
Abstract

Many tasks in software engineering can be characterized as
source to source transformations. Design recovery, software
restructuring, forward engineering, language translation,
platform migration and code reuse can all be understood as
transformations from one source text to another. TXL, the Tree
Transformation Language, is a programming language and
rapid prototyping system specifically designed to support rule-
based source to source transformation. Originally conceived as
a tool for exploring programming language dialects, TXL has
evolved into a general purpose source transformation system
that has proven well suited to a wide range of software
maintenance and reengineering tasks, including the design
recovery, analysis and automated reprogramming of billions of
lines of commercial Cobol, PL/I and RPG code for the Year
2000. In this paper we introduce the basic features of modern
TXL and its use in a range of software engineering applications,
with an emphasis on how each task can be achieved by source
transformation.

1. Background

Many tasks in software engineering and maintenance can be
characterized as source to source transformations. Reverse
engineering or design recovery [1] can be cast as a source
transformation from the text of the legacy source code files to
the text of a set of design facts. Software reengineering and
restructuring [2] can be cast as a source transformation from the
poorly structured original source code text to the better
structured new source code. Forward engineering or
metaprogramming [3], can be cast as a transformation from the
source text of design documents and templates to the
instantiated source code files. Platform translation and
migration tasks are easily understood as transformations from

the original source code files to new source code files in the new
language or paradigm. And code reuse tasks can be
implemented as a source transformation from existing, tested
source code to generic reusable source code modules.

While many other methods can be applied to various parts of
these problems, at some point each of them must involve dealing
with actual source text of some kind at each end of the process.
In this short paper we describe our experiences with attempting
to tighten the relationship between the source text artifacts at
each end of the processes by experimenting with actually
implementing these and other software engineering tasks using
pure source text transformations in the TXL source
transformation language [4,5]. The experience we report is a
summary of the results of many different projects over the past
ten years, culminating with the success of the approach in
addressing the difficulties associated with the famous
"millennium bug" for over three billion lines of source code.

2. Overview of TXL

TXL is a programming language and rapid prototyping
system specifically designed to support structural source
transformation. Source text structures to be transformed are
described using an unrestricted ambiguous context free grammar
in extended Backus-Nauer (BNF) form, from which a structure
parser is automatically derived. Source transformations are
described by example, using a set of context sensitive structural
transformation rules from which an application strategy is
automatically inferred.

In order to give the flavor of the by-example style of TXL,
Figure 1 shows a transformation rule for the base step of a
transformation to vectorize sequences of independent scalar
assignments in a Pascal-like programming language. The rule
searches for sequences of statements that begin with two scalar
assignments that are independent of each other, and replaces
them with a single vector assignment that assigns both in
parallel. This rule is the base case of a set of rules that
inductively maximizes vectorization of sequences of scalar
assignments. The other rules extend existing vector assignments
by merging subsequent independent assignments into them.

Source Transformation in Software Engineering
Using the TXL Transformation System

 James R. Cordy Thomas R. Dean Andrew J. Malton Kevin A. Schneider
School of Computing Department of Electrical & Department of Department of
 Queen’s University Computer Engineering Computer Science Computer Science
 Kingston, Canada Queen’s University University of Waterloo University of Saskatchewan
 Kingston, Canada Waterloo, Canada Saskatoon, Canada
 cordy@cs.queensu.ca thomas.dean@ece.queensu.ca malton@cs.uwaterloo.ca kas@cs.usask.ca

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).!

2.1. The TXL Processor

The TXL processor is a compiler and run time system for
the TXL programming language that directly interprets TXL
programs consisting of a grammatical specification of the
structure of the input text and a rooted set of structural
transformation rules to implement a source to source
transformation. The result is a rapid prototype of the source
transformer described by the rules that can be used immediately
on real input (Figure 2).

2.2. Grammatical Notation -
 Specifying Source Structure

TXL uses a BNF-like grammatical notation to specify source
structure (Figure 3). In order to keep the notation lightweight
and in a by-example style, terminal symbols of the input, for
example operators, semicolons, keywords and the like, appear
simply as themselves. Quoting of terminal symbols is allowed
but not required except in cases where terminal symbols of the
target language are keywords or special symbols of TXL itself.
References to nonterminal types defined elsewhere in the
grammar appear in square brackets []. The usual set of BNF

TXL
Processor

Original
Source

Artifact

TXL Program
Grammatical Structure

Specification
Structural

Transformation Rules

Transformed
Source

Artifact

Figure 2. The TXL Processor.

The TXL Processor automatically implements source
transformations written in the TXL language.

rule vectorizeScalarAssignments
 replace [repeat statement]
 V1 [variable] := E1 [expression];
 V2 [variable] := E2 [expression];
 RestOfScope [repeat statement]

 where not
 E2 [references V1]
 where not
 E1 [references V2]

 by
 < V1,V2 > := < E1,E2 > ;
 RestOfScope
end rule

Figure 1. Simple Example TXL Transformation Rule.

The replace clause gives the pattern for which the rule
searches by example in actual source text, binding names to
parts (such as the [expression]s) which may vary in each
instance. The by clause gives the transformed result in similar
style, using the bound names to transfer parts from the matched
pattern. The where clauses specify additional semantic
constraints on when the rule can be applied.

define program % goal symbol
 [expression] % of the grammar
end define

define expression % general
 [term] % recursion
 | [expression] + [term] % & ambiguity
 | [expression] – [term] % supported
end define

define term
 [primary]
 | [term] * [primary]
 | [term] / [primary]
end define

define primary
 [number]
 | ([expression])
end define

Figure 3. Simple Example of a TXL Grammar.

Terminal symbols such as +, -, *, / and the parentheses in the
definitions above represent themselves. References to
nonterminal types are denoted by square brackets, as in
[expression] above. TXL comments begin with % and continue
to the end of the line.

comments
 /* */
 //
end comments

compounds
 := <= >= -> <->
end compounds

tokens
 hexnumber "0[Xx][\dABCDEFabcdef]+"
end tokens

keys
 program procedure function
 repeat until for while do begin 'end
end keys

Figure 4. Specifying Lexical Forms in TXL.

Lexical forms specify how the input text is to be partitioned into
the terminal symbols (tokens) of the source language. The
comments section specifies commenting conventions of the
input language, the compounds and tokens sections how
sequences of characters are to be grouped into terminal
symbols, and the keys section specifies which symbols are to be
considered keywords rather than identifiers.

extensions for sequences, written as [repeat X] for sequences of
nonterminal [X], optional items, written as [opt X], and comma-
separated lists of items, written as [list X], are available.

Lexical specification is by regular expression patterns in
special tokens and compounds sections, and keywords can be
distinguished using a keys statement [Figure 4]. A large set of
predefined nonterminal types for common lexical forms,
including identifiers [id], string literals [stringlit], numeric
literals [number], and so on are built in to TXL. Comments of
the source language can either be ignored (which is the default)
or specified in the grammar and parsed as part of the input.

White space such as spaces, tabs and newline characters in
the input are normally treated as separators only and ignored,
but may optionally be treated as significant and parsed when
necessary (for example, when the transformation must preserve
spacing in XML documents).

2.3. Rule Notation - Specifying a Transformation

TXL transformation rules are specified using a by-example
pattern notation that binds matched items by name in the pattern
and copies them by name in the replacement (Figure 5). Pattern
variables are explicitly typed using the square bracket
nonterminal type notation. For example X[T] binds a pattern
variable named X of nonterminal type [T].

Pattern variables may be used in the replacement to copy the
item bound in the pattern into the result of the rule. Variables
copied into the replacement may optionally be further
transformed by subrules using the notation X[R], where R is the
name of a transformation rule. Subrule invocation has the
semantics of function application - in traditional functional
notation, the TXL subrule invocation X[R] would be written
R(X), the composed subrule invocation X[R1][R2] would be
written R2(R1(X)), and so on.

Each transformation rule searches its scope (the item it is
applied to) for instances of its pattern and replaces each one
with an instance of its replacement, substituting pattern
variables in the result. Patterns and replacements are source text
examples from which the intended structure trees are
automatically inferred by the TXL parser (Figure 6). Rules are
applied using a highly efficient tree search of the input parse tree
for instances of the pattern parse tree, avoiding the overhead of
text processing and reparsing.

TXL rules automatically reapply to their own result until no
further matches are found - that is, a rule is automatically
composed upon itself until a fixed point is reached. Thus from
the inside a TXL rule acts like a pure term rewriting rule, while
from the outside it acts like a pure function of an explicit
argument. This semantics gives TXL rules the flavor and
simplicity of term rewriting systems while at the same time
avoiding traditional difficulties in restricting the scope of
application. By structuring the rule set into a first order
functional program, control over scope and order of rule
application is both explicit and convenient.

Transformation rules are constrained to preserve
nonterminal type in order to guarantee a well-formed result -
that is, the replacement of a rule must be of the same
nonterminal type as its pattern. While this may seem to limit
rules to homogeneous transformations, in fact, by exploiting the
use of ambiguous forms and grammar overrides [REF], TXL
supports arbitrary heterogeneous transformations as well.

TXL rules can be parameterized to use items bound from
previous pattern matches in their patterns and replacements
(Figure 7). Parameters bind the values of variables in the calling
rule to the formal parameters of the subrule. Using parameters
to provide structures matched in higher level rules for use in the
patterns and replacements of lower level rules allows complex
transformations involving large scale reorganization of source

rule resolveAddition
 replace [expression] % target
 % type

 N1 [number] + N2 [number] % pattern to
 % search for
 by
 N1 [+ N2] % replacement
 % to make
end rule

Figure 5. Simple Example of a TXL Transformation Rule.

The replace clause specifies the target nonterminal type to be
transformed and the by-example pattern to be matched. The by
clause specifies the by-example replacement to be made for the
matched pattern. Because rules are constrained to preserve
structure, both the pattern and the replacement must be
parseable as the target type. The square bracket notation is
used in the pattern to specify type and in the replacement to
specify subrule invocation.

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

N2: [number] (v2)

N1: [number] (v1)

[expression]

[primary]

[term]

[number] (v1+v2)

Figure 6. Semantics of the Simple Example Rule in Figure 5.

The example source text given for the pattern and replacement
of a rule are parsed into structure tree patterns which are
efficiently matched to subtrees of the parse tree of the input to
the transformation. Because rules are constrained to preserve
nonterminal type, the result is always well formed.

structures to be specified. Because TXL is a pure functional
language, all parameters are by value - use of a formal parameter
in a rule implies a copy of the tree to which it is bound.

Pattern matches can be stepwise refined using deconstruct
clauses, which constrain bound variables to match more detailed
patterns (Figure 8). Deconstructors may be either shallow,
which means that their pattern must match the entire structure
bound to the deconstructed variable, or deep, which means that
they search for a match embedded in the item. In either case,
deconstructors act as a guard on the main pattern - if a
deconstructor fails, the entire main pattern match is considered
to have failed and a new match is searched for.

Semantic constraints on pattern matches are specified using
where clauses, which can impose arbitrary additional constraints
on the items bound to pattern variables (Figure 9). Where
clauses use a special kind of TXL rule called a condition rule.
TXL condition rules have only a pattern, usually with additional

refinements and constraints, but no replacement - they simply
succeed or fail (that is, match their pattern or not). A number of
built-in condition rules provide basic semantic constraints such
as numerical and textual value comparison of terminal symbols.
The sorting rule in Figure 9 uses the numerical comparison
built-in for “greater than” to test the value ordering of the
numbers represented by the [number] terminal symbols matched
in its pattern.

Replacements can also be stepwise refined, using construct
clauses to build results from several independent pieces (Figure
10). Construct clauses provide the opportunity to build partial
results and bind them to new variables, thus allowing subrules to
further transform them in the replacement or subsequent
constructs. Constructors also provide the opportunity to
explicitly name intermediate results, aiding the readability of
complex rules.

rule resolveConstants
 replace [repeat statement]
 const C [id] = V [expression];
 RestOfScope [repeat statement]
 by
 RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id]
 Value [expression]
 replace [primary]
 ConstName
 by
 (Value)
end rule

Figure 7. Using Rule Parameters to Reorganize Source.

This example demonstrates the use of rule parameters to
implement rules that depend on items bound in previous
patterns. In this case the second rule implements inlining of
constant values by searching for [primary] references that
match the identifier of a named constant, and replaces each
such reference with the constant's value. The first rule insures
that this is done for every declared named constant.

rule foldFalseIfStatements
 replace [repeat statement]
 IfStatement [if_statement] ;
 RestOfStatements [repeat statement]
 deconstruct * [if_condition] IfStatement
 IfCond [if_condition]
 deconstruct IfCond
 false
 by
 RestOfStatements
end rule

Figure 8. Constraining Variables to More Specific Patterns.
The deconstruct clause allows for stepwise pattern refinement.
The first deconstruct in the example above constrains the item
bound to IfStatement to contain an [if_condition], which is
bound to the new pattern variable IfCond. The second
deconstruct constrains IfCond to be exactly the identifier false.
If either deconstruct fails, the entire pattern match fails and the
scope is searched for another match.

rule sortNumbers
 replace [repeat number]
 N1 [number] N2 [number] Rest [repeat number]
 where
 N1 [> N2]
 by
 N2 N1 Rest
end rule

Figure 9. Semantic Constraints on Bound Variables.
The where clause constrains items bound to pattern variables
using a (possibly complex) set of subrules. In the rule above,
the number bound to N1 is constrained to be greater than the
number bound to N2, otherwise the pattern match fails. (This
rule is the entire specification for bubble sorting a sequence of
numbers in TXL.)

rule addToSortedSequence NewNum [number]
 replace [repeat number]
 OldSortedSequence [repeat number]

 construct NewUnsortedSequence[repeat number]
 NewNum OldSortedSequence
 by
 NewUnsortedSequence [sortFirstIntoPlace]
end rule

Figure 10. Stepwise Creation of Replacements.
The construct clause provides the ability to create and bind
intermediate results for use in the replacement or subsequent
constructs. The binding to new variables provides the ability
to invoke subrules on intermediate results, allowing for
arbitrarily complex replacements. In the rule above, the
intermediate result NewUnsortedSequence is transformed by
the subrule [sortFirstIntoPlace] to form the final result.

3. Software Engineering
 by Source Transformation

The remainder of this paper gives examples of how TXL has
been used in various software engineering projects in research
and industry over the past ten years.

3.1. Interface Translation

ESPRIT Project REX [6] was an ambitious and wide
ranging project to explore the specification and implementation
of reusable, extensible distributed systems, and was the first
serious use of TXL in software engineering tasks. One of the
key ideas in REX was the use of language independent interface
specifications in the ISL notation [7]. Closely related to IDL
[8], ISL allowed the specification of complex data structures to
be passed between nodes in a widely distributed heterogeneous
network. Each node in the network could be implemented using
different hardware, operating system and programming
language.

In order to insure that data could be reliably passed between
nodes implemented using different programming languages, it
was important that the interfaces described in ISL be accurately
and consistently represented in each language. Initially such
representations were carried out by hand translation, but very
quickly it became obvious that it was much too difficult and
error prone to incrementally adapt such translations in response
to changes in the ISL specifications of the interfaces.

Modula II

C

Prolog

ISL Interface
Specification TXL

Transforms

(a)

REX
Modula II Modula II

REX
C C

TXL
Transform

TXL
Transform

(b)

Figure 11. Applications of TXL in ESPRIT Project REX.

TXL transformation rule sets were used to instantiate ISL data
structure descriptions into data type declarations in each of the
REX target languages (a), and to implement REX extended
dialects of each target language (b).

% Project REX - TXL ruleset for transforming from
% REX Extended Modula II -> unextended Modula II
% Georg Etzkorn, GMD Karlsruhe, 25.02.91
% Part 4 - Transform SELECT statements

rule transformSelectStatement ModuleId [id] PortListId [id]
 replace [repeat statement]
 SELECT
 Alternatives [repeat or_alternative]
 OptElse [opt else_StatementSequence]
 END;
 RestOfStatements [repeat statement]

 construct InsertPortStatements [repeat statement]
 _ [mapAlternativeToIf PortListId ModuleId each Alternatives]

 construct PortMessageCases [repeat or_case]
 _ [mapAlternativeToCase ModuleId each Alternatives]

 by
 AllocPortList (PortListId);
 InsertPortStatements
 CASE WaitOnPortList (PortListId) OF
 PortMessageCases
 END;
 ReleasePortList (PortListId);
 RestOfStatements
end rule

Figure 12. Transformation Rule to Implement the REX Modula II SELECT Statement.
Transformation from REX Modula II to pure Modula II is not just a matter of syntax, as this rule demonstrates. Each
REX Modula II SELECT statement is transformed to a complex set of logic involving a sequence of IF statements derived
from each alternative followed by a CASE statement whose cases are derived in a different way from the same set of
alternatives. The by-example style of TXL makes the overall shape of both the original and the translated result easy to
see. Figure 11 shows an example of this transformation.

Instead, a source transformation from ISL to each target
language was designed and implemented in TXL (Figure 11(a)).
Once completed, these transformations allowed much more
rapid experimentation since only the ISL specification need be
changed when updating interface data structures.

3.2. Language Extension

Project REX also involved research in appropriate language
features for supporting effective distributed computing,
including concurrency and interprocess communication. New
language primitives were designed to support REX message
passing and rendezvous for each target language. REX extended
languages included REX Modula II, REX C, REX Prolog, and
so on. In each case, the semantics of the new features were
specified using templates in the original unextended language,
augmented with calls to a standard REX communication library
that was common across all languages.

TXL was used to provide usable implementations of each of
the REX extended languages by directly implementing their
semantics as source transformations to the original languages
(Figure 11 (b)). The relationship between the source of the REX
extended language and the original language was often both
semantically and structurally complex, and is not simply a
question of syntax. Figure 12 shows one of the transformation
rules in the TXL implementation of REX Modula II, and Figure
13 shows an example of the transformation it implements.

3.3. Design Recovery from Source

The Advanced Software Design Technology (ASDT) project
was a joint project involving IBM Canada and Queen's
University. The global goal of the project was to study ways to
formalize and better maintain the relationship between design
documents and actual implementation code throughout the life
cycle of a software system. Early on it was realized that if such
an approach is to be introduced into practice, it must be
applicable to existing large scale legacy systems whose design
documents have been long ago lost or outdated. Thus design
recovery, the reverse engineering of a design database from
source code artifacts, became an important practical goal of the
project [9].

While analysis of source code for the purpose of design
recovery does not at first glance seem like a good application for
source transformation, it quickly became clear that the pattern
matching capabilities of TXL made it well suited to this task.
Using the three stage source annotation approach shown in
Figure 14, a completely automated design recovery system was
implemented in TXL and used to recover the design of a large
piece of software for the purpose of design analysis.

The approach involves several TXL transformations, each of
which searches for a set of source patterns for a particular
design relationship and annotates the source with design facts
for the relationship in Prolog notation (Figure 15). These
"embedded" design facts are then extracted and merged to create
a Prolog design database for the entire program.

Figure 13. Example of the Transformation Implemented by the TXL Rule in Figure 12.
This example demonstrates the complexity of the relationship between the original source and the result
source in this transformation. For larger SELECT statements, the difference is even more striking.

SELECT
 (allocated = None) OR (allocated = Left) && ACCEPT(left,req):
 CASE req.order OF
 pickup: allocated := Left; | putdown: allocated := None;
 END;
 REPLY(left,ack);
 | (allocated = None) OR (allocated = Right) && ACCEPT(right,req):
 CASE req.order OF
 pickup: allocated := Right; | putdown: allocated := None;
 END;
 REPLY(left,ack);
END;

AllocPortList (XdrM2_PortList1);
IF (allocated = None) OR (allocated = Left) THEN
 InsertPort (XdrM2_PortList1, XdrM2_Fork.left, NoHandle);
END;
IF (allocated = None) OR (allocated = Right) THEN
 InsertPort (XdrM2_PortList1, XdrM2_Fork.right, NoHandle);
END;
CASE WaitOnPortList (XdrM2_PortList1) OF
 XdrM2_Fork.right:
 XdrM2_Fork.Accept_right (XdrM2_Fork.right, NoHandle, req);
 CASE req.order OF
 pickup: allocated := Right; | putdown: allocated := None;
 END;
 XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
 | XdrM2_Fork.left:
 XdrM2_Fork.Accept_left (XdrM2_Fork.left, NoHandle, req);
 CASE req.order OF
 pickup: allocated := Left; | putdown: allocated := None;
 END;
 XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
END;
ReleasePortList (XdrM2_PortList1);

Normalize.Txl

Standardized Source

Rename.Txl

Scope Independent Source

Argmatch.Txl

Base Source

Embedded
Resource Facts

Fact Extraction

Design Factbase

Design Analysis

Source Code

Embedded Import/
Export Facts

Embedded Symbol
Reference Facts

Embedded
Parameter Facts

1

2

3

Contains.Txl ImpExps.Txl Refs.Txl Parms.TxlResources.Txl

Embedded
Containment Facts

Formal
Design Theory

Figure 14. Design Recovery by Source Transformation.

The process involves three stages: a normalization phase which uses TXL transforms to resolve global unique naming of
identifiers (1), a fact generation phase which uses a set of TXL transforms to recognize and annotate source with design
relationships (2), and an extraction phase which gathers the annotations into a design database (3). This same basic
strategy was used in the LS/2000 system to recover the designs of over three billion lines of source applications written in
Cobol, PL/I and RPG.

rule processProcedureRefs
 replace $ [declaration]
 procedure P [id] ParmList [opt parameter_list]
 Scope [repeat statement]
 'end P
 by
 procedure P ParmList
 Scope [embedProcCalls P]
 [embedFuncCalls P]
 [embedVarParmRefs P]
 [embedPutRefs P]
 [embedGetRefs P]
 'end P
end rule

rule embedVarParmRefs ContextId [id]
 replace $ [argument]
 ReferencedId [id] Selectors [repeat selector] : var FormalId [id]
 by
 ReferencedId Selectors : var FormalId [id]
 $ vararguse (ContextId, ReferencedId, FormalId) $
end rule

Figure 15. A Simple Design Recovery Rule.

This simple rule demonstrates the strategy of source annotation to represent design relationships. For each procedure
declaration in the source, the first rule invokes a number of different subrules to recognize design relationships in the
procedure's inner scope. One such relationship is recognized by the second rule, which annotates each argument of each
procedure call in the scope with a "vararguse" design fact. Most design relationship rules are more complex than this one.

While this first TXL-based design recovery system was only
a small scale research prototype, this same approach has been
used in large scale industrial applications such as the LS/2000
Year 2000 analysis and conversion system [10], which used
TXL-based design recovery to process more than three billion
lines of Cobol, PL/I and RPG source code.

3.4. Metaprogramming

The other half of maintaining the relationship between
design documents and actual implementation concerns the
generation of original code from design documents, often called
automatic programming or metaprogramming [3]. In
metaprogramming, the generation of code is guided by a set of
code templates which are instantiated in response to queries on
the design database. For example, a procedure header template
may be instantiated once for each "procedure" fact in the design.

m* (pronounced "mew star") is a family of
metaprogramming languages sharing a common notation and
implementation. In m*, templates are written as example source
in the target programming language, which may be one of many,
including C, Prolog, etc., and are instantiated under direction of
metaprogramming annotations added to the template source.
The metaprogramming annotations specify the design conditions
under which the parts of the template apply (Figure 16).

Implementation of m* uses a two-stage source
transformation system implemented in TXL (Figure 17). In the
first stage, metaprograms are transformed using TXL into a TXL
ruleset that implements their meaning as a source transformation
of a design database represented as Prolog facts, and in the
second stage this ruleset is run as a TXL source transformation
of the design database for the system to be generated. This
system has been used for tasks such as generating the several
kinds of C and Prolog "glue" code necessary to allow Prolog
programs access to C library interfaces described by a formal
interface design specification. This method was applied to
generate the code to make the GL graphics library available to
Prolog programmers.

3.5. Software Restructuring

Code restructuring [2] is perhaps the most natural
application of source program transformation. The Modularity
Toolkit [11] is a sequence of TXL transformations designed for
remodularizing legacy source code. Even in a well designed
system, as maintenance proceeds over the years, original module
boundaries are blurred as requirements shift and the system is
tuned for performance. This blurring of the original modular
design is a major contributor to the degradation in
maintainability of mature systems.

In extreme cases, blurring becomes so extreme that existing
module boundaries in the code actually get in the way of further
maintenance. The modularity toolkit addresses this situation by
attempting to remodularize to better reflect the design
relationships actually present in the maintained code. Using

\ struct {
 char *name;
 int (*addr)();
 } func[] =
 {
 $AllEntries,
 {"",0}
 };
\
 where AllEntries
 \ {$X,$Y} \ [list init]
 each function (F [id])
 where X \ "" \ [string] [" F]
 where Y \ mpro \ [id] [_ F]

Figure 16. A m* template for generating a C entry point array.
The code between the lines beginning with a backslash \ is a
template for the C code to be generated. The code following the
second backslash is m* notation for a complex query on the
design database that guides the generation.

 mL
Metaprogram

Design
Database

Instantiated
L Program

m* Grammar m* Æ TXL
TXL Rules

Metaprogram
TXL Rules

Prolog
 Grammar

m* Prototype
System

TXL

TXL
Prolog

 Grammar
L Reference
 Grammar

Figure 17. The m* prototype implementation.

Templates for the language L are expressed as mL metaprograms. A generic TXL transformation translates m*
metaprograms (for any target language) to a TXL ruleset. The TXL ruleset is then combined with the TXL grammar for
target language L to implement a second TXL transformation that transforms the design database into instantiated
language L program code.

clustering algorithms to gather together the most tightly related
data and code, the system proposes new modularizations that
can be considered by an expert programmer and accepted or
modified interactively to yield a better modularized result
(Figure 18). The system was used used to improve the
modularity of several heavily maintained Turing language [12]
programs, including the implementation of TXL itself.

The process has eight main stages, each of which is
implemented by an independent TXL source transformation,
under control of a unified user interface that allows
transformations to be applied sequentially or in any chosen order
that makes sense to the expert. Normally the transformations
are applied in the sequential order shown in Figure 18.

In the first stage, Integrate, existing separately compiled
source modules are merged together into a single source file.
External interfaces are removed and replaced by Turing internal
module boundaries (much like static class boundaries in Java).
In the second transformation, Demodularize, identifiers are
uniquely renamed to allow existing module boundaries to be
removed, yielding a monolithic procedural program. The
Cluster stage uses a reference clustering transformation to gather
together tightly related variables, constants, types, procedures
and functions into adjacent sequential source segments. In the
Modularize transformation (Figure 19), new module boundaries
are introduced by creating a new module for each clustered
sequence and hiding the private variables, constants, types,

Interface Separate

Integrate Demodularize Cluster Modularize Hide Evaluate

N

Y

The Modularity
Toolkit

Figure 18. The Modularity Toolkit.

Remodularization consists of integrating the source code of all existing modules and removing module boundaries,
textually clustering together related source items, introducing new module boundaries for the clusters and evaluating the
result. When a new module is accepted by the user, additional source transformations introduce the new interfaces and
separate the result into new modules.

function createModule ModuleId [id] VarsToHide [repeat id]
 replace [program]
 Comments [opt comment_lines]
 Imports [repeat import_list]
 Body [repeat statement]
 by
 Comments
 Imports
 Body [createEmptyModule ModuleId]
 [hideVarsInModule ModuleId VarsToHide]
 [createAccessRoutines ModuleId each VarsToHide]
 [moveRoutinesIntoModule ModuleId VarsToHide]
 [qualifyExportedReferences ModuleId VarsToHide]
 [createImportExports ModuleId VarsToHide]
 [relocateModuleInProgram ModuleId VarsToHide]
end function

Figure 19. Main TXL function of the Modularize stage of the Modularity Toolkit.

Each stage is implemented by an independent TXL source transformation which itself may involve multiple transforms.
In the Modularize stage, new module boundaries are introduced using source transformations to create a new empty
module, to hide the clustered variables in it, to create access routines for the variables, to move routines in the cluster
inside the module, to qualify all external references to the new module's variables and routines, to create the module's
import/export interface and to relocate the new module appropriately in the program source.

procedures and functions of the cluster in the module. The
details of this transformation are outlined in Figure 19. The
Hide transformation then maximizes the hiding of items inside
each new module by successively relocating any remaining
items outside the module that are used only inside it until a fixed
point is reached.

At this point, the user is given the opportunity to Evaluate
each new module and decide if it represents an improvement. If
the user accepts the module, then the last two transformations
are run. The first of these, Interface, creates an external
interface by transforming the new module into separate interface
and implementation modules. Finally, the Separate
transformation physically separates the implementation module
into an independent compilation unit and removes it from the
main source.

.
3.6. Maintenance Hot Spots

Maintenance hot spots [13] are a generalization of
performance hot spots to any kind of design or source code
analysis activity. Sections of source code are labeled as hot
when a design or source analysis looking for sensitivity to a
particular maintenance issue, such as the Year 2000 problem,
expansion of credit card numbers from 13 to 16 digits, or
changes to European currency exchange computation laws, has
identified them as relevant. Maintenance hot spots can be used
either by human maintainers to focus their maintenance and
testing efforts, or by automated reprogramming tools as targets
for reprogramming templates.

LS/2000 [10] used the concept of maintenance hot spots to
assist in the Year 2000 conversion of over three billion lines of
Cobol, PL/I and RPG source code. Using a variant of the design
recovery technique described in Section 3.3 followed by design
analysis and hot spot markup for the Year 2000 problem,
LS/2000 produced hot spot reports for every module of an
application that had any potential Year 2000 risks embedded in
it, and automatically reprogrammed the majority of hot spots
according to a set of transformation patterns. Clients of
LS/2000 reported a 30-40 fold increase in Year 2000 conversion
productivity using automated hot spot identification and
reprogramming. Time to examine and convert a source code
module of a few thousand lines of source was reduced from a
few hours to less than five minutes, and accuracy of conversion
before testing was increased from about 75% to over 99%.

At the core of LS/2000 were the Hot Spot Markup and Hot
Spot Transform phases of the process (Figure 20). Hot Spot
Markup took as input each source module of the software
system being analyzed along with the set of Year 2000 date
relationships inferred by design analysis for the module. In
order to implement the markup process as a pure source to
source transformation, the inferred date relationships were
represented as Prolog source facts prepended to the module
source. Potentially Year 2000 sensitive operations in the source
were marked as hot by a set of TXL rules using source patterns
guarded by pattern matches of the Prolog source facts. Figure
21 shows one such markup rule.

Hot Spot Transform then took as input the resulting marked-
up source and used a set of TXL source transformation rules to

Version
Integration

Transformed
Original Source

Design
Recovery

Unique
Naming

Normalized
Source

Design
Analysis

Original
Source

Design
Database

Hot Spot
Markup

Marked-up
Normalized Source

Hot Spot
Transform

Transformed
Normalized Source

Report
Generation

Hot Spot
Reports

Figure 20. The LS/2000 Process Architecture.

Software system source files are first uniquely renamed and normalized to factor out irrelevant formatting and syntactic
details. The normalized source files are then analyzed using design recovery to produce a detailed design database.
Under guidance of a human analyst, design analysis identifies those design entities which are of interest in the context of
the particular maintenance task. Hot spot markup then uses the results of the design analysis to identify sections of code
that may need to be changed (“hot spots”), which hot spot transform automatically reprograms using a set of
transformation patterns. Finally, version integration restores original source formatting, naming and syntactic details to
the reprogrammed source and report generation summarizes the changes. All phases of LS/2000, with the exception of
version integration and report generation, were implemented using TXL source transformations.

search for marked hot spots that were instances of a large set of
reprogramming templates based on a “windowing” solution to
Year 2000. Because the Hot Spot Markup phase had explicated
the kind of potential risk in the markup label of each hot spot,
these templates could be applied very efficiently. Figure 22
shows an example of a TXL hot spot transformation rule for
reprogramming one kind of Year 2000 hot spot.

The ideas behind LS/2000 have been generalized and
codified in the LS/AMT automated maintenance system
discussed in [13]. By customizing the hot spot markup and
transform phases to a range of other large scale software
maintenance problems, LS/AMT has already been used to
process more and one and a half billion lines of additional code
in addressing problems such as IT mergers, database migrations,
web migrations and other large scale software maintenance
tasks.

4. Summary

TXL is a general and flexible source transformation
language and rapid prototyping system which has been used in a
wide range of software engineering and maintenance
applications. This paper has given a quick introduction to the
TXL language and our experience in its application to a range of
software maintenance activities. We observed that most
automatable software engineering tasks can be modeled as

rule markupDateLessThanYYMMDD
 import DateFacts [repeat fact]
 replace $ [condition]
 LeftOperand [name] < RightOperand [name]
 deconstruct * [fact] DateFacts
 Date (LeftOperand, “YYMMDD”)
 deconstruct * [fact] DateFacts
 Date (RightOperand, “YYMMDD”)
 by
 {DATE-INEQUALITY-YYMMDD
 LeftOperand < RightOperand
 }DATE-INEQUALITY-YYMMDD
end rule

Figure 21. Example LS/2000 Hot Spot Markup Rule.

Each hot spot markup rule searches for a particular pattern, in
this case a condition using the operator “<”, which involves
something classified by design analysis as interesting, in this
case operands known to represent dates of type “YYMMDD”.
Interesting instances of the pattern are marked up using hot
spot brackets, in this case“{DATE-INEQUALITY-YYMMDD”
and “}DATE-INEQUALITY-YYMMDD”. “DateFacts” above
refers to the Prolog source facts for the result of design
analysis. The deconstruct statements in the rule use source
pattern matching to query the source facts for “Date” facts
about the operands. This rule has been simplified for
presentation in this paper. In practice hot spot markup rules
are much more general than this one.

rule transformLessThanYYMMDD
 replace $ [repeat statement]
 IF {DATE-INEQUALITY-YYMMDD
 LeftOperand [name] < RightOperand [name]
 }DATE-INEQUALITY-YYMMDD
 ThenStatements [repeat statement]
 OptElse [opt else_clause]
 END-IF
 MoreStatements [repeat statement]
 construct RolledLeftOperand [name]

LeftOperand [appendName “-ROLLED”]
 construct RolledRightOperand [name]

RightOperand [appendName “-ROLLED”]
 by
 {TRANSFORM-INSERTED-CODE
 ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledLeftOperand
 ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledRightOperand
 }TRANSFORM-INSERTED-CODE
 IF {TRANSFORMED-DATE-INEQUALITY-YYMMDD
 RolledLeftOperand < RolledRightOperand
 }TRANSFORMED-DATE-INEQUALITY-YYMMDD
 ThenStatements
 OptElse
 END-IF
 MoreStatements
end rule

Figure 22. Example LS/2000 Hot Spot Transform Rule.

Each hot spot transform rule implements the reprogramming template for a particular kind of hot spot. In this case the
rule searches for IF statements whose condition has been marked as DATE-INEQUALITY-YYMMDD. When one is
found, it is replaced by a copy of the statement in which the inequality operands have been replaced by new operands
whose value is computed by ADD statements inserted to implement the Year 2000 windowing computation. A separate
transformation rule later inserts declarations for the new operands. This rule has been simplified for presentation in this
paper. In practice, most hot spot transform rules are much more general than this one, covering many cases in one rule.

source to source transformations, and showed how TXL can be
used to implement some of these models in practice.

TXL has been used in hundreds of projects in industry and
academia all over the world, including several other software
engineering applications, such as implementation of the HSML
design-directed source code mining system [13] and the reverse
engineering facilities of the commercial Graphical Designer and
Describe CASE tools [14]. With the move towards XML [15]
based software representations such as GXL [16], we expect that
source to source transformation will be playing an increasingly
greater role in software engineering automation in the future.

5. Related Work

The important role of transformation in software engineering
has been pointed out by several other researchers. Perhaps the
most eloquent spokespersons for transformation in software
engineering are Ira Baxter and Christopher Pidgeon of Semantic
Designs, who have proposed a design-directed transformational
model for the entire software life cycle [19]. Other source
transformation tools have been used to implement software
engineering tasks of various kinds. Of particular note are Gentle
[20], FermaT [21], NewYacc [22], DMS [23] and ASF+SDF
[24] any of which could be used to implement most of the
techniques described in this paper. TXL is distinguished from
these systems in its use of by-example patterns and
replacements, which simplify the specification of practical
transformation tasks by shielding the user from direct
manipulation of internal abstract structures.

6. Acknowledgments

TXL has benefited from the contributions of a range of
people over many years. The original Turing programming
language extension tool from which TXL has evolved was
designed by Charles Halpern and James R. Cordy at the
University of Toronto in 1985, and the first practical
implementations were developed by Ian Carmichael and Eric
Promislow at Queen’s University between 1986 and 1990. The
design and implementation of the modern TXL language and
transformation system was undertaken by James R. Cordy at
GMD Karlsruhe and Queen’s University between 1990 and
1995. Andrew Malton developed the formal semantics of the
modern TXL language at Queen’s University in 1993 [17].

Independent early explorations of the application of TXL to
software engineering tasks were undertaken by Georg Etzkorn,
Nicholas Graham, Kevin Schneider and Donald Jardine of
Queen’s University and GMD Karlsruhe. The TXL approach to
software engineering tasks was heavily inspired by the theory-
model paradigm for software design described by Arthur Ryman
of the Centre for Advanced Studies of IBM Canada [18].

A range of experiments with TXL have been carried out by
graduate students of Queen’s University including Medha
Shukla Sarkar, Ramesh Srinivasan, Rateb Abu-Hamdeh,
Chunsheng Xie, Edna Abraham, Russell Halliday, Darren
Cousineau, Andy Maloney, Minchul Cha, Richard Zanibbi and
Hongyu Zhang. Finally, several hundred TXL users from
institutions all over the world have contributed to the evolution

of TXL from a compiler technology academic toy to an
industrial strength software transformation system over the past
ten years.

Development of TXL has been funded at various stages by
the Natural Sciences and Engineering Research Council of
Canada (NSERC), by the Information Technology Research
Centre (ITRC, a province of Ontario Centre of Excellence), by
ESPRIT project REX and GMD (the German National Research
Centre for Information Technology) Karlsruhe, and by the
University of Toronto and Queen’s University.

References.

[1] T.J. Biggerstaff, "Design recovery for maintenance and reuse", IEEE
Computer 22,7 (July 1989), pp. 36-49.

[2] R.S. Arnold, "Software Restructuring", Proceedings of the IEEE
77,4 (April 1989), pp. 607-617.

[3] J.R. Cordy and M. Shukla, "Practical Metaprogramming”, Proc.
CASCON '92, IBM Centre for Advanced Studies 1992 Conference,
Toronto, Canada (November 1992), pp. 215-224.

[4] J.R. Cordy, C.D. Halpern and E. Promislow, "TXL: A Rapid
Prototyping System for Programming Language Dialects", Computer
Languages 16,1 (January 1991), pp. 97-107.

[5] J.R. Cordy, I.H. Carmichael and R. Halliday, The TXL Programming
Language - Version 10.2, TXL Software Research Inc, Kingston,
Canada, April 2002.

[6] J. Magee, J. Kramer, M. Sloman and N. Dulay, "An Overview of the
REX Software Architecture", Proc. 2nd IEEE CS Workshop on Future
Trends of Distributed Computing Systems, Cairo, Egypt (October 1990),
pp. 396-402.

[7] F. Bieler (ed.), “The REX Interface Specification Language”,
Technical Report REX-WP2-GMD-36.1.1, GMD Karlsruhe, Karlsruhe,
Germany (June 1990).

[8] D.A. Lamb, “IDL: Sharing Intermediate Representations”, ACM
Transactions on Programming Languages and Systems 9, 3 (July 1987),
pp. 297-318.

[9] D.A. Lamb and K.A. Schneider, “Formalization of information
hiding design methods”, Proc. CASCON '92, IBM Centre for Advanced
Studies Conference, Toronto, Canada (November 1992), pp. 201-214.

[10] J.R. Cordy, "The LS/2000 Technical Guide to the Year 2000",
Technical Report ED5-97, Legasys Corp., Kingston, and IBM Corp.,
Toronto (April 1997).

[11] R. Srinivasan, "Automatic Software Design Recovery and Re-
Modularization Using Source Transformation", M.Sc. thesis,
Department of Computing and Information Science, Queen's
University, Kingston, Canada (April 1993).

[12] R.C. Holt and J.R. Cordy, “The Turing Programming Language”,
Communications of the ACM 31,12 (December 1988), pp. 1410-1423.

[13] J.R. Cordy, K.A. Schneider, T.R. Dean and A.J. Malton, "HSML:
Design Directed Source Code Hot Spots", Proc. IWPC 2001 - 9th Int.
Workshop on Program Comprehension, Toronto, Canada (May 2001).

[14]!Embarcadero Technologies Inc., Describe™ Enterprise 5.8 (April
2002).

[15] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, "Extensible
markup language (XML) 1.0", W3C Recommendation REC-
xml19980210 (February 1998).

[16] R.C. Holt, A. Winter and A. Schürr, "GXL: Toward A Standard
Exchange Format", Proc. WCRE 2000 Working Conference on Reverse
Engineering, Brisbane, Australia (November 2000).

[17] A.J. Malton, "The Denotational Semantics of a Functional Tree-
Manipulation Language", Computer Languages 19,3 (July 1993), pp.
157-168.

[18] A.G. Ryman, "Constructing Software Design Theories and
Models", in Studies of Software Design, Springer Verlag Lecture Notes
in Computer Science 1078 (1996), pp.103-114.

[19] I. Baxter and C. Pidgeon, "Software Change Through Design
Maintenance", Proc. ICSM’97, IEEE 1997 International Conference on
Software Maintenance, Bari, Italy (October 1997), pp. 250-259.

[20] F.W. Schröer, The GENTLE Compiler Construction System, R.
Oldenbourg Verlag, Munich and Vienna, 1997.

[21] M.P. Ward, "Assembler to C Migration using the FermaT
Transformation System", Proc. ICSM’99, IEEE 1999 International
Conference on Software Maintenance, Oxford (Sept. 1999), pp. 67-76.

[22] James J. Purtilo and John R. Callahan, "Parse-Tree Annotations",
Communications of the ACM 32,12 (December 1989), pp. 1467-1477.

[23] Ira D. Baxter, "DMS: Practical Code Generation and Enhancement
by Source Transformation", Proc. GP 2002, Workshop on Generative
Programming 2002, Austin, Texas (April 2002), pp. 19-20.

[24] M. van den Brand, A. van Deursen, J. Heering,, H. de Jong,, M. de
Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder, J.
Vinju, C. Visser, and J. Visser, “The ASF+SDF Meta-Environment: a
component-based language development environment”, Proc. CC 2001,
10th International Conference on Compiler Construction, Genova, Itlay
(April 2001), pp. 365–370.

