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Summary 

The model of Haskell for explosion source time functions and spectra 
fails to satisfy data in the short-period band recorded teleseismically 
from the three Amchitka Island underground nuclear tests: LONG- 
SHOT, MILROW, and CANNIKIN. A more recent model due to 
Mueller and Murphy satisfies the data quite well. The difference in the 
two models is basically in the fall-off at high frequencies. A simple 
revision of Haskell’s model produces waveforms and spectra nearly 
identical to ones from Mueller and Murphy’s model. This revision 
requires velocity waveforms to have a rise time of extremely short duration 
at the elastic boundary, a premise validated by actual near-field 
measurements. 

Waveforms are derived from the revised Haskell model and the 
Mueller and Murphy model and illustrated for pressure at the elastic 
boundary, reduced displacement potential at the elastic boundary, and 
far-field displacement. Corresponding spectra are derived and illustrated, 

1. Synopsis of previous work on source spectra and yield scaling 

The response of an infinite homogeneous elastic medium to a pressure function 
acting on the boundary of a spherical cavity is well known (e.g. Sharpe 1942; Blake 
1952). The solution for simple time functions of pressure such as a step or a decaying 
pulse are straightforward. Recently attempts have been made to model the exact 
source time function for nuclear detonations with the aid of close-in empirical measure- 
ments. Among other reasons, we feel it is imperative to obtain a nearly exact model 
for the source function so that spectral ratios applied to the short-period band, from 
0.2 to 5cps, can be formed and analysed in an optimum manner for purposes of 
discrimination between explosions and earthquakes. 

Haskell (1967) formulated the source spectrum of an explosion by fitting a para- 
meterized function to actual displacement potential waveforms calculated from 
measurements just outside the elastic radius of underground nuclear explosions. The 
proposed function results in a far-field displacement spectrum which is asymptotic as 
the inverse of the fourth power of frequency (von Seggern & Lambert 1970). This 
fall-off entails a high-frequency scaling of displacement inversely proportional to the 
cube root of yield (i.e. large explosions emit less high frequency energy than small 
explosions) and a low-frequency scaling of displacement proportional to yield. 

Mueller & Murphy (1971) have formulated a model based on theoretical con- 
siderations of the medium response to an explosive source near the surface. The 
* Received in original form 1972 May 5 
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84 David von Seggern and Robert Blandford 

theoretical underpinnings are basically those of Sharpe (1942) and Blake (1952). 
The far-field displacement spectrum from these models is asymptotic as the inverse 
of the square of frequency for high frequencies. This entails a high-frequency scaling 
of displacement directly proportional to the cube root of yield, in contrast to 
Haskell’s model. The low-frequency scaling is the same as for Haskell’s; that is, 
displacement is proportional to yield. 

The purpose of this report is to compare the two models to data taken from 
teleseismic recordings of the three Amchitka Island underground tests. A full develop- 
ment of explosion functions will be made after reviewing the data; this will include 
representations for the pressure and displacement potential at the elastic radius of 
the explosion, the far-field displacement, and the spectrum of each of these functions. 
In this report we exclude the effects of the free surface on the theoretical source 
functions, and for comparison with theory we attempt to remove the free surface 
effects in the data. 

2. Body-wave scaling for Amchitka Island tests 

2.1. Scaling of first motion amplitudes for LONGSHO T, MILRO W and CANNIKIN 

We will compare the measured relative amplitudes of the P-wave for the three 
Amchitka Island tests with values calculated from the two theoretical scaling formulas 
under consideration. The reported yields of the three explosions are: LONGSHOT, 
80 kt; MILROW, 1000 kt; CANNIKIN, 5000 kt. In order to avoid the effects of the 
reflection from the surface, which is delayed approximately a half-second relative to 
the initial pulse for LONG SHOT (Cohen 1969) and more for the other two shots, 
we must use the unbiased amplitudes of the initial upward ground motion at the 
receiver. By measuring this first quarter-cycle of the P-wave at several common 
stations, von Seggern & Lambert (1972) determined the ratio of MILROW to LONG- 
SHOT amplitudes. We have repeated the same procedure with CANNIKIN and 
MILROW at seven common stations for which data could be obtained at the Seismic 
Data Laboratory; the measurements are listed in Table 1 along with the MILROW/ 
LONGSHOT ratios reported by von Seggern & Lambert for the same stations plus 
two additional high-quality stations. The average ratio of CANNIKIN to MILROW 
amplitude is thus estimated to be 2.56 and MILROW to LONGSHOT to be 6-68. 

From Haskell’s scaling theory for granite, we can calculate using the displacement 
spectrum formula as given by von Seggern & Lambert (1970) the relative amplitudes 
at a frequency of 1 cps. From Haskell’s work, one is not able to account for the 
effects of small changes in medium properties. The granite scaling is used because 
the Amchitka tests apparently follow the ‘ hard rock ’ magnitude-yield scaling at 
NTS (von Seggern & Lambert 1972). The amplitude ratios are calculated at 1 cps 

Station 
UBO 
LAO 
TFO 
KN-UT 
RK-ON 
CR-NB 
HN-ME 
BE-FL 
LC-NM 
Average 
Standard deviation 

Table 1 
Cannikin 
Milrow 

2.59 
2.70 
2.36 
2.63 
2.47 
2-01 
3-16 

2.56 
0.35 

- 

- 

Milrow 
Longshot 

7.94 
6.89 
5.59 
7.58 
5.98 

6.10 

6.71 
6.68 
0.86 

- 

- 
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Underground nuclear explosions 85 

because this agrees fairly well with the period of the first cycle of motion at all the 
stations for all three shots, There is a slight shift to lower frequencies for increasing 
yield though. The scaling ratio between two shots in granite at 1 cps is given by: 

u2 - Y2 [1+4n2 G 2  Yz*A2]) [1+4n2 G2 Y13]' 
u1 Yl [1+4n2 G 2  Yl*A2lt [1+4n2 G 2  Y 2 1  
- _ -  

where 

u = vertical displacement in far-field 

Y = yield 

G = 0.0185-constant for granite 

A = 1+24B 

B = 0-24-constant for granite, 

Calculations using (1) give a ratio of MILROW to LONGSHOT amplitude of 5.60 
and a ratio of CANNIKIN to MILROW amplitude of 1.28. 

The scaling theory of Mueller & Murphy (1971) involves considerably more 
terms which must be estimated from available data. Their scaling relation between 
two shots in different media at different depths at 1 cps is given by: 

16n4 P12 + (1 -2P1) 4n2 +cool4 
16x4 A' + (1 - 2p2) 4n2 oo22 + wo: 

where 

re, = elastic radius 

c = compressional-wave velocity 

p = rigidity modulus 

00 = C/re1 
p = (1+2p)/4p (A is LamC's constant) 

E = cloo (a being approximately 2 for granite) 

pos = 1.5 pgh ( p  is density, g is gravitational acceleration, and h is depth) 

poc = (4p/3) (rc/reJ3 (r, is final cavity radius). 

The value pos is the initial pressure, and poc  is the residual pressure at large t .  Several 
assumptions must be made now. We first assume A = 2p thus making P = 1 .  
(Letting 1 = p instead would not change the scaling significantly.) We then utilize 
the re, and rc scaling relations of Mueller & Murphy (1971, equations (15) and (19)) 
in a rhyolite medium; the two radii scale approximately as the cube root of yield, 
with dependence on depth and elastic parameters also. For the LONGSHOT site, 
at the detonation depth of 0.70 km we use c = 3.5 km s-l as indicated by the velocity 
log at the LONGSHOT site (U.S. Army Engineers 1965). For the MILROW site, 
at the detonation depth of 1.22 km we use c = 4-0 km s-l  as indicated by the velocity 
log prepared by Snyder (1969). We do not as yet know the velocity at the CANNIKIN 
site; but using an accepted velocity-depth law of c = co+a(h-h,) where c is the 
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86 David von Seggern and Robert Blandford 

Table 2 
Milrow Cannikin 

Longshot Milrow 
Amplitude Magnitude Amplitude Magnitude 

ratio difference ratio difference 
Measured data 6.68 0.82 2.56 0.41 
Haskell’s Model 5.60 0.75 1.28 0.11 
Mueller & Murphy’s Model 4.93 0.69 2.23 0.35 

estimated velocity for the CANNIKIN detonation point of 1.81 km, co is the 
MILROW velocity of 4-0 km s-’, and a = 1 km s-’ km-l, we obtain a velocity of 
4.6 km s-’ for CANNIKIN. Using the relation A = 2p, we can calculate the rigidity 
moduli for all three sites; LONGSHOT, 7-4; MILROW, 10.6; CANNIKIN, 12.7. 
To calculate the peak pressures, pos, we use p = 2.4 g cm-3 at all three sites as indi- 
cated by the fairly constant density-depth profile at the LONGSHOT site (U.S. 
Army Engineers 1965). The remainder of the parameters in (2), E ,  wo, and poc,  can 
now be calculated. Application of (2) then to the three tests results in predicted 
amplitude ratios of MILROW to LONGSHOT of 4.93 and of CANNIKIN to 
MILROW of 2.23. 

Table 2 summarizes the observed and calculated amplitude ratios. Both the 
scaling relations of Haskell and Mueller & Murphy agree with the actual MILROW 
to LONGSHOT amplitudes quite well. For CANNIKIN to MILROW, however, 
Haskell’s scaling is significantly in error while that of Mueller and Murphy agrees 
very well with the data. 

For three reasons the above comparisons cannot be entirely convincing in 
supporting Mueller and Murphy’s scaling relation over Haskell’s. Firstly, the change 
in the spectral shape with increasing yield in conjunction with the frequency 
response of the short-period recording systems may distort the measured relative 
amplitudes; however, we have estimated that this effect cannot be more than approxi- 
mately 0.1 for the magnitude difference. Secondly, the number of assumptions and 
estimations required in applying Mueller & Murphy’s scaling relation calls for con- 
siderable error limits on its results. Thirdly, Haskell’s theory allows for no com- 
parison between shots at different depths and in media other than the four which he 
examined and is therefore not a general scaling theory, although depth dependency 
could easily be incorporated using Mueller and Murphy’s depth scaling relations, 
in particular, that for re,. 

2.2. P-wave spectral ratios at RK-ON 

To reinforce the results of the comparison using initial P-wave amplitude data, 
we will examine the entire short-period band of the recorded P-waves from CAN- 
NIKIN, MILROW, and LONGSHOT and compare this with spectral calculations 
from the two proposed scaling relations. 

Specifically, we examine the spectra of LONGSHOT and MILROW P waves 
at RK-ON as shown by von Seggern & Lambert (1972). RK-ON was chosen among 
many stations because the signal is above the noise out to 6 cps even for LONGSHOT 
and because the modulation of the spectra by the surface reflection is nearly ideally 
exemplified in both cases. We can remove the effect of the surface reflection when 
we merely smooth over these modulations by connecting adjacent spectral peaks 
with straight lines to get the spectra shown in Fig. 1. The CANNIKIN P-wave 
spectrum was then formed in the same manner and is also shown in Fig. 1. All the 
spectra were computed from the first three or four seconds of signal. The unexpected 
rise in the CANNIKIN spectra at high frequencies is due to the recording system 
which had been changed for the CANNIKIN event at RK-ON; this noise is evident 
preceding the CANNIKJN signal. From these smoothed spectra, we calculate 
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FIG. 1 .  RK-ON smoothed acceleration spectra for LONGSHOT, MILROW, and 
CANNIKIN. 

FIG. 2. Theoretical and observed displacement ratios for LONGSHOT, MILROW, 
and CANNIKIN. 
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88 David von Seggern and Robert Blandford 

a.mplitude ratios of MILROW to LONGSHOT and CANNIKIN to LONGSHOT at 
0.5 cps intervals and plot them as in Fig. 2. Note that we have neglected to calculate 
empirical CANNIKIN to LONGSHOT ratios beyond 4 cps due to the predominance 
of noise in this portion of the CANNIKIN spectrum of Fig. 1. In  addition, the 
amplitude ratios at long periods can be obtained from the Rayleigh waves; and 
we plot these at 0 . 0 5 ~ ~ ~  in Fig. 2. Using Haskell's scaling relation for 80, 1000 
and 5000 kt shots in granite, we compute the spectral ratios shown in Fig. 2. Using 
a revision of Haskell's model to give a fall-off at high frequencies proportional to the 
inverse of frequency squared as in Mueller and Murphy's model, we calculate the 
ratios shown in Fig. 2 which agree remarkably well with the actual data. (This 
revision will be discussed in the next section, but its form is nearly equivalent to 
Mueller & Murphy's, and a full extension of equation (2) across the band from 
0.5 to 5 cps would produce lines nearly identical to the dotted ones shown in Fig. 2.) 

The results of comparing spectral ratios at one station and first motion ampli- 
tudes at several stations together affirm the validity of the model of Mueller & 
Murphy and cast doubt on the validity of Haskell's model. In the next section we 
will delineate the essential physical differences of the explosive source mechanism 
as inferred by the two models and develop general forms for representing the source 
time functions and spectra. 

3. Generalized forms for explosive source time functions and spectra 

3 .1 .  Haskell's original forniulation 

Haskell (1967) formulated his model by fitting curves of the type 

where $(a) is the asymptotic value for large t, to reduced displacement potentials 
calculated from data taken just outside the elastic radius of several underground 
nuclear detonations. As stated by him, the form of this function was chosen so as to 
make displacement, velocity, and acceleration functions continuous at t = 0 (t is 
the retarded time referred to the elastic boundary). This entails, as shown by von 

2 

0 

Time ( s )  

FIG. 3. Observed and analytic displacement potentials for granite (from Haskell 
1967) compared to a revised anaIytic model which assumes a discontinuity in 

acceleration and velocity at the elastic radius. 
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Underground nuclear explosions 89 

Seggern & Lambert (1970), the dependence at high frequencies for the far-field 
displacement spectrum. Haskell's curves according to (3) are apparently excellent 
fits to the data he shows. We reproduce his example for a granite medium in Fig. 3. 
However, note that at the beginning of the waveform, which is the critical area in 
relation to the fall-off of the high-frequency portion of the spectrum, his analytic 
curve has a slope significantly less than the real slope. We feel that Haskell's require- 
ment of continuous acceleration and velocity at the elastic radius is physically too 
restrictive, and therefore we can safely assume the more idealized case where 
acceleration and even velocity are discontinuous at  the elastic boundary of the 
medium surrounding the explosion. These may not be exact discontinuities, but the 
jump should occur in a time span which is nearly instantaneous relative to the 
frequency band under consideration. Numerous particle velocity recordings outside 
the elastic boundary of underground nuclear shots (e.g. GASBUGGY in Perret 
1972) show that the velocity takes a large initial jump in a time span on the order of 
0.01 s. 

3 . 2 .  Revision of Haskell's model 

By removing the quartic and cubic terms from (3), we remove the constraints 
of continuous acceleration and velocity in the near field. Then we propose a source 
model by fitting the function 

to the same data as used by Haskell. Values of k and B will then differ from those 
published by Haskell using (3). For the granite case in particular, we get new values 
of k = 16-8 at 5 kt and B = 2.04 by requiring that (4) fit the peak of the measured 
potential and the asymptotic long-time value $(a). Several calculated points of this 
curve are shown in Fig. 3. 

The reduced displacement potential (4) and the pressure function on the elastic 
radius are related by (Rodean 1971, equation (4.17)): 

where b is the shear velocity. Using (4) in (9, we obtain 

where A' = 2B+ 1, and we have assumed k = yc/r,,. By equation 4.22 of Rodean 
(1 971), we have for w small in the frequency domain or t large in the time domain: 
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Applying this relation to (6) results in: 

David von Seggern and Robert Blandford 

2 2  

+ [- =(48+l)+yA'--l 
4b2 

We desire an expression for the far-field displacement also; this can be derived 
from the reduced displacement potential (4) if we employ this relation (Rodean 1971, 
equation (4.16)): 

(9) dt 

For the far-field displacement, we ignore the second term in (9) and thus have 

Substituting (4) in (10) then gives 

cr 
___ u(t) = -k2 te-k'(Bkt-A'). 
*(a) 

Equations (8), (4), and (1 1) give the pressure, reduced displacement potential, 
and far-field displacement waveforms. The parameter k is medium dependent; and 
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FIG. 4(a). Pressure waveforms at the elastic boundary calculated from revised 
Haskell's model. (b) Reduced displacement potential waveforms at the elastic 
boundary calculated from revised Haskell's model. (c) Far-field displacement 

waveforms calculated from revised Haskell's model. 
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92 David von Seggern and Robert Blandford 

we assume, as did Haskell, that it scales as the inverse cube root of the yield. B is a 
medium-dependent parameter which defines the amount of overshoot in the reduced 
displacement potential wave-form. In Fig. 4(a), (b) and (c) we show (8), (4), and 
( t  l), respectively, as a function of the dimensionless parameter kt for five values of 
B :  0, 1 ,  2, 3, and 4. We have set y = 1 and b/c = 3 in equations (8) and (4). The 
case B = 2 for the reduced potentials in Fig. 4(b) closely corresponds with the fit 
of (4) to the granite data of Haskell in Fig. 3 when B was calculated to be 2.04. It 
appears that equation (4) then can fit observed potentials as well as Haskell’s original 
function, equation (3). Not only does the elimination of quartic and cubic terms 
from Haskell’s function produce a more physically satisfying function as explained 
above, but it does so without suffering any significant loss of fitting capability. 

Spectra of the above three functions for pressure at the elastic radius, reduced 
potential at this radius, and far-field displacement can be derived. Only the far- 
field displacement spectrum should be of interest though; taking the Fourier trans- 
form of (I l ) ,  its form is: 

fl 

Equation (12) is plotted in Fig. 4 as a function of the dimensionless parameter w/k 
for B values of 0, 1, 2, 3 and 4. Note that the required w-’ fall-off of the displace- 
ment spectra at high frequencies is present and that the overshoot in the displacement 
spectra is proportional to B. 
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Underground nuclear explosions 93 

3.3. Mueller & Murphy’s fornzulntion 

relations. They assume the arbitrary form 
Mueller & Murphy (1971) take a slightly different approach in deriving scaling 

1 
P O C  
- o(t) = p exp (-awe t )+ 1 (13) 

for the pressure at the elastic radius where p = po/poc and p o  = pos-poc (po, and 
poc are defined as for equation (2)) whereas Haskell began with an arbitrary form for 
reduced displacement potential. To derive the reduced displacement potential from 
the pressure function, we transform (13) into the frequency domain, apply equation 
(4.19) in Rodean, and inverse transform back to the time domain to get the reduced 
potential function. Jnverse transforms #0.011 and #0.101 in Nixon (1960) are 
employed with the damping coefficient (b/c in this case) set to one-half. The reduction 
is straightforward, but tedious, and we give only the final result: 

exp (-ao0 t )+l .  (14) 
1-a+a2 

The far-field displacement is obtained by use of (10) as before: 

cr 
__ u( t )  = coo exp ( -wo t /2 )  { pa  cos (O-8660,r) 
$(a) 1-a+a2 

The pressure (13) could be plotted as a function of the dimensionless parameter 
swot, but the reduced displacement potential (14) and the far-field displacement (15) 
cannot. Thus in fitting observed reduced potentials, Mueller & Murphy’s formula- 
tion requires the additional parameter a to be estimated. The parameter c(wo 
corresponds to k in Haskell’s formulation, and the parameter p here corresponds to 
his 2B. In  Fig. 6(a), (b) and (c), we show the plots of (13), (14) and (15), respectively, 
as a function of o0 t for a = 2 when p is assigned values of 0, 2, 4, 6 and 8. Several 
other values of a were used, but a = 2 is the value Mueller & Murphy suggest for 
rhyolite, which is compositionally close to granite. For a = 2 and p = 4 in the 
reduced potentials of Fig. 6(b), the curve closely corresponds in amplitude to the 
revised Haskell potential in Fig. 4(b) when B is taken to be 2, approximately the 
value we obtained when fitting (4) to the granite data shown in Fig. 3. This shows 
the analogy of p to 2B. 

The far-field displacement spectrum follows from (15) by Fourier transformation: 
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FIG. 6(a). Pressure waveforms at the elastic boundary calculated from Mueller & 
Murphy’s model. (b) Reduced displacement potential waveforms at the elastic 
boundary calculated from Mueller & Murphy’s model. (c) Far-field displacement 
waveforms at the elastic boundary calculated from Mueller & Murphy’s model. 

In Fig. 7 we plot (16) for ci = 2 with p set from 0 to 8 again. Comparison of Fig. 7 
with p = 4 to Fig. 5 with B = 2 shows the similarity of the revised Haskell model 
and the Mueller & Murphy model for a granite-rhyolite medium. This similarity is 
evident in the spectral formulas if we let k = yo, in (12) to obtain: 

and compare this with (16). For o small (16) and (17) give equivalent spectral 
densities when p = 2B; but for o large the revised Haskell spectrum would be a 
factor of y 2  larger for a given w/oo when p = 2B. If, however, we assume y = ~42, 
then this factor is exactly one for the granite case and the predicted far-field displace- 
ment spectra are equivalent for the two models. That a value of y = 1 is indeed 
correct for granite in the revised HaskeIl model follows from the definition y = rel k/c 
when appropriate values are substituted. A value of re, = 0.37 km is taken for 
LONGSHOT (Mueller & Murphy 1971, equation (15)); a value of 3.5 is taken 
for c as stated earlier in this paper; and k, 16.8 for a 5 kt explosion at 0.29 km 
(HARDHAT), is scaled to 80 kt and 0.70 km for LONGSHOT to get k = 9.6 
(Mueller & Murphy 1971, equation (14)). These values result in y = 1.02, 
approximately the desired value. 
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FIG. 7. Far-field displacement spectra calculated from Mueller & Murphy's model. 

4. Discussion 

Using teleseismic data, we have shown that a model for the explosion source 
function which entails a far-field displacement spectrum that is proportional to o-' 
at high frequencies is the proper choice. Mueller & Murphy (1971) have already 
verified this model using near-field data. Haskell's requirement that acceleration and 
velocity be continuous at  the elastic boundary around the explosion is unnecessary; 
they certainly can be considered as discontinuous for any part of the spectrum 
capable of being measured teleseismically. We mention that the o-' dependence at 
high frequencies is characteristic of earthquake models also (Aki 1967; Brune 1970). 

We have revised Haskell's formulation to obtain an w-' model and found that 
the fit to observed potentials is apparently as good as with his original 0-4 model. 
We have used Mueller & Murphy's formulation for the pressure function at the 
elastic radius to derive reduced potential and far-field displacement waveforms. 
Waveforms and spectra for the two o-' models are similar. Observed waveforms 
can be fit by adjusting the parameters in either model. Especially important is 
estimation of the parameter p (or B) which is the ratio of the overshoot pressure po  
to the residual pressure poc  at the elastic boundary. This value controls the peak 
in the far-field spectra and affects spectral ratios in the band around 1 cps. These 
pressures can be estimated using the relations in equation (2) as taken from Mueller 
& Murphy. The parameter oo also controls the spectral shape near 1 cps, but its 
effect is predictable since wo = c/rel and re, scales as the cube root of yield when 
detonation depths are equal (Mueller & Murphy 1971). 
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