
Sources of Error in Full-System Simulation

Anthony Gutierrez Joseph Pusdesris

Ronald G. Dreslinski Trevor Mudge

Advanced Computer Architecture Laboratory

University of Michigan - Ann Arbor, MI

{atgutier, joemp, rdreslin, tnm}@umich.edu

Chander Sudanthi Christopher D. Emmons

Mitchell Hayenga Nigel Paver

ARM Research - Austin, TX

{chander.sudanthi, chris.emmons, mitch.hayenga, nigel.paver}@arm.com

Abstract—In this work we investigate the sources of error
in gem5—a state-of-the-art computer simulator—by validating
it against a real hardware platform: the ARM Versatile Express
TC2 development board. We design a custom gem5 configuration
and make several changes to the simulator itself in order to
more closely match the Versatile Express TC2 board. With
the modifications we make to the simulator, we are able to
achieve a mean percentage runtime error of 5% and a mean
absolute percentage runtime error of 13% for the SPEC CPU2006
benchmarks. For the PARSEC benchmarks we achieve a mean
percentage runtime error of -11% and -12% for single and dual-
core runs respectively, and a mean absolute percentage runtime
error of 16% and 17% for single and dual-core runs respectively.
While prior work typically considers only runtime accuracy, we
extend our investigation to include several key microarchitectural
statistics as well, showing that we can achieve accuracy within
20% on average for a majority of them. Much of this error is
likely from modeling similar, but not identical components.

Keywords—computer architecture, computer simulation

I. INTRODUCTION

System-on-chip (SoC) computing systems are complex and
highly integrated—comprising CPUs, caches, I/O and memory
controllers, GPUs, and accelerators on a single chip. Proto-
typing these SoC devices is exceedingly expensive, therefore
computer architects rely on simulation to evaluate new ideas in
a timely and cost-effective manner. However, there is a tradeoff
between simulator performance, accuracy, and flexibility that
inherently leads to some amount of experimental error. This
error, while expected, is often not well-understood by users.
If conclusions are to be drawn from simulation results it is
important to understand the sources of simulation error, as
well as how they impact overall simulation accuracy—typically
taken to be benchmark runtime. Unfortunately, accounting for
simulation error is difficult because of the increased complexity
of hardware systems and the simulators that model them.
This makes it difficult for small research teams to validate
and maintain such complex simulators, and has resulted in
a widespread use of open-source projects that may not be
validated or are validated only for a specific purpose.

Black and Shen classify the sources of simulation error
into three separate categories: 1) modeling errors occur when
the simulator developer codes the desired functionality erro-
neously; 2) specification errors occur when the developer is
uninformed or must speculate about the behavior of the func-
tionality being modeled; 3) abstraction errors occur when the
developer abstracts away, or fails to implement, certain details
of the system being modeled [4]. If a simulator is widely-
used and well-maintained, modeling errors will be gradually

corrected. Specification and abstraction errors, however, may
remain in the simulator for several reasons—certain features
of a system may not be publicly available, or the abstractions
may simplify the simulator code and improve simulation
speed. These abstractions may not impact the accuracy of the
simulator significantly for its intended usage scenario, however
they may cause experimental error that is unacceptable when
the simulator is modified to represent a system it was not
originally intended to model. Therefore, it is necessary to
validate the simulator to ensure that these errors do not lead
to unreliable results.

Simulation technology has advanced significantly in recent
years. Several modern simulators are capable of modeling
multiple ISAs, several CPU types, various interconnect topolo-
gies, and devices with enough detail that they are able to
boot unmodified operating systems, and in some cases run
interactive graphical workloads. The addition of such sophis-
ticated capabilities has increased the number of specification
and abstraction errors in modern simulators. One obvious ab-
straction error is the lack of a GPU model in most architectural
simulators. As a result they are not able to accurately simulate
systems running emerging and important classes of workloads,
such as interactive graphical workloads typified by BBench
[11]. When run on gem5, BBench exhibits a runtime error of
up to 3× because it lacks a GPU model, which forces the
system to use software rendering.

While several past works have validated various simulators
[4, 6, 8, 10, 23], they focus on a single metric, such as runtime
or memory latency. They do not consider the accuracy of
microarchitectural characteristics, nor do they consider how
microarchitectural accuracy affects overall runtime accuracy.
Even though runtime performance remains an important met-
ric, many papers in the architecture field focus on improving
other microarchitectural characteristics—e.g., reducing cache
or TLB accesses to save energy—in spite of the fact the
simulator has only been validated for runtime. It is important
to revisit simulator validation for a current state-of-the-art
simulator to ensure that its advanced features are representative
of today’s complex systems and that it is capable of capturing
the behavior of emerging workloads.

One example of a sophisticated modern simulator is the
gem5 simulator [2], which is the subject of this work. gem5
is a widely used simulator that is capable of modeling several
ISAs, including the two most popular ISAs in use today: ARM
and x86. It does so with enough detail that it is capable of
booting unmodified versions of popular Linux distributions,
such as Ubuntu. In the case of ARM, gem5 is also able to boot
the latest version of Google’s Android operating system. In this

Simulator Maintained ISA(s) Supported License Accuracy Guest OS(s)

Flexus No SPARC, x86 (Requires Simics) BSD Cycle-Accurate Linux, Solaris

gem5 Yes Alpha, ARM, MIPS, POWER, SPARC, x86 BSD Cycle-Accurate Android, FreeBSD, Linux, Solaris

GEMS No SPARC (Requires Simics) GPL Timing Solaris

MARSS Yes x86 (Requires QEMU) GPL Cycle-Accurate Linux

OVPsim Yes ARM, MIPS, x86 Dual Functional Android, Linux, and others

PTLsim No x86 (Requires Xen and KVM/QEMU) GPL Cycle-Accurate Linux

Simics Yes Alpha, ARM, M68k, MIPS, POWER, SPARC, x86 Closed Functional FreeBSD, Linux, NetBSD, Solaris,

Windows, and others

TABLE I: A taxonomy of modern full-system computer simulators.

work we validate the gem5 simulator against an ARM Versatile
Express TC2 (VExpress) development board and make the
following contributions:

• We show that by modifying the gem5 simulator, and
configuring it properly, we are able to reduce the mean
percentage error (MPE) of runtime to 5% and the
mean absolute percentage error (MAPE) of runtime
to 13% for the SPEC CPU2006 benchmarks. For the
PARSEC benchmarks we are able to reduce the MPE
of runtime to -11% and -12% for single and dual-core
runs respectively, and the MPAE is reduced to 16%
and 17% for single and dual-core runs respectively.

• We evaluate the PARSEC benchmarks, a set of com-
monly used multi-threaded benchmarks, and show that
gem5’s multi-threaded speedup has a MPE of 0.43%
and a MAPE of 0.72% with respect to the VExpress’
multi-core speedup.

• We measure the accuracy of several key microarchi-
tectural statistics and show that, on average, most are
accurate to within 20%.

• We give examples of specification errors present in
gem5 and show how we addressed them, thereby im-
proving the accuracy of some key microarchitectural
statistics.

The rest of this paper is organized as follows: in section II
we describe modern full-system simulators and the criteria
we used to select which simulator to focus on for this work.
Section III describes the architecture of the VExpress board in
detail and how we configured gem5 to match it. We describe
our experimental methodology in section IV. Our results are
presented in section V. Related work is discussed in section VI.
We reflect and discuss the results in section VII and conclude
in section VIII.

II. COMPUTER SIMULATORS

Due to the high cost of hardware prototyping and the
low performance of gate-level simulation, computer simulators
have been relied upon by the architecture community for many
years. SimpleScalar [5] was one of the earliest architectural
simulators to achieve widespread use, primarily because of
its accuracy, performance, and usability. Soon, the simulation
landscape expanded and there were a variety of simulators for
nearly any use-case. SimOS [22] was one of the first successful

attempts at full-system simulation. SimOS pioneered the use
of techniques such as direct-execution and dynamic binary
translation to provide fast simulation. As hardware perfor-
mance increased, computer simulators were able to model
real systems with a greater level of detail without sacrificing
performance. Today there are a large number of full-system
simulators available for a variety of purposes.

When choosing which modern simulator would be most
suitable for validation, we considered several criterion such
as: support for relevant ISAs, level of modeling accuracy,
flexibility, licensing, available workloads, and whether or not
the project has active support. Table I lists the most popular
full-system simulators in use today and shows how each
matches the criteria listed above.

A. Related Full-System Simulators

Flexus [27] is designed for fast and accurate full-system
simulation via rigorous statistical sampling; it implements
SMARTS [28]. By checkpointing and running only the nec-
essary regions with a fully-detailed model, simulator perfor-
mance is vastly improved, allowing complicated and long-
running benchmarks to be simulated.

GEMS [18] was primarily designed to model the mem-
ory system—caches, interconnect, coherence protocols, and
topology—with a high-level of flexibility. It features SLICC,
a domain-specific language for specifying custom coherence
protocols. GEMS requires the use of Simics, thus decoupling
functional execution from its timing models.

MARSS [21] and PTLsim [29] were designed to provide fast
simulation of x86 systems by integrating closely with a hyper-
visor/virtual machine or emulator. By using co-simulation a
virtual machine may be switched seamlessly between the host
system’s CPU and the simulated CPU, allowing the region(s)
of interest to be simulated in full-detail while all others can
be forwarded through at near real-time speeds.

OVPsim [13] and Simics [17] are designed to provide
complete modelling of all necessary components to run a
variety of unmodified operating systems, as well as very
fast functional simulation. However, they require the use of
additional simulation technologies to model the systems with
higher levels of detail.

B. The gem5 Simulator

The gem5 simulator [2] is a collaborative project based
on the M5 simulator [3] and the Ruby component of GEMS.

DecodeFetch Rename Dispatch

Issue

I-Cache

Issue

Issue

Issue

Issue

Issue

Issue

Global History Buffer

Branch Target Buffer

Return Address Stack

Branch Prediction

ALU

ALU

Issue

Branch

FP/NEON

FP/NEON

Mult

Load

Store

Writeback

Store Buffer

Load-Store Queue

D-Cache

ROB

5 Stages

7 Stages

2-11 Stages
 1 Stage

Fig. 1: The Cortex-A15 pipeline.

The M5 simulator is a full-system simulator designed to model
networked systems and Ruby is the memory system component
of GEMS. gem5 provides detailed models for both in-order and
out-of-order (OoO) CPUs, as well as simple models for fast
functional simulation. Multi-threading is supported via both
CMP-style systems, and SMT-enabled CPUs. It provides two
modes: system call emulation mode and full-system mode.
In system call emulation mode binaries run directly on the
simulator and all operating system functionality is emulated.
The memory system allows users to define a variety of cache
organizations, e.g., directory-based or bus-based, and coher-
ence protocols (it incorporates SLICC). We choose to evaluate
the gem5 simulator in this study for a variety of reasons:

• It supports the two most popular ISAs in use today:
ARM and x86, among others.

• It is widely-used in academia and industry, and has a
BSD-style license; as such it is important to inform
the community of its accuracy.

• It is able to boot unmodified versions of several
relevant operating systems, e.g., Google’s Android
OS, and Ubuntu Linux, and it can run interactive
workloads.

• It has incorporated most, if not all, of the advanced
features of the other full-system simulators: system
networking, KVM [14] integration, checkpointing sup-
port, simpoint [24] generation, detailed DRAM mod-
els, and a configurable cache system.

III. MODELLING THE VERSATILE EXPRESS TC2
PLATFORM

We choose an ARM Versatile Express (VExpress) platform
because it is the baseline platform on which the ARM imple-
mentation of gem5 is based, and because of the sophistication
of the CPU models for the ARM ISA in gem5. In order to
properly configure gem5 to model the VExpress board we
identify its key properties and the corresponding models within
gem5.

The VExpress board utilizes a CoreTile Express SoC,
which contains two Cortex-A15 processors, three Cortex-A7
processors, two layers of cache memory, I/O, and memory
controllers. We focus on the details of its CPU features, mem-
ory system, and interconnect when configuring gem5. Because
gem5 does not currently have an in-order CPU model for the
ARM ISA, we disable the A7 on the VExpress board and only
use the A15 CPU. Details of the A15’s microarchitecture are
inferred from: [7, 15, 25].

A. ARM Cortex-A15 Microarchitecture

A high-level diagram of the A15 pipeline is shown in figure
1. The A15 is an OoO, 3-issue pipeline, with between 15 and
24 stages for integer and floating point/NEON instructions
respectively; loads and stores require 18 stages. The A15 is
able to fetch, decode, and issue up to three instructions to its
eight execution units every cycle.

1) Instruction Fetch: The A15 contains a 32kB,
physically-indexed, physically-tagged, 2-way set-associative
L1 instruction cache with 64B lines. The instruction cache
supports unaligned accesses and can supply up to 16 bytes
per fetch, which are stored in a fetch buffer that may service
subsequent accesses to the same 16 byte region. Because fetch
reads at most 16 of the 64 bytes in the cache line, only the
critical words of the line are allocated to the fetch stage. The
instruction cache receives data from the L2 cache via two
fill buffers, which are non-blocking—an instruction hit can
proceed past a miss before its data have come back from the
L2 cache.

The fetch stage contains the branch prediction unit. The
branch prediction unit consists of a two-level global history
predictor with a taken array, a not taken array, and a choice
predictor. The separation of taken and not taken arrays is
similar to the bi-mode branch predictor [16]. Each of the global
history arrays has 8K entries and contain the status predictors.
A 64 entry, fully-associative micro-BTB caches taken branch
targets for direct branches—this removes the need for an extra
pipeline bubble for each predicted branch. The main BTB is
2K entries and may override the micro-BTB’s prediction. For

indirect branches, a 256 entry BTB indexed by the XOR of the
branch history and the PC is used to predict the branch target.
The direction of indirect branches are predicted with a separate
indirect predictor. Branches are resolved, and may flush the
pipeline on a misprediction in the execute stage. Incorrect
branch target prediction may be detected in the decode stage.

2) Decode, Rename, and Dispatch: Up to three instruc-
tions may be decoded per cycle. The decode stage also contains
a 32 entry loop buffer that can store up to two forward branches
and one backwards branch. When a loop is detected by the
decode stage, the fetch stage is completely disabled, as are
most of the decode stages. This can significantly reduce the
energy consumption of the processor front-end.

The rename stage maps the A15’s 16 architected registers
to its 128-entry physical register file. Two separate rename
tables are maintained—one for the ARM registers and one for
the NEON registers. While integer and floating point/NEON
instructions have separate architected register files, they share
the same set of physical registers. The result queue holds
speculative register results that are awaiting writeback to the
register file.

Dispatch takes up a single stage and sends up to three
instructions to the A15’s eight functional units.

3) Execute: The A15 has 8 separate functional units that
are clustered by type. As figure 1 shows, there are two single-
stage integer pipelines for ALU and shift operations, one four-
stage multiplier, two floating point/NEON units that may be up
to 10 stages, and two four-stage units for load/store operations.
All execution pipelines are fixed-length with the exception of
the floating point/NEON engine, which may take 2-10 cycles;
loads take 4 cycles, but may stall in the case of a data cache
miss.

The floating point/NEON units are not identical—only
one of the two is capable of executing 128 bit operations,
e.g., the quad floating point multiply-accumulate operations.
Similarly, the two load/store pipelines are not identical—one is
exclusively for loads, the other exclusively for stores, however
they cooperate with each other to resolve data dependences.
Loads may be issued out-of-order, but they may not be ordered
before stores to the same address. The four stages of the
load/store units are responsible for address generation and TLB
lookup, address setup to tag and data arrays, data/tag access,
and data selection/formatting/forwarding.

B. Memory System

The memory system of the A15 consists of two levels of
on-chip cache—split, private L1 instruction and data caches,
and a shared L2 cache. Table II shows the relevant cache
parameters for the VExpress. The data caches are non-blocking
and can hold up to six requests in their MSHRs; loads or stores
to different addresses can hit in the cache and bypass these
requests. Loads may be speculatively executed, but speculative
stores are not committed to memory. Loads may forward data
from previous, speculatively-executed stores. The L1 caches
are physically-indexed, physically-tagged and use a true LRU
replacement policy.

The L2 cache strictly enforces inclusion, i.e., any line
contained in any of the system’s L1 caches must also reside
in the L2 cache. A hardware prefetcher is included with the
L2 cache. It can detect and prefetch data load/store streams

via a stride pattern; for instruction fetches the prefetcher uses
a next-line mechanism. At most six prefetch requests may be
outstanding and the prefetcher may not prefetch across page
boundaries. The L2 cache is physically-indexed, physically-
tagged and uses a random replacement policy. Coherence
between the L2 cache and the L1 cache is maintained using a
hybrid MESI/MOESI protocol; the L1 data cache uses MESI
and the L2 cache uses MOESI.

. The VExpress board has 1GB of DDR2-800 memory with
a x32 interface clocked at 400MHz (CL=5, tRCD=5, tRP=5).
There are two devices—each device is 4Gb (the TwinDie
DRAM from Micron comprises two 2Gb Micron DDR2 dies),
with eight banks per rank in a 32Mx8 configuration, and two
ranks per device [26]. The system bus is clocked at 500MHz.

C. Configuring gem5

Because each component modeled in gem5 is parameter-
ized, we have a high degree of flexibility when configuring
it to match the VExpress board. We use publicly available
documentation to set the parameters of each object. For others
we tune their configurations based on empirical observations.
For some components configuration is not enough, i.e., the
implementation matters and we must provide new imple-
mentations, or alter the existing implementations for these
components. Furthermore, some features of the A15 would
require significant effort to model, therefore we disable them
on the VExpress board where possible; see the descriptions of
the Auxiliary Control Register and the L2 Prefetch Control
Register in the A15 TRM [7] for information on how we
disabled certain features.

1) O3 CPU Model: gem5’s O3 CPU models a 7-stage
pipelined OoO processor, and each stage itself has configurable
depth and width parameters. The O3 CPU model also includes
components such as the branch predictor, TLBs, load/store
queue, etc. Because the default ARM configuration in gem5
already has pipeline parameters that are similar to the A15,
we do not make any changes to the pipeline parameters. The
default configuration also has the correct number and type of
functional units.

There are however, several changes that we had to make
to the configuration of other components, as well as to the
O3 CPU code itself. The instruction and data TLBs are both
set to 64 entries by default. The A15 however, has a 32-entry
instruction TLB, and two separate 32-entry data TLBs (one for
reads and one for writes). We configure the I-TLB to have 32
entries and we leave the D-TLB at 64 because its aggregate
capacity is 64 in the real hardware.

gem5 implements a two-level tournament branch predictor,
which is not entirely representative of the bi-mode predictor in
the A15. We implement the bi-mode branch predictor in gem5,
and set the sizes of its structures in accordance with the A15.
Because gem5 has a single branch predictor that services all
branches, we disable the A15’s indirect predictor. gem5 also
seems to over serialize branch execution, to account for this we
force in-order issue to the branch execution unit in the A15.

The cache line returned from a fetch is stored in a fetch
buffer, which is the size of an entire cache line in gem5.
The fetched data is kept in the fetch buffer and is used to
service subsequent fetches. Because the A15’s fetch buffer
is only 16B, gem5 drastically underestimated the number of
instruction cache accesses. To correct this we modified the

Parameter VExpress Validated gem5

Pipeline ARM Cortex-A15 O3 Model

CPU clock 1GHz 1GHz

Branch predictor Bi-Mode Bi-Mode

Fetch buffer size 16B 16B

Cache block size 64B 64B

L1 I-cache size 32kB 32kB

L1 I-cache associativity 2-way 2-way

L1 D-cache size 32kB 32kB

L1 D-cache associativity 2-way 2-way

L2 cache size 1MB 1MB

L2 cache associativity 16-way 16-way

DRAM DDR2 x32 DDR2 x32

DRAM frequency 400MHz 400MHz

Memory size 1GB 1GB

Bus width 128b 128b

System bus frequency 500MHz 500MHz

TABLE II: Parameters for the VExpress board and our
gem5 configuration.

fetch buffer to ensure that it only held the critical 16B returned
after a fetch, which more closely matches the A15.

The A15’s fetch stage is able to fetch instruction across
cache line boundaries, i.e., if a 16B fetch buffer segment
straddles two cache lines, the A15 will fetch both cache lines,
extract the critical 16B, and place them into the fetch buffer.
gem5’s default fetch stage always aligns fetches to cache line
boundaries. To address this we modified the fetch stage in
gem5 to support misaligned fetching of the critical 16B of a
fetch.

The default clock in gem5 is 1GHz for ARM, which is the
clock frequency of the A15 on the VExpress board.

2) Memory System: gem5’s memory system uses the
MOESI coherence protocol and is a good approximation of
the A15’s coherence protocol. gem5 provides private, split L1
data and instruction caches. Several additional layers of caches
may be added to the cache hierarchy, and may private or shared
among any of the cores in the system.

The default size of the data cache is 64kB; we manually set
it to 32kB to match the A15’s data cache size. Several of the
L2 caches parameters are modified—the 2MB default L2 cache
size in gem5 is too large, therefore we set it to 1MB matching
the VExpress board’s SoC. The associativity is changed from 8
to 16. gem5’s caches use an LRU replacement policy, however
the A15 has a random L2 replacement policy. To address this
we implemented a psuedo-random replacement policy for the
L2 cache in gem5.

By default the instruction caches in gem5 ignore any I-
cache invalidation instructions, which could potentially skew
the I-cache miss statistics. We observed frequent ICIALLUIS
instructions during the execution of the SPEC and PARSEC
benchmarks. The ICIALLUIS instruction invalidates all entries
in the I-cache, and is mostly used by the kernel to invalidate
cache contents after context switches, which are assumed to
be cold after switching. To address this, we implemented the
proper invalidation behavior in the caches when the ICIAL-
LUIS instruction is encountered.

We use the SimpleDRAM model in gem5, configuring it
to match the DDR2-800 x32 DRAM configuration of the
VExpress board. The parameters used in the SimpleDRAM
model are derived from the data sheet of the onboard Micron

memory as mentioned in section III-B. The VExpress board
contains static latencies—e.g. bus and bridge latencies—that
we do not have visibility of. To take into account this unknown
latency, we empirically determine and add 20ns of static
latency to the gem5 DRAM configuration.

Finally, due to differences in the gem5 prefetcher and the
prefetcher in the A15 we disable all prefetching in both gem5
and the VExpress board. The A15 also has special hardware
that detects and accelerates streaming memory accesses—
e.g., a call to memcpy—we disable all hardware streaming
acceleration.

IV. EXPERIMENTAL METHODOLOGY

All experiments are run on gem5 and the VExpress board.
The gem5 configuration parameters, shown in table II, are set
to match those of the VExpress board as closely as possible.
Beyond configuring gem5 to match the parameters that are
publicly available, the memory latency is empirically tuned.

A. Benchmarks and Runtime Environment

The SPEC CPU2006 benchmarks [12] were chosen, be-
cause in addition to being the accepted standard, they are
commonly used in publications employing gem5. Due to what
introspection is possible on the VExpress board, benchmarks
must run to completion in order for us to acquire the data
necessary for this study. As a result of gem5’s slowdown
relative to real hardware, we use a subset (11 out of 29) of
the SPEC benchmarks, using the train input set. These are
the benchmarks that are able to run to completion on gem5’s
detailed OoO model in a reasonable amount of time, and that
have very low variation in performance statistics between runs
on the VExpress. All SPEC benchmarks were statically com-
piled using the Linaro arm-linux-gnueabi toolchain version
4.6.3-1ubuntu5, which allowed the same binary to be run on
the VExpress and gem5.

To evaluate the accuracy of multi-core scaling on gem5 we
use the PARSEC benchmarks [1], which are widely-accepted
as the standard multi-threaded benchmarks. The PARSEC
benchmarks were compiled with the same compiler used
to compile the SPEC benchmarks. Due to simulation time
constraints we run 7 out of the 13 PARSEC workloads and
we use the simsmall input set. All benchmarks were compiled
statically and the same binary was run on both gem5 and the
VExpress board.

Both gem5 and the VExpress run stripped-down versions
of Linux—a headless version of Ubuntu 13.04 from Linaro on
the VExpress, and ARM Embedded Linux Filesystem 5.0.0
Jakarta on gem5 (available on the gem5 wiki [9])—with all
background tasks and unneeded processes halted. To reduce
variation caused by the differences between the VExpress’
Flash disk and gem5’s disk model, we ran all workloads from
a RAM based filesystem—tmpfs.

Perf was used to collect performance counter information
on both hardware and in gem5. To support perf on gem5
we implemented the performance counters described in the
architecture reference manual. Our implementation works by
relaying information from gem5 statistics to the guest software
when the associated register is queried. This was crucial to pre-
cisely replicating the methodology between the two systems.
Benchmarks are run 10 times on hardware, and averaged to

0

0.5

1

1.5

2

2.5

2
-C

o
re

 S
p

e
e

d
u

p

gem5 VExpress

(a) PARSEC runtime scaling accuracy.

16%

-11%

17%

-12%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

%
E

rr
o

r

Single Core Dual Core

(b) PARSEC runtime accuracy.

Fig. 2: Runtime and scaling accuracy of PARSEC. As can be seen in figure 2b, the runtime MAPE and MPE is consistent
across 1 and 2 core runs; because of this, the scaling error is less than 1%, which is shown in figure 2a.

establish a stable reference point against which to compare
gem5. In order to further reduce variance, one of the two A15
cores, and all three of the A7 cores, on the VExpress board
were powered off to eliminate migration, unusual scheduling,
and to limit the counter polling to only one core. While we
use Perf to measure all relevant microarchitectural statistics,
we do not report the number of instructions because they are
always accurate to within a fraction of a percent. Because
of this accuracy we use the total count for each statistic to
measure error, as opposed to misses or accesses per thousand
instructions (M/APKI), however we report MPKI and APKI
for the relevant statistics.

We use STREAM [19] and LMbench [20] to evaluate the
memory system accuracy. STREAM is a synthetic memory
benchmark that measures sustainable memory bandwidth, and
is designed to work with datasets larger than the cache
capacity. LMBench is a suite of benchmarks for various I/O
operations, however we use it only to measure memory latency.

V. RESULTS

Due to space constraints we only show the statistics for
our final gem5 configuration, and for PARSEC we only show
multi-core scaling and runtime accuracy. However, to make
the raw data from all of our experiments public, including the
accuracy improvement provided by each individual change we
made to the simulator, as well as all detailed analysis of the
accuracy of the microarchitectural statistics for PARSEC. This
data will be available at: http://web.eecs.umich.edu/∼atgutier/
gem5.html.

A. Runtime Accuracy

With our configuration, we achieve a MAPE for the SPEC
benchmarks of only 13%, and most benchmarks are within
10%. The three most significant outliers are SPECFP bench-
marks. See figure 3 for further explanation. For PARSEC
we achieve a MAPE of 16% and 17% for single and dual-
core runs respectively, see figure 2b. It is important to note
that our approximation achieves this level of accuracy without
modeling the microarchitecture precisely.

13%

5%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

%
E

r
r
o

r

Fig. 3: Runtime accuracy of SPEC. The MAPE and MPE
for the SPEC benchmarks are 13% and 5% respectively.
All benchmarks are within 30% on average, with the lone
exception being milc, which exhibits much worse branch miss
rates on gem5.

Of the three sources of simulation error described ear-
lier, specification error is the dominant source in this work.
Due to the activity of the gem5 developer community, sig-
nificant modeling errors are assumed to have been worked
out. For target workloads, abstraction error is insignificant
because the main devices that are exercised on the bus are
components that are modeled well in gem5—the CPU and
memory. Though, relatively comparing SPECINT and SPECFP
benchmarks, there is more abstraction error in SPECFP. The
gem5 community has time less time constructing an accurate
floating point pipeline implementation, that it has on the other
execution pipelines. Because modeling and abstraction error
are insignificant, specification error is the main source of error
in our results.

B. Multithreaded Scaling

In addition to runtime accuracy we also measure the
accuracy of multithreaded scaling in gem5. To do this we

0

20

40

60

80

100

120

140

160

L
a

te
n

c
y

 (
n

s)

gem5 Default DDR2 gem5 DDR2 800 x32 VExpress

(a) Memory latency.

2%

44%

68% 70%

34% 5%

12% 14%

0

100

200

300

400

500

600

700

800

900

1000

Copy Scale Add Triad

B
a

n
d

w
id

th
 (

M
B

/s
)

gem5 Default DDR2 gem5 DDR2 800 x32 Vexpress

(b) Memory bandwidth.

Fig. 4: Observed memory access latency and bandwidth. The latency for each level of memory, as well as gem5’s DDR2
controller, must be tuned as a pre-requisite for other statistics to correlate. Figure 4a shows the result of this tuning. The cache
sizes, 32k and 1M, create visible steps in access latency. Figure 4b shows the difference in memory bandwidth between the
configurations. The values above the bars represent the absolute percentage error with respect to the VExpress.

compare the speedup of the PARSEC benchmarks on two cores
over a single-threaded version. We do not measure beyond
dual-core scaling because the VExpress contains only two
A15 cores. Figure 2a shows the result of this experiment. The
scaling demonstrated by gem5 matches the VExpress to within
1% for all benchmarks.

C. Memory System Accuracy

Figure 4 shows the measured latency and bandwidth for
both gem5 and the VExpress board. The memory latency for
each level of the memory hierarchy is shown in figure 4a.
In the default gem5 configuration there is a steep increase in
latency when transitioning from the L2 cache to memory. This
steep increase is caused by an L2 replacement policy specifi-
cation error. The default LRU replacement policy in gem5 is
changed to a random replacement policy. In addition, the DDR
controller in gem5 is configured to match the VExpress board
as described in section III-B. With the replacement policy and
DRAM controller configuration fixes, we are able to closely
match the latency curve of the VExpress board.

The bandwidth, shown in figure 4b, correlates to within
5%-15% for all components of STREAM, with the exception
of copy. It is currently unclear why this is the case, given that
all prefetching and hardware streaming support was disabled
on the VExpress. The default memory controller configuration
consistently over estimates bandwidth, with error from 44% to
70% for all components of STREAM except copy.

D. Microarchitectural Accuracy

In addition to overall performance, we evaluate the accu-
racy of several key microarchitectural statistics. Figures 5, 6,
and 7 show the percent difference for the SPEC benchmarks
relative to the VExpress board, for each of the microarchitec-
tural statistics we measured. These figures also report M/APKI,
and the benchmarks are sorted by M/APKI from lowest to
highest. Note that the scale for the M/APKI is logarithmic. As
seen in this graph, each of the microarchitectural statistics is

within 35% on average for the validated configuration, with
the exceptions being TLB misses. The D-TLB error is likely
due to the fact that gem5 utilizes a single 64-entry TLB,
whereas the A15 has separate 32-entry TLBs for reads and
writes respectively. If accesses are biased towards either reads
or writes the performance will be improved with a single 64-
entry TLB because all 64 entries are available to any access.
For the I-TLB the MPKI is so low that slight variation can
cause large error, however as the I-TLB MPKI increases so
does gem5’s accuracy.

E. Sources of Specification and Abstraction Errors

We addressed several of the key specification and abstrac-
tion errors in our efforts to improve the accuracy of gem5 with
respect to the VExpress. Some of the changes were trivial, e.g.,
setting the proper sizes and latencies for caches, while others
required significant modifications to the simulator source itself.
We disabled features in hardware when we determined the
feature would not be critical to add to gem5, or would take
significant effort to add. The indirect branch predictor, out-of-
order branch issue, all prefetching, and the loop buffer are all
disabled.

Beyond configuring the parameters of the simulator we im-
plemented several key features that we believed were important
for accuracy, these include: the bi-mode branch predictor, a
configurable fetch buffer, misaligned fetch, a psuedo-random
L2 replacement policy, I-cache invalidation instructions, and
the ARM PMU counters so we could use the same measure-
ment tool. We chose to put effort into implementing these
particular features by first measuring the error in the simulator
as it currently exists to discern which statistics had the largest
error, then identifying the components that most contributed
to the error. While these changes required significant effort,
both in terms of understanding our baseline platform and
the simulator source code, they provided greatly improved
accuracy for both runtime and microarchitectural statistics.

There are remaining sources of specification and abstrac-
tion error in the simulator, particularly in the TLB models and

0.0001

0.001

0.01

0.1

1

10

100

1000

-80%

-60%

-40%

-20%

0%

20%

40%

60%

ca
lc

u
lix

p
e

rl

n
a

m
d

g
cc

p
o

vr
a

y

ca
ct

u
s

lib
q

u
a

n
tu

m

m
ilc

g
e

m
s

so
p

le
x

m
cf

lib
q

u
a

n
tu

m

ca
ct

u
s

n
a

m
d

g
e

m
s

m
cf

m
ilc

so
p

le
x

ca
lc

u
lix g
cc

p
o

vr
a

y

p
e

rl

p
o

vr
a

y

lib
q

u
a

n
tu

m

n
a

m
d

p
e

rl

ca
lc

u
lix g
cc

ca
ct

u
s

so
p

le
x

g
e

m
s

m
ilc

m
cf

D-Cache I-Cache L2

M
P

K
I

%
E

rr
o

r

gem5 - %Error gem5 - MPKI VExpress - MPKI

Mean Abs. %Error: 1.5% Mean %Error -1.1% Mean Abs. %Error: 32% Mean %Error: -24% Mean Abs. %Error: 9.8% Mean %Error: -9.5%

Fig. 5: Cache miss stats for SPEC. The cache models in gem5 accurately model the behavior of the caches in the A15 when they
see the same access pattern, which is the case for the D-cache. The I-cache miss statistics, however, are typically underreported
on gem5. This error is likely due to the more aggressive fetch stage in the A15, which consists of five stages. The L2 error is
likely due to seeing fewer accesses from the I-cache, and from fewer page table walks caused by TLB misses. As the MPKI
increases, however, the accuracy of the L2 misses improves—slightly fewer misses can increase error more significantly when
the MPKI is low.

1

10

100

1000

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

li
b

q
u

a
n

tu
m

so
p

le
x

ca
lc

u
li

x

n
a

m
d

g
cc

m
cf

g
e

m
s

m
il
c

p
e

rl

ca
ct

u
s

p
o

v
ra

y

ca
ct

u
s

g
e

m
s

n
a

m
d

m
il
c

m
cf

li
b

q
u

a
n

tu
m

p
o

v
ra

y

ca
lc

u
li

x

p
e

rl

so
p

le
x

g
cc

ca
lc

u
li

x

n
a

m
d

ca
ct

u
s

p
e

rl

g
cc

p
o

v
ra

y

m
il
c

li
b

q
u

a
n

tu
m

g
e

m
s

so
p

le
x

m
cf

D-Cache Accesses I-Cache Accesses L2 Accesses

A
P

K
I

%
E

rr
o

r

gem5 - %Error gem5 - APKI VExpress - APKI

Mean Abs. %Error: 8.6% Mean %Error 6.7% Mean Abs. %Error: 7.8% Mean %Error: 3.2% Mean Abs. %Error: 19% Mean %Error: -18%

Fig. 6: Cache access stats for SPEC. The cache accesses are accurate to within 10% on average for the D-cache and I-cache.
The differences are likely due to a more aggressive fetch stage, and differences in the load-store queue. The error of the L2
cache is around 20% on average, which is due to seeing different accesses coming from the L1 caches and the page table walker.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

150%

200%

250%

ca
ct

u
s

g
e

m
s

m
ilc

lib
q

u
a

n
tu

m

n
a

m
d

ca
lc

u
lix

so
p

le
x

p
o

vr
a

y

m
cf

p
e

rl

g
cc

n
a

m
d

ca
ct

u
s

ca
lc

u
lix

lib
q

u
a

n
tu

m

g
e

m
s

g
cc

p
e

rl

so
p

le
x

p
o

vr
a

y

m
ilc

m
cf

lib
q

u
a

n
tu

m

n
a

m
d

ca
ct

u
s

m
ilc

m
cf

g
e

m
s

so
p

le
x

ca
lc

u
lix

p
o

vr
a

y

g
cc

p
e

rl

Branch D-TLB I-TLB

M
P

K
I

%
E

rr
o

r

gem5 - %Error gem5 - MPKI VExpress - MPKI

Mean Abs. %Error: 26% Mean %Error 17% Mean Abs. %Error: 84% Mean %Error: 19% Mean Abs. %Error: 72% Mean %Error: -72%

Fig. 7: Branch and TLB miss stats for SPEC. The branch misses are accurate to within 26%, and accuracy improves as the
MPKI increases. Because of the extremely low I-TLB miss rates the error is 72% on average, however the accuracy improves
as the MPKI increases. The D-TLB misses exhibit large error due to the fact that a single 64-entry TLB is used for loads and
stores, which may benefit some workloads, and hurt others.

the front end of the pipeline—as our results showed, I-cache
and TLBs had the highest error. gem5’s fetch engine only
allows a single outstanding I-cache access, whereas modern
OoO CPUs are fully pipelined allowing multiple parallel
accesses to instruction cache lines. This specification error in
the fetch stage contributes to the I-cache miss statistic error.
The other remaining source of specification error is in the
TLB models. To more accurately model the TLBs in the A15
support, would be needed for separate TLBs for reads and
writes, as well as a second level TLB. Inaccurate TLB models
also have an effect on L2 accesses as can be seen with the
namd and cactus results. The gem5 D-TLB MPKI of namd
and cactus results differ the most from the VExpress board.
Each D-TLB miss results in a page table walk that makes
multiple accesses into the L2. In the VExpress board, there is
a L2 TLB to hide the effect of D-TLB misses on the L2 and
for namd and cactus there are fewer misses in general than
gem5. This has a multiplicative effect on L2 accesses.

VI. RELATED WORK

Desikan et al. [8] validated an Alpha 21264 simulator using
a Compaq DS-10L workstation as a baseline. By creating a
very detailed model of the Alpha 21264 processor they were
able to achieve a 2% CPI error for their microbenchmarks.
Despite this, they found that complex interactions in the mem-
ory system prevented the formulation of an accurate memory
model, and were thus only able to achieve an average CPI
error of 18% on SPEC CPU2000 benchmarks.

Gibson et al. [10] provided an analysis of the accuracy of
several of the simulators used during the development of the
Stanford FLASH multiprocessor. Using the SPLASH-2 bench-
mark suite they validated simulators of varying complexity
against the hardware prototype produced by the project. They
found that a simple in-order processor model running at speeds
faster than memory, could produce results at least as accurate
as an out-of-order model due to failure to accurately capture
intricacies of the architecture in the models. Additionally, they
found that failure to accurately model aspects of the virtual
memory system, such as TLB miss handling and page coloring,
can cause significant degradation in the accuracy of a model.

Saidi et al. [23] validated the M5 simulator for network-
intensive workloads against a Compaq Alpha XP1000 worksta-
tion. Using a series of memory and network microbenchmarks
as well as the SPEC WEB99 web server benchmark suite, they
found that M5 models often fell within 15% of the hardware.
They further observed that TLB miss behavior can cause
significant discrepancies between the model and hardware.

Butko et al. [6] analyzed the accuracy of gem5 compared
to a Snowball SKYS9500-ULP-C01hardware development kit.
Using SPLASH-2, ALPHBench, and STREAM, they found the
accuracy of gem5 to vary between 1.39% and 17.94%. How-
ever, their analysis compared only benchmark runtimes and
L2 miss rates—on the simple functional CPU models—and
did not consider contributions to overall error from individual
components of the models.

VII. DISCUSSION

While simulators remain necessary research tools, it is
important that they are used properly and that any assumptions
made about their use are valid. This work offers several
reflections on simulator usage:

1) Architectural simulators are not microarchitectural
simulators: Full-system simulators are not designed to model
each microarchitectural component with perfect accuracy.
As such, microarchitectural statistics obtained via simulation
should not be relied upon unless they have been validated.
For example, the change to gem5’s fetch buffer described in
section III does not lead to any change in runtime, however it
drastically increased the number of instruction cache accesses.
If a research idea purported to reduce the number of cache
accesses to save power, without being aware of the fetch buffer,
its results would be skewed.

2) Specification and abstraction errors do not imply
inaccurate simulation: As our results showed, it is possible
to maintain accuracy despite the presence of specification
and abstraction errors. These errors are acceptable and help
to ensure that simulator performance is not a hindrance to
evaluating research ideas. As long as the components most
necessary for capturing workload behavior are present the
simulator will have a low runtime error.

3) Researchers must decide what aspects of simulation
are important to them: There is in inherent trade-off between
simulator performance, accuracy, and flexibility. Having a
high-performance and highly configurable simulator is often
desirable, because it allows for quick evaluation time and
ease of implementation. This flexibility will invariably lead
to inaccuracy. Therefore, given their constraints, each engineer
must decide how much specificity to be put into their simulator
of choice, and they need to be aware of the specification and
abstraction errors present in modern simulators.

4) Efforts need to be made to capture the behavior of
emerging workloads: Interactive workloads are now being
used in simulation, however modern simulators do not model
many of the devices they utilize, which leads to large runtime
error. The GPU is a prime example of this—we have observed
runtime error of up to 3× when running BBench [11] on
gem5. This is largely due to the lack of a GPU model in
gem5, which causes the system to resort to software rendering.
If we do not care about the behavior of individual devices,
they may be abstracted away while maintaining accuracy.
This intentional abstraction error will allow for simplified and
high-performance modelling of these advanced systems, while
having low error.

VIII. CONCLUSIONS

Because computer architects rely so heavily on archi-
tectural simulators it is important that we understand their
inherent error and its sources. In this work we have attempted
to understand and quantify error in a modern full-system
simulator. We do this by validating the gem5 simulator against
a real hardware platform: the VExpress development board.
Using only publicly available information, we measure the
error of a system configured specifically to match our hardware
platform. By configuring the system we are able to achieve a
MPE for runtime of 5% and a MAPE for runtime of 13%, for
the SPEC CPU2006 benchmarks. For PARSEC we are able
to achieve a MPE for runtime of -11% and -12% for single
and dual-core runs respectively, and a MAPE for runtime
of 16% and 17% for single and dual-core runs respectively.
We extend our investigation by measuring the accuracy of

several key microarchitectural statistics on gem5; we show
that on average, most statistics are accurate to within 20% on
average. Finally, we show that when running multi-threaded
benchmarks, gem5’s scaling is accurate to within 1% on
average.

ACKNOWLEDGMENTS

The work presented in this paper was sponsored by De-
fense Advanced Research Projects Agency (DARPA) under
agreement #HR0011-13-2-0006. We thank the reviewers for
their feedback.

REFERENCES

[1] Christian Bienia et al. “The PARSEC Benchmark
Suite: Characterization and Architectural Implications”.
In: Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques
(PACT). 2008, pp. 72–81.

[2] Nathan Binkert et al. “The gem5 Simulator”. In:
SIGARCH Computer Architecture News 39.2 (2011),
pp. 1–7.

[3] N.L. Binkert et al. “The M5 Simulator: Modeling Net-
worked Systems”. In: IEEE Micro 26.4 (2006), pp. 52–
60.

[4] B. Black and J.P. Shen. “Calibration of Microproces-
sor Performance Models”. In: Computer 31.5 (1998),
pp. 59–65.

[5] Doug Burger and Todd Austin. “The SimpleScalar Tool
Set, Version 2.0”. In: SIGARCH Computer Architecture
News 25.3 (1997), pp. 13–25.

[6] A. Butko et al. “Accuracy Evaluation of GEM5 Simula-
tor System”. In: the proceedings of the 7th International
Workshop on Reconfigurable Communication-Centric
Systems-on-Chip (ReCoSoC). 2012, pp. 1–7.

[7] Cortex-A15 MPCore Technical Reference Manual, Re-
vision: r3p3. ARM.

[8] Rajagopalan Desikan, Doug Burger, and Stephen W.
Keckler. “Measuring Experimental Error in Micropro-
cessor Simulation”. In: the proceedings of the 28th
annual International Symposium on Computer Architec-
ture (ISCA). 2001, pp. 266–277.

[9] gem5. gem5 Wiki. URL: http://www.gem5.org (visited
on 12/11/2013).

[10] Jeff Gibson et al. “FLASH vs. (Simulated) FLASH:
Closing the Simulation Loop”. In: the proceedings of the
ninth International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). 2000, pp. 49–58.

[11] A. Gutierrez et al. “Full-System Analysis and Charac-
terization of Interactive Smartphone Applications”. In:
the proceedings of the 2011 IEEE International Sym-
posium on Workload Characterization (IISWC). 2011,
pp. 81–90.

[12] John L. Henning. “SPEC CPU2006 Benchmark De-
scriptions”. In: SIGARCH Computer Architecture News
34.4 (2006), pp. 1–17.

[13] Imperas. OVPsim. URL: http://ovpworld.org (visited on
12/11/2013).

[14] A. Kivity et al. “kvm: the Linux Virtual Machine Mon-
itor”. In: the proceedings of the 2007 Linux Symposium.
2007, pp. 225–230.

[15] Travis Lanier. Exploring the Design of the Cortex-A15
Processor. URL: http : / / www. arm . com / files / pdf / at -
exploring the design of the cortex-a15.pdf (visited on
12/11/2013).

[16] Chih-Chieh Lee, I.-C.K. Chen, and T.N. Mudge. “The
Bi-Mode Branch Predictor”. In: the proceedings of the
30th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1997, pp. 4–13.

[17] P.S. Magnusson et al. “Simics: A Full System Simula-
tion Platform”. In: Computer 35.2 (2002), pp. 50–58.

[18] Milo M. K. Martin et al. “Multifacet’s General
Execution-Driven Multiprocessor Simulator (GEMS)
Toolset”. In: SIGARCH Computer Architecture News
33.4 (2005), pp. 92–99.

[19] John D. McCalpin. “Memory Bandwidth and Machine
Balance in Current High Performance Computers”.
In: IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995),
pp. 19–25.

[20] L. McVoy and C. Staelin. “lmbench: Portable Tools for
Performance Analysis”. In: the proceedings of the 1996
USENIX Annual Technical Conference. 1996, pp. 279–
294.

[21] A. Patel et al. “MARSS: A Full System Simulator for
Multicore x86 CPUs”. In: the proceedings of the 48th
Design Automation Conference (DAC). 2011, pp. 1050–
1055.

[22] M. Rosenblum et al. “Complete Computer System
Simulation: The SimOS Approach”. In: IEEE Parallel
Distributed Technology 3.4 (1995), pp. 34–43.

[23] Ali G. Saidi et al. “Performance Validation of Network-
Intensive Workloads on a Full-System Simulator”. In:
the proceedings of the first annual Workshop on Inter-
action between Operating System and Computer Archi-
tecture (IOSCA). 2005, pp. 33–38.

[24] Timothy Sherwood et al. “Automatically Characterizing
Large Scale Program Behavior”. In: the proceedings
of the 10th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS). 2002, pp. 45–57.

[25] Jim Turley. “Cortex-A15 ”Eagle” Flies the Coop”. In:
Microprocessor Report (Nov. 2010).

[26] TwinDie DDR2 SDRAM: Mt47H512M8-32Megx8 x8
Banks x2 Ranks. Micro.

[27] T.F. Wenisch et al. “SimFlex: Statistical Sampling of
Computer System Simulation”. In: IEEE Micro 26.4
(2006), pp. 18–31.

[28] Roland E. Wunderlich et al. “SMARTS: Accelerating
Microarchitecture Simulation via Rigorous Statistical
Sampling”. In: the proceedings of the 30th Annual Inter-
national Symposium on Computer Architecture (ISCA).
ISCA ’03. 2003, pp. 84–97.

[29] M.T. Yourst. “PTLsim: A Cycle Accurate Full System
x86-64 Microarchitectural Simulator”. In: the proceed-
ings of the 2007 IEEE International Symposium on
Performance Analysis of Systems Software (ISPASS).
2007, pp. 23–34.

