
Abstract 

Many tasks in software engineering can be characterized as 
source to source transformations.  Design recovery, software 
restructuring, forward engineering, language translation, 
platform migration and code reuse can all be understood as 
transformations from one source text to another.  TXL, the Tree 
Transformation Language, is a programming language and 
rapid prototyping system specifically designed to support rule-
based source to source transformation.  Originally conceived as 
a tool for exploring programming language dialects, TXL has 
evolved into a general purpose source transformation system 
that has proven well suited to a wide range of software 
maintenance and reengineering tasks, including the design 
recovery, analysis and automated reprogramming of billions of 
lines of commercial Cobol, PL/I and RPG code for the Year 
2000.  In this paper we introduce the basic features of modern 
TXL and its use in a range of software engineering applications, 
with an emphasis on how each task can be achieved by source 
transformation.

1. Background

Many tasks in software engineering and maintenance can be 
characterized as source to source transformations.  Reverse 
engineering or design recovery [1] can be cast as a source 
transformation from the text of the legacy source code files to 
the text of a set of design facts.  Software reengineering and 
restructuring [2] can be cast as a source transformation from the 
poorly structured original source code text to the better 
structured new source code.  Forward engineering or 
metaprogramming [3], can be cast as a transformation from the 
source text of design documents and templates to the 
instantiated source code files.  Platform translation and 
migration tasks are easily understood as transformations from 

the original source code files to new source code files in the new 
language or paradigm.  And code reuse tasks can be 
implemented as a source transformation from existing, tested 
source code to generic reusable source code modules.

While many other methods can be applied to various parts of 
these problems, at some point each of them must involve dealing 
with actual source text of some kind at each end of the process.  
In this short paper we describe our experiences with attempting 
to tighten the relationship between the source text artifacts at 
each end of the processes by experimenting with actually 
implementing these and other software engineering tasks using 
pure source text transformations in the TXL source 
transformation language [4,5].  The experience we report is a 
summary of the results of many different projects over the past 
ten years, culminating with the success of the approach in 
addressing the difficulties associated with the famous 
"millennium bug" for over three billion lines of source code.

2. Overview of TXL

TXL is a programming language and rapid prototyping 
system specifically designed to support structural source 
transformation.  Source text structures to be transformed are 
described using an unrestricted ambiguous context free grammar 
in extended Backus-Nauer (BNF) form, from which a structure 
parser is automatically derived.  Source transformations are 
described by example, using a set of context sensitive structural 
transformation rules from which an application strategy is 
automatically inferred.

In order to give the flavor of the by-example style of TXL, 
Figure 1 shows a transformation rule for the base step of a 
transformation to vectorize sequences of independent scalar 
assignments in a Pascal-like programming language.  The rule 
searches for sequences of statements that begin with two scalar 
assignments that are independent of each other, and replaces 
them with a single vector assignment that assigns both in 
parallel.  This rule is the base case of a set of rules that 
inductively maximizes vectorization of sequences of scalar 
assignments.  The other rules extend existing vector assignments 
by merging subsequent independent assignments into them.
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2.1. The TXL Processor

The TXL processor is a compiler and run time system for 
the TXL programming language that directly interprets TXL 
programs consisting of a grammatical specification of the 
structure of the input text and a rooted set of structural 
transformation rules to implement a source to source 
transformation.  The result is a rapid prototype of the source 
transformer described by the rules that can be used immediately 
on real input (Figure 2).

2.2. Grammatical Notation -
       Specifying Source Structure

TXL uses a BNF-like grammatical notation to specify source 
structure (Figure 3).  In order to keep the notation lightweight 
and in a by-example style, terminal symbols of the input, for 
example operators, semicolons, keywords and the like, appear 
simply as themselves.  Quoting of terminal symbols is allowed 
but not required except in cases where terminal symbols of the 
target language are keywords or special symbols of TXL itself.  
References to nonterminal types defined elsewhere in the 
grammar appear in square brackets [ ].  The usual set of BNF 
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Figure 2.  The TXL Processor.

The TXL Processor automatically implements source 
transformations written in the TXL language.

rule vectorizeScalarAssignments
   replace [repeat statement]
       V1 [variable] := E1 [expression];
       V2 [variable] := E2 [expression];
       RestOfScope [repeat statement]

   where not
       E2 [references V1]
   where not
       E1 [references V2]

   by
       < V1,V2 > := < E1,E2 > ;
       RestOfScope
end rule

Figure 1.  Simple Example TXL Transformation Rule.

The replace clause gives the pattern for which the rule 
searches by example in actual source text, binding names to 
parts (such as the [expression]s) which may vary in each 
instance.  The by clause gives the transformed result in similar 
style, using the bound names to transfer parts from the matched 
pattern.  The where clauses specify additional semantic 
constraints on when the rule can be applied.

define program               % goal symbol 
    [expression]             % of the grammar   
end define

define expression            % general 
    [term]                   %   recursion
  | [expression] + [term]    % & ambiguity
  | [expression] – [term]    %   supported
end define

define term  
    [primary]                 
  | [term] * [primary]          
  | [term] / [primary]      
end define  

define primary
    [number]
  | ( [expression] )
end define

Figure 3.  Simple Example of a TXL Grammar.

Terminal symbols such as +, -, *, / and the parentheses in the 
definitions above represent themselves.  References to 
nonterminal types are denoted by square brackets, as in 
[expression] above.  TXL comments begin with % and continue 
to the end of the line.

comments 
    /*   */
    //
end comments

compounds 
    :=  <=  >=  ->  <-> 
end compounds 

tokens 
    hexnumber  "0[Xx][\dABCDEFabcdef]+"
end tokens 

keys 
    program procedure function 
    repeat until for while do begin 'end
end keys 

Figure 4.  Specifying Lexical Forms in TXL.

Lexical forms specify how the input text is to be partitioned into 
the terminal symbols (tokens) of the source language.  The 
comments section specifies commenting conventions of the 
input language, the compounds and tokens sections how 
sequences of characters are to be grouped into terminal 
symbols, and the keys section specifies which symbols are to be 
considered keywords rather than identifiers.



extensions for sequences, written as [repeat X] for sequences of 
nonterminal [X], optional items, written as [opt X], and comma-
separated lists of items, written as [list X], are available.

Lexical specification is by regular expression patterns in 
special tokens and compounds sections, and keywords can be 
distinguished using a keys statement [Figure 4].  A large set of 
predefined nonterminal types for common lexical forms, 
including identifiers [id], string literals [stringlit], numeric 
literals [number], and so on are built in to TXL.  Comments of 
the source language can either be ignored (which is the default) 
or specified in the grammar and parsed as part of the input.  

White space such as spaces, tabs and newline characters in 
the input are normally treated as separators only and ignored, 
but may optionally be treated as significant and parsed when 
necessary (for example, when the transformation must preserve 
spacing in XML documents).

2.3. Rule Notation - Specifying a Transformation

TXL transformation rules are specified using a by-example 
pattern notation that binds matched items by name in the pattern 
and copies them by name in the replacement (Figure 5).  Pattern 
variables are explicitly typed using the square bracket 
nonterminal type notation.  For example X[T] binds a pattern 
variable named X of nonterminal type [T].  

Pattern variables may be used in the replacement to copy the 
item bound in the pattern into the result of the rule.  Variables 
copied into the replacement may optionally be further 
transformed by subrules using the notation X[R], where R is the 
name of a transformation rule.  Subrule invocation has the 
semantics of function application - in traditional functional 
notation, the TXL subrule invocation X[R] would be written 
R(X), the composed subrule invocation X[R1][R2] would be 
written R2(R1(X)), and so on.  

Each transformation rule searches its scope (the item it is 
applied to) for instances of its pattern and replaces each one 
with an instance of its replacement, substituting pattern 
variables in the result.  Patterns and replacements are source text 
examples from which the intended structure trees are 
automatically inferred by the TXL parser (Figure 6).  Rules are 
applied using a highly efficient tree search of the input parse tree 
for instances of the pattern parse tree, avoiding the overhead of 
text processing and reparsing. 

TXL rules automatically reapply to their own result until no 
further matches are found - that is, a rule is automatically 
composed upon itself until a fixed point is reached.  Thus from 
the inside a TXL rule acts like a pure term rewriting rule, while 
from the outside it acts like a pure function of an explicit 
argument.  This semantics gives TXL rules the flavor and 
simplicity of term rewriting systems while at the same time 
avoiding traditional difficulties in restricting the scope of 
application.  By structuring the rule set into a first order 
functional program, control over scope and order of rule 
application is both explicit and convenient.

Transformation rules are constrained to preserve 
nonterminal type in order to guarantee a well-formed result - 
that is, the replacement of a rule must be of the same 
nonterminal type as its pattern.  While this may seem to limit 
rules to homogeneous transformations, in fact, by exploiting the 
use of ambiguous forms and grammar overrides [REF], TXL 
supports arbitrary heterogeneous transformations as well. 

TXL rules can be parameterized to use items bound from 
previous pattern matches in their patterns and replacements 
(Figure 7).  Parameters bind the values of variables in the calling 
rule to the formal parameters of the subrule.  Using parameters 
to provide structures matched in higher level rules for use in the 
patterns and replacements of lower level rules allows complex 
transformations involving large scale reorganization of source 

rule resolveAddition
   replace [expression]           % target 
                                  % type

      N1 [number] + N2 [number]   % pattern to 
                                  % search for
   by
      N1 [+ N2]                   % replacement  
                                  % to make
end rule

Figure 5.  Simple Example of a TXL Transformation Rule.

The replace clause specifies the target nonterminal type to be 
transformed and the by-example pattern to be matched.  The by 
clause specifies the by-example replacement to be made for the 
matched pattern.  Because rules are constrained to preserve 
structure, both the pattern and the replacement must be 
parseable as the target type.  The square bracket notation is 
used in the pattern to specify type and in the replacement to 
specify subrule invocation.

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

N2: [number] (v2)

N1: [number] (v1)

[expression]

[primary]

[term]

[number] (v1+v2)

Figure 6.  Semantics of the Simple Example Rule in Figure 5.

The example source text given for the pattern and replacement 
of a rule are parsed into structure tree patterns which are 
efficiently matched to subtrees of the parse tree of the input to 
the transformation.  Because rules are constrained to preserve 
nonterminal type, the result is always well formed.



structures to be specified.  Because TXL is a pure functional 
language, all parameters are by value - use of a formal parameter 
in a rule implies a copy of the tree to which it is bound.

Pattern matches can be stepwise refined using deconstruct 
clauses, which constrain bound variables to match more detailed 
patterns (Figure 8).  Deconstructors may be either shallow, 
which means that their pattern must match the entire structure 
bound to the deconstructed variable, or deep, which means that 
they search for a match embedded in the item.  In either case, 
deconstructors act as a guard on the main pattern - if a 
deconstructor fails, the entire main pattern match is considered 
to have failed and a new match is searched for.

Semantic constraints on pattern matches are specified using 
where clauses, which can impose arbitrary additional constraints 
on the items bound to pattern variables (Figure 9).  Where 
clauses use a special kind of TXL rule called a condition rule.  
TXL condition rules have only a pattern, usually with additional 

refinements and constraints, but no replacement - they simply 
succeed or fail (that is, match their pattern or not).  A number of 
built-in condition rules provide basic semantic constraints such 
as numerical and textual value comparison of terminal symbols.  
The sorting rule in Figure 9 uses the numerical comparison 
built-in for “greater than” to test the value ordering of the 
numbers represented by the [number] terminal symbols matched 
in its pattern.

Replacements can also be stepwise refined, using construct 
clauses to build results from several independent pieces (Figure 
10).  Construct clauses provide the opportunity to build partial 
results and bind them to new variables, thus allowing subrules to 
further transform them in the replacement or subsequent 
constructs.  Constructors also provide the opportunity to 
explicitly name intermediate results, aiding the readability of 
complex rules.

rule resolveConstants
   replace [repeat statement]
      const C [id] = V [expression];
      RestOfScope [repeat statement]
   by
      RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id] 
                    Value [expression]
   replace [primary]
      ConstName
   by
      ( Value )
end rule

Figure 7.  Using Rule Parameters to Reorganize Source.

This example demonstrates the use of rule parameters to 
implement rules that depend on items bound in previous 
patterns.  In this case the second rule implements inlining of 
constant values by searching for [primary] references that 
match the identifier of a named constant, and replaces each 
such reference with the constant's value.  The first rule insures 
that this is done for every declared named constant.

rule foldFalseIfStatements
   replace [repeat statement]
      IfStatement [if_statement] ;
      RestOfStatements [repeat statement]
   deconstruct * [if_condition] IfStatement
      IfCond [if_condition]
   deconstruct IfCond
      false
   by
      RestOfStatements
end rule

Figure 8. Constraining Variables to More Specific Patterns.
The deconstruct clause allows for stepwise pattern refinement.  
The first deconstruct in the example above constrains the item 
bound to IfStatement to contain an [if_condition], which is 
bound to the new pattern variable IfCond.  The second 
deconstruct constrains IfCond to be exactly the identifier false.  
If either deconstruct fails, the entire pattern match fails and the 
scope is searched for another match.

rule sortNumbers
   replace [repeat number]
      N1 [number] N2 [number] Rest [repeat number]
   where
      N1 [> N2]
   by
      N2 N1 Rest
end rule

Figure 9.  Semantic Constraints on Bound Variables.
The where clause constrains items bound to pattern variables 
using a (possibly complex) set of subrules.  In the rule above, 
the number bound to N1 is constrained to be greater than the 
number bound to N2, otherwise the pattern match fails.  (This 
rule is the entire specification for bubble sorting a sequence of 
numbers in TXL.)

rule addToSortedSequence NewNum [number]
   replace [repeat number]
      OldSortedSequence [repeat number]

   construct NewUnsortedSequence[repeat number]
      NewNum OldSortedSequence     
   by
      NewUnsortedSequence [sortFirstIntoPlace]
end rule

Figure 10.  Stepwise Creation of Replacements.
The construct clause provides the ability to create and bind 
intermediate results for use in the replacement or subsequent 
constructs.  The binding to new variables provides the ability 
to invoke subrules on intermediate results, allowing for 
arbitrarily complex replacements.  In the rule above, the 
intermediate result NewUnsortedSequence is transformed by 
the subrule [sortFirstIntoPlace] to form the final result.



3. Software Engineering 
    by Source Transformation

The remainder of this paper gives examples of how TXL has 
been used in various software engineering projects in research 
and industry over the past ten years.

3.1. Interface Translation

ESPRIT Project REX [6] was an ambitious and wide 
ranging project to explore the specification and implementation 
of reusable, extensible distributed systems, and was the first 
serious use of TXL in software engineering tasks.  One of the 
key ideas in REX was the use of language independent interface 
specifications in the ISL notation [7].  Closely related to IDL 
[8], ISL allowed the specification of complex data structures to 
be passed between nodes in a widely distributed heterogeneous 
network.  Each node in the network could be implemented using 
different hardware, operating system and programming 
language.

In order to insure that data could be reliably passed between 
nodes implemented using different programming languages, it 
was important that the interfaces described in ISL be accurately 
and consistently represented in each language.  Initially such 
representations were carried out by hand translation, but very 
quickly it became obvious that it was much too difficult and 
error prone to incrementally adapt such translations in response 
to changes in the ISL specifications of the interfaces.

Modula II
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Transforms
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Modula II Modula II

REX
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TXL
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Figure 11.  Applications of TXL in ESPRIT Project REX.

TXL transformation rule sets were used to instantiate ISL data 
structure descriptions into data type declarations in each of the 
REX target languages (a), and to implement REX extended 
dialects of each target language (b).

% Project REX - TXL ruleset for transforming from
% REX Extended Modula II -> unextended Modula II
% Georg Etzkorn, GMD Karlsruhe, 25.02.91
% Part 4 - Transform SELECT statements

rule transformSelectStatement ModuleId [id] PortListId [id]
   replace [repeat statement]
      SELECT
         Alternatives  [repeat or_alternative] 
         OptElse       [opt else_StatementSequence]
      END;
      RestOfStatements [repeat statement]

   construct InsertPortStatements [repeat statement]
      _ [mapAlternativeToIf PortListId ModuleId each Alternatives]

   construct PortMessageCases [repeat or_case]
      _ [mapAlternativeToCase ModuleId each Alternatives]

   by
      AllocPortList (PortListId);
      InsertPortStatements 
      CASE WaitOnPortList (PortListId) OF
         PortMessageCases
      END;
      ReleasePortList (PortListId);
      RestOfStatements
end rule

Figure 12.  Transformation Rule to Implement the REX Modula II SELECT Statement.
Transformation from REX Modula II to pure Modula II is not just a matter of syntax, as this rule demonstrates.  Each 
REX Modula II SELECT statement is transformed to a complex set of logic involving a sequence of IF statements derived 
from each alternative followed by a CASE statement whose cases are derived in a different way from the same set of 
alternatives.  The by-example style of TXL makes the overall shape of both the original and the translated result easy to 
see.  Figure 11 shows an example of this transformation.



Instead, a source transformation from ISL to each target 
language was designed and implemented in TXL (Figure 11(a)).  
Once completed, these transformations allowed much more 
rapid experimentation since only the ISL specification need be 
changed when updating interface data structures.

3.2. Language Extension

Project REX also involved research in appropriate language 
features for supporting effective distributed computing, 
including concurrency and interprocess communication.  New 
language primitives were designed to support REX message 
passing and rendezvous for each target language.  REX extended 
languages included REX Modula II, REX C, REX Prolog, and 
so on.  In each case, the semantics of the new features were 
specified using templates in the original unextended language, 
augmented with calls to a standard REX communication library 
that was common across all languages.

TXL was used to provide usable implementations of each of 
the REX extended languages by directly implementing their 
semantics as source transformations to the original languages 
(Figure 11 (b)).  The relationship between the source of the REX 
extended language and the original language was often both 
semantically and structurally complex, and is not simply a 
question of syntax.  Figure 12 shows one of the transformation 
rules in the TXL implementation of REX Modula II, and Figure 
13 shows an example of the transformation it implements.

3.3. Design Recovery from Source

The Advanced Software Design Technology (ASDT) project 
was a joint project involving IBM Canada and Queen's 
University.  The global goal of the project was to study ways to 
formalize and better maintain the relationship between design 
documents and actual implementation code throughout the life 
cycle of a software system.  Early on it was realized that if such 
an approach is to be introduced into practice, it must be 
applicable to existing large scale legacy systems whose design 
documents have been long ago lost or outdated.  Thus design 
recovery, the reverse engineering of a design database from 
source code artifacts, became an important practical goal of the 
project [9].  

While analysis of source code for the purpose of design 
recovery does not at first glance seem like a good application for 
source transformation, it quickly became clear that the pattern 
matching capabilities of TXL made it well suited to this task.  
Using the three stage source annotation approach shown in 
Figure 14, a completely automated design recovery system was 
implemented in TXL and used to recover the design of a large 
piece of software for the purpose of design analysis.  

The approach involves several TXL transformations, each of 
which searches for a set of source patterns  for a particular 
design relationship and annotates the source with design facts 
for the relationship in Prolog notation (Figure 15).  These 
"embedded" design facts are then extracted and merged to create 
a Prolog design database for the entire program.

Figure 13.  Example of the Transformation Implemented by the TXL Rule in  Figure 12.
This example demonstrates the complexity of the relationship between the original source and the result 
source in this transformation.  For larger SELECT statements, the difference is even more striking.

SELECT
  (allocated = None) OR (allocated = Left) && ACCEPT(left,req):
      CASE req.order OF
          pickup: allocated := Left;  | putdown: allocated := None;
      END;
      REPLY(left,ack);
  | (allocated = None) OR (allocated = Right) && ACCEPT(right,req):
      CASE req.order OF
          pickup: allocated := Right; | putdown: allocated := None;
      END;
      REPLY(left,ack);
END;

AllocPortList (XdrM2_PortList1); 
IF (allocated = None) OR (allocated = Left) THEN
    InsertPort (XdrM2_PortList1, XdrM2_Fork.left, NoHandle);
END; 
IF (allocated = None) OR (allocated = Right) THEN
    InsertPort (XdrM2_PortList1, XdrM2_Fork.right, NoHandle);
END; 
CASE WaitOnPortList (XdrM2_PortList1) OF
    XdrM2_Fork.right: 
      XdrM2_Fork.Accept_right (XdrM2_Fork.right, NoHandle, req);
      CASE req.order OF
           pickup: allocated := Right; | putdown: allocated := None;
      END; 
      XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
  | XdrM2_Fork.left: 
      XdrM2_Fork.Accept_left (XdrM2_Fork.left, NoHandle, req); 
      CASE req.order OF
           pickup: allocated := Left;  | putdown: allocated := None;
      END;
      XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
END; 
ReleasePortList (XdrM2_PortList1);
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Figure 14.  Design Recovery by Source Transformation.

The process involves three stages: a normalization phase which uses TXL transforms to resolve global unique naming of 
identifiers (1), a fact generation phase which uses a set of TXL transforms to recognize and annotate source with design 
relationships (2), and an extraction phase which gathers the annotations into a design database (3).  This same basic 
strategy was used in the LS/2000 system to recover the designs of over three billion lines of source applications written in 
Cobol, PL/I and RPG.

rule processProcedureRefs
   replace $ [declaration]
      procedure P [id] ParmList [opt parameter_list]
         Scope [repeat statement]
      'end P
   by
      procedure P ParmList
         Scope [embedProcCalls P]
               [embedFuncCalls P]
               [embedVarParmRefs P]
               [embedPutRefs P]
               [embedGetRefs P]
      'end P
end rule

rule embedVarParmRefs ContextId [id]
   replace $ [argument]
      ReferencedId [id] Selectors [repeat selector] : var FormalId [id]
   by
      ReferencedId Selectors : var FormalId [id]
      $ vararguse (ContextId, ReferencedId, FormalId) $ 
end rule

Figure 15.  A Simple Design Recovery Rule.

This simple rule demonstrates the strategy of source annotation to represent design relationships.  For each procedure 
declaration in the source, the first rule invokes a number of different subrules to recognize design relationships in the 
procedure's inner scope.  One such relationship is recognized by the second rule, which annotates each argument of each 
procedure call in the scope with a "vararguse" design fact.  Most design relationship rules are more complex than this one.



While this first TXL-based design recovery system was only 
a small scale research prototype, this same approach has been 
used in large scale industrial applications such as the LS/2000 
Year 2000 analysis and conversion system [10], which used 
TXL-based design recovery to process more than three billion 
lines of Cobol, PL/I and RPG source code. 

3.4. Metaprogramming

The other half of maintaining the relationship between 
design documents and actual implementation concerns the 
generation of original code from design documents, often called 
automatic programming or metaprogramming [3].  In 
metaprogramming, the generation of code is guided by a set of 
code templates which are instantiated in response to queries on 
the design database.  For example, a procedure header template 
may be instantiated once for each "procedure" fact in the design.

m* (pronounced "mew star") is a family of 
metaprogramming languages sharing a common notation and 
implementation.  In  m*, templates are written as example source 
in the target programming language, which may be one of many, 
including C, Prolog, etc., and are instantiated under direction of 
metaprogramming annotations added to the template source.  
The metaprogramming annotations specify the design conditions 
under which the parts of the template apply (Figure 16).

Implementation of m* uses a two-stage source 
transformation system implemented in TXL (Figure 17).  In the 
first stage, metaprograms are transformed using TXL into a TXL 
ruleset that implements their meaning as a source transformation 
of a design database represented as Prolog facts, and in the 
second stage this ruleset is run as a TXL source transformation 
of the design database for the system to be generated.  This 
system has been used for tasks such as generating the several 
kinds of C and Prolog "glue" code necessary to allow Prolog 
programs access to C library interfaces described by a formal 
interface design specification.  This method was applied to 
generate the code to make the GL graphics library available to 
Prolog programmers.

3.5. Software Restructuring

Code restructuring [2] is perhaps the most natural 
application of source program transformation.  The Modularity 
Toolkit [11] is a sequence  of TXL transformations designed for 
remodularizing legacy source code.  Even in a well designed 
system, as maintenance proceeds over the years, original module 
boundaries are blurred as requirements shift and the system is 
tuned for performance.  This blurring of the original modular 
design is a major contributor to the degradation in 
maintainability of mature systems.

In extreme cases, blurring becomes so extreme that existing 
module boundaries in the code actually get in the way of further 
maintenance.  The modularity toolkit addresses this situation by 
attempting to remodularize to better reflect the design 
relationships actually present in the maintained code.  Using 

\   struct {
        char *name;
        int (*addr)();
    } func[] =
    {
        $AllEntries,
        {"",0}
    };
\ 
    where AllEntries
            \ {$X,$Y} \ [list init]
        each function (F [id])
        where X \ "" \ [string] [" F]
        where Y \ mpro \ [id] [_ F]

Figure 16.  A m* template for generating a C entry point array.
The code between the lines beginning with a backslash \ is a 
template for the C code to be generated.  The code following the 
second backslash is m* notation for a complex query on the 
design database that guides the generation. 
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Figure 17.  The m* prototype implementation.

Templates for the language L are expressed as mL metaprograms.  A generic TXL transformation translates m* 
metaprograms (for any target language) to a TXL ruleset.  The TXL ruleset is then combined with the TXL grammar for 
target language L to implement a second TXL transformation that transforms the design database into instantiated 
language L program code.



clustering algorithms to gather together the most tightly related 
data and code, the system proposes new modularizations that 
can be considered by an expert programmer and accepted or 
modified interactively to yield a better modularized result 
(Figure 18).  The system was used used to improve the 
modularity of several heavily maintained Turing language [12] 
programs, including the implementation of TXL itself.

The process has eight main stages, each of which is 
implemented by an independent TXL source transformation, 
under control of a unified user interface that allows 
transformations to be applied sequentially or in any chosen order 
that makes sense to the expert.  Normally the transformations 
are applied in the sequential order shown in Figure 18.

In the first stage, Integrate, existing separately compiled 
source modules are merged together into a single source file.  
External interfaces are removed and replaced by Turing internal 
module boundaries (much like static class boundaries in Java).  
In the second transformation, Demodularize, identifiers are 
uniquely renamed to allow existing module boundaries to be 
removed, yielding a monolithic procedural program.  The 
Cluster stage uses a reference clustering transformation to gather 
together tightly related variables, constants, types, procedures 
and functions into adjacent sequential source segments.  In the 
Modularize transformation (Figure 19), new module boundaries 
are introduced by creating a new module for each clustered 
sequence and hiding the private variables, constants, types, 

Interface Separate

Integrate Demodularize Cluster Modularize Hide Evaluate

N

Y

The Modularity 
Toolkit

Figure 18.  The Modularity Toolkit.

Remodularization consists of integrating the source code of all existing modules and removing module boundaries, 
textually clustering together related source items, introducing new module boundaries for the clusters and evaluating the 
result.  When a new module is accepted by the user, additional source transformations introduce the new interfaces and 
separate the result into new modules.

function createModule ModuleId [id] VarsToHide [repeat id]
   replace [program]
      Comments [opt comment_lines]
      Imports  [repeat import_list]
      Body     [repeat statement]
   by
      Comments
      Imports
      Body  [createEmptyModule         ModuleId]
            [hideVarsInModule          ModuleId VarsToHide]
            [createAccessRoutines      ModuleId each VarsToHide]
            [moveRoutinesIntoModule    ModuleId VarsToHide]
            [qualifyExportedReferences ModuleId VarsToHide]
            [createImportExports       ModuleId VarsToHide]
            [relocateModuleInProgram   ModuleId VarsToHide]
end function

Figure 19.  Main TXL function of the Modularize stage of the Modularity Toolkit.

Each stage is implemented by an independent TXL source transformation which itself may involve multiple transforms.  
In the Modularize stage, new module boundaries are introduced using source transformations to create a new empty 
module, to hide the clustered variables in it, to create access routines for the variables, to move routines in the cluster 
inside the module, to qualify all external references to the new module's variables and routines, to create the module's 
import/export interface and to relocate the new module appropriately in the program source.



procedures and functions of the cluster in the module. The 
details of this transformation are outlined in Figure 19.  The 
Hide transformation then maximizes the hiding of items inside 
each new module by successively relocating any remaining 
items outside the module that are used only inside it until a fixed 
point is reached.

At this point, the user is given the opportunity to Evaluate 
each new module and decide if it represents an improvement.  If 
the user accepts the module, then the last two transformations 
are run.  The first of these, Interface, creates an external 
interface by transforming the new module into separate interface 
and implementation modules.  Finally, the Separate  
transformation physically separates the implementation module 
into an independent compilation unit and removes it from the 
main source.

.  
3.6. Maintenance Hot Spots

Maintenance hot spots [13] are a generalization of 
performance hot spots to any kind of design or source code 
analysis activity. Sections of source code are labeled as hot 
when a design or source analysis looking for sensitivity to a 
particular maintenance issue, such as the Year 2000 problem, 
expansion of credit card numbers from 13 to 16 digits, or 
changes to European currency exchange computation laws, has 
identified them as relevant.  Maintenance hot spots can be used 
either by human maintainers to focus their maintenance and 
testing efforts, or by automated reprogramming tools as targets 
for reprogramming templates. 

LS/2000 [10] used the concept of maintenance hot spots to 
assist in the Year 2000 conversion of over three billion lines of 
Cobol, PL/I and RPG source code. Using a variant of the design 
recovery technique described in Section 3.3 followed by design 
analysis and hot spot markup for the Year 2000 problem, 
LS/2000 produced hot spot reports for every module of an 
application that had any potential Year 2000 risks embedded in 
it, and automatically reprogrammed the majority of hot spots 
according to a set of transformation patterns.  Clients of 
LS/2000 reported a 30-40 fold increase in Year 2000 conversion 
productivity using automated hot spot identification and 
reprogramming.  Time to examine and convert a source code 
module of a few thousand lines  of source was reduced from a 
few hours to less than five minutes, and accuracy of conversion 
before testing was increased from about 75% to over 99%. 

At the core of LS/2000 were the Hot Spot Markup and Hot 
Spot Transform phases of the process (Figure 20).  Hot Spot 
Markup took as input each source module of the software 
system being analyzed along with the set of Year 2000 date 
relationships inferred by design analysis for the module.   In 
order to implement the markup process as a pure source to 
source transformation, the inferred date relationships were 
represented as Prolog source facts prepended to the module 
source.  Potentially Year 2000 sensitive operations in the source 
were marked as hot by a set of TXL rules using source patterns 
guarded by pattern matches of the Prolog source facts.  Figure 
21 shows one such markup rule.

Hot Spot Transform then took as input the resulting marked-
up source and used a set of TXL source transformation rules to 
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Figure 20.  The LS/2000 Process Architecture.

Software system source files are first uniquely renamed and normalized to factor out irrelevant formatting and syntactic 
details.  The normalized source files are then analyzed using design recovery to produce a detailed design database.  
Under guidance of a human analyst, design analysis identifies those design entities which are of interest in the context of 
the particular maintenance task.  Hot spot markup then uses the results of the design analysis to identify sections of code 
that may need to be changed (“hot spots”), which hot spot transform automatically reprograms using a set of 
transformation patterns.  Finally, version integration restores original source formatting, naming and syntactic details to 
the reprogrammed source and report generation summarizes the changes.  All phases of LS/2000, with the exception of 
version integration and report generation, were implemented using TXL source transformations.



search for marked hot spots that were instances of a large set of 
reprogramming templates based on a “windowing” solution to 
Year 2000.  Because the Hot Spot Markup phase had explicated 
the kind of potential risk in the markup label of each hot spot, 
these templates could be applied very efficiently.  Figure 22 
shows an example of a TXL hot spot transformation rule for 
reprogramming one kind of Year 2000 hot spot.

The ideas behind LS/2000 have been generalized and 
codified in the LS/AMT automated maintenance system 
discussed in [13].  By customizing the hot spot markup and 
transform phases to a range of other large scale software 
maintenance problems, LS/AMT has already been used to 
process more and one and a half billion lines of additional code 
in addressing problems such as IT mergers, database migrations, 
web migrations and other large scale software maintenance 
tasks.

4. Summary

TXL is a general and flexible source transformation 
language and rapid prototyping system which has been used in a 
wide range of software engineering and maintenance 
applications.  This paper has given a quick introduction to the 
TXL language and our experience in its application to a range of 
software maintenance activities.  We observed that most 
automatable software engineering tasks can be modeled as 

rule markupDateLessThanYYMMDD
   import DateFacts [repeat fact]
   replace $ [condition]
      LeftOperand [name] < RightOperand [name]
   deconstruct * [fact] DateFacts
      Date ( LeftOperand, “YYMMDD” )
   deconstruct * [fact] DateFacts
      Date ( RightOperand, “YYMMDD” )
   by
      {DATE-INEQUALITY-YYMMDD  
        LeftOperand < RightOperand  
      }DATE-INEQUALITY-YYMMDD
end rule

Figure 21.  Example LS/2000 Hot Spot Markup Rule.

Each hot spot markup rule searches for a particular pattern, in 
this case a condition using the operator “<”, which involves 
something classified by design analysis as interesting, in this 
case operands known to represent dates of type “YYMMDD”.   
Interesting instances of the pattern are marked up using hot 
spot brackets, in this case“{DATE-INEQUALITY-YYMMDD” 
and “}DATE-INEQUALITY-YYMMDD”.  “DateFacts” above 
refers to the Prolog source facts for the result of design 
analysis.    The deconstruct statements in the rule use source 
pattern matching to query the source facts for “Date” facts 
about the operands.  This rule has been simplified for 
presentation in this paper.  In practice hot spot markup rules 
are much more general than this one.

rule transformLessThanYYMMDD
   replace $ [repeat statement]
       IF {DATE-INEQUALITY-YYMMDD
              LeftOperand [name] < RightOperand [name] 
          }DATE-INEQUALITY-YYMMDD
         ThenStatements [repeat statement]
         OptElse [opt else_clause]
       END-IF
       MoreStatements [repeat statement]
   construct RolledLeftOperand [name]

LeftOperand [appendName “-ROLLED”]
   construct RolledRightOperand [name]

RightOperand [appendName “-ROLLED”]
   by
       {TRANSFORM-INSERTED-CODE
       ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledLeftOperand 
       ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledRightOperand 
       }TRANSFORM-INSERTED-CODE
       IF {TRANSFORMED-DATE-INEQUALITY-YYMMDD
             RolledLeftOperand < RolledRightOperand
          }TRANSFORMED-DATE-INEQUALITY-YYMMDD
         ThenStatements
         OptElse
       END-IF
       MoreStatements
end rule

Figure 22.  Example LS/2000 Hot Spot Transform Rule.

Each hot spot transform rule implements the reprogramming template for a particular kind of hot spot.  In this case the 
rule searches for IF statements whose condition has been marked as DATE-INEQUALITY-YYMMDD.   When one is 
found, it is replaced by  a copy of the statement in which the inequality operands have been replaced by new operands 
whose value is computed by ADD statements inserted to implement the Year 2000 windowing computation.  A separate 
transformation rule later inserts declarations for the new operands.  This rule has been simplified for presentation in this 
paper.  In practice, most hot spot transform rules are much more general than this one, covering many cases in one rule.



source to source transformations, and showed how TXL can be 
used to implement some of these models in practice.

TXL has been used in hundreds of projects in industry and 
academia all over the world, including several other software 
engineering applications, such as implementation of the HSML 
design-directed source code mining system [13] and the reverse 
engineering facilities of the commercial Graphical Designer and 
Describe CASE tools [14].  With the move towards XML [15] 
based software representations such as GXL [16], we expect that 
source to source transformation will be playing an increasingly 
greater role in software engineering automation in the future.

5. Related Work

The important role of transformation in software engineering 
has been pointed out by several other researchers.  Perhaps the 
most eloquent spokespersons for transformation in software 
engineering are Ira Baxter and Christopher Pidgeon of Semantic 
Designs, who have proposed a design-directed transformational 
model for the entire software life cycle [19].  Other source 
transformation tools have been used to implement software 
engineering tasks of various kinds.  Of particular note are Gentle 
[20], FermaT [21], NewYacc [22], DMS [23] and ASF+SDF 
[24] any of which could be used to implement most of the 
techniques described in this paper.  TXL is distinguished from 
these systems in its use of by-example patterns and 
replacements, which simplify the specification of practical 
transformation tasks by shielding the user from direct 
manipulation of internal abstract structures.
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