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ABSTRACT

In this paper we compare speech recognition accuracy for high-
quality speech recorded under controlled conditions with speech
as it appears over long-distance telephone lines. In addition to
comparing recognition accuracy, we use telephone-channel simu-
lation to identify the sources of degradation of speech over tele-
phone lines that have the greatest impact on speech recognition
accuracy. We first compare the performance of the CMU
SPHINX-I system onthe TIMIT and NTIMIT databases [3,8]. We
found that other factors beyond a mere decrease in bandwidth
cause the observed degradation in recognition accuracy, and that
the environmental compensation algorithms RASTA [6] and
CDCN [1] fail to compensate completely for degradations intro-
duced by the telephone network. In the second part of this paper
we attempt to identify the most problematic telephone-channel
impairments using a commercial telephone channel simulator and
the SPHINX-II system. Of the various effects considered, additive
noise and linear filtering appear to have the greatest impact on rec-
ognition accuracy. Finally, we examined the performance of three
cepstral compensation algorithms in the presence of the most
damaging conditions. We found the compensation algorithms to
be effective except for the worst 1% of the telephone channels.

1. INTRODUCTION

As speech recognition systems become more accurate and sophis-
ticated, interest in telephone-based applications for them
increases. It is well known that recognition accuracy percentages
are lower for speech over the telephone network than for speech
that is carefully recorded in a quiet environment. Nevertheless, the
reasons for this degradation in recognition accuracy are not well
understood. In this paper we describe a series of studies that
attempt to compare the effects of several putative causes of tele-
phone-channel degradation, to determine which of these impair-
ments have the greatest impact on recognition accuracy.

2. RECOGNITION ACCURACY USING
THE TIMIT AND NTIMIT DATABASES

The NTIMIT database [8] has enabled researchers to perform con-
trolled experiments that compare phonetic recognition accuracy
obtained with high-quality speech with the accuracy for the same
speech transmitted over long distance telephone lines. The TIMIT
database is a continuous, speaker independent, phonetically-bal -
anced and phonetically-labelled speech database. The NTIMIT

database was created by transmitting sentences in the TIMIT
database over telephone lines. Previous work on speech recogni-
tion systems has demonstrated that the use of speech over thetele-
phone line increases the rate of recognition errors. For example
Chigier [3] reports a reduction in accuracy of about 10%. In our
work [11] we have aso confirmed this result.

In Table 1 we compare phoneme recognition accuracy obtained
using the TIMIT and NTIMIT databases. A version of SPHINX-I
was used that was not optimized for phonetic recognition. We
observe an absolute decrease in recognition accuracy of 11.4% as
the TIMIT database is replaced by the NTIMIT database.

TRAIN TEST % ERROR
TIMIT TIMIT 47.3
NTIMIT |[NTIMIT 58.7
TIMIT NTIMIT 68.7

Table 1: TIMIT and NTIMIT recognition results.

Theinitial set of subsequent experiments was designed to explore
the hypothesis that this gap in recognition accuracy is caused by
the more limited bandwidth of telephone speech. Specifically,
Table 2 summarizes the recognition accuracy obtained by training
and testing on (1) the original TIMIT database, (2) a version of
the TIMIT database that is downsampled to 8 kHz (producing an
effective bandwidth of 4 kHz), (3) aversion of the TIMIT data-
base that is both downsampled to 8 kHz and passed through alin-
ear filter designed to approximate the frequency response of a
typical telephone channel [2], and (4) speech from the NTIMIT
database.

Database Baﬁgx‘?‘éth % ERROR
Original TIMIT 0-8000 Hz 47.3
Downsampled TIMIT 0-4000 Hz 48.2
Filtered TIMIT 250-3400 Hz 50.3
Downsampled NTIMIT|250-3400 Hz 57.5

Table 2: Effect of bandwidth reduction on TIMIT.

We note that downsampling and filtering TIMIT only reduces rec-
ognition accuracy by 3.0%, while switching to the speech from
the NTIMIT database reduces accuracy by an additional 7.2%.
This suggests to us that bandwidth limitations and other linear fil-
tering effects are not the sole source of the observed degradation
in performance. Other possible source of degradation include the



additive noise encountered in telephone channels and nonlinear
attributes of the gain and phase response of the telephone channel.
The RASTA [6] and CDCN [1] procedures are two examples of
algorithms that have been developed to compensate for the effects
of linear filtering and additive noise in office environments. Figure
1 summarizes recognition accuracy obtained on the TIMIT/
NTIMIT databases using the implementation of RASTA that was
part of the 1991 SRI ARPA speech recognition system [12] and
the original implementation of the CDCN algorithm. The RASTA
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Figure 1: Effect of RASTA and CDCN on speech recognition
error inthe TIMIT and NTIMIT databases.

algorithm, which in this implementation compensates primarily
for the effects of linear filtering, improves accuracy only in the
“cross-condition” case, when the system is trained in one environ-
ment and tested in the other. CDCN provides greater improvement
in the cross-condition case, but it does not improve recognition
accuracy when the system is trained and tested in the same envi-
ronment.

3. RECOGNITION ACCURACY USING
TELEPHONE-CHANNEL SIMULATIONS

Extensive experimental and statistical analyses have been used to
characterize some of the degradations encountered in the tele-
phone network [2]. Among others, telephone networks produce
the following impairments:

Added low-frequency tones (frequently at 180 Hz)
Additive stationary noise

Impulse noise

Amplitude and phase jitter

Intermodulation distortion

Unknown channel gain and phase response

We have compared the relative impact of each of these impair-
ments by isolating them using a commercial telephone channel
simulator, the TAS 1010 [13]. The use of the simulator enables us
to isolate impairments and collect speech databases with selected
degradations. Figure 2 depicts the experimental apparatus used for
the collection of controlled degraded databases.

In order to test these channels using a task that produces a lower
intrinsic error rate than phonetic recognition using the TIMIT/
NTIMIT database, we used the CMU AN4 database [1], a contin-
uous speaker-independent database consisting of strings of letters,
numbers, and afew control words recorded under noiseless condi-
tions using a close-talking microphone. The training set is trans-
mitted through the simulator with all impairments set to zero with
the exception of alow pass filter in the 0-4000 Hz frequency
region. Thisisour baseline condition.

Clean speech
WORKSTATION | p/A TAS1010
—>
clean speech Telephone Network
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AD || Degraded speech Simulator

¢ Control commands ¢

Figure 2: Experimental apparatus for the telephone network
simulation experiments.

All experiments using this database were performed with the
SPHINX-II speech recognition system [7], a more advanced ver-
sion of the CMU recognition engine.

Effect of analysis bandwidth. The SPHINX-II system uses a
front end based on Mel-Frequency Cepstral Coefficients (MFCC)
to perform a frequency analysis in the 130- to 6900-Hz region.
This choice of analysis bandwidth is appropriate when the system
processes speech recorded through good-quality microphones
such as the ARPA-standard Sennheiser HMD-414 close-talking
microphone (referred to as CLSTLK). However when speech is
recorded through telephone lines, areduction in the analysis band-
width normally yields lower recognition errors. Asis seenin Fig.
3, the use of areduced analysis bandwidth has little impact on rec-
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Figure 3: Effect of the analysis bandwidth on the recognition
error rate for the AN4 database.

ognition accuracy using the CLSTLK mic, but it dramatically
improves recognition error rate when the system is trained with
high-quality speech and tested using simulated tel ephone speech.
For this reason the results reported in the rest of the paper were all
obtained with the reduced analysis bandwidth of 200-3700 Hz.

Similar results have a so been observed in real telephone collected
databases such as TIMIT and NTIMIT.

Effect of smulated impair ments. Speech over the telephone net-
work was simulated by transmitting clean speech through the TAS

simulator with individual impairments set at the 507, 901 and 99
percentiles of degradation as determined by [2]. Table 3 summa-
rizes the recognition error rates obtained with these various simu-
lated impairments. Since statistical percentile ratings do not exist
for the 180-Hz tone condition, three signal-to-tone intensity ratios
were chosen arbitrarily.

Of the various impairments, additive stationary noise (C-message
noise [5]), impulse noise, and interference by 180-Hz tones
increased recognition error the most. SPHINX-I1 seemsto be quite
insensitive to the other impairments, even at the 99% levels. When
all impairments are combined (except for the 180-Hz interfering



tones), the results are still dominated by the additive C-message
noise.

Recognition Error

Impairment
50%level | 90%level | 99%level
Clean Speech 13.0
Baseline 18.3
Amplitudejitter 17.0 18.7 17.7
Phasejitter 17.8 17.6 17.9
C-message noise 19.9 423 96.7
Impulse noise 17.6 185 229

2nd order intermodu-| 18.4 17.3 17.8
lation distortion

3rd order intermodu-| 18.0 18.3 17.7
lation distortion

All the above 19.5 441 97.8
(average channel)

Signal-to-Tone Ratio
1_8(t)-HfZ tone 30dB | 20dB | 10dB
nterterence 174 | 187 | 253

Table 3: Recognition error rates for the AN4 task obtained with
various s mulated telephone-channel impairments.

Effect of channel frequency response. Effects of the frequency
response of the channel were evaluated by setting the simulator to
match the frequency response of various actual channelsincluding
difficult channels such asthe CCITT 1025, and more benign chan-
nels such as those with 4-dB or 12-dB high-frequency roll-off.
The frequency response of these channelsis shown in Fig. 4.
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igure 4: Frequency response of four different channels.

Table 4 summarizes results obtained using the four simulated fre-
quency responses shown in Fig. 4. Increased error rate is generally
observed for channels with a frequency response that is not flat. It
was also found that the phase response of the smulated channels
has almost no effect on recognition accuracy.

Channel Recognition Error%
Baseline 17.2
CCITT 1025 32.0
EIA A channel 17.0
L P 4db channel 18.7
LP 12db channel 229

able 4: Recognition error for different channels for the AN4 task.
The system was trained in the baseline condition.

4. COMPENSATION ALGORITHMS

In a companion paper [10] we describe a number of algorithms to
compensate for the effects of additive noise and linear filtering
using additive cepstral correction vectors and cepstral highpassfil-
tering. In this section we examine the ability of a subset of these
algorithms, mean normalization, MFCDCN, PDCN and silence
codebook adaptation, to compensate for the effects of the most
damaging impairments from Tables 3 and 4.

Mean Nor malization (M N). This algorithm computes the average
cepstral mean for each sentence and subtracts it, which compen-
sates for the effects of unknown linear filtering.

Silence Codebook Adaptation (SCA) and Multiple Fixed
Codewor d-Dependent Cepstral Normalization (MFCDCN). In
SCA the silence models of the HMM are adapted to reduce the
number of insertions produced during recognition over noisy chan-
nels. In our implementation of SCA, a separate codebook is cre-
ated to describe silence segments, and the means of its codewords
were adapted to describe the test data.

Before updating the silence codebook, incoming speech is pro-
cessed with MFCDCN, which applies additive cepstral vectors
based on SNR and other physical attributes of the speech to per-
form environmental compensation. Because of data limitations the
MFCDCN compensation vectors were computed using the testing
data itself. We do not observe a significant decrease in recognition
accuracy when compensation vectors are obtained from indepen-
dent speech samples (but with the same degradation).

Phone-Dependent Cepstral Normalization (PDCN) and
MFCDCN. PDCN is similar to MFCDCN but performs environ-
mental compensation based on the presumed phoneme identity,
rather than on the basis of SNR. In the present study, PDCN is
always used in combination with MFCDCN.

Experimental results. Results of our compensation experiments
for C-message noise, composite channel effects, and various iso-
lated impairments are summarized in Figs. 5, 6, and 7. As can be
seen from the figures, combinations of SCA, MFCDCN, and
PDCN are reasonably effective in ameliorating the effects of chan-
nel impairments at the 90% level, and somewhat |ess effective for
impulse noise. It is clear that none of the procedures considered
can cope with C-message noise in the worst 1% of telephone chan-
nels as smulated.
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Figure 5: Performance of three compensation algorithms on
speech contaminated with C-message additive noise.

5. SUMMARY

In this paper we compared error rates for speech recognition using
clean speech and telephone-quality speech. We showed that pho-
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Figure 6: Performance of three compensation algorithms on
speech passed through a simulated average telephone channel.
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Figure 7: Performance of three compensation algorithms on
speech contaminated with selected impairments.

neme error rates using the TIMIT/NTIMIT tasks increase by about
10% over telephone channels and that the bandwidth reduction
found in telephone channels cannot alone account for this higher
error rate. We also showed that compensation algorithms such as
RASTA and CDCN are unable to recover all the distortion intro-
duced by the telephone network.

Using acommercia telephone-channel simulator, we attempted to
determine which channel impairments contribute the most to deg-
radation in recognition accuracy. We found that the most signifi-
cant impairments are the presence of stationary noise, impulse
noise, and low-frequency tones, along with differences in channel
frequency response between training and testing conditions.

We studied the effect of analysis bandwidth on the recognition
system, demonstrating that a reduced analysis bandwidth
improves recognition accuracy for telephone speech without
greatly degrading the accuracy obtained with clean speech.

Finally, we examined the extent to which three cepstral compensa-
tion algorithms are able to neutralize the effects of the most dam-
aging conditions. We found the compensation algorithms to be
effective except in the case of the strongest additive stationary
noises. Since the telephone simulations do not include some
important phenomena including distortions caused by carbon-but-
ton microphones and stochastically-occurring impairments, we are
continuing these analyses using speech recorded over actual tele-
phone channels.
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