the corresponding point D(ud , vD , —0, t) on the bottom surface of
the diaphragm, it is seen that

1 .s rD du1
$db(ud ,vD,—0,t) = exp (ivt) J j———

u)1/2 exp [(iv/Pa)(uD — v)]

Mf3a) [(uD — u)(vr
) (Vd — v)1/2 exp [(w/Pa)(vD — v)]

x wB(u, V) cos {(2v/Mpd){{uD — u)(vD - t>)]1/2, ^
(w

+

(22)
du

\ 1/2
1 . fUD

ttM eX^ J0 (ufl — w)1/2 exp [{iv/ila)(uD — u)]

fv Vt

f"D wD„(u, V) cos {(2v/M/3a)[(iiD - u)(vD - v)]1/2\ ,
,<„) (VD — v)1/2 exp [(iv/pa){vD — w)]

Off the wing, the downwash must be continuous. In terms of the effective slopes of
the stream lines, this condition is, with the sign convention of Fig. 2,

ADt(u,v) = —A Db{u,v) = A D(u,v). (23)

From Eq. 3 it is found that in Region III

$dt{x, y, + 0, t) = y, - 0, t) + F(x - Ut, y), (24)

where F is an integration function. The foremost Mach cone (Fig. 4) from the origin,
0, represents a line of infinitesimal disturbance along which F(x — Ut, y) can be set
equal to zero at all times. F remains zero along y = constant lines for values of x not in-
tercepted by the wing (Ref. 1). Therefore, in Eq. 24, F may be put to zero. Behind a
trailing edge, F may be different from zero and the theory must be modified. Then, from
Eqs. 21, 22, 23 and 24 (with F = 0), it is seen that

du1 rD 
2 J0 (Ud u)in exp [(iv/fia)(uD — u)]

X/va^.u) L — -P y--;  -"j «-/ j ~ \_\wu "-y \y if v j j i 7
/.. .A 1/2   rt: in-\f M dv

1 («)

r"(u> [AB(u, v) — At(u, ;;)] cos \{2v / M fia)[(uD — u)(vB — i>)1'/2>
(vD — v)1/2 exp [(iv//3a)(vD — v)]

= r 
Jo (Md

du
(25)

u) exp [(iv/fia)(uD — u)}

['" AD(u, v) cos {(2v/Ml3d)[(uD — u)(vD - v)]W2\ ,
J„(u) (VD — v)1/2 exp [(iv/Pa){vD — y)]

When v — 0, this reduces to
l(u) AB(u, v) — AT(u, v)1 r du f -

2 J„ (uD - u)'1/2 J,lM (vD-v)1/2 dV

- [ "" du f'D AD(u, v)
Jo (Ud - U)l/2 Jv,w (vD - v)1/2 dV-

(26)
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Inasmuch as the limits of integration of the w-integrals are the same for all values of
uD and the integrals are "faltung" integrals, the two integrals with respect to v may
be equated along lines of constant u that extends across the wing and the diaphragm
(Fig. 4). Therefore,

f" A „(»,■>) _ [-« A .(y) - Af(yji ^
(pD - v) J,lM 2(vd - v)

This is the fundamental result of Ref. 2 and also is the basic equation of Ref. 3. The
above argument is valid because the terms containing uD do not appear in the v-integrals,
and hence Eq. 27 is true for all uD's on the line v = vD .

The parallel treatment of Eq. 25 would be possible if the terms containing {uD — u)
(vD — v) can be separated as in Eq. 26, under the integral signs. The present treatment
represents a first attempt towards this end. The isolation of terms containing (uD — u)
from terms containing (vD — v) such that the ^-integral is free of the (uD — u) factor,
may be accomplished by the following procedures.

The term {(vD — v) (uD — u) j1/2 vanishes at (un , vD), therefore Eq. 25 actually
should be

lim f
«—*o Jo

du
(uD — u)1 2 exp [{iv/fia)(uD — u)]

X / 17"—"-n-^dv
J Vi(u)

[Ab(m, v) — Ar(u, «)] cos {(2v/M/3a)[(uD — u)(vD — t>)]'/2)
2(vd — v)1/2 exp [(iv//3a)(vD — »)]

(25a)
 du 

_ Jo (uD - w)1/2 exp [(iv/Pa)(uD — u)]
6l-»0

Ad(m, v) cos {(2v/Mpg)[(uD — u)(vD — v)]1/2\ ,
J..M (Pd - v)l/2 exp [(iv/$a)(yD - v)]

The nature of the functions AB , Ar and \D must be such as to insure the existence of
the improper integrals. Thus, except for the singularity (uD , vD); in the finite integration
regions, the integrands are defined and bounded everywhere. Now, the circular functions
are defined by power series; in particular, the power series expansion of the cosine func-
tion is

cos*= (28)

The series (28) has the following properties (Ref. 8):

(1) It converges absolutely for all values of z (real and complex),
(2) It converges uniformly in any bounded domain of values of z, and consequently,
(3) It is a continuous function of z for all values of z.

Because of the uniform continuity, the cosine function in Eq. 25a may be expanded
in an infinite series and the orders of integration and summation may be inverted.
Thus
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y. (-)n(v/0a)2n(l/M)2\U2

hi n\T(n + 1/2)

v rD- (Up - tt)-v2 rfM f'U> [Ab(m, g) - Ar(«, a)l(*;D - v)n'1/2
x ™ Jo exp l(iv//3a)(uB - u)] J., o ___

= Z
exp [(w//3a)(MD - m)] J„m 2 exp [(iv//3a)(vD - t>)]

(-)"(v/i3a)2"(l/M)2V/2
n!r(n + 1/2)

(25b)

r- («B - M)-'/2 rD— ad(m, v)(vb - ^r-1/2
™ i0 exp [(iv/$a){uD - w)] (i_o J.,m exp [{iv/fia){vD — vj\ V'

With the conviction that the improper integrals under question exist, the "lim" signs
may be left out.

In Eq. 25b, unlike in Eq. 25a, the v-integrals do not contain uD terms, and the problem
has been reduced to one analogous to that of Eq. 26. Now, it may be pointed out that
since Eq. 25a is derived by equating the velocity potential on the top and bottom sur-
faces of the diaphragm in Region III (Fig. 4), the two sides of Eq. 25b may be con-
veniently considered as power series in (1 /M) of a potential function satisfying the
original linear differential equation, Eq. 1; consequently corresponding terms may be
equated.

Therefore, for constant value of vD , with n being any positive integer,

f"D AD(u, v)(vp — v) , __ j"'( [AB(u, v) — A?-(m, v)](vD — v) , (0<X\
Jv.M exp [(iv/t8a)(vD - v)] JtlM 2 exp [(iv/fia)(vD — v)]

In this system of simultaneous integral equations AB(u, v) and AT(u, v) are known
while Ad(m, v) is unknown. Consider, say, (N + 1) integral equations corresponding to
n = 0, 1, 2, • • ■ N. (Of course, in the limit, N —>&> ). In order that these (.¥ + 1) simul-
taneous equations may determine one unknown AD , it is necessary that the (N + 1)
equations are not mutually independent, that is, the (N + 1) equations are reducible
to one equation. In fact, this is true for the given system. For instance, when n — 1,
it is obtained from Eq. 29 that

l"D AD(u, v){vD - v)l/2 dv = ri(u) [Ab(m, v) — A?-(u, t>)1(yB - v)U2 dv ,
J..M exp [(iv/fia){vD - y)] 2 exp [(iv//3a)(vD — v)]

Carry out a differentiation of Eq. 30 with respect to vD . The result of this differentiation
plus (iv/^a) times Eq. 30 yields

f'D AD(u, v){vD — v)~1/2 dv = ra(u) [Ab(m, v) - AT(u, v)](vD — v)~1/2 dv . .
J,.m exp [(iv/i3d)(vD - v)] Jvi(u) 2 exp [iiv/^a)(vD — v)]

which is Eq. 29 for n — 0. Therefore, when AD satisfies Eq. 30, it also satisfies Eq. 31.
This argument can be carried on, by induction, to include the case for every n. Therefore,
the system given by Eq. 29 is consistent and determines an unique function AD .

For the determination of the contribution of the diaphragm on the velocity potential
at a point Q(uw , i'w , ± 0) on the top or bottom surface of the wing, it is not necessary
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to solve the integral equation, Eq. 29, explicitly. Let this contribution be called
$wD(uw , vw , ± 0, 0 (see Fig. 4). Then,

U , r' duu r, VW , ± 0, t) = exp (ivt) J

X

(■uw — u)1/2 exp [(iv/pd)(uw — u)]

rw AD(u,v) cos {
/ L. _ 1/2
""w AD(u, v) cos {(2v/Mpa)[(iiw — u)(vw — v)]l/2} dv

(vw — v) ' exp [(iv/fia)(vw — »)]
(32)

= ^ exp (ivt) t (-)"("/0a)2n(l/M)2nTrU2
tM P { } ti n!r(n + 1/2)

X
r' («y - m)"~1/2 rvw

J0 exp [(iv/fia)(uw — u)] J„M
"w Ad(m, z>)(?y — v)n 1/2

exp [(iv/Pa)(vw — t»)] '

where u' is the w-coordinate of the intersection point of the curves: v — v2(u) and v =
vw , i.e. v2(u') = vw ■

By comparing

f'w AD(u, v)(vw ~ v)"-1/2 , f"D AD(u, v){vD - v)"-1/2
J..(u> exp [(iv//3a)(vw - t>)] V W1 J„,(u) exp [(w/jSa)^ - »)] U'

it is seen that they are identical if every vD in the latter is replaced by vw . But the value
of vD along the v = constant line passing through the point (uw , vw , ± 0) is vw (Fig. 4).
Hence vD may be replaced by vw in Eq. 29 and Eq. 32 becomes

a < /• * ^ (—)"("/Pa)2n(l/M)2\1/2
$wD(uw , vw , ± 0, t) tM exP ^ 23 n]v{jl _|_ J/2)

r (UW - u)n~U2 du pM [Ab(m, v) - \T(u, v)](vw - v)n-1/2^
J0 exp [(w//3a)(w^ — m)] •/„,(„) 2 exp [(iv/0a)(vw — i>)]

f*u'

57^
(33)

_ A r' du= exp
ritf v"""v (iiif - u)W2 exp [(iv/f3a)(uw — v)\

f"M [Ab(m, v) — \T(u, v)] cos {(2v/Mpa)[(uw — u)(pw - f)]'/2} ,
•/»,(«) 2(v,r - y)1/2 exp [(w//3a)(tv - v)}

In Eq. 33 an important theorem is established. The theorem may be stated as follows:

Theorem 3. In the computation of the velocity potential at an instant t at a point
Q in the mixed supersonic region of an oscillating wing at supersonic speed, the contri-
bution of the diaphragm may be evaluated by Eq. 33. In other words, the contribution
of the diaphragm can be evaluated by an equivalent integration over a portion of the
wing surface. Now, the velocity potential $ at point Q on the top wing surface at instant
t may be computed. It is (Fig. 4)
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$(llw j Vw j H" 0, t)

du~J^exp (ivt) I
J0 (uw — u)1/2 exp [(iv//3a)(uw — u)]

r,(u) \A„(u, v) — AT(u, v)] cos {(2v/M/3d)[(uw — u)(vw — i?)]1/2} ,
2(vw - v)1/2 exp F(iv/Ba)(vw - f)l

U fu du
M /"^0jtM exp lv J0 (wir — U)1/2 exp [(iv/(3a)(uw — w)]

/»» (w) 'ctoi(tt)

u r
~ ttM eXP (ivt) l

(34)
r"("' A?-(m, t>) cos j(2y/M)3a)[(My — m)(z^ — fl)]'/2)

{vw — v)1/2 exp [{iv/fia){vw — v)]

du
(uw — u) exp [(ti>//3a)(uw — u)]

rW Ar(w, t>) COS f(2y/M^a)[(Mw. — tt)(t>ir ~ v)]W2} j
J..M (vw - v)w2 exp [(iv//Sa)(fw - »)]

In Eq. 34 the first surface integral represents the contribution from the diaphragm,
while the last two surface integrals are the contribution from the top surface of the wing.
By combining the first and second surface integrals, it is seen that

$(uw , vw , + 0, t)

u , r' duM ftM 6Xp J0 (uw — U)W2 exp [(iv/fia)(uw — u)]

x r — ' —
J »1 (u)

u rw
-rfexpMJ, -^1/2

"M [Ab(m, t>) + Ar(M, t>)] cos {(2v/M0a)[(uw — M)(ty — v)Y'2}
2(pw — v)1/2 exp [(iv/fia)(vw — w)] "" (35)

du
(uw — u) exp [(iv/ffa)(uw — w)]

" AT(u, v) cos \{2v/Mf3a)[(uw — u)(vw — *>)]1/2 )
v "W ») w wt "'■fv'jww wjyw "j j I j
x J,lM (Vw ~ V)1/2 exp l(iv/pa){vw - v)]

Eq. 35 may be restated in the following theorem:

Theorem 4. The velocity potential, in the mixed supersonic region on the top surface
of a three-dimensional oscillating wing, may be computed by Eq. 35 or, in the x, y co-
ordinates,

3>(x, y, + 0, 0 = — — exp (ivt)
IT

X ff [A,(t, y) + A rfe, y)] cos {(y/tfa) [(x - g)2 - /f(y - v)2]1/2} , ,
JJ 2[(x - a2 - 0\y - v)T2 exp [(ivU/[?a2)(x - ?)] ^5a)

« //

S IF l

_ R ovrl A' A ff At^> ^ cos Kp//32«)[(s - ^)2 - g2(y - 7?)2]'/2i dy di;
x exp <>0 JJ [(x _ ?)2 _ ^(j/ _ ^)2]i/2 exp [{ivU/fa*)(x _ f)] .
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where <SV, is the area bounded by 0 < u < u' and i\(u) < v < v2(u) and Sw, is the
area bounded by u' < u < uw and v^u) < v < vw .

The corresponding result for a point on the bottom surface of the wing may be
obtained by interchanging AT and AB . It may be noted that for a wing of zero thickness,
Ab(?, v) + Ar(i;, t]) = 0 so the integrals over (SV, vanish. The simple "equivalent area"
theorem established by Evvard in Ref. 2 for steady flows is thus seen to be valid for
oscillating flows.

Discussion. (A) In Ref. 4, the boundary value problem for the determination of the
velocity potential in the purely supersonic region of a wing in unsteady motion at super-
sonic speed was treated by source-superposition method in a quite general manner. In
fact, theorems 1 and 2 mentioned above are included in Garrick and Rubinow's results.
On specializing to considerations of an oscillating wing, the derivation of Eq. 16 becomes
very simple. The derivation of the same equation in Ref. 4 is more complicated.

(B) Since an arbitrary down wash function can usually be expanded as a Fourier
series, a harmonically oscillatory motion may be considered as a basis for building up
more general motion for a nonstationary wing. This paves the way to construct a proof
for a theorem applicable to more general nonstationary wings. Evvard, in Ref. 1, treated

Im v

Rl y

Fig. 5. Contour C in p-plane.

the general mixed boundary value problem by the source superposition method. His
results include the present theorems 3 and 4; however, his analysis was not carried
through to the present point.

(C) A particular type of motion which is of both theoretical and practical interest
and which demonstrates simply that theorems 3 and 4 apparently do not apply in the
simple equivalent area form to all nonsteady motions, is the so-called "unit step"
motion, in which a wing at rest starts abruptly at a certain instant and then maintains
a steady motion. For composition of the velocity potential for a wing with motion of
this nature, the "unit step" source will be useful. The "unit step" source can be derived
from an oscillating source by a contour integration in the v plane,
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fete V, z, t) - £ I e. 7 - ^ I cos (^) exp {»[( - ^ (X - ©]} f, (36)
where C is the contour shown in Fig. 5. By writing the cosine term in exponential form
Eq. 36 can be shown to yield

y, [4 - $? + j&) + »(< - ;$? - &)]' (36a)
where H(n) is the "unit step" function having the properly that

(l n > 0,
Hb) = < (37)

(.0 n < 0.

Now, draw a sphere of radius (at) enclosed in the circular cone from the "unit step"
source at (£, tj, f), with the center of the sphere located at a distance (Ut) from (£, rj, f)

Fig. 6. Region of influence of the "unit step" source at (£, if, f) at instant t.

(Fig. 6). Then the region of influence of the source is divided into three regions (by
Eq. 37),

(1) In region I, the influence is equivalent to that of a steady source.
(2) In region II, the influence is equivalent to that of a steady source of half strength.
(3) In region III, no influence of the source will be felt.

The region of dependence for a point (x, y, z) will consist of three similar regions.
Consider the lift problem of a rectangular flat plate wing performing a "unit step"

motion. Suppose that the velocity potential at a point S in the mixed supersonic region
near the wing tip is to be computed at an instant t1 , such that at{ < | y \ (Fig. 7). Ac-
cording to the above argument, the condition at <S will depend on both regions A and
B and the wing tip will have no influence. But in accordance with equivalent area form
of Theorem 4 the domain of dependence at S would exclude the shaded region in Fig. 7
in the computation of the velocity potential at S, at instant tx . This provides an example
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of the fallacy of the equivalent area interpretation of Theorem 4 for arbitrary non-
steady motions.

Therefore, theorems 3 and 4 are not directly applicable to "unit step" wings. This
fact is indicated (but not proved) by Eq. 36, because the operation of the contour inte-

u

lyi o

S(x,y)
Fig. 7. The wing tip region of a rectangular flat plate performing "unit step" motion at instant tt .

gration will carry the cosine function to infinity such that the argument of Eq. 25b
breaks down in the proof of Theorem 3.
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