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Abstract

Results from a two year longitudinal study of 181 children from fourth through fifth grade are
reported. Levels of growth in children’s computation, word problem, and estimation skills using
common fractions were predicted by working memory, attentive classroom behavior, conceptual
knowledge about fractions, and simple arithmetic fluency. Comparisons of 55 participants
identified as having mathematical difficulties to those without mathematical difficulties revealed
that group differences in emerging fraction skills were consistently mediated by attentive
classroom behavior and conceptual knowledge about fractions. Neither working memory nor
arithmetic fluency mediated group differences in growth in fraction skills. It was also found that
the development of basic fraction skills and conceptual knowledge are bidirectional in that
conceptual knowledge exerted strong influences on all three types of basic fraction skills, and
basic fraction skills exerted a more modest influence on subsequent conceptual knowledge.
Results are discussed with reference to how the identification of potentially malleable student
characteristics that contribute to the difficulties that some students have with fractions informs
interventions and also will contribute to a future theoretical account concerning how domain
general and domain specific factors influence the development of basic fraction skills.
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One of the most persistent problems for children with mathematical difficulties is solving
problems involving fractions (Algozzine, O’Shea, Crews, & Stoddard, 1987; Hecht, Vagi, &
Torgesen, 2007; National Mathematics Advisory Panel, NMAP, 2008). For many of these
children, this constitutes a major obstacle to their movement beyond basic math to more
advanced topics in later elementary school and beyond (Hecht, Close, & Santisi, 2003;
Heller, Post, Behr, & Lesh, 1990; Loveless, 2003; NMAP, 2008). Nationally representative
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studies also show that difficulties with fractions are commonplace (Hope & Owens, 1987;
NMAP, 2008; Smith, 1995). For example, only approximately 25% of fourth graders could
correctly identify among four common fraction numerals the one that was closest to %2
(NAEP, 2009). Basic fraction skills are especially difficult for children with mathematical
difficulties (Cawley, Parmer, Yan, Miller, 1998; Cawley, 1985). Unfortunately, relatively
little research has been conducted to identify the variables that contribute to the difficulties
that children with math difficulties have in the domain of fractions (NMAP, 2008;
Mazzocco & Devlin, 2008). Such understanding would help guide theoretical accounts of
fraction skills development, and provide practical guidance for early identification and
treatment of difficulties in acquiring basic fraction skills.

The purpose of the present study was to examine the factors that may mediate performance
in three types of basic fraction skills: fraction computation (e.g., 1/2 + 1/3 = ?), fraction
estimation (e.g., which number is closest to the answer for 9/10 + 11/12 =2, 1, 15, 20 or
120?), and word problem solving with fraction quantities (e.g., John ate 1/2 of a cake, and
Cindy at 1/4 of the same cake. How much cake is left over?). We focused on these three
aspects of basic fraction skills because these problem types are prominent in elementary
school curricula (National Council for Teachers of Mathematics, 2000; Kilpatrick, Swafford,
Findell, & Bradford, 2001), each creating a range of skill development by the beginning of
fourth grade (Hecht, Close, & Santisi, 2003; Mazzocco & Devlin, 2008; Siegler, 2009).

In the literature concerning correlates of mathematical learning difficulties, prior work has
recurrently identified a limited set of attributes that seem to characterize children with poor
mathematical achievement (Gersten, Jordan, & Flojo, 2005; Mabbott & Bisanz, 2008;
Geary, 1993; Jordan & Hanich, 2003). Some of these attributes are domain-specific because
they are used to solve a specific type of math problem (c.f., Kail, 2004). In particular, a
hallmark characteristic of children with math difficulties is reliance on more error prone and
slower counting based strategies than retrieval from long-term memory of factual knowledge
to find the answers to simple arithmetic problems (aka number combinations; e.g., Cawley,
et al., 1998; Geary, 1993; Jordan & Hanich, 2003; Mabbot & Bisanz, 2008). Children with
math difficulties also seem to exhibit poorly developed conceptual knowledge concerning
principles of counting and calculation (e.g., order irrelevance when counting objects,
commutativity, inversion; Jordan, Hanich, & Kaplan, 2003; Mabbot & Bisanz, 2008; Geary,
1994). The contribution of domain specific types of knowledge does not, however, provide a
complete description of mathematical learning difficulties. There is also evidence for the
role of more domain general cognitive processes in mathematical learning difficulties; that
is, processes that are not specific to a particular area of mathematical skill. In particular,
mathematical difficulties are associated with poorer working memory skills (e.g., LeFevre,
DeStefano, Coleman, & Shanahan, 2005; Kail & Hall, 1999; Geary, Hoard, Byrd-Craven,
Nugent, & Numtee, 2007; Hitch & McAuley, 1991) and behavioral inattention (Cirino,
Ewing-Cobbs, Barnes, Fuchs, & Fletcher, 2007; Zentall, 1990; Passolunghi & Pazzagliab,
2004). Consistent with this literature, we adopted the perspective that difficulties in basic
fraction skills are secondary to factors that are both domain-specific and domain-general
(c.f., Kail, 2004). We summarize this prior work as it provided the basis for hypothesizing
that certain domain-specific and domain-general variables would be important for acquiring
basic fraction skills.

Prior Work

Domain Specific Knowledge and Basic Fraction Skills

Conceptual Knowledge—In dealing with fractions, children are confronted with
learning how to both make sense of the fraction symbols and also operations with rational
quantities (Cramer, Wyberg, & Leavitt, 2008; Hecht, et al., 2007; Kieran, 1993; Stafylidou
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& Vosniadou, 2004). These conceptual understandings seem to be particularly difficult for
children with mathematical difficulties (Butler, Miller, Crehan, Babitt, & Pierce, 2003;
Mazzocco & Devlin, 2008). It has been widely accepted that elementary school children
should be provided instruction for understanding part-whole and measurement
interpretations of common fractions (Cramer, et al; 2008; English & Halford, 1995;
Kilpatrick, et al., 2001). Part-whole means that fractions represent the parts of an entire
object or set of objects indicated by the fraction symbols. For example, 1-2 can refer to a pie
with half of it eaten, two pies with one of them eaten, and so on. Measurement refers to the
fact that fractions are numbers that reflect cardinal size. For example, fractions can be
ordered from lowest to highest (e.g., 1/4, 1/3, 1/2, 2/2; Smith, Solomon, & Carey, 2005;
Mazzocco & Devlin, 2008).

Conceptual knowledge about rational number units might aid some students in selecting
appropriate procedures for solving fraction computation, estimation, and word problems
(Byrnes & Wasik, 1991; Hecht, 1998; Hecht, Close,& Santisi, 2003; Hiebert, 1986; Hiebert
& LeFevre, 1986). Conceptual understandings about fraction symbols can also be used to
detect or avoid procedural mistakes while solving fraction computation problems.
Qualitative interview studies have documented children’s use of part-whole and
measurement interpretations of fractions to select and to monitor the success of computation
procedures (Mack, 1990; Streefland, 1993; see also Pitkethly & Hunting, 1996, for a
review). Conceptual understandings concerning how and why operations with fractions
work can also be used to solve some math problems involving fractions (see e.g., Ball, 1993;
Cramer, Post, del Mas, 2002; Sherman & Bisanz, 2009). For example, some students might
add fractions by shading a pictorial representation of part-whole relations (e.g., child adds %
+ Y4 by shading %2 and ¥ of a pie and noting that % of the pie is then shaded to determine the
answer). Translation of word problems into appropriate computations usually requires the
construction of accurate mental models for the situations conveyed by the word problems
(see e.g., Hegarty, Mayer, & Monk, 1995; Stern, 1993). Students who construct an
inaccurate mental model for the situation conveyed by a word problem may be more likely
to set up the wrong fraction computation problem to solve the word problem. Finally,
conceptual understandings are likely needed for estimation of fractions. Conceptual
knowledge can aid students with respect to converting fractional quantities into approximate
whole number quantities during the process of estimating an answer (Behr & Post, 1986;
Case & Sowder, 1990; Hecht, 1998).

There is some suggestive evidence that poorly developed conceptual knowledge about
fractions contributes to group differences in fraction computation, estimation, and word
problem performance. One study reported that sixth-, seventh-, and eighth-grade children
with math difficulties scored lower than typically achieving children on conceptual
knowledge tasks that involved ordering from lowest to highest both part-whole
representations of fractions (i.e., pictorial representations of fractions, such as circles with
parts shaded) and common fraction numerals (Mazzocco & Devlin, 2008). Conceptual
knowledge is also correlated with individual differences in fraction computation, estimation,
and word problem performance. Byrnes and Wasik (1991) reported that pretested conceptual
knowledge correlated with how well children benefited from instruction in fraction
computation, accounting for approximately 30% of the variance in fraction addition skills.
Siegler (2009) reported that 61 and 8t grader’s performance on a task involving placing
common fractions on a number line (which assesses a student’s measurement knowledge of
cardinal size of fractions) correlated substantially with concurrent fraction computation
skills (rxy’s ranged from .55 to .70). Hecht (1998) provided quantitative evidence that
conceptual knowledge uniquely contributes to variability in middle school student’s fraction
concurrent fraction computation, estimation, and word problem performance, with
procedural knowledge recognition, simple arithmetic fluency, word level reading, and
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vocabulary knowledge accounted for. Hecht and his colleagues (2003) extended the findings
from Hecht (1998) on the unique role of conceptual knowledge in a concurrent sample of
105 fifth graders.

Simple Arithmetic Knowledge—Simple arithmetic knowledge for whole numbers has
been largely assumed to be a precursory skill that must be mastered with proficiency in
order to effectively progress to more complex mathematical operations (see e.g., Gagne,
1983; Goldman, Mertz, & Pelligrino, 1989; Kilpatrick, et al., 2001; NMAP, 2008; Pressley,
1986). Indeed, the predominant view that mathematical knowledge is hierarchical (Aunola,
Leskinen, Lerkkanen, & Nurmi, 2004; Fuchs, Fuchs, Compton, Powell, Seethaler, Capizzi,
Schatschneider, & Fletcher, 2006) implies that mastery of more complex mathematics, such
as fractions, are dependent on efficiency in more basic foundational skills, such as simple
arithmetic. Typically achieving children tend to rely on the automatic and less error prone
retrieval strategy to solve simple arithmetic, which is thought to enable them to devote
limited attentional resources toward selecting and implementing fraction procedures.
Meanwhile, children with math difficulties are at a supposed disadvantage because limited
memory resources must be devoted to calculating simple arithmetic at the expense of other
processes needed to solve the problem (e.g., Geary, 1999; Hecht, 1998; Mayer, 1985;
Zentall, 1990). However, there is no direct empirical evidence that arithmetic efficiency
contributes to performance differences between children with mathematical difficulties and
typically achieving children with respect to basic fraction skills. This represents an
important gap in our knowledge. On the one hand, efficient simple arithmetic performance
seems important during the process of solving, say, fraction computation problems (e.g., one
must add whole numbers in the numerator to solve ¥ + %). Indeed, there is evidence from
studies collected at one time point suggesting that simple arithmetic fluency is an important
source of emerging individual differences in basic fraction skills. In particular, simple
arithmetic efficiency seems to consistently uniquely correlate with concurrent fraction
computation accuracy (Hecht, 1998; Hecht, et al., 2003). On the other hand, simple
arithmetic efficiency may not uniquely influence growth over time in basic fraction skills or
explain ability group differences in fraction skills. Consistent with the latter view, fraction
computation mistakes made by late elementary school students rarely involve
miscalculations (i.e., less than 5% of errors coded; Hecht, et al., 2007).

Domain General Cognitive Abilities and Basic Fraction Skills

Working Memory—Working memory tends to be impaired in children with mathematical
difficulties relative to typically achieving students (see e.g., Geary, 1993; Hitch & McAuley,
1991; Passolunghi & Pazzagliab, 2004; Pickering & Gathercole, 2004; Raghubar, Barnes, &
Hecht, 2010; Siegel & Ryan, 1989; Swanson & Sachse-Lee, 2001). In the current context,
working memory refers to concurrent storage and manipulation of the information necessary
to perform a mental task. During on-line performance, representations of the terms and
operators as well as the generated answer should at some point be maintained in working
memory (c.f., Geary, 1993; Lemaire, Abdi, & Fayol, 1996; Logie & Baddeley, 1987). For
example, the child might verbally encode “two minus one-third equals” while either solving
or estimating the answer to the fraction computation problem “2-1/3 = ”. With a poor
working memory system, the representation of the encoded quantities are more likely to
decay before completing a procedural strategy, such as converting the 2 into a rational
number (i.e., 6/3; see Geary, 1993 for a related proposal in the case of simple arithmetic).
With respect to fraction word problem solving, it is likely that an efficient working memory
system is required to construct an accurate mental model of the situations conveyed by the
word problem (c.f., Kintsch & Greeno, 1985; Swanson & Sachse-Lee, 2001). Hecht and his
colleagues (Hecht, et al., 2003) reported a unique association between working memory and
concurrent fraction word problem performance.
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Attention—It is known that children with mathematics difficulties tend to engage in less
attending behavior during math instruction (Bryan, 1974, McKinney & Speece, 1986).
Children’s attentive behavior during math instruction may be an important contributor to
how well children benefit from formal fractions instruction. A child is certainly not in a
good position to acquire fraction-related knowledge from a classroom lesson if she or he
does not pay attention to instruction and carry out tasks prescribed by the teacher (Green,
Forehand, Beck, & Vosk, 1980; Hecht & Greenfield, 2001; Wentzel, 1991). Children’s
ability to engage in on-task behaviors, including returning to an on-task behavior after an
attentional shift (e.g., distraction from a peer), enables the child to form representations of
mathematical information within the working memory system. Accordingly, the frequency
of attentive behaviors in the classroom appears to correlate with individual differences in the
acquisition of academic skills (Bennett, Gottesman, Rock, & Cerullo, 1993; Fuchs et al.,
2006; McKinney & Speece, 1986; Wentzel, 1991). For example, Fuchs, et al., (2006)
reported a correlation between teacher ratings of attentive behavior in the classroom of .62
and .51 for mathematical computation and word problem solving, respectively in third
graders. Hecht et al., (2003) found that classroom attentive behavior was a relatively strong
unique predictor of concurrent individual differences in fraction computation, estimation,
and word problem performance in fifth graders, while controlling for mathematical
knowledge, working memory, and word level reading.

Considering Potential Bi-Directional Relations Between Fraction Problem Solving and
Conceptual Knowledge

Perhaps the most prevalent position is that conceptual understandings lead to further
acquisition and use of procedures for solving math problems involving fractions (Byrnes &
Wasik, 1991; Hecht, 1998; Hiebert & LeFevre, 1986; Kilpatrick, et al., 2001). An alternative
view is that learning procedures for how to solve fraction computation, word problem
solving, or estimation provides a child with additional practice and feedback concerning the
accuracy of the mental representations of conceptual knowledge used during problem
solution (Gagne, 1983; VVanLehn, 1990). Some have proposed a third view, which is that
concepts and procedures influence each other rather than being independent in development
(Baroody & Ginsburg, 1986; Siegler & Stern, 1998; Sophian, 1997), such as via an iterative
or hand-over-hand fashion (Rittle-Johnson & Siegler, 1998; Rittle-Johnson, Siegler, &
Alibali, 2001). It has also been proposed that once math procedures are accessed and used
with some degree of automaticity, the child is able to devote limited attentional resources to
mental processes that make use of conceptual understandings (e.g., Fuson, 1988; Gagne,
1983; Karmiloff-Smith, 1992). Procedural knowledge might be needed before a child can
reflect on “why (the procedure) has the steps it has, why it has certain conditions on its
applicability, and why it succeeds when those conditions are met and the steps are followed
accurately” (VanLehn, 1990, p. 38). Thus, the process of carrying out procedures and then
using conceptual knowledge to make sense of the results obtained from the algorithmic steps
has been hypothesized as a mechanism for learning conceptual knowledge (Gagne, 1983;
Hiebert, 1986; VanLehn & Brown, 1980). The view that learning how to solve math
problems involving fractions leads to enhanced conceptual knowledge would be supported
by unique associations between initial fraction computation, estimation, and word problem
skills and emerging individual differences in conceptual knowledge. For example, Rittle-
Johnson, et al., (2001) showed that fifth- and sixth-grader’s initial procedural knowledge
concerning how to use a number line uniquely contributed to improvements in conceptual
understandings about placement of decimal fractions on the number line task, while
controlling for pretested conceptual knowledge.
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Rationale of Current Study

Method

Participants

Two strategies were employed in this study for understanding the domain specific and
domain general contributors to fraction-related performance in typically developing children
and in children with math difficulties. The first was to conduct a two-year longitudinal study
that involved prediction of emerging individual differences among the entire range of basic
fraction skills achievement in our sample. The second strategy was to combine this approach
with analyses that compare children with math difficulties and children who are typically
achieving over time — to obtain a clearer view of the factors that contribute to emerging
difficulties in fraction skills (Hecht, et al., 2007). There are currently no studies that have
used either approach for understanding both the unique correlates of emerging individual
differences in basic fraction skills or group differences in fraction computation, estimation,
or word problem performance. We therefore sought to extend the current body of literature
by combining these two approaches with mediation analysis, a technique that can be used
for determining which variables underlie group differences in mathematical performance
(c.f., Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Hecht, et al,. 2003).
Mediational analysis requires examination of three logically related research questions
(Baron & Kenny, 1986; MacKinnon, 2008). In keeping with Baron and Kenny (1986), we
first asked whether or not group differences would emerge with respect to performance on
the fraction-related variables. It is also necessary to establish which potential mediator
variables are uniquely associated with emerging individual differences in the fraction
outcomes. Thus, our second research question asked whether or not working memory or
classroom attentive behavior (both domain general abilities), and simple arithmetic
efficiency or conceptual knowledge (both domain specific factors) would uniquely predict
emerging individual differences in fraction computation, estimation, and word problem
performance across the entire range of skill in our sample. Our third research question asked
whether or not any of these domain general and domain specific variables could explain
emerging group differences in the three fraction outcomes. The longitudinal data also
allowed us to examine a fourth research question, which asked whether or not there is
evidence for bidirectional relations between conceptual knowledge and fraction
computation, estimation, and word problem performance.

Fourth graders were 260 children served by one of nine public schools in South East Florida
and tested in the winter (time 1). During the spring of their fifth grade year (time 2), 181 of
the original sample participated again. Because teachers distributed consent forms to
parents, the exact number of parents who received the consent forms can not be determined.
Incentives such as small gifts to children who returned parent permission forms were
provided. At time 1, we obtained the sample by using the following procedure. Initial
screening was done by asking teachers to identify any child that they thought was “math
disabled”. Teachers were also asked to identify all other students that were not experiencing
math difficulties. Parent permission forms were distributed to all children so identified by
their teachers. The regular school teacher obtained parent permission forms for children
enrolled in special education math classrooms as well to increase the sample size of
participants with mathematical difficulties. All children who returned an affirmative parent
permission form regardless of math difficulty status were tested. No test-giver or child was
aware of the participant’s designation concerning math disability status as given by the
teacher. At time 2, all children who participated at time 1 were given a parental permission
form. Exclusionary criteria for initial screening included: children deemed well below
average in intelligence by his/her teacher; 2) children with severe behavior disorders, and 3)
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students who did not speak fluent English. All other children who returned an affirmative
parent permission form were tested.

When students were in fifth grade, 181 of the original sample agreed to participate again and
were tested at time 2. The final sample involved 31 and 39 classrooms (during wave 1 and
wave 2, respectively) from the same nine schools. Attrition analyses (repeated measures)
revealed that the 181 children with complete data did not differ from the 79 children who
did not participate at 51 grade on the study variables at baseline (i.e., all p’s > .05). This
supports the assumption that data were missing at random. Of the 55 participants with math
difficulties, 27 (49%) were female, the racial/ethnic composition was 12 (21.8%) White, 10
(18.2%) Hispanic, 32 (58.2%) African American, and 1 (1.8%) Other, and on the basis of
family income, 11 participants (i.e., 20.0% of the sample) were eligible for free or reduced-
price lunch and 9 (16.4%) had a school identified disability. Of the 126 typically achieving
children, 74 (58.7%) were female, the racial/ethnic composition was 57 (45.2%) White, 26
(20.6%) Hispanic, 40 (31.7%) African American, and 3 (2.4%) other, and 13 participants
(i.e., 10.3% of the sample) were eligible for free or reduced-price lunch and 3 (2.4%) had a
school identified disability.

Determination of Math Difficulty Status

Measures

Math difficulty status was based on the cutoff criteria used by Siegel and Ryan (1989; see
also Geary, 2004). The sample included 55 students with math difficulties (MD), who
scored at or below the 25t percentile on the Woodcock-Johnson 111 Calculation composite
(WJIII; Woodcock, McGrew, & Mather, 2001) in the fall of fourth grade. The Calculation
composite is based on both the Calculation and Math Fluency measures. The typically
achieving sample included 126 4t grade children who scored above the 40t percentile on
the calculation composite (percentile range = 41 to 100). The 40™ percentile is the cut point
that is used in the research literature frequently for designating lack of difficulty (Fuchs,
Fuchs, Stuebing, Fletcher, Hamlett, & Lambert, 2008). Of the 55 students initially classified
as MD, 38 children exhibited persistent MD in fifth grade, while 17 students tested out of
our a priori definition for MD status on the basis of exceeding our initial percentile cutoff
score of 25 (range = 29-39) on the WJIII calculation composite. No children who were
originally classified as typically achieving in fourth grade scored within the bounds of the
MD classification in fifth grade. Age based standard scores for full scale intelligence on the
Wechsler Abbreviated Scales of Intelligence (WASI; Wechsler; 1999; 2-form version;
which is normed to have a mean of 100 and SD of 15) placed all children within both groups
at the normal range in general intelligence (i.e., age-based standard score of at least 80 — the
9t percentile - or above) in fourth grade. Children’s mean estimated Full Scale 1Q score at
the fall of fourth grade was 96.1 (SD = 10.4) and 103.7 (SD = 11.20) for children in the
math difficulties and typically achieving groups, respectively.

Math textbooks used in a participating school district and two elementary school teachers
were consulted to ensure that the measures of basic fraction skills and conceptual knowledge
contained adequate coverage of subskills for the age-range studied. The basic fraction skills
and conceptual knowledge measures were similar or identical to those employed in previous
concurrent studies of elementary and middle school children’s fraction performance (Hecht,
1998; Hecht, et al., 2003).

Three tests measured each of the considered types of basic fraction skills

1. Fraction computation. There were 12 addition and 12 multiplication computation
problems. For each operation, there were two items for each of six item types: (a)
proper fractions, same denominators; (b) proper fractions, different denominators; (c)
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one term mixed fraction and the other term a proper fraction with same denominators
(e.g., 2 3/5 + 1/5); (d) one term a proper fraction and the other term a whole number
(e.g., 2 + 1/4), one term a proper fraction and the second term a proper fraction with a
zero numerator (e.g., 1/4 + 0/4); and (e) one term mixed fraction and the other term a
proper fraction with different denominators (e.g., 2 %2 + 1/4). There were also two
fraction division problems, involving proper fractions with same denominators.
Coefficient alpha on this sample was .80 and .87 in fourth and fifth grade, respectively.
The total correct answers were recorded.

2. Word problems. This test was composed of 12 word problems that involved
fractional quantities. Four problems were correctly solved by addition of the quantities,
four by multiplying, and four by dividing. Within each set of four problems, two
involved one fraction and one whole number, and two involved fractions only. Students
were instructed to provide the correct mathematical equation to determine the answer to
the word problem. Coefficient alpha on this sample was .81 and .85 in fourth and fifth
grade, respectively. The total correct mathematical equation set-ups was recorded.

3. Fraction estimation. This test was composed of 12 items. Students were presented a
fraction computation problem (e.g., 99/100 + 99/100 =) with four alternatives (1, 10,
100, 1000), and circled the closest whole number to the correct sum. Coefficient alpha
on this sample was .84 and .91 in fourth and fifth grade, respectively. The total correct
answers were recorded.

Two tasks assessed part-whole conceptual knowledge about fraction
symbols

4. Picture-symbol. For each item, students indicated the fraction of a polygon, or set of
polygons, that was shaded. Students wrote the indicated fraction in symbolic form (e.g.,
). There were 13 items. Coefficient alpha on this sample was .91 and .90 in fourth and
fifth grade, respectively. The total correct answers were recorded.

5. Symbol-picture. For each item, participants were presented a fraction symbol (e.g.,
¥4). Beside each fraction symbol there was a polygon figure or set of figures. Students
shaded the polygon(s) in the amount indicated by the fraction symbol. There were 18
items. Coefficient alpha on this sample was .85 and .86 in fourth and fifth grade,
respectively. Total correct answers were recorded.

One task assessed measurement conceptual knowledge about fraction
symbols

6. Size of fraction. For each item, students were presented a pair of numbers (e.g., %2 and
1). Students indicated which of the two numbers was the largest. There were 24 items.
Coefficient alpha on this sample was .89 and .91 in fourth and fifth grade, respectively.
Total correct answers were recorded.

One task assessed conceptual knowledge concerning adding rational
numbers using pictures

7. Picture computation. For each item, participants were presented two circles, or two
squares or two rectangles (all equal in size). Part of each figure was shaded. Next to
each pair of pictures was a blank picture that was the same sized shape (or shapes) as
the preceding two. Students were instructed to add the amount shaded in the two
pictures and draw the answer using the provided blank pictures. For example, if one
picture depicted a square with ¥ shaded, and another square with 2/4 shaded, students
would need to shade ¥ of the provided blank square to get this item correct. Thus, this
task measures the understanding of how rational quantities depicted in pictorial form (as
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opposed to mathematical symbol form) can be combined. There were 13 items, with six
items adding up to one or less and the remaining items with sums greater than one
whole. Coefficient alpha on this sample was .88 and .84 in fourth and fifth grade,
respectively. The total correct answers were recorded.

Two tasks measured simple arithmetic knowledge

8. Simple arithmetic — addition. For each of the 22 items, participants were presented in
the middle of a computer screen a simple arithmetic problem, written in standard
horizontal form (e.g., 2 + 5 =). Students were instructed to say the answer to each
simple arithmetic problem as fast as possible. Immediately after an answer was stated,
students were asked to give an immediate retrospective verbal report by verbalizing the
strategy that was used to solve the given problem. For each trial, the time taken between
when the problem appeared on the screen and when the child said the answer in a
microphone was recorded. Total number of arithmetic problems that were solved via
retrieval was recorded (which we refer to as “retrieval use™). A trial was coded as
retrieval if the child provided a verbal indication (e.g., child said “just knew it” or
“popped into my head”) immediately after the child gave an answer. Mean accuracy and
mean latency was also recorded.

9. Simple arithmetic — multiplication. The task was identical to the simple arithmetic —
addition task, except the items were multiplication.

One task measured working memory skills

10. Counting span. For each trial, participants were first shown a screen with circles and
squares, and asked to utter the number of circles. Next, participants were shown
additional screens; for each screen participants indicated aloud the number of circles.
The experimenter pushed the spacebar immediately after the child said the number of
circles, which caused the next screen to appear. After students were presented a certain
number of screens, they were asked to indicate the number of circles counted from each
screen in exact order of presentation. Participants were given two practice trials
involving two screens and were provided corrective feedback when necessary. Each of
the test trials involved 2, 3, 4, 5, or 6 screens (10 trials altogether). Coefficient alpha on
this sample was .80 in fourth grade. The total correct trials were recorded.

Word level reading ability was used as a control variable

11. Word level reading. The Real Words test, forms A & B from the Test of Word
Reading Efficiency (TOWRE; Torgesen, Wagner, & Rashotte, 1999) was used.
Students were instructed to say the words printed on the card as fast as possible. The
average total number of correctly read words across forms A and B was recorded. As
reported by the test developer, coefficient alpha for this task is above .90 for the age
range studied here (Torgesen et al., 1999).

One measure was used to assess attentive behavior in the classroom

12. Attentive behavior. Participant’s teacher rated each student’s attentive behaviors in
the classroom during math instruction. Items were from the cooperation subscale of the
Social Skills Rating System (Gresham & Elliott, 1990). The SSRS is a norm-referenced
rating scale, with cooperation items derived from classroom behaviors that teachers
consider to be indicative of attentive on-task behavior (Demaray, Ruffalo, Carlson,
Busse, Olson, McManus, & Leventhal, 1995), and that correlate significantly with
direct observations of on-task behavior (Gresham & Elliott, 1990). As reported by the
test developer, coefficient alpha is .92 for elementary school children (Gresham &
Elliott, 1990).
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Children were individually administered the WJIII Calculation and Math Fluency measures
and the WASI Vocabulary and Matrix Reasoning measures which were used to create the
overall full scale 1Q estimate. Children were also individually administered the counting
span measure of working memory, and the simple arithmetic tasks. The remaining measures
were stapled together in a test booklet for group administration: fraction computation,
fraction word problems, fraction estimation, picture symbol, picture computation, symbol
picture, size of fraction, and the Woodcock Johnson |11 calculation measure. Directions for
each measure in the test booklet were printed at the beginning of each measure. The test
booklet measures were arranged in one of six different random orders.

All children were administered the measures in two sessions. For the group administered
tasks, participants were told to complete the test booklet at their own pace and were
encouraged to ask questions when necessary. Group administration was done in a vacant
classroom, library, or the cafeteria. Students completed the group session test booklet in
approximately 45 to 60 min. Size of groups varied, and trained research assistants were
present to monitor students as they performed the tasks. The second session was conducted
in a quiet area on school grounds and entailed individual administration of the remaining
tasks. Students completed these individually administered tasks in approximately 30-40
minutes. During the spring of fourth grade, children’s teacher rated each child’s attentive on-
task behavior in the classroom during math instruction.

Data screening and construction of variables

Procedures outlined by Tabachnick and Fidell (2007) were used to screen the data. Square
root transformation of skewed variables did not result in meaningful changes in correlations
among these variables with the other variables. Thus, non-transformed scores were used in
all of the analyses. To account for the dependency among observations (students) within
clusters (classrooms), we conducted all analyses using the “complex analysis” feature in
Mplus, Version 4.21 (Muthen & Muthen, 2007), in which the models were estimated via the
maximum likelihood estimation method with robust standard errors (Williams, 2000).
Bivariate correlations among the individual measures are reported in Table 1. For constructs
for which we had more than one measure, we created weighted composite variables using
principle components factor analysis across the variables that measured that particular
construct. Each principal components factor analysis yielded only one factor, and therefore
no rotation was necessary. Composite variables were created for part-whole conceptual
knowledge about fraction symbols (in which we created a composite score for Picture
symbol and Symbol picture). Two simple arithmetic composite variables were created. One
composite variable, called arithmetic solution processes, was composed of the average
proportion of addition and multiplication trials that were both solved correctly (these were
the Arithmetic — addition accuracy and Arithmetic — multiplication accuracy variables) and
solved via the retrieval strategy (these were the Arithmetic — addition retrieval use and
Arithmetic — multiplication retrieval use variables). Consistent with Siegler and his
colleague’s most recent Strategy Choice and Discovery Simulation (SCADS*; Siegler &
Araya, 2005), both accuracy and retrieval frequency in simple arithmetic should
substantially reflect the same underlying cognitive processes. The accuracy variable
represents the efficiency that students can select strategies that lead to a correct answer. The
frequency of retrieval use variable represents student’s ability to select the most efficient
retrieval strategy instead of using more time consuming and error prone non-retrieval
strategies (Geary, 1993; Hecht, 1999; Siegler, 1988). The other arithmetic composite
variable was arithmetic latencies. Arithmetic latencies are substantially correlated with
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arithmetic solution processes (Hecht, et al, 2003), yet other variables also contribute to
solution latencies (such as general attention mechanisms and speed of retrieval (Hecht,
1999; Kail, 2004; Widaman, Little, Geary, & Cormier, 1992).

Group Differences in Performance

Our first research question asked whether or not group differences would emerge with
respect to performance on the math-related variables. Table 2 depicts the means and
standard deviations for each of the observed variables segregated by group (typically
achieving and math difficulties). The table also includes omnibus F values and effect sizes
(ESs) comparing the groups. All effect sizes were expressed in terms of Cohen’s d, which is
the difference between means divided by the pooled SD (Hedges & Olkin, 1985). One-way
analyses of variance (ANOVAs) were used to determine the statistical significance of group
differences on both fourth grade and fifth grade performance, and improvement scores on all
dependent measures. The one-way ANOVA on improvement scores (computed as fifth
grade minus fourth grade performance) is equivalent to the statistical analysis results
obtained from a 2-way ANOVA for the time by group interaction.

Fourth and fifth grader’s performance on each measure differed by group, with the math
difficulties group showing consistently poorer performance than the typically achieving
group. Thus, the present group of students with math difficulties showed general
impairments in math and other abilities (i.e., working memory, word level reading,
estimated full scale 1Q, and frequency of attentive behavior in the classroom), rather than a
more specific impairment in math alone. In general, improvement scores were significantly
different from zero, unless otherwise noted in Table 2. Group differences in the amount of
improvement in scores between fourth and fifth grade were, in general, non-significant on
most of our variables. Notable exceptions were for fraction computation, estimation, and
word problem skills, which showed significantly larger gains in performance across grades
for the typically achieving group than the mathematical difficulties group.

Prediction of Individual Differences in Fraction Performance

Our second research question asked whether or not domain general abilities such as working
memory and classroom attentive behavior, and domain specific skills such as simple
arithmetic efficiency and conceptual knowledge uniquely predicted emerging individual
differences across the entire range of abilities in our sample with respect to fraction
computation, estimation, and word problem performance. Multiple regression analyses were
carried out using hierarchical regression procedures. The unique proportion of variance in
fifth grade performance accounted for by the predictors measured in fourth grade is reported
in Table 3. In these analyses, we controlled for the autoregressive effects of fourth grade
math ability, estimated full scale 1Q, and word level reading. Autoregressive refers to
models where a variable is regressed on itself at a prior time period. By including fourth
grade math ability in the first step of these analyses, we were able to predict changes in
relative ordering of participant’s fraction skills (i.e., growth) during the time points under
consideration (Gollob & Reichardt, 1987; Hecht, Torgesen, Wagner, & Rashotte,
2001;Kessler & Greenberg, 1981). In the second step (see panel 2), both estimated full scale
IQ and word level reading were entered to control for general (global) learning mechanisms
that could also underlie the observed associations between the predictors and math-related
outcomes (cf., Bull & Johnston, 1997;Kail, 2004). Panel three in Table 3 depicts the
proportion of unique variance explained by each of the mathematical knowledge and
cognitive abilities, while only holding constant the effects of the control variables entered in
the prior steps. These results provide the first empirical evidence for a unique contribution of
each predictor to growth in fraction computation, word problem, and estimation
performance during the fourth to fifth grade years. The findings suggest that arithmetic
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fluency, conceptual knowledge, working memory, and classroom attentive behavior
uniquely contribute to growth in each type of basic fraction skills. Also noteworthy is that
the percentage of variance attributable to the autoregressive effect of fourth grade math
ability was quite substantial relative to any additional variance in fifth grade levels of
fraction skill captured by the other predictors. Thus, the relative ordering of children’s
fraction problem performance was highly consistent from year-to-year.

Having established unique influences of each of the predictors on subsequent fraction
computation, word problem, and estimation skills, an obvious next question is whether the
contribution of these variables are independent of or redundant with one another (see panel
4, in Table 3). Correlations among the predictor variables indicate that they share common
variance. The origin of the contribution of a given predictor variable on a fraction problem
could be variance that is common to the other mathematical-related abilities in the model, in
which case the influence would be redundant with that of the other abilities. Alternatively,
the origin could be variance that is unique to the given mathematical-related ability, in
which case the contributions would be independent of the other abilities. A third possibility
is some mix of independence and redundancy. To find out whether the contributions of the
mathematical predictors were redundant or independent, we used a multiple regression
model wherein all variables were entered as simultaneous predictors of variability in basic
fraction skills. Results indicate substantial redundancy in terms of predicting later variability
in fraction problem solving. Yet, both classroom attentive behavior and at least one
conceptual knowledge variable (which differed depending on the specific fraction outcome)
were consistent unique predictors of growth in all three types of fraction problem solving,
while controlling for all other variables and each other. Regarding the effects of conceptual
knowledge, picture computation emerged as a consistent unique predictor of growth in basic
fraction skills. Also, the measurement interpretation of fractions uniquely predicted growth
in fraction estimation skills, while controlling for the other variables, including picture
computation.

Testing of Mediation Effects

Our third research question asked whether or not domain-general and domain-specific
predictor variables emerged as significant mediators of group differences in the three
fraction outcomes. If children with math difficulties show deficits in fraction problem
solving due to levels of performance on any of our predictors of individual differences in
fraction outcomes, then one or more of these variables will emerge as significant mediators
of the group contrast (c.f. Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). Potential
mediation is indicated when the product of the effect of the group contrast variable to the
fourth-grade mediator (a) and the mediator to the fifth grade fraction outcome effect (b), is
significantly different from zero (Baron & Kenny, 1986; MacKinnon, 2008; Preacher &
Hayes, 2004). Our potential mediators were fourth grade levels of performance on the
following domain specific variables: part-whole, size of fraction, picture computation,
arithmetic solution processes, and arithmetic latency, and the following domain general
variables: working memory and classroom attention behavior. To test for mediation effects,
both the (a) and (b) parameters must be significantly different from zero (Baron & Kenny,
1986; MacKinnon, 2008). Both the (a) and (b) parameters are the unstandardized regression
coefficients. For all mediation analyses, the (a) parameter was estimated while controlling
for fourth grade levels of full scale 1Q, and word level reading, and the (b) parameter was
estimated while controlling for fourth grade levels of 1Q, word level reading, and also the
autoregressive effect of prior fourth grade math ability. Also, in these analyses, the (b)
parameter must be estimated while controlling for the effects of the group contrast (Baron &
Kenny, 1986; Mackinnon, 2008). The product of (a) and (b) is usually tested by the Sobel
test (Geary, et al., 2007), which provides a pooled standard error based on the delta method
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(Sobel, 1982). If the mediational effect is significant and reduces the group contrast (c) to
nonsignificance (p’s > .05), full mediation is implied; partial mediation is implied if the
group contrast remains significant.

All mediation models conducted are shown in Table 4. The (a) and (b) parameters and the
product (a x b) is depicted in this table, along with associated standard errors. Panel 1 shows
the results when each of the mediator measures was entered alone. Panel 2 shows the same
results when all predictors were entered simultaneously. The advantage of entering the
mediating variables simultaneously is that one learns if the mediation is independent of the
effects of the other mediators (Cole & Maxwell, 2003). The results of these mediational
models indicated that both conceptual knowledge and attentive classroom behavior emerged
as unigue mediators of group differences in fraction computation, word problem, and
estimation skills (see column (a x b) in Table 4). For conceptual knowledge, it is noted that
picture computation, which requires application of part whole knowledge to compute
fraction sums, was the consistent unique predictor of each type of fraction outcome. In all,
these results provide the first evidence that the reason for group differences in emerging
fraction skills is that difficulties in both conceptual knowledge and classroom attentive
behavior lead to difficulties in fraction problem solving.

It was determined whether or not complete or partial mediation emerged when each of the
mediators was entered simultaneously into the regression equation (not shown in Table 4).
For fraction computation skills, there was complete mediation. That is, the unstandardized
regression coefficient for group was not significant (b = .71, SE =.63, p > .10). For fraction
word problems, there was marginally significant evidence for persistent differences between
the typically achieving and math difficulty groups, (b = 1.10, SE = .57, p < .056). For
estimation skills, there was a significant persistent difference between the math difficulty
versus typical achievers (b = 1.74, SE = .72, p < .05). In all, these results indicate that ability
group differences in both fraction computation and word problem solving were substantially
explained by our predictors, while there was still a robust ability group difference with
respect to fraction estimation skills.

Bidirectional relations between fraction problem solving and conceptual knowledge

Our fourth research question asked whether or not evidence for bidirectional relations
between conceptual knowledge and performance on fraction computation, estimation, and
word problem solving would emerge. We determined whether or not fourth grade levels of
fraction computation, estimation, and word problem performance uniquely predicted fifth
grade conceptual knowledge. The results depicted in Table 5 reveal that variability in each
of the fraction outcomes uniquely predicted emerging individual differences in measurement
and picture computation conceptual knowledge. Only word problem performance predicted
later part whole knowledge. When all three types of basic fraction skills were included in the
regression equation, along with the control variables, we found that word problem skills
emerged as the only unique predictor of part whole and measurement conceptual knowledge.
Fraction computation emerged as the sole unique predictor of growth in picture
computation. In all, these analyses provide the first evidence that learning how to solve math
problems involving common fractions contributes to emerging individual differences in
conceptual fraction knowledge. These findings are consistent with Rittle-Johnson, Siegler,
and Alibali (2001), who reported similar relations in 51 and 6! graders learning conceptual
and procedural knowledge in the domain of decimal fractions. These results are consistent
with theories that assume that procedural and conceptual knowledge influence each other’s
development in some way (Rittle-Johnson, et al., 2001;Siegler & Stern, 1998;Baroody &
Ginsburg, 1986).

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 14

Discussion

We asked four related questions to further our understanding of emerging fraction
computation, estimation, and word problem performance. Our first research question asked
whether or not group differences between typically achieving students and children with
math difficulties would emerge with respect to performance on the math-related variables.
What we found was that the group differences on all of the measures were pervasive,
favoring the typically achieving group. In fact, most of the effect sizes were moderate to
very large during both fourth- and fifth-grades, suggesting that a consistently wide disparity
exists in the realm of fraction related factors between typical achievers and children who are
classified as having a math difficulty. We also found that improvements in fraction
computation, estimation, and word problem performance among the math difficulties
students were significantly less than change scores made by the typically achieving group.
This is consistent with a pattern showing increasingly diminishing rates of improvement for
children with math difficulties when compared to typically achieving children (i.e., Matthew
Effects; Stanovich, 1986).

Our second research question asked whether or not working memory, classroom attentive
behavior, simple arithmetic efficiency, or conceptual fraction knowledge uniquely predicted
emerging individual differences across the entire range of abilities in our sample with
respect to fraction computation, estimation, and word problem performance. Consistent with
previous cross-sectional studies (Hecht, 1998; Hecht et al., 2003; 2007; Mazzocco & Devlin,
2008; Siegler, 2009), results from the present two-year longitudinal study suggest that
children’s fraction computation, word problem, and estimation skills are uniquely predicted
by conceptual knowledge, arithmetic fluency, working memory, and attentive behaviors in
the classrooms. One new finding from the present longitudinal study was that these child
characteristics predicted growth in fraction problem solving skills over time, while
controlling for the autoregressive effect of prior fourth grade fraction ability, estimated full
scale 1Q, and word level reading. These findings provide evidence for identification of
malleable factors that might lead to difficulties that many children have with fractions. Thus,
the findings can provide practical guidance about both detection and treatment of difficulties
in the realm of common fractions.

In addition to its practical importance, the findings provide theoretical insight into the nature
of mathematical development by supporting the view that conceptual knowledge is
important for growth in math skills. Four reports by the National Academies Press
(Bransford, Brown, & Cocking, 2000; Donovan & Bransford, 2005; Kilpatrick, et al., 2001;
Pellegrino, Chudowsky, & Glaser, 2001) reviewed the major cognitive science perspectives
on which an information processing theory of math skills should be constrained. These
reports stressed the necessity of working to obtain a body of coordinated, meaningful
conceptual knowledge that reveals the logical structure of the discipline (e.g., common
fractions). This includes multiple representations of the same fractional unit (e.g., fraction
circle and number line pictorial models, and standard math symbols such as common
fraction numerals; Cramer, et al., 2002). The ability to conceptually understand numerals,
operations, and applications has been cited in the mathematical cognition literature as a
defining characteristic of the emerging construct referred to as number sense (Berch, 2005;
Gersten & Chard, 1999; Greeno, 1991; Robinson, Menchetti, & Torgesen, 2002). It has been
asserted that number sense may be as important to mathematical learning as oral language
skills, such as phonemic awareness, are to reading (Gersten & Chard, 1999). Part whole and
measurement conceptual fraction knowledge appear to be two types of fraction number
sense that are important for the development of fraction computation, estimation, and word
problem skills.
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Another contribution of this study is that we found new evidence that attention in the math
classroom was a consistent unique predictor of growth in all three types of fraction problem
types studied here. Others have shown concurrent relations between teacher ratings of on-
task attentive classroom behaviors and concurrent levels of performance in fractions (Hecht,
et al., 2003) and other types of math achievement including both whole number arithmetic
and word problem solving (Fuchs, et al., 2005, 2006; Green, et al., 1980; McKinney &
Speece, 1986; Raghubar, Cirino, Barnes, Ewing-Cobbs, Fletcher, & Fuchs, 2009). It is noted
that further work is needed to determine which specific aspects of attention are captured by
more global estimates, obtained via teacher ratings, of student’s attention-related behaviors
in the classroom. For example, behavioral inhibition and sustained attention are at least
theoretically related to variability in mathematical performance (see e.g., Passolunghi &
Pazzagliab, 2004; Passolunghi & Siegel, 2000; Swanson and Beebe-Frankenberger, 2004;
Zentall, 1993).

Our third research question asked whether or not domain-general and domain-specific
predictor variables emerged as significant mediators of group differences in the three
fraction outcomes. This study provides the first direct empirical test concerning which child
characteristics underlie the difficulties that children with math difficulties have with
fractions written in common fraction notation. We found that both conceptual knowledge
and attentive behavior were consistent mediators of ability group differences in emerging
fraction computation, word problem, and estimation skills. In fact, ability group differences
were completely explained for both fraction computation and word problem performance.
We note that both working memory and simple arithmetic fluency were not consistently
significant mediators of group differences in fraction computation, word problem, or
estimation skills. With the control variables included in the model, both working memory
and simple arithmetic fluency uniquely predicted growth in all three types of basic fraction
skills studied here. However, we did not find statistically significant evidence that either of
these measures mediated ability group differences in basic fraction skills. Thus, a
foundational difficulty with arithmetic fluency as an explanation for learning difficulties in
the domain of fractions receives no support in this study. It is widely believed that children
with math difficulties have overly limited attentional resources available to solve math
problems, as a result of either poor working memory resources in general or due to the
preponderance of attention demanding and error prone counting-based simple arithmetic
strategies that compete with available attentional resources (Gagne, 1983; NMAP, 2008;
Zentall, 1990). However, the current results do not provide support for this mechanism as an
explanation for why children with math difficulties showed poorer performance on the
fraction computation, fraction estimation, and fraction word problems tests than typically
achieving students. Thus, interventions designed to enhance simple arithmetic fluency may
have limited effects on the acquisition of problem solving in the domain of fractions. A
recent study by Fuchs, et al., (2005) suggested that there may be some degree of
independence between improvements in simple arithmetic fluency and improvements in
other types of math problem solving skills in response to intensive remedial instruction.
Fuchs et al (2005) reported that first grader’s computation, concepts/applications, and story
problem solving skills could be substantially enhanced, yet simple arithmetic fluency was
not affected by similar intensity of remedial instruction. Fuchs and colleagues (2005) aptly
pointed out that this finding is similar to what is found in reading research; namely, that
word level reading accuracy can be substantially enhanced without much effect on other
reading outcomes, such as reading fluency (see e.g., Torgesen, Wagner, Rashotte, Rose,
Lindamood, Conway, & Garvan, 1999).

Our fourth research question asked whether or not there is evidence for bidirectional
relations between conceptual knowledge and performance on fraction computation,
estimation, and word problem solving. Of the three alternative views of relations between
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conceptual knowledge and the acquisition of basic fraction skills we reviewed in the
introduction, our results generally support the view that the relations are bidirectional. We
found that each of our conceptual knowledge measures was uniquely predicted by at least
one of the fraction problem types, while controlling for the autoregressive effects of prior
conceptual knowledge, estimated full scale 1Q, and word reading. These findings are
consistent with theories that propose that conceptual and procedural knowledge come to
mutually influence each other’s development (Byrnes & Wasik, 1991; Rittle-Johnson, et al.,
2001), rather than with views on the independence of learning of procedural knowledge and
conceptual knowledge (c.f., Nesher, 1986; Resnick & Omanson, 1987). This research
suggests that, in the domain of common fractions, teaching children conceptual knowledge
is likely to lead to improved procedural skills and teaching children procedural knowledge is
likely to have some positive effects on children’s acquisition of conceptual understandings
(see Rittle Johnson, et al., 2001 for similar relations in the case of decimal fractions). These
findings suggest that a “reform oriented” common fractions curriculum might be especially
beneficial for MD children, especially if links between the types of conceptual and
procedural knowledge studied here are explicitly taught. Fraction circles and number lines
are examples of promising types of models for fostering student understanding of both part-
whole and measurement conceptual knowledge about common fraction numerals and
operations with rational quantities (see e.g., Cramer & del Mas, 2002; Cramer, Wyberg,
Leavitt, 2008). In this context, reform oriented instruction refers to infusing conceptual
understanding and collaborative learning into instruction. Reform oriented instruction is
typically associated with instructional principles represented by the National Council of
Teachers of Mathematics (NCTM) standards (Saxe, et al., 1999). Researchers have
documented that reform oriented instruction is associated with gains in student math
achievement (Gearhart, et al., 1999; Stein, Grover, & Henningsen, 1996), such as in the
domain of fractions (Saxe, et al., 1999).

Regarding other directions for future research, we mention four limitations of this study.
First, it seems important to determine how the current findings generalize to other types of
basic fractions skills, such as decimal fractions and percents. Second, there may be other
kinds of domain-specific knowledge types and domain general abilities not investigated here
that contribute to individual and group differences in fraction computation, estimation, and
word problem performance. For example, although both the part-whole and measurement
concepts for fractions might be more relevant in terms of the types of problems that most
elementary students are typically provided, there are other kinds of conceptual
understandings about fractions that should be related to certain types of basic fraction skills
that students are exposed to in middle school and beyond. Other meaningful conceptual
interpretations for fractions include an operator (or scalar) that can shrink or stretch another
quantity (e.g., Behr, Harel, Post, & Lesh, 1993) as a quotient of two quantities (Kieren,
1988), probability (Ball, 1993), and rate (Ball, 1993). For example, it is likely that one or
more of these types of conceptual knowledge (e.qg., rate) might be uniquely predictive of
individual differences in certain types of word problems, such as “For every 2 chocolate
éclairs, we serve 1 glass of milk. How many glasses of milk do we need if we are serving 8
chocolate éclairs?”. Other domain-specific factors include affect (especially math anxiety)
and motivational issues that are specific to math, which may gain importance as children
move from beginning to more complex (i.e., difficult) mathematical skills during the grade
school years (Ashcraft, 2002; Cacioppo, Petty, Feinstein, & Jarvis, 1996; McLeod, 1990).

Concerning domain-general abilities, prior work suggests that mathematical difficulties are
associated with visual-spatial skills, at least for some students (Geary, 1993, 1994). Visual-
spatial working memory is associated with individual differences in mathematical
performance, as measured by standardized and experimental math tests, at different ages and
for different mathematical domains (Bull, Espy, & Wiebe, 2008; Holmes, Adams, &
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Hamilton, 2008; Raghubar, et al., 2010). It is possible that certain visual-spatial abilities and
visual-spatial working memory are related to fraction-related variables, such as using
explicitly presented or child constructed mental models of both part-whole and measurement
interpretations of fractions. Further work is also needed to determine whether or not other
measures of working memory are related to growth in basic fraction skills. The currently
used counting span working memory task involves simultaneous counting of circles while
maintaining previously counted amounts. Counting involves substantial verbal working
memory resources (see e.g., Hecht, 2002; Logie & Baddeley, 1987). There is a substantial
domain general component to working memory tasks that involve verbal processing of any
information (see e.g., Wilson & Swanson, 2001). However, it is noteworthy that the
literature shows consistent effects for the relations of working memory and math when the
task involves numerical information, but not when the measure includes word and sentence
processing (Hitch & McAuley, 1991; Passolunghi & Siegel, 2004; Siegel & Ryan, 1989;
reviewed in Raghubar et al., 2010).

A third limitation of the current study to be addressed in future research concerns how the
nature of classroom instruction moderates the relations between domain-specific and
domain-general variables and fraction skills. For example, on the one hand, it is possible that
existing variability in classroom attentive behavior may not be such an important variable
when students are consistently engaged in activities that are both instructive and intrinsically
interesting (Bottge, 2001). On the other hand, classroom attentive behavior may become
increasingly important in the face of the greater complexity of mathematical topics that
children study during the grade school years. Blair, Gamson, Thorne, & Baker (2004) have
argued that as children move from the earlier to later grades, mathematics curricula become
more complex and increasingly require domain general cognitive abilities, such as attention
skills, during instruction. Instructional effects may also moderate the relations between
conceptual knowledge and basic fraction skills. Relations between conceptual knowledge
and basic fraction skills are likely to depend considerably on the kinds of understandings
that children are actually taught during formal math instruction (Hiebert, Carpenter,
Fennema, Fuson, Wearne, Murray, Olivier, & Human, 1997).

A fourth limitation of the current study that should be addressed by future research concerns
identification of factors that best predict growth in fraction-related variables during both
earlier (i.e., before fourth grade) and later time points than studied here. In particular, given
the importance of part-whole and measurement conceptual knowledge, it would seem
important to examine the factors that contribute to growth in these understandings during the
early elementary school years. Then, if children with conceptual knowledge deficits can be
identified early, intervention efforts may be more effective and some concomitants of
mathematical failure (math anxiety, poor academic self concept) might be avoided or at least
mitigated.

In conclusion, the findings suggest that the domain specific and domain general variables
that we studied are important unique correlates of growth in fraction skills during the fourth-
to fifth-grade time period. Both conceptual knowledge and attentive behavior in the
classroom appear to consistently explain why children with mathematical difficulties
struggle with fractions. The assumption that child attributes are either domain general or
domain specific in nature is consistent with an established tradition in the cognitive
development literature (Kail, 2004), and is a useful distinction for ordering the variables that
contribute to mathematical development (see e.g., Alexander & Judy, 1988; Fuchs, et al.,
2006). The current and prior work concerning identification of both student and contextual
factors (e.g., classroom environment) will enable a future integrated information processing
theory concerning how both intrinsic and extrinsic factors simultaneously influence the
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development of specific types of mathematical skill, including fraction computation,
estimation, and word problem performance.

Acknowledgments

This research was supported by Eunice Kennedy Shriver National Institute of Child Health and Human
Development grant 5R03HD044599-02 awarded to Steven A. Hecht. We are very grateful to the research assistants
and the children and teachers who participated in this project for their generous cooperation. The contents of the
article are solely the responsibility of the authors and do not necessarily represent the official views of the National
Institutes of Health. All involvement by Kevin J. Vagi in the conduct of this study occurred while he was a graduate
student at Florida Atlantic University.

References

Alexander PA, Judy JE. The interaction of domain-specific and strategic knowledge in academic
performance. Review of Educational Research 1988;58:375-404.

Algozzine B, O’Shea D, Crews W, Stoddard K. Analysis of mathematics competence of LD
adolescents. The Journal of Special Education 1987;21:97-107.

Ashcraft MH. Math anxiety: Personal, Educational, and Cognitive Consequences. Current Directions
in Psychological Science 2002;11:181-185.

Aunola K, Leskinen E, Lerkkanen M, Nurmi J. Developmental dynamics of math performance from
preschool to grade 2. Journal of Educational Psychology 2004;96:699-713.

Ball, DL. Halves, pieces, and twoths: Constructing representational contexts in teaching fractions. In:
Carpenter, T.; Fennema, E.; Romberg, T., editors. Rational numbers: An integration of research.
Hillsdale, NJ: Erlbaum; 1993. p. 157-196.

Ball, DL.; Peoples, B. Assessing a student’s mathematical knowledge by way of interview. In:
Schoenfeld, A., editor. Assessing mathematical Proficiency. Vol. 53. MSRI Publications; 2007. p.
213-267.

Baroody, AJ.; Ginsburg, HP. The relationship between initial meaning and mechanical knowledge of
arithmetic. In: Hiebert, J., editor. Conceptual and procedural knowledge: The case of mathematics.
Hillsdale, NJ: Erlbaum; 1986.

Baron RM, Kenny DA. The mediator-moderator distinction in social psychology: Conceptual,
strategic, and statistical considerations. Journal of Personality and Social Psychology
1986;51:1173-1182. [PubMed: 3806354]

Behr, M.; Harel, G.; Post, T.; Lesh, R. Rational Numbers: Toward a Semantic Analysis - Emphasis on
the Operator Construct. In: Carpenter, T.; Fennema, E.; Romberg, T., editors. Rational Numbers:
An Integration of Research. Hillsdale, NJ: Lawrence Erlbaum Associates; 1993. p. 13-47.

Behr, M.; Post, TR. Estimation and children’s concept of rational number size. In: Schoen, H.; Zweng,
M., editors. Estimation and Mental Computation: 1986 NCTM Yearbook. Reston, VA: National
Council of Teachers of Mathematics; 1986. p. 103-111.

Bennett RE, Gottesman RL, Rock DA, Cerullo F. Influence of behavior perceptions and gender on
teachers’ judgments of students’ academic skill. Journal of Educational Psychology 1993;85:347—
356.

Berch DB. Making sense of number sense: Implications for children with mathematical disabilities.
Journal of Learning Disabilities 2005;38:333-339. [PubMed: 16122065]

Blair C, Gamson D, Thorne S, Baker D. Rising mean 1Q: Changing cognitive demand of mathematics
education for young children, population exposure to formal schooling, and the neurobiology of
the prefrontal cortex. Intelligence 2005;33:93-106.

Bottge BA. Using intriguing problems to improve math skills. Educational Leadership 2001;58:68-72.

Bransford, JD.; Brown, AL.; Cocking, RR., editors. How people learn. Washington, DC: National
Academies Press; 2000.

Bryan TS. An Observational Analysis of Classroom Behaviors of Children with Learning Disabilities.
Journal of Learning Disabilities 1974;7:26-34.

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 19

Bull RB, Espy KA, Wiebe SW. Short-term memory, working memory and executive functioning in
preschoolers: Longitudinal predictors of mathematical achievement. Developmental
Neuropsychology 2008;33:205-228. [PubMed: 18473197]

Bull R, Johnston RS. Children’s arithmetical difficulties: Contributions from processing speed, item
identification, and short-term memory. Journal of Experimental Child Psychology 1997;65:1-24.
[PubMed: 9126630]

Butler FM, Miller SP, Crehan K, Babbitt B, Pierce T. Fraction instruction for students with
mathematics disabilities: Comparing two teaching sequences. Learning Disabilities Research &
Practice 2003;18(2):99-111.

Byrnes JP, Wasik BA. Role of conceptual knowledge in mathematical and procedural Learning.
Developmental Psychology 1991;27:777-786.

Cacioppo J, Petty R, Feinstein J, Jarvis W. Dispositional differences in cognitive motivation: The life
and times of individuals varying in need for cognition. Psychological Bulletin 1996;119:197-253.

Case R, Sowder J. The development of computational estimation: A neo-Piagetian analysis. Cognition
and Instruction 1990;7:79-104.

Cawley, JF. Learning disabilities and the secondary school. In: Cawley, JF., editor. Secondary school
mathematics for the learning disabled. Rockville, MA: Aspen Systems Corporation; 1985. p. 1-27.

Cawley JF, Parmer RS, Yan WE, Miller JH. Arithmetic computation abilities of students with learning
disabilities: Implications for instruction. Learning Disabilities Research and Practice 1996;11(4):
230-237.

Cirino PT, Ewing-Cobbs L, Barnes M, Fuchs LS, Fletcher JM. Cognitive arithmetic differences in
learning disability groups and the role of behavioral inattention. Learning Disabilities Research
and Practice 2007;22:25-35.

Cole DA, Maxwell SE. Testing mediational models with longitudinal data: questions and tips in the
use of structural equation modeling. Journal of Abnormal Psychology 2003;112:558-577.
[PubMed: 14674869]

Cramer KA, Post T, del Mas R. Initial fraction learning by fourth- and fifth-grade students: A
comparison of the effects of using commercial curricula with the effects of using the Rational
Number Project Curriculum. Journal for Research in Mathematics Education 2002;33:111-144.

Cramer K, Wyberg T, Leavitt S. The Role of Representations in Fraction Addition and Subtraction.
Mathematics Teaching in the Middle School 2008;13:490-496.

Davis RB, McKnight C. The influence of semantic content on algorithmic behavior. The Journal of
Mathematical Behavior 1980;3:39-87.

Demaray MK, Ruffalo SL, Carlson J, Buss RT, Olson AE, McManus SM, Leventhal A. Social skills
assessment: A comparative evaluation of six published rating scales. School Psychology Review
1995;24:648-671.

Donovan, MS.; Bransford, JD. How students learn: Mathematics in the classroom. Washington, DC:
National Academies Press; 2005.

English, LD.; Halford, GS. Mathematics education: Models and processes. Mahwah, NJ: Erlbaum;
1995.

Fuchs LS, Compton DL, Fuchs D, Paulsen K, Bryant JD, Hamlett CL. The prevention, identification,
and cognitive determinants of math difficulty. Journal of Educational Psychology 2005;97:493—
513.

Fuchs LS, Fuchs D, Compton DL, Powell SR, Seethaler PM, Capizzi AM, Schatschneider C, Fletcher
JM. The cognitive correlates of third-grade skill arithmetic, algorithm computation, and arithmetic
word problems. Journal of Educational Psychology 2006;98:394-4009.

Fuchs LS, Fuchs D, Stuebing K, Fletcher JM, Hamlett CL, Lambert W. Problem solving and
computational skill: Are they shared or distinct aspects of mathematical cognition. Journal of
Educational Psychology 2008;100:30-47. [PubMed: 20057912]

Fuson, K. Children’s counting and concepts of number. New York, NY: Springer-Verlag; 1988.

Gagne RM. Some issues in the psychology of mathematics instruction. Journal for Research in
Mathematics Education 1983;14:275-282.

Geary DC. A componential analysis of an early learning deficit in mathematics. Journal of
Experimental Child Psychology 1990;49:363-383. [PubMed: 2348157]

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 20

Geary DC. Mathematical disabilities: Cognitive, neuropsychological, and genetic components.
Psychological Bulletin 1993;114:345-362. [PubMed: 8416036]

Geary, DC. Children’s mathematical development: Research and practical applications. Washington,
DC: American Psychological Association; 1994.

Geary DC. Sex differences in mathematical abilities: Commentary on the math-fact retrieval
hypothesis. Contemporary Educational Psychology 1999;24:267-274. [PubMed: 10373316]

Geary DC. Mathematics and learning disabilities. Journal of Learning Disabilities 2004;37:4-15.
[PubMed: 15493463]

Geary DC, Brown SC, Samaranayake VA. Cognitive addition: A short longitudinal study of strategy
choice and speed-of-processing differences in normal and mathematically disabled children.
Developmental Psychology 1991;27:787-797.

Geary DC, Hoard MK, Byrd-Craven J, Nugent L, Numtee C. Cognitive mechanisms underlying
achievement deficits in children with mathematical learning disability. Child Development
2007;78:1343-1359. [PubMed: 17650142]

Geary DC, Hoard MK, Hamson CO. Numerical and arithmetical cognition: Patterns of functions and
deficits in children at risk for mathematical disability. Journal of Experimental Child Psychology
1999;74:213-239. [PubMed: 10527555]

Gersten R, Chard D. Number sense: Rethinking arithmetic instruction for students with mathematics
difficulties. Journal of Learning Disabilities 1999;33:18-29.

Gersten R, Jordan NC, Flojo JR. Early identification and interventions for students with mathematics
difficulties. Journal of Learning Disabilities 2005;38:293-304. [PubMed: 16122059]

Goldman SR, Mertz DL, Pellegrino JW. Individual differences in extended practice functions and
solution strategies for basic addition facts. Journal of Educational Psychology 1989;81:481-496.

Gollob, HF.; Reichardt, CS. Interpreting and estimating indirect effects assuming time lags really
matter. In: Collins, LM.; Horn, JL., editors. Best Methods for the Analysis of Change: Recent
Advances, Unanswered Questions, Future Directions. Washington, DC: American Psychological
Association; 1991. p. 243-259.

Green KD, Forehand RL, Beck SJ, Vosk B. An assessment of the relationship among measures of
children’s social competence and children’s academic achievement. Child Development
1980;51:1149-1156.

Greeno JG. Understanding and procedural knowledge in mathematics instruction. Educational
Psychologist 1978;12:262-283.

Greeno JG. Number Sense as Situated Knowing in a Conceptual Domain. Journal for Research in
Mathematics Education 1991;22:170-218.

Gresham, FM.; Elliott, SN. Social Skills Rating System. Circle Pines, MN: American Guidance
Service; 1990.

Hecht SA. Toward an information processing account of individual differences in fraction skills.
Journal of Educational Psychology 1998;90:545-559.

Hecht SA. Individual solution processes while solving addition and multiplication math facts in adults.
Memory and Cognition 1999;27:1097-1107.

Hecht SA. Counting on Working Memory in Simple Arithmetic When Counting is Used for Problem
Solving. Memory and Cognition 2002;30:447-455.

Hecht S, Close L, Santisi M. Sources of individual differences in fraction skills. Journal of
Experimental Child Psychology 2003;86:277-302. [PubMed: 14623213]

Hecht SA, Greenfield DB. Comparing the predictive validity of first grade teacher ratings and reading
related tests on third grade levels of reading skills in young children exposed to poverty. School
Psychology Review 2001;30:50-69.

Hecht SA, Torgesen JK, Wagner RK, Rashotte CA. The relations between phonological processing
abilities and emerging individual differences in mathematical computation skills: A longitudinal
study from second- to fifth-grade. Journal of Experimental Child Psychology 2001;79:192-227.
[PubMed: 11343408]

Hecht, SA.; Vagi, KJ.; Torgesen, JK. Fraction skills and proportional reasoning. In: Berch, DB.;
Mazzocco, MMM., editors. Why is Math So Hard for Some Children? The Nature and Origins of

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 21

Mathematical Learning Difficulties and Disabilities. New York: Brookes Publishing; 2007. p.
121-132.

Hedges, LV.; Olkin, I. Statistical methods for meta-analysis. Orlando, FL: Academic Press; 1985.

Hegarty M, Mayer RE, Monk CA. Comprehension of arithmetic word problems: A comparison of
successful and unsuccessful problem solvers. Journal of Educational Psychology 1995;87:18-32.

Hiebert, J. Conceptual and procedural knowledge: The case of mathematics. Mahwah, NJ: Lawrence
Erlbaum Associates; 1986.

Hiebert, J.; Carpenter, TP.; Fennema, E.; Fuson, KC.; Wearne, D.; Murray, H.; Olivier, A.; Human, P.
Making sense: Teaching and learning mathematics with understanding. Portsmouth, NH:
Heinemann; 1997.

Hiebert, J.; LeFevre, P. Conceptual and procedural knowledge in mathematics: An introductory
analysis. In: Hiebert, J., editor. Conceptual and procedural knowledge. Mahwah, NJ: Lawrence
Erlbaum Associates; 1986. p. 1-27.

Hitch GJ, McAuley E. Working memory in children with specific arithmetical learning disabilities.
British Journal of Psychology 1991;82:375-386. [PubMed: 1954527]

Holmes J, Adams JW, Hamilton CJ. The relationship between visuospatial sketchpad capacity and
children’s mathematical skills. European Journal of Cognitive Psychology 2008;20:272-289.
Hope J, Owens O. An analysis of the difficulty of learning fractions. Focus on Learning Problems in

Mathematics 1987;9:25-39.

Jordan NC, Hanich LB. Characteristics of children with moderate mathematics deficiencies: A
longitudinal perspective. Learning Disabilities Research and Practice 2003;18:213-221.

Jordan NC, Hanich LB, Kaplan D. A longitudinal study of mathematical competencies in children with
specific mathematics difficulties versus children with co-morbid mathematics and reading
difficulties. Child Development 2003;74:834-850. [PubMed: 12795393]

Kail RV. Cognitive Development Includes Global and Domain-Specific Processes. Merrill-Palmer
Quarterly 2004;50:445-455.

Kail R, Hall LK. Sources of developmental change in children’s word problem performance. Journal
of Educational Psychology 1999;91:660-668.

Karmiloff-Smith, A. Beyond Modularity. Cambridge, MA: MIT Press; 1992.

Kessler, RC.; Greenberg, DF. Linear Panel Analysis. NY: Academic Press; 1981.

Kieren, TE. Personal knowledge of rational numbers: Its intuitive and formal development. In:
Hiebert, J.; Behr, M., editors. Number concepts and operations in the middle grades. Reston, VA:
National Council of Teachers of Mathematics; 1988. p. 162-181.

Kilpatrick, J.; Swafford, J.; Findell, Bradford. Adding it up: helping children learn mathematics.
Washington, DC: National Academy Press; 2001.

Kintsch W, Greeno JG. Understanding and solving word arithmetic problems. Psychological Review
1985;92:109-129. [PubMed: 3983303]

LeFevre, J.; DeStefano, D.; Coleman, B.; Shanahan, T. Mathematical cognition and working memory.
In: Campbell, JID., editor. Handbook of Mathematical Cognition. New York: Psychology Press;
2005. p. 361-377.

Lemaire P, Abdi H, Fayol M. The role of working memory resources in simple cognitive arithmetic.
European Journal of Cognitive Psychology 1996;8:73-103.

Logie RH, Baddeley AD. Cognitive processes in counting. Journal of Experimental Psychology:
Learning, Memory, & Cognition 1987;13:310-326.

Loveless T. Trends in math: The importance of basic skills. Brookings Review 2003;21:40-43.

Mabbott DJ, Bisanz J. Computational skills, working memory, and conceptual knowledge in older
children with mathematics learning disabilities. Journal of Learning Disabilities 2008;41:15-28.
[PubMed: 18274501]

Mack NK. Learning fractions with understanding: Building on informal knowledge. Journal for
Research in Mathematics Education 1990;21:16-32.

Mack, NK. Learning rational numbers with understanding: The case of informal knowledge. In:
Carpenter, TP.; Fennema, E.; Romberg, TA., editors. Rational numbers: An integration of
research. Mahwah, NJ: Lawrence Erlbaum Associates; 1993. p. 85-105).

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 22

Mack NK. Confounding whole-number and fraction concepts when building on informal knowledge.
Journal for Research in Mathematics Education 1995;26:422-441.

MacKinnon, DP. Introduction to statistical mediation analysis. New York: Lawrence Erlbaum
Associates; 2008.

Mayer, RE. Implications of cognitive psychology for instruction in mathematical problem solving. In:
Silver, EA., editor. Teaching and learning mathematical problem solving:multiple research
perspectives. NJ: Lawrence Erlbaum; 1985.

Mazzocco MMM, Devlin KT. Parts and holes: Gaps in rational number sense in children with vs.
without mathematical learning disability. Developmental Science 2008;11:681-691. [PubMed:
18801123]

Mazzocco MMM, Myers GF. Complexities in identifying and defining mathematics learning disability
in the primary school age years. Annals of Dyslexia 2003;53:218-253. [PubMed: 19750132]
McKinney JD, Speece DL. Academic consequences and longitudinal stability of behavioral subtypes

of learning disabled children. Journal of Educational Psychology 1986;78:365-372.

McLeod DB. Information processing theories and mathematics learning: The role of affect.
International Journal of Educational Research 1990;14:13-29.

Muthen, LK.; Muthen, BO. Mplus User’s Guide. 4. Los Angeles, CA: Muthen & Muthen; 2007.

National Council for Teachers of Mathematics. Principles and standards for school mathematics.
Reston, VA: Author; 2000.

National Mathematics Advisory Panel. Foundations for success: The final report of the national
mathematics advisory panel. Washington, DC: U.S. Department of Education; 2008.

National Mathematics Advisory Panel. Chapter 4: Report of the Task Group on Learning Processes.
Washington, DC: U.S. Department of Education; 2008.

Nesher P. Are mathematical understanding and algorithmic performance related. For the Learning of
Mathematics 1986;6:2-9.

Ni Y. How valid is it to use number lines to measure children’s conceptual knowledge about rational
number? Educational Psychology 2000;20:139-152.

Ohlsson S, Rees E. The Function Conceptual Understanding in the Learning of Arithmetic Procedures.
Cognition & Instruction 1991;8:103-179.

Passolunghi MC, Pazzagliab F. Individual differences in memory updating in relation to arithmetic
problem solving. Learning and Individual Differences 2004;14:219-230.

Passolunghi MC, Siegel LS. Short-Term Memory, Working Memory, and Inhibitory Control in
Children with Difficulties in Arithmetic Problem Solving. Journal of Experimental Child
Psychology 2000;80:44-57. [PubMed: 11511134]

Passolunghi MC, Siegel LS. Working memory and access to numerical information in children with
disability in mathematics. Journal of Experimental Child Psychology 2004;88:348-367.
[PubMed: 15265681]

Pellegrino, JW.; Chudowsky, N.; Glaser, R., editors. Knowing what students know. Washington, DC:
National Academies Press; 2001.

Pickering SJ, Gathercole SE. Distinctive working memory profiles in children with special needs.
Educational Psychology 2004;24:393-408.

Pitkethly A, Hunting RP. A review of recent research in the area of initial fraction concepts.
Educational Studies in Mathematics 1996;30:5-38.

Preacher KJ, Hayes AF. SPSS and SAS procedures for estimating indirect effects in simple mediation
models. Behavior Research Methods, Instruments, & Computers 2004;36:717-731.

Pressley M. The relevance of the good strategy user model to the teaching of mathematics. Educational
Psychologist 1986;21:139-161.

Raghubar KP, Barnes M, Hecht SA. Working Memory and Mathematics: A Review of
Developmental, Individual Difference, and Cognitive Approaches. Learning and Individual
Differences 2010;20:110-122.

Raghubar KP, Cirino PT, Barnes MA, Ewing-Cobbs L, Fletcher JM, Fuchs LS. Errors in multi-digit
arithmetic and behavioral inattention in children with math difficulties. Journal of Learning
Disabilities 2009;42:356-371. [PubMed: 19380494]

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 23

Resnick, LB.; Ford, WW. The psychology of mathematics for instruction. Hillsdale, NJ: Lawrence
Erlbaum; 1981.

Resnick, L.; Omanson, S. Learning to understand arithmetic. In: Glaser, R., editor. Advances in
Instructional Psychology. Vol. 3. Hillsdale, NJ: Erlbaum; 1987. p. 41-95.

Rittle-Johnson, B.; Siegler, RS. The relations between conceptual and procedural knowledge in
learning mathematics: A review. In: Donlan, C., editor. The development of mathematical skill.
Hove, England: Psychology Press; 1998. p. 75-110.

Rittle-Johnson B, Siegler RS, Alibali MW. Developing conceptual understanding and procedural skill
in mathematics: An iterative process. Journal of Educational Psychology 2001;93:346-362.

Robinson CS, Menchetti BM, Torgesen JK. Toward a two-factor theory of one type of mathematics
disabilities. Learning Disabilities Research & Practice 2002;17:81-89.

Saxe GB, Gearhart M, Seltzer M. Relations between classroom practices and student learning in the
domain of fractions. Cognition and Instruction 1999;17:1-24.

Sherman J, Bisanz J. Equivalence in symbolic and non-symbolic contexts: Benefits of solving
problems with manipulatives. Journal of Educational Psychology 2009;101:88-100.

Siegal M, Smith JA. Toward making representation count in children’s conceptions of fractions.
Contemporary Educational Psychology 1997;22:1-22.

Siegel LS, Ryan EB. The development of working memory in normally achieving and subtypes of
learning disabled children. Child Development 1989;60:973-980. [PubMed: 2758890]

Siegler RS. Strategy choice procedures and the development of multiplication skill. Journal of
Experimental Psychology: General 1988;117:258-275. [PubMed: 2971762]

Siegler, RS. There’s Nothing As Useful As a Good Theory. Plenary Address to the Japanese
Psychological Association; August 27; Kyoto, Japan. 20009.

Siegler, RS.; Araya, R. A computational model of conscious and unconscious strategy discovery. In:
Kail, RV., editor. Advances in child development and behavior. Vol. 33. Oxford, UK: Elsevier;
2005. p. 1-42.

Siegler RS, Stern E. Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal
of Experimental Psychology: General 1998;127:377-397. [PubMed: 9857493]

Smith JP. Competent reasoning with rational numbers. Cognition and Instruction 1995;13:3-50.

Smith C, Solomon G, Carey S. Never getting to zero: Elementary school students’ understanding of
the infinite divisibility of number and matter. Cognitive Psychology 2005;51:101-140. [PubMed:
16081058]

Sobel, ME. Asymptotic confidence intervals for indirect effects in structural equation models. In:
Leinhardt, S., editor. Sociological Methodology. Washington, DC: American Sociological
Association; 1982. p. 290-312.

Sophian C. Beyond competence: The significance of performance for conceptual development.
Cognitive Development 1997;12:281-303.

Sophian C, Garyantes D, Chang C. When three is less than two: early developments in children’s
understanding of fractional quantities. Developmental Psychology 1997;33:731-744. [PubMed:
9300207]

Stafylidou S, VVosniadou S. The development of students’ understanding of the numerical value of
fractions. Learning and Instruction 2004;14:503-518.

Stanovich KE. Matthew effects in reading: Some consequences of individual differences in the
acquisition of literacy. Reading Research Quarterly 1986;21:360-406.

Stein MK, Grover BW, Henningsen M. Building student capacity for mathematical thinking and
reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational
Research Journal 1996;2:50-80.

Stern E. What makes certain arithmetic word problems involving the comparison of sets so difficult for
children? Journal of Educational Psychology 1993;85:7-23.

Streefland, L. Fractions: A realistic approach. In: Carpenter, TP.; Fennema, E.; Romberg, TA., editors.
Rational numbers: An integration of research. Mahwah, NJ: Lawrence Erlbaum Associates;
1993. p. 289-304.

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hecht and Vagi

Page 24

Swanson HL, Beebe-Frankenberger M. The relationship between working memory and mathematical
problem solving in children at risk and not at risk for math disabilities. Journal of Education
Psychology 2004;96:471-491.

Swanson HL, Sachse-Lee C. Mathematical problem solving and working memory in children with
learning disabilities: Both executive and phonological processes are important. Journal of
Experimental Child Psychology 2001;79:294-321. [PubMed: 11394931]

Tabachnick, BG.; Fidell, LS. Using Multivariate Statistics. 5. New York, NY: Allyn & Bacon; 2007.

Torgesen JK, Wagner RK, Rashotte CA, Rose E, Lindamood P, Conway T, Garvan C. Preventing
reading failure in young children with phonological processing disabilities: Group and individual
responses to instruction. Journal of Educational Psychology 1999;91:579-593.

VanLehn, K. Mind bugs: The origins of procedural misconceptions. Cambridge, MA: MIT Press;
1990.

VanLehn, K.; Brown, J. Planning nets: A representation for formalizing analogies and semantic
models of procedural skills. In: Snow, RE.; Federico, PA.; Montague, WE., editors. Aptitude,
learning, and instruction. Hillsdale, NJ: Lawrence Erlbaum; 1980. p. 95-137.

Wagner RK, Torgesen JK, Rashotte CA. Development of reading-related phonological processing
abilities: New evidence of bidirectional causality from a latent variable longitudinal study.
Developmental Psychology 1994;30:73-87.

Wechsler, D. Wechsler Abbreviated Scale of Intelligence. NY: Psychological Corporation; 1999.

Wentzel KR. Social competence at school: Relation between social responsibility and academic
achievement. Review of Educational Research 1991;61:1-24.

Widaman KF, Little TD, Geary DC, Cormier P. Individual differences in the development of skill in
mental addition: Internal and external validation of chronometric models. Learning and
Individual Differences 1992;4:167-213.

Williams RL. A note on robust variance estimation for cluster-correlated data. Biometrics
2000;56:645-646. [PubMed: 10877330]

Wilson KM, Swanson HL. Are mathematics disabilities due to a domain-general or a domain-specific
working memory deficit? Journal of Learning Disabilities 2001;34:237-248. [PubMed:
15499878]

Woodcock, RW.; McGrew, KS.; Mather, N. Woodcock-Johnson I11: Complete Battery Tests of
Achievement. Itasca, IL: Riverside Publishing; 2001.

Zentall SS. Fact-retrieval and math problem solving by learning disabled, attention-disordered, and
normal adolescents. Journal of Educational Psychology 1990;82:856-865.

Zentall SS. Research on the Educational Implications of Attention Deficit Hyperactivity Disorder.
Exceptional Children 1993;60:143-153.

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



Page 25

Hecht and Vagi

NIH-PA Author Manuscript

R N A Ol 91e3s |Ind ISVM '6
- 9 101ABY3] SAUSNY '8
Aiowaw Bupiopn 2

¢t 1T 0T 6 8 L
6¢ vE€ 6 85 LV S uoljew1ss uonoeld ‘gz
Ly 6V 9% 99 09 €9 swajgoud piom uondeld ‘Tg
¢ T < 29 6 69 uoneindwod uonoel4 ‘0z
9g" L& S& 0€ [T &V Kiowaw Buryiop 67
. ve& 9T 6¢ € 1€ Buipeal |ana] pJopn 8T
¢e €L 9y e 6 0g 811s0dwi09 s81oUBIe| INBWUILY “/T
/T 2§ S 68 98 ¢&F a)150dWw09 $8ss3904d UONN|OS INBWYILY "9T
& ve lE Ly 99 uoneIndwiod aindld ‘GT
L ¢€ S€ 65 89 LV uonoely Jo 9zZIS T
¥ OF 98 65 6F gL ausodwod afipaimous [enydaouod sjoym-yed ‘€T
apel9 Y4
8T 6T 8T ¥ €& v uolfew11ss uonoeiq ZT
Sy Sy 8¢ 29 v 09 swajgoud pJom uondeld ‘TT
se LV v 99 19 69 uoneindwod uondel4 ‘0T
8¢ S¢ LT & 08 v Ol 9[ed3s [IN4 ISV '6
L 9 Ly 99 v €9 JoIABYS(Q BANUSNY '8
0" 62 €& T1E v oY AKiowsw Bupjiopn “L
- I €T g 0 <€ Buipeas [aA8] PIOM ‘9
-~ €5 87 T¢ €€ a11s0dwod Sa1ouBe| INBWUILY °G
- 18 g8 L€ a11sodwod sassad04d UOHN|OS INBWLILY 1
- 6y L uoneIndwod ainid ‘g
- 8 uonoely Jo 9ZIS 7
a11sodwod abpajmouy| [en1daouod ajoym-ued ‘T
apeJ9 yuno4
9 S 14 € 4 T a|gelen

"S|[1MS Uonoely 21seq pue si01oipaid ay) Buowe suoNe|aliod ajeLieAlg

T alqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



Page 26

Hecht and Vagi

*(50" 150w e > d) weayubis suole|alI0d ||

- 99 LS 8¢ uolewnss uonoeld '¢e
- B8S gb  swajqoid piom uondeld ‘1z
- 8g uoneIndwod uondel ‘0z
Alowsw Bupiop ‘6T
¢¢ T¢ 0C 61

€ 8¢ v& 89 6 o UOITRWIISS UOIJRIS "Z2
& 6V ¢ 0L <5 09 swajgoud piom uonoeld ‘1z
€ LV 1§ 19 6V 89 uoneIndwod uondeld ‘0z
ve 8¢ 9 8e € OF Arowsw Buniiop ‘61
-- I SUT° ¢& 9¢ S¢ Buipeal |ans] pJopA ‘8T
- 18 o L& 6 3}150dWo9 S819UaIe| B */T
Ly 88 v $955900.d UOIIN|OS INBWIYILY "9T
- 85 8y uoneINdwod aindld ‘ST
- 09 uonoely 4o 8zIS 'pT
--- ausodwod abpajmous [en1daduod ajoym-ued "€T

8T LT 9T ST +v1I €1
¢§ €9 v§ se 99 &€ uolew11sa uonodeld ‘gz
W 9, 09 6v v9 v swigjqoud piom uonaeld ‘1z
6 05 99" ¥E& 19 &V uoneIndwod uondeld "0z
0c 9¢ L& v 9€ oL AKiowaw Bujiop 6T
¢ 9 0 T¥ 08 8T Buipeas [aAs] PIOAN 'S8T
vZ I v 62 ¥E 8T 8}150dWo9 819Ul IBWIYIY *LT
€ T¥ 09 0g 05 GF a}1s0dwo9 $assa204d UOHN|OS INBLWILIY "9T
9" €9° 89 &V 19 T€ uoneindwod a1nid ‘ST
8¢ €% G < 9 9T uoloely Jo azIs 'yT
98 /S 8y 6 S gg  aNsodwod abpajmoust [enidaouod sjoym-Lied ‘€T
apeI9 yui
N 74 N 51 A 0| AN 7 S T uoljew1sa uonael4 g1
== 89 99 vS§  6€ swajqgoud piom uonaelq ‘TT
- G 1§ G¢ uoneindwod uondel4 ‘0T

¢t 1T 0T 6 8 L

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Educ Psychol. Author manuscript; available in PMC 2011 November 1.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Hecht and Vagi

Table 2

Mean Performance by Group (SD’s in parentheses).

Measure (Max Score)  Typically Achieving (n =126)  Math Difficulties (n =55) F (1,179) Effect Size (d)
1. Fraction computation (26)

4% grade 9.85(3.85) 4.89(2.90) 73.72 1.39

5% grade 14.46(4.66) 8.22(4.04) 72.97 1.38

Improve 4.61(4.22) 3.33(3.63) 3.84 .32
2. Fraction estimation (12)

4% grade 3.84(3.19) 1.64(1.61) 23.72 2.22

5t grade 6.88(3.73) 2.31(1.94) 73.83 1.39

Improve 3.04(3.72) 67(2.01) 19.67 72
3. Fraction word problems (16)

4t grade 9.20(3.20) 4.55(2.85) 86.58 1.50

5t grade 13.12(3.32) 7.22(3.24) 122.35 1.81

Improve 3.92(2.86) 2.67(2.51) 7.85 45
4. Arithmetic -addition retrieval use (22)

4 grade 11.60(6.68) 7.20(6.41) 17.06 67

5t grade 16.73(5.49) 11.22(6.51) 34.35 95

Improve 5.14(6.73) 4.02(4.25) 1.26M .18
5. Arithmetic -multiplication retrieval use (22)

4t grade 15.55(6.13) 9.96(7.77) 26.75 84

5t grade 19.13(3.62) 12.45(7.68) 63.22 1.29

Improve 3.58(6.54) 2.49(3.68) 1.26M .19
6. Arithmetic - addition accuracy (22)

4 grade 21.07(3.40) 15.13(7.69) 52.27 117

5t grade 21.30(2.69) 15.78(7.41) 54.07 .87

Improve .23(2.19)™ .66(4.67)" 72 14
7. Arithmetic —multiplication accuracy (22)

4 grade 21.86(.99) 16.91(7.04) 59.99 1.25

5t grade 21.88(.96) 18.95(5.78) 30.85 .90

Improve .02(1.32)™ 2.04(4.37) 22.35 77
8. Arithmetic — addition latency

4t grade 2.61(.83) 3.85(1.03) 73.83 A7

5t grade 2.17(.77) 3.32(.96) 73.11 1.38

Improve —.44(.75) —-.53(.89) 5408 A1
9. Arithmetic — multiplication latency

4 grade 2.89(1.28) 5.02(2.03) 72.41 1.38

5t grade 2.35(1.01) 4.13(1.95) 65.87 131

Improve -.54(1.18) —.88(1.37) 1.26" 27

10. Symbol Picture (16)
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Group

Measure (Max Score)  Typically Achieving (n =126)  Math Difficulties (n =55) F (1,179) Effect Size (d)

4 grade 12.33(2.78) 8.24(4.06) 61.92 1.27

5t grade 14.05(2.02) 10.55(3.93) 62.57 1.28

Improve 1.71(2.59) 2.31(3.23) 1.81Ms 21
11. Picture Symbol (13)

4th grade 9.84(3.17) 4.33(3.36) 112.06 171

5t grade 11.81(3.01) 6.67(3.44) 105.58 1.66

Improve 1.97(2.84) 2.35(2.82) 72ms 13
12. Size of fraction (22)

4 grade 17.98(3.82) 13.02(5.54) 48.45 113

5t grade 19.82(2.44) 15.91(3.75) 69.61 1.15

Improve 1.84(3.48) 2.89(5.15) 2.54" .26
13. Picture Computation (13)

4t grade 9.98(3.02) 5.78(2.91) 75.26 1.41

5t grade 11.30(2.02) 7.11(2.83) 128.03 1.83

Improve 1.33(2.21) 1.33(2.44) .01ms .00
14. Working memory (12)

41 grade 5.08(2.26) 3.13(1.94) 31.09 90

5t grade 6.33(1.91) 4.15(1.90) 49.03 1.13

Improve 1.25(1.82) 1.02(1.35) 72ns 14
15. Attentive behavior (30)

4 grade 25.04(5.13) 18.00(5.21) 71.35 1.37

5t grade 21.74(5.57) 13.42(4.69) 93.45 1.56

Improve -3.30(4.62) —4.58(7.02) 2.17ms .23
16. Word level reading (104)

4t grade 71.56(9.26) 62.85(13.00) 26.51 .83

5t grade 78.19(9.47) 70.00(13.29) 22.12 76

Improve 6.63(6.59) 7.16(12.17) .18"s .06
17. WASI Full Scale 1Q (157)

4 grade 103.68(11.24) 96.06(10.41) 18.35 88

Mean total correct, except for arithmetic latency and retrieval use. Arithmetic latency expressed in terms of seconds (i.e., millisecond raw data was
divided by 1000). Arithmetic retrieval use expressed as mean total number of problems solved via the retrieval strategy. All values p < at most .05

unless otherwise noted.
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