
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 94, NO. B1, PAGES 765-774, JANUARY 10, 1989 

Source Type Plot for Inversion of the Moment Tensor 
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Seismic signals provide information about the underlying moment tensor which, in turn, may be 
interpreted in terms of source mechanism. This paper is concerned with a two-dimensional graphical 
display of all possible relative sizes of the three principal moments; it provides a method of representing 
the probability density of these relative sizes deduced from a given set of data. Information provided by 
such a display, together with that relating to the orientation of the principal moments, provides as full a 
picture of the moment tensor as possible apart from an indication of its absolute magnitude. As with the 
compatibility plot, which was previously introduced to portray probability measures for different forms 
of P wave seismogram given a presumed source type, this "source type plot" for display of the 
principal moments is constructed to be "equal area" in the sense that the a priori probability density of 
the moment ratios is uniform over the whole plot. This a priori probability is based on the assumption 
that, with no information whatsoever concerning the source mechanism, each principal moment may 
independently take any value up to some arbitrary upper limit of magnitude, with equal likelihood. 
Although we have in mind the study of teleseismic relative amplitude data, the ideas can, in principle, 
be applied quite generally. The aim is to be able to display the degree of constraint imposed on the 
moment tensor by any set of observed data; estimates of the sizes of the principal moments together 
with their errors, when displayed on the source type plot, show directly the range of moment tensors 
compatible with the data. 

1. INTRODUCTION 

If we are to generalize the model of an earthquake 
source from the simple double couple mechanism, we 
must be quite clear what alternative assumption is to be 
made. Leaving aside the question of the time dependence 
of the source, it is customary to use a multipole expansion 
truncated after the first terms which do not violate 

conservation of linear and angular momentum [e.g., 
Backus and Mulcahy, 1976a, b]. These terms correspond 
to a linear combination of differently oriented source 
dipoles without moment, most easily represented by the 
moment tensor. This symmetric (3x3) tensor has six 
independent components providing six degrees of free- 
dom. We take the view that it would be much more help- 
ful to physical interpretation if six physically identifiable 
parameters were used rather than these six moment tensor 
components, and we endeavor to follow this approach. 

In the end, the model should be capable of interpretation 
in terms of one or a combination of physical processes of 
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failure resulting from an accumulated change in stress 
field. The processes may take any forms, e.g., shear or 
tensile fracture, explosion or implosion, each having an 
equivalent force system with its characteristic principal 
moments and each, in theory, distinguishable by its P and 
S radiation patterns. We therefore wish to ensure that the 
moment tensor is expressed in a way which separates as 
far as possible distinct types of physical mechanism. This 
means straightaway that the parameters describing the 
force system (which we refer to as the "source type") 
should be separated from those governing its orientation. 
The latter may be linked to the direction of the local stress 
field and of preexisting lines of weakness, but these are 
distinct from the question of the mechanism itself. 

We achieve this separation of source type and orienta- 
tion by diagonalizing the moment tensor; its three eigen- 
values determine the mechanism, while the three angles 
defining the orientation of the principal axes complete the 
six parameters. In the case of a double couple fault rup- 
ture mechanism, the three angles chosen to represent the 
orientation of the source equate to the dip, strike, and slip 
angles [Pearce, 1977]. Although these angles cease to have 
the same physical meaning for other source types, they 
relate simply to the orientation in space of the moment 
eigenvectors and remain useful for comparing the orien- 
tation of alternative source types [Pearce and Rogers, this 
issue]. 

In choosing three physical parameters to define the 
source type, we first recognize that the principal moments 
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correspond only to the sizes of three orthogonal dipoles 
which constitute the source models, and these certainly do 
not relate to separate physical processes. Instead we 
choose two parameters T and k, which characterize the 
type of constant-volume (shear) component in the source, 
and the proportion of volume change component, respec- 
tively. The third parameter is then a scaling factor to fix 
the overall magnitude of the source; since we envisage the 
use of relative amplitude data, the absolute magnitude of 
the moments will be indeterminate, and this last parameter 
is discarded. 

A source type can therefore be displayed on a two- 
dimensional diagram in terms of T and k. In order to 
show consistently the constraints imposed on the mecha- 
nism by any set of data (i.e., the restriction to a certain 
region of the T-k plane), we wish to construct a specific 
plot such that the a priori probability density for points on 
the display is uniform. In other words, if there is no prior 
knowledge of, or preference for, a specific source type, 
the probability of source types corresponding to a range 
of (T, k) points lying within a certain region of the plot is 
directly proportional to the area of that region alone. We 
describe this equal-area representation as the "source type 
plot." 

For orientation, the choice of distribution correspond- 
ing to minimum a priori constraint is simple: with no 
prior information, every orientation is equally likely [see 
Pearce, 1979, 1980]. For source type, we specify that the 
values of the three principal moments are independent and 
uniformly distributed in [-L, L], where L is an arbitrary 
upper limit. Since we are not concerned with absolute 
magnitudes, the actual value of L is irrelevant. 

In this way the size of the region to which the values of 
T and k are constrained by the data gives a quantitative 
measure of the accuracy of the measurement of source 
type, unaffected by the particular choice of parameteriza- 
tion. 

2. PARAMETRIC REPRESENTATION OF THE MOMENT TENSOR 

The diagonalized moment tensor may in all cases be 
decomposed into an isotropic and a nonisotropic part. The 
isotropic part may be specified by a single scalar and 
corresponds to pure dilatation at the source, while the 
nonisotropic component requires two parameters to 
define its size and type, and corresponds to a mechanism 
without volume change. We choose the parameter k as a 
measure of the relative size of the dilatational component, 
the corresponding size of the constant-volume component 
being (1-1kl). We then use T as a second parameter to 
define the form of the constant-volume component. The 
third parameter, if included, would define the absolute 
source size. 

Previous authors have used the relative size of two 

orthogonal double couples, or the relative sizes of a 
double couple and a compensated linear vector dipole 
(CLVD) as a means of expressing the nature of the 
constant-volume component [e.g., Knopoff and Randall, 
1970; Fitch et al., 1980]. Although they may be mathe- 
matically convenient, there are any number of ways of 
achieving such decompositions, and they do not in general 
correspond to any physical components of the source. 

The choice of k, the proportion of dilatational compo- 

nent, as an explicit parameter is a natural outcome of our 
decision to separate orientation from source type; only the 
constant-volume component of source type is affected by 
orientation. Moreover, explosive component is of specific 
interest; the dilatational model is the one normally used 
for an explosive source, which is one source type known 
to occur on its own, or which alternatively may accom- 
pany a (conceptually) separate constant-volume mech- 
anism. 

Although it is less clear what would represent the most 
physically justifiable choice of constant-volume param- 
eter, the double couple is one constant-volume mechanism 
known to occur on its own, and we define our parameter T 
such that it passes through the double couple to include all 
other types of constant-volume component, with the same 
orientation of principal stress axes. The mechanisms most 
different from the double couple are the positive and 
negative CLVDs, which accordingly correspond to the 
numerically extreme values of T. Therefore although T 
in fact corresponds numerically to the relative sizes of a 
notional negative CLVD and a double couple similarly 
oriented, we shall consider the parameter as simply the 
characteristic of the single constant-volume component. 

Some authors [e.g., Dziewonski et al., 1981] express the 
six moment tensor components with respect to a vertical 
set of axes, a representation which is not explicit in either 
source type or orientation. The principal moments, which 
are also given, are only interpretable in terms of source 
type by examining the relationship between their numer- 
ical values. The percentage deviation from a double 
couple, or the best fit double couple, gives this one source 
type a special significance and does not provide an 
informative measure of the confidence in terms of either 

the source type itself or its orientation. The parametric 
representation which we develop here is, we believe, both 
economical and informative. 

So that the orientation of the moment tensor shall be 
uniquely defined, we order the relative sizes of the three 
principal moments Mx, My, and Mz; that is, for any 
specified orientation the smallest, intermediate, and 
largest principal axes are in the same directions for all 
source types. This is important when considering the 
causative stress field, and is done without loss of 
generality. We begin therefore with the ordering 

Mx>Mz>My (1) 

and define the isotropic part M, where 

3M=Mx+My+M• (2) 

and the deviatoric moments 

m• =mx-m M; =my-m M; =mz-m (3) 

The dilatational component of the moment tensor is, of 

course, represented by M, while M•:, • and M• det- ermine the constant-volume component. begin scaling 
by taking the ratio of each moment to one of their number. 
In order to avoid the danger of division by zero, we 
separate the possible cases into M• > 0, M• = 0, and M• < 
0. 
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If M; > 0 it follows that M• < 0 (since M• + My + M' - 
0 and M; > M; >My). We now scale all moments by 
(-2/M•): 

(4) 

where the overbar indicates the scaling. We see that 

My =-2 

0<•;_-2M; _ 
M_'. M '. M' 
- -y - -• .... z 

_<1 

•_ -2M• _ 2 M; (5) ! 

, ' M' so the deviatoric part diag{M• My, : } of the moment 
tensor may be separated into two parts: 

diag{M•, My , M• } 
= 2 diag [ 1, -1,0 } + M: diag [-1, O, 1 } (6) 

We define our first parameter T therefore by 

T=M:=-2(M;/My) 0<r_<l (7) 

so that 

M x=2-T My =-2 M:=T (8) 

The second parameter k is chosen to measure the dilat- 
ational component. We put 

M = 2k/(1-1kl) -1 < k < 1 (9) 

or k = M/(2+lMI) and scale by the factor 2k/M or, equiv- 
alently, by (1-1kl), so that 

M=2k (10) 

where_the double overbar indicates the new scaling. 
If M = 0, k = 0, and the factor 2k/M reduces to unity (as 

(1-1kl) obviously does) and the scaling is by unity. Finally, 
we have 

M•= 2k + (1-1kl)(2-T) 

My = 2k - 2(1-1kl) 

M z= 2k + T(1-1kl) (11) 

In the case M; < 0, then M• > 0, and we begin by scaling 
by (2/M;) (instead of (-2/M•)), so that 

M• =2 

, ' 2M' -I<M•<O • • • 

% : (12) 

Again we define 

T=M; -I<T<0 (13) 

andk as before, according to (9). Scaling once again by 
2k/M (or, equivalently, by (1-1kl)), or by unity if M = k = 
0, we have 

M= 2k 

M x = 2k + 2(1-1kl) 

My= 2k - (2+r)(1-1kl) 

mz = 2k + T( (14) 

Finally, if M; = 0, we have M•= -M• and, assuming these 
two components are nonzero, we scale by (2/M•) = 
(-2/M•v) again, so that 

Mx =-My =-2 (15) 

This time we put T = 0, since it corresponds to the limiting 
! 

value of T as My tends to zero from either above or 
below_, and define k ac_cording to (9) again. Scaling by 
(2k/M), or by unity if M = k = 0, we have 

M=2k 

M•= 2k + 2(1-1kl) =-My 

M:=2k (16) 

If, in addition to M} = O, we have M• = 0 = My, we define 
k = M/IMI (as the unambiguous limiting value of k as M• 
and M• tend to zero) and scale by 2k/M (that is, 2/IMI) 
again to get 

Mx=My=M:=2k (17) 

In summary, we have defined two parameters in terms 
of the ordered principal moments Mx, M:, and My: 

k = M/(IMI- My ) M z > 0 

k = M/(IMI + Mx ) M z<O 
-l<k<l 

(18) 

and 

T=-2M:/My M:>0 0<T<I 
r:o 

T : 2M; /M• M; < O -I < T < O (19) 

The combined scaling factor is, in every case, 
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2k 2 

M IMI-M• 
2k 2 

M IMI +M• 

Mz > 0 O(X) = q(m)dm (24) 

M; _< 0 (20) 

and the scaled moments are 

Mx= 2k + (2-T)(1-1kD 

My = 2k- 2(1-lkl) 
T>_O 

M x = 2k + 2(1-1kl) 

M• = 2k - (2+T)( 
T<O 

M z= 2k + T(lqkl) 

M = (Mx + My + Mz)/3 = 2k (21) 

where both T and k lie in the range [-1, 1]. Every moment 
tensor can be presented in this form with unique values of 
T and k, and it is used by Pearce and Rogers [this issue, 
equation (1)]. 

We see that the dilatational component is given by M = 
2k, varying from-2 to +2, and the nonisotropic constant- 
volume component is given by the deviatoric moments 

M• = (1-1kl)(2-T) 

My = (1-1kl)(-2) 

T_>O 

M.• = (1-1kl)(2) 

My = (1-1kl)(-2-T) 

T<O 

M; = (1-1kl)(r) -1 < T < 1 (22) 

3. A PRIORI PROBABILITY DISTRIBUTION FOR T AND k 

We base the a priori probability distribution of the 
principal moments on the assumption that, before any 
account is taken of possible source models, each principal 
value of the moment tensor can be considered as a random 

variable m, independent of the other two and having a 
probability density function •X) (-•, < X < •,), the same 
for each principal moment. This assumption is, of course, 
not based on any observation but is designed as a basis with 
respect to which the observed probability density of 
source types can be measured. 

Without loss of generality and following (1), we choose 
Mx as the principal moment with the highest value, so 

Pr { Mx ½ [X, X+dX] } 

=3Pr{m ½ [X,X+dX] } x (Pr{m ½[- oo, X]}) 
2 

= 3•0(X) ß (X)dX (23) 

where •(X) is the cumulative probability function given 
by 

Thus the probability density for Mx is 

2 

•0x(X) = 3q(X) ß (X) 

Similarly, since we choose My to be the moment with 
the lowest value, 

Pr{My • [X,X+dX] } 

= 3 •0(X) (1-•(X)) 2clX = •0 y(X)dX (25) 

and 

Pr { M z • [X, X+dX] } 
= 3 ½(X) •(X) (1-•(X))dX = ½ z(X)dX (26) 

We wish to find the combined probability distribution 
for T andk. Suppose, first of all, that 0 < k < 1, 
0 < T < 1; then M > 0, M; > 0, and (equations (18) and 
(19)) 

k = M T = -2(Mz-M) 
2M-My My-M 

The scaled values of Mx, My, and Mz are given by (21). 
Replacing the scaling factor (M/2k), we have 

M 

Mx = • [2 - T(1-k)] 
M [4k- 2] My=• 
M 

M z = • [2k + T(I-k)] (27) 

We now def'me two new parameters/• and z' 

M 

# = • z= T(1-1kl) (28) 

so that 

Mx=/a(2-•:) My = 2/a(2k-1) Mz= #(2k+•:) (29) 

with0</•< oo, 0< •< 1-k, and0<k< 1. 
The substitution of x for T makes each moment linear in 

x and k for each different value of/a, and we look for a 
combined probability distribution for x and k in the first 
instance. The combined probability distribution for Mx, 
My, and Mz taking values X, Y, and Z respectively, (X > Z 
>Dis 

6 •p(X) •p(Y) •p(Z) (30) 

where the factor 6 corresponds to the six ways of choosing 
the coordinate axes as the X, Y, and Z axes. It follows that 
the probability density function for •:, k, and/a is 



HUDSON ET AL.: SOURCE TYPE PLOT FOR INVERSION OF MOMENT TENSOR 769 

6 •p(X) •(Y) •p(Z) 
&(X, Y, Z) (31) 

where X =/•(2-z), Y = 2/•(2k-1), Z =/•(2k+z), and 

3(X, Y,Z) 
o(z, k, 30 

is the Jacobian 

ox ox ox 

3Y 3Y 

oz oz oz 

-It 0 2-z 
0 4/.t 4k-2 
!a 2IX 2k+z 

= _12/t 2 (32) 

The combined distribution of z and k is therefore 

•(z, k)= 6 c)(X) •(Y) c)(Z) 

"0 

&(X, Y, Z) 
o(z, k, 30 

= 72 •p{#(2-z) } •p{ 2#(2k-1) } c){#(2k+z) } #2d# (33) 

If0<T< 1, and-1 <k<O, thenM<OandM; >0. The 
same formulae hold as before but with 

X =/t(2+4k-z) Y =-2/t Z =/t(2k+z) (34) 

and 

&(X, Y, Z) _ 
O(z, k, 30 

2+4k-z 
--2 

2k+z 

2 

= -12F 

So 

•(z, •) 

Io • • = 72 •{•t(2+4k-z) } •(-2•t) •{•t(2k+z) } •t d•t 

O < z< l+k -l<k<0 (35) 

0; 
If, now, -1 < T < 0 and 0 < k < 1, then M > 0 and M; < 

X = 2/t Y =/t(-2+4k-z) Z =/t(2k+z) (36) 

and 

3 (X, Y, Z) = -12/• 2 
o(z, k, 

= 7210øø•(2#) •{tt(-2+4k-z) } •{tt(2k+z) } tt2dtt 

-(1-k)<z<0 0<k<l (37) 

Finally, if both z and k are negative, then so are M and 
M•, and 

X =/t(4k+2) Y =/t(-2-z) Z =/t(2k+z) 

&(X, Y, Z) = _12/• 2 (38) 
O(z, k, 

and so 

Io = 72 •ø•{•t(4k+2) } •{•t(-2-z) } •{•t(2k+z) } •t d•t 
-(l+k)<z<0 -l<k<0 (39) 

Equations (33), (35), (37), and (39) give • (z, k) for the 
whole range of relevant values of z and k except for the 
endpoint values e.g., k = -1, 0, 1. These can be found as 
limiting values of the given expressions. 

The corresponding distribution function •(T, k) for 
T and k can be found directly from gr (z, k) from the 
formula 

•(T, k): gr(z, k) 
•(Y, •) 

= •r(z, k) (lqkl) (40) 

We now propose our simple model for q(X), the a 
priori probability distribution for each principal moment, 
and one expressing almost total lack of information. As 
proposed earlier, we assume q to be constant between 
positive and negative limits + L (L > 0): 

q(X) L IXl < L =•- _ 
•(x) -- o IXl > L (41) 

Since we scale the moments and .pay no attention to 
absolute magnitude, the value of L is irrelevant to the 
distribution of T and k. 

It follows, for instance, that the probability density 
function for the ordered moments Mx, Mz, and My are 
(equations (23), (25), and (26)) 

• x(X) = -• (L+X) 
8L 

q• y(X) = -• (L-X) 2 IXl < L 
8L 

8L 

q• x(X) = q• y(X) = q• z(X) -- o IXl > L again. Hence (42) 
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Fig. 1. Representation of source types using the parameters T and k plotted in the ,-k plane (see text). Lines of equal T 
are shown pecked; lines of equal k are horizontal and equally spaced. 

The combined distribution of z and k in the first 

quadrant (0< z< l-k, 0<k < 1) is (equation (33)) 

(43) 

where 

max { 2-z, 2-4k } 

That is, 

3 

(2-z) 

•(z, k) = 3 z> 4k (44) 
3 

8(-2t0 

(see Figure 1). 
Similarly, in the third quadrant (-(l+k) < z <0,-1 < k < 

0) 

= 9 ff/rt#2d#_ 3 3 
(45) 

(from (39)), where 

r/= max { 2+z, 2+4k} 

Thus 

3 
•(z, k) - 3 z> 4k 

(2+z) 

•(z, k) = 3 z < 4k 
8(1+2k) 3 

(46) 

In the fourth quadrant (0 < z < l+k, -1 < k < 0) we have 
(using (35)) 

_• œj•/2 2 3 w(,, = # d# = 
L 

(47) 

Similarly, in the second quadrant (0 < k < 1, (k-l) < T 
< 0), (17) applies, and we have once again 

•(z, k) =3 (48) 
8 

The probability density within the region I,l_< 1-1kl, 
0 < Ikl < 1 is therefore uniform in the second and fourth 
quadrants but nonuniform in the other two quadrants. In 
the first and third quadrants the density increases toward 
the line z = 4k, and the peak value increases with I, I and Ikl 
along the line to the points +(4/5, 1/5) on the boundary of 
the region, where it takes an overall maximum value of 
125/72. 

The integrated probability over the whole region 
I,I < 1-1kl, 0 < Ikl < 1 is, of course, unity. 

The combined probability distribution for T and k can 
be obtained from (44), (46), (47), and (48) using (40). 
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4. Two-PARAMETER REPRESENTATION WITH UNIFORM 
A PRIORI PROBABILITY DENSITY 

While the joint probability density of T and k is of 
interest, our main purpose is to construct an equal-area 
plot; that is, transform from T, k to new parameters 
u(T, k), v(T, k) such that the joint a priori probability 
density of u and v is uniform. In fact we may start from 
the distribution gt (T, k). 

In the second and fourth quadrants of the (T, k) plane, 
the probability density is already uniform, and so we put 

u = T, v = k (49) 

for x> 0, k< 0 and x< 0, k> 0. 
If we now consider the first quadrant, we have two 

regions: T < 4k in region A and T > 4k in region B (see 
Figure 1). In region A (equations (44)), gt = 3/(2-T)3, and 
in region B, gt= 3/(8(1-2k)3). The corresponding density 
function ½ for u and v is 

where 

We choose 

½ (u, v) = •( •:' k) 
8(u, v) 
•(,, k) 

3(u,v)_3u3v 3u3v 
3(,,k) 3,3k 3k3, 

• k 

(5O) 

T k 

U-l_2k V-l_2k (51) 

in region A and region B, respectively. This transform- 
ation matches on the interface (T = 4k) of regions A and B 
and also matches the transformation (49) on the 
boundaries T = 0 and k = 0. 

In region A, 

3(u, v) _ 1 
(52) 

(•-,/2) 

and so ½(u, v) = 3/8. Similarly, in region B, 

3(u, v) _ 1 

i•(T, k-••-- (1_2k)3 (53) 

and so, once again, ½(u, v) = 3/8. 
In the third quadrant, we effect a similar transformation 

with some changes of sign: 

u- T v- k T>4k 
l+x/2 l+x/2 

u- T v- k T<4k (54) 
l+2k l+2k 

so that ½(u, v) = 3/8 throughout. 
The first quadrant in the (T, k) plane maps onto the first 

quadrant in the (u, v) plane, and similarly for the other 
quadrants. In the second and fourth quadrants, of course, 
the transformation is an identity, and the outer boundaries 
remain at v = u•l (see Figure 2). 

In the first quadrant, the interface between regions A 
and B is T= 4k, u = 4v, and the boundary T= 1-k becomes 

u = 2(l-v) 
u = 1 +v (55) 

in region A and in region B respectively. 
Inverting the transformation (51), we have in region A, 

k- v u u T- T = • (56) 
l+u/2 l+u/2 l+u/2-v 

Lines of constant k therefore transform onto lines with 
slope k/2, while lines of constant T become lines with 
slope (T-2)/2T. 

In region B, 

k- v u u T- T - (57) l+2v l+2v l+v 

and lines of constant k remain lines of constant v, while 
lines of constant T become lines with slope l/T, thus 
effecting a continuous transition with the second quadrant. 

The transformation of the third quadrant follows simi- 
lar lines of course. 

We see from Figure 2 that the equal-area plot is a 
parallelogram with vertices at (0, 1), (4/3, 1/3), (0,-1), 
and (-4/3,-1/3). There is no discontinuity in the repres- 
entation on the u axis, only at the diagonals, u = 0 and 
U=4V. 

The probability density over the plot is uniformly 3/8 as 
we have shown. The total area of the plot is 8/3, giving a 
total probability of unity, as required. 

5. DIscussioN 

Inversions of seismological data giving estimates of the 
principal moments together with error bars may be 
displayed on the source type plot to show the range of 
possible source mechanisms allowed by the data. By this 
means the results appear in a form which can easily be 
interpreted in terms of constant-volume and volume 
change components, and which shows the true proportion 
of the possible moment tensors that are compatible with 
the data. 

This plot for the parameters T and k of the moment 
tensor which we have constructed tums out to have a 
fairy simple character; in fact it is less complex than the 
compatibility plot which has been set up for the 
parameters concerned in the measurement of amplitude 
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Fig. 2. Equal-area source type plot. Source types are represented using the parameters T and k plotted in the u-v plane, 
which gives uniform distribution of source types throughout the plot. Lines of equal T (near-vertical) and k (near- 
horizontal) are shown pecked. The (u, v) coordinates of key points are shown. 

ratios of P, pP, and sP [see Pearce et al., 1988]. Figure 2 
shows lines of constant k, which measures the relative 
importance of the dilatational componem, and of constant 
T, which controls the character of the constant-volume 
component (see (21) and (22)). Figure 3 shows the posi- 
tions on the plot of some well-known source types. 

Purely dilatational sources correspond to k = _+1 and 
hence •: = 0. These map onto the two points (0, +1) on the 
source type plot as shown (Figures 2 and 3). Sources with 
no dilatation correspond to k = 0 and map onto the line v = 
0 (Figure 2). On this line, T varies from-1 (compensated 
linear vector dipole) to +1 (negative CLVD). A double 
couple (or shear crack) plots onto the origin where T = k 
=0. 

A simple linear dipole is given by T =-1, k = 1/3 
(positive) and by T = 1, k =-1/3 (negative), as shown in 
Figure 3. The tensile crack also lies on the line T =-1 
(positive) or T = 1 (negative) but it has greater dilatational 
component than a simple dipole. The exact proportion of 
dilatation to shear component depends on the elastic 
parameters of the material in which the source lies; for a 
Poisson's ratio of 0.25 it plots onto the point (-1, 5/9) as 
shown. 

The distorted shape of the plot obtained can be ex- 
plained in physical terms. First, the reducing width of the 
plot toward k = _+1 is a consequence of the decreasing 
importance of the constant-volume parameter T, as the 
proportion of volume change component increases; for 
the extreme cases k = +1, the parameter T is undef'med. 

Any constant-volume source (i.e., one with k = 0) will 
have positive and negative regions in its far-field P 
radiation pattern separated by nodal surfaces, which are 
the familiar nodal planes in the case of the double couple. 

With increasing dilatational component a preponderance 
of either negative or positive P radiation develops until a 
point is reached beyond which the nodal surfaces dis- 
appear and the radiation is all of the same polarity. The 
condition for this boundary is that one of the three 
principal moments tends to zero. For k positive and in- 
creasing, our ordering of the three moments by size 
(equation (1)) ensures that it is the My element that 
becomes zero last. So from (21) we require 

2k - 2(l-k) = 0 T > 0 

2k - (2+T)(1-k) = 0 T < 0 (58) 

For T > 0 this condition becomes k = 1/2 which, by use 
of (51), becomes 

u 1 

v (59) 

For T < 0 the condition becomes 4k = •:+2, using (28), 
and using (49) we obtain the same result as (59). Thus we 
have two segmems of the same straight line. 

For k negative and decreasing it is the Mx element which 
becomes zero last, and similar arguments can be used to 
derive the relationship 

u 1 

v = •--•- (60) 

Thus there are two parallel straight lines on the source 
type plot (shown by dotted lines in Figure 3) between 
which nodal surfaces are observed, and outside this region 
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Fig. 3. Equal-area source type plot, showing key points and the positions of key source types in terms of (T, k) 
coordinates. The dotted lines denote the zone within which nodal surfaces exist in the P wave radiation pattern. Outside 
this zone, P radiation is all of the same polarity: positive and negative in the upper and lower regions, respectively. 

the radiation is either all positive (upper region) or all 
negative (lower region). These straight lines only follow 
the lines k = +1/2 for one polarity of T because the 
negative and positive lobes of constant-volume (i.e., k = 0) 
P wave radiation patterns are unequal in amplitude except 
for T = 0 (the double couple). We can see how this fact 
relates to the shape of the source type plot by considering 
the extreme case T = -1. The radiation pattern then varies 
as 3cos20- 1, where the direction 0 = 0 is its axis of 
symmetry, giving a positive maximum of 1 along this axis 
and a negative maximum of-1/2 along the toroidal 
negative lobe normal to this axis. Thus the addition of a 
smaller proportion of explosive component is required to 
eliminate the nodal surface than would be required of an 
implosive component. 

We may further ask why the maximum stretching of T 
values does not occur along the line k = 0 (v = 0 in Figure 
2), but along the line v = u/4. We recall that this stretching 
is a consequence of our equal-area requirement, given 
uniform distribution of the principal moments, and the 
maximum stretching corresponds to a small rate of change 
of these moments as a function of T. For T = -1 this 
maximum occurs when these moments are numerically 
equal, and this occurs for k = 0.2, not k = 0. The loci of 
disappearance of nodal surfaces are also lines of constant 
rate of change of the principal moments as a function of T. 
Indeed, the line v = u/4 is parallel to these loci (equations 
(59) and (60)) and exactly bisects the region of the plot 
where nodal surfaces exist in the P wave radiation pattern 
(Figure 2). 

So far we have restricted attention to the relative sizes of 

the principal moments of the source. We may go further 
and estimate the complete range of moment tensors com- 

patible with a given data set by constructing the set of 
orientations compatible with the data for each source type, 
according to Pearce [1977, 1980], to yield a quantitative 
measure of the total compatible range in five dimensions. 
(We recall that the sixth dimension represents the absolute 
size of the source and has been discarded for our purpose.) 
A major attraction of this approach to source inversion is 
that the source type plot on its own provides a direct 
assessment of the range of compatible source types as a 
fraction of the total population, and without attention to 
orientation. 

It is important to remember that all source types with 
T = +1, that is on the extreme left- and right-hand edges 
of the plot (Figure 3), have only two, and not three, 
degrees of freedom in their orientation, since they have 
two equal principal moments and thus an axis of symmetry 
in their radiation patterns which is not characteristic of 
other source types. Moreover, the purely explosive and 
implosive source types at k = _+1 are, of course, sym- 
metrical about all axes. These symmetries do not affect 
the distribution of source types but are important for the 
distribution of orientations; we have assumed orientations 
to have always three degrees of freedom by generalization 
of the double couple case assumed by Pearce [1977]. For a 
given source type which has T = +1 we find that, if any 
orientation is compatible, then there is always a ribbon of 
compatible orientations corresponding to rotation of that 
source type about its axis of symmetry. For a purely 
explosive or implosive source we find, of course, either 
that no orientation is compatible or that they all are. The 
apparent anomaly here is that in such cases the fraction of 
parameter space allowable is large while only representing 
a single radiation pattern. The anomaly is, however, 
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apparent only, since although less information is required 
to determine the parameters of a source that is assumed 
a priori to have fewer degrees of freedom, it is essential 
to our approach that no such assumptions are made. If 
compatible source types are found with a range close to 
T = +1 or-1 the uncertainty in Orientation necessarily 
becomes larger as the symmetrical source type is 
approached. Similar increasing uncertainty in orientation 
also occurs as the source type approaches k = +1 or-1. 
The effect corresponds, for instance, to the difficulty of 
assessing accurately the orientation of a small shear comp- 
onent of an almost completely explosive source. 

It is convenient to sample source types at equal intervals 
of T and k; this is done in the relative amplitude moment 
tensor program (RAMP) described by Pearce and Rogers 
[this issue]. Each sample point must then be weighted 
according to the size of the area on the source type plot 
that it represents, since T and k are, of course, not uni- 
formly distributed on the source type plot. The quantity 
gt (•,, k) calculated from (44), (46), (47), and (48) defines 
the probability density of source types in the (•:, k) plane 
and, since the area of any (T, k) increment in the (% k) 
plane is proportional to (1-1kl) (from (40)), the proba- 
bility density in the (T, k) plane, and thus the weighting 
factor, is simply (1-1kl) gt (•:, k). 
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