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Abstract

A powerful theoretical framework for exploring recognition memory is the global matching

framework, in which a cue’s memory strength reflects the similarity of the retrieval cues

being matched against the contents of memory simultaneously. Contributions at retrieval

can be categorized as matches and mismatches to the item and context cues, including the

self match (match on item and context), item noise (match on context, mismatch on item),

context noise (match on item, mismatch on context), and background noise (mismatch on

item and context). We present a model that directly parameterizes the matches and

mismatches to the item and context cues, which enables estimation of the magnitude of

each interference contribution (item noise, context noise, and background noise). The

model was fit within a hierarchical Bayesian framework to ten recognition memory datasets

that employ manipulations of strength, list length, list strength, word frequency, study-test

delay, and stimulus class in item and associative recognition. Estimates of the model

parameters revealed at most a small contribution of item noise that varies by stimulus

class, with virtually no item noise for single words and scenes. Despite the unpopularity of

background noise in recognition memory models, background noise estimates dominated at

retrieval across nearly all stimulus classes with the exception of high frequency words,

which exhibited equivalent levels of context noise and background noise. These parameter

estimates suggest that the majority of interference in recognition memory stems from

experiences acquired prior to the learning episode.
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Sources of interference in item and associative recognition memory

Perhaps the biggest theoretical advance in recognition memory was the application of

signal detection theory (SDT) by Egan (1958). SDT recast the role of a participant in a

recognition memory experiment as having to decide between whether a presented stimulus

is an instance of noise alone (a non-studied stimulus) or signal embedded in noise (a

studied stimulus). This is accomplished by comparing the memory strength elicited by a

stimulus (which is assumed to be continuously distributed) to a decision criterion on the

memory strength axis; stimuli with memory strengths that exceed the decision criterion are

judged as having occurred on the study list. Despite the utility of SDT in applications to

measurement (Green & Swets, 1966), it is agnostic as to the psychological content of the

signal and noise distributions. Specifying the psychological content of the distributions

requires process models that describe the encoding and retrieval operations of the memory

system along with the content of the stored representations.

A watershed moment in process models of recognition memory came with the global

matching models of recognition memory. While early theories of recognition memory

described the signal and noise distributions as arising from a strength of the stimulus in

memory (Wickelgren & Norman, 1966), global matching models, following the encoding

specificity principle of Tulving and Thomson (1973), posit that memory strength arises

from the similarity between the retrieval cues and the contents of memory. Specifically, the

cues are matched against all of the acquired memories in parallel, producing a single

memory strength value that indexes the similarity of the cues to the contents of memory

(Clark & Gronlund, 1996; Humphreys, Pike, Bain, & Tehan, 1989). In the majority of the

global matching models, the distance between the signal and noise distributions arises from

the match between the target item and its own representation in memory, whereas the

variances of the two distributions arise primarily from spurious similarities between the

cues and non-target representations stored in memory.

While several models have taken the simplifying assumption that only the memories
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from the study list contribute to the retrieval strengths, the frameworks are quite

compatible with incorporating contributions from memories learned prior to an

experiment. The division between recently acquired and prior memories can be reconciled

quite easily by virtue of a context representation, which is now featured in the majority of

episodic memory models (J. R. Anderson & Bower, 1972; G. D. A. Brown, Preece, &

Hulme, 2000; Cox & Shiffrin, 2012; Criss & Shiffrin, 2004; Dennis & Humphreys, 2001;

Farrell, 2012; Gillund & Shiffrin, 1984; Howard & Kahana, 2002; Humphreys, Bain, & Pike,

1989; Lehman & Malmberg, 2013; Mensink & Raaijmakers, 1988; Murdock, 1997; Shiffrin

& Steyvers, 1997). While there is no universally accepted definition of context, the central

assumption among most theorists is that context is what enables retrieval to be focused on

a particular episode, namely a study list (Klein, Shiffrin, & Criss, 2007). Learning in

contextual models does not merely consist of learning the stimulus, but instead consists of

acquiring a binding of the stimulus and a representation of the current context into the

contents of memory. At retrieval, the probe cue along with a reinstatement of the study

context can be matched against the contents of memory. Under this view, memories of the

list items can be distinguished from prior list memories by virtue of the similarity of the

stored context representations to the context cues employed at retrieval. Specifically,

successful discrimination relies on memories from the study list episode exhibiting more

similarity to the context cue, whereas temporally distant memories should be relatively

dissimilar to the current context to minimize interference.

The contributions from prior memories and current memories can be conceptualized

as matches and mismatches of the stored memories to the item and context cues employed

at retrieval, with the magnitudes of each interference contribution determined by the

similarities of the matches and mismatches (see Figure 1). Specifically, the locus of

successful discrimination is the self match, which is a match on stored item and context

information to the item and context cues employed at retrieval. Other items from the

study list episode match in context information, but mismatch in item information. An
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assumption adopted by the earliest global matching models, including Minerva 2

(Hintzman, 1988), the search of associative memory (SAM: Gillund & Shiffrin, 1984)

model, the theory of distributed associative memory (TODAM: Murdock, 1982), and the

matrix model (Pike, 1984; Humphreys, Bain, & Pike, 1989), is that the studied items of the

list episode are the principal source of interference, an idea which has been retroactively

referred to as the item noise conception of interference.

What was considered a strength of the pure item noise global matching models at the

time was their ability to account for the list length effect in recognition memory

performance, whereby performance decreases as the number of items on a list is increased

(Strong, 1912). In global matching models, the spurious similarity between the retrieval

cues and a stored memory produces a memory strength value with non-zero variance, and

the variances of the resulting distributions are the sums of the variances of the individual

matches. The list length effect naturally arises from the early global matching models

because only the list items are assumed to be stored in memory and are therefore the

principal source of interference. Thus, as more items are added to the contents of memory,

the cumulative memory strength is a sum over a larger number of items and the variance in

memory strengths for both targets and lures are increased, decreasing discriminability

An unintended consequence of pure item noise models is that the models predict a

list strength effect in recognition memory performance. A list strength effect occurs when

the strengthening of non-target items decreases performance on the target items. Global

matching models predicted a list strength effect in recognition memory because item

repetitions exhibited the same functional effect as increasing the length of a study list, as

each repeated item in memory contributed additional variance to the retrieval process (for

a complete description of how each global matching model was unable to predict a null list

strength effect, see Shiffrin, Ratcliff, & Clark, 1990). However, Ratcliff et al.’s (1990)

investigation found no effect of list strength on recognition memory performance, as the

strenghtening a subset of list items did not impair recognition of the non-strengthened
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items and strong items did not benefit from being accompanied by weak items on a study

list.

The null list strength effect was a strong constraint on the global matching models

and various alternatives to the original global matching models were proposed. First,

models with a revised encoding process called differentiation were proposed that reduce

inter-item similarity as the strengths of the study items is increased, allowing for a

reduction in item noise with increasing strength such that no detrimental effect of list

strength is predicted. Additional items that are added to the contents of memory do not

induce differentiation, and thus additional items increase the degree of item noise and a list

length effect is predicted. Differentiation models include a modified version of the SAM

model (Shiffrin et al., 1990), the retrieving effectively from memory model (REM: Shiffrin

& Steyvers, 1997) and the subjective likelihood in memory model (SLiM: McClelland &

Chappell, 1998, additional discussion on differentiation models can be found in the General

Discussion). However, one of the main motivations behind the differentiation mechanism

was to simultaneously predict a null list strength effect while predicting detrimental effects

of increasing list length, and more recent evidence suggests that this dissociation may not

be present.

Dennis and colleagues (Dennis & Humphreys, 2001; Dennis, Lee, & Kinnell, 2008;

Kinnell & Dennis, 2011) have noted that experiments that manipulate list length contain a

number of confounds that may be causing worse performance in conditions with longer lists

for reasons unrelated to interference among the list items. For instance, the retention

intervals are shorter for short lists than long lists if testing immediately follows the end of

the study list, reducing performance for items on the long list. When this confound and

others are controlled, all experiments conducted by Dennis and colleagues that employed

words as stimuli have found no effect of list length on discriminability. Two other

modifications to the global matching framework can allow for predicting null effects of list

length and list strength on recognition memory performance.
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Dennis and Humphreys (2001) argued that interference arises not from the list items

(as assumed by pure item noise models) but from memories of the list items acquired prior

to the experiment. Specifically, the retrieval cues are not just matched against

representations from the list episode, but are matched against all of the contexts in which

the items were experienced to evaluate whether the context of the study list is included in

the set of all stored context representations. This conception of interference has been

referred to as context noise, because it is the past contexts in which the list items have

been experienced (context mismatch) that generate interference in recognition memory (an

idea which originated from J. R. Anderson & Bower, 1972). Dennis and Humphreys (2001)

introduced the bind-cue-decide model of episodic memory (BCDMEM), in which context

noise was the sole source of interference in the model. Item representations in the model do

not overlap with each other, meaning that the item mismatch penalty is zero and no effects

of item noise, namely list length and list strength, are predicted. Dennis and Humphreys

(2001) also demonstrated that the word frequency effect, in which words of low natural

language frequency are better recognized than words of high natural language frequency

(Glanzer & Bowles, 1976; Glanzer & Adams, 1985; Shepard, 1967), follows quite naturally

from the concept of context noise: items that have been more frequently experienced have

more associations to prior contexts, and thus there is more ambiguity as to whether or not

they were seen in a given context. This is analogous to the manner in which item noise

models predict a list length effect in the sense that more stored representations produce

additional interference at retrieval.

Another solution to the list strength effect came from Murdock and Kahana

(Murdock, 1997; Murdock & Kahana, 1993a, 1993b), who posited that global matching

models should include a large number of memories that mismatch in both item and context

information. This conception of interference has since been referred to as background noise

by Osth, Dennis, and Kinnell (2014). Murdock and Kahana (1993a) argued that if the

contribution of background noise is large relative to the item noise from the list items, then
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increases in interference that come from a list strength manipulation will produce only a

negligible increase in the variances of the memory strength distributions, thus producing an

approximate null list strength effect. Osth et al. (2014) revisited the idea of background

noise for explaining the small item noise effects found for novel non-linguistic stimuli.

Kinnell and Dennis (2012) and Osth et al. (2014) conducted experiments using

images of non-famous faces, random scenes, and generated fractals that are unlikely to

have been ever witnessed by the participants prior to the experiment. Given the novelty of

the stimuli, they cannot suffer from context noise as they are unlikely to have been seen in

prior contexts. Unlike words, small effects of list length (Kinnell & Dennis, 2012) and list

strength (Osth et al., 2014) were found for select non-linguistic stimuli employing the list

length controls advocated by Dennis and colleagues. While detrimental effects of list length

and list strength are not predicted by context noise models, they were much smaller than

what would be predicted by pure item noise models. Osth et al. (2014) posited that novel

non-linguistic stimuli might suffer from larger item noise than words, possibly due to

exhibiting a higher degree of within-class inter-item similarity than words, but the effects

of list length and list strength are somewhat mitigated by the additional influence of

background noise at retrieval. Background noise has received relatively little attention in

the recognition memory literature compared to the discussions of the influence of item and

context noise. A diagram depicting the three sources of interference (item noise, context

noise, and background noise) can be seen in Figure 1. The present investigation is focused

on simultaneously measuring all three sources of interference by fitting a global matching

model to a large number of recognition memory datasets.

Measuring Interference Contributions Within a Single Global Matching Model

A number of investigations have compared the relative merits of the item noise and

context noise approaches to recognition memory using experimental data (Cho & Neely,

2013; Criss, Malmberg, & Shiffrin, 2011; Dennis & Chapman, 2010; Dennis et al., 2008;
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Kinnell & Dennis, 2011), with interpretations favoring either the item noise or context

noise accounts, while there was little discussion of the role of background noise in any of

these investigations. More recently, Turner, Dennis, and Van Zandt (2013) compared the

REM (the original pure item noise version) and BCDMEM models in their ability to

account for data from the list length paradigm (specifically the datasets of Dennis et al.,

2008 and Kinnell & Dennis, 2012) using hierarchical Bayesian methods. BCDMEM

consistently exhibited lower values of the deviance information criterion (DIC), a Bayesian

model selection measure that measures goodness of fit relative to the degree of model

complexity. Turner, Dennis, and Van Zandt (2013) attributed the superior performance of

the BCDMEM model to the fact that the null list length effect in the data is a compulsory

prediction of the BCDMEM model, whereas REM exhibits flexibility in its predicted

magnitude of the list length effect. The higher DIC value assigned to the REM model may

indicate that this flexibility is an unwarranted complexity of the model, and the authors

attributed this strength to a parsimony of the context noise account.

However, as noted by Criss and Shiffrin (2004), item noise and context noise are not

mutually exclusive; it is completely plausible for a memory system to suffer from both item

noise and context noise at retrieval. Not only does there remain the underexplored

interference contribution of background noise, but there is also the possibility that the

magnitude of each interference contribution depends on the stimulus class being employed.

In this article, we present the results of fitting a global matching model to a large number

of recognition memory datasets and measuring the respective contributions of item noise,

context noise, and background noise to the total interference contribution at retrieval. The

model is a variant of the tensor model of Humphreys, Bain, and Pike (1989), in which

memory is a composite of three-way bindings between two items and the experimental

context.

We deviate from the approach used in the original tensor model and several other

vector based models by avoiding specification of the vectors. That is, the standard
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approach is to generate item and context vectors from a sampling distribution with a finite

number of elements, and model predictions are derived by calculating the dot products

between vectors to index the strength of the matches. This approach requires one to

commit to parameters such as the number of elements in the vector, which typically do not

have a direct psychological interpretation. In our approach, we avoid specifying the vectors

and instead parameterize the similarities between the item and context vectors. As we will

later demonstrate in the paper, the parameters of the model can be used to analytically

calculate the magnitude of the item noise, context noise, and background noise

contributions. The datasets included in the fit include manipulations of all of the variables

that are required to constrain the parameters of the model, such as strength, word

frequency, list length, list strength, and study-test delay.

Furthermore, a critical limitation of the BCDMEM model was its inability to account

for stimuli other than single words (which have the necessary background experience to

suffer from context noise) and that it lacks a mechanism for inter-item binding, which

prevents extension to associative memory tasks such as associative recognition. As we have

mentioned previously, experiments with novel non-linguistic stimulus classes uncovered

small detrimental effects of list length and list strength, which are consistent with item

noise models but inconsistent with context noise models (Kinnell & Dennis, 2012; Osth et

al., 2014). However, as noted by Osth et al. (2014), the detrimental effects of list length

and list strength were quite small in magnitude as compared to what would be expected

from a pure item noise model, and they suggested that both item noise and background

noise are relevant to understanding recognition memory performance for nonlinguistic

stimuli. The model we are presenting is capable of addressing these sources of interference

and we have included the experiments conducted in these two papers to compare the

interference contributions across the different stimulus classes. While one might be

concerned that including all interference sources produces a more flexible model, the fact

that nonlinguistic stimuli may meaningfully differ in their susceptibility to these different
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interference sources justifies a comprehensive model.

Additionally, we have included experiments conducted using the associative

recognition task, in which participants study a list of pairs (such as A-B, C-D, E-F, etc.)

and are asked to discriminate between studied pairs (such as A-B, referred to as intact

pairs) and studied words presented in a novel arrangement (such as C-F, referred to as

rearranged pairs). There has been relatively little discussion as to the sources of

interference in the associative recognition task in the literature. We include the results of

two experiments, one that manipulated list length (Kinnell & Dennis, 2012) and one that

manipulated list strength (Osth & Dennis, 2014) to measure the sources of interference in

associative recognition.

The outline for the remainder of the paper is as follows. First, we describe our

variant of the Humphreys, Bain, and Pike (1989) model and how it calculates the three

sources of interference that have been postulated to affect recognition memory. We also

discuss a necessary addition to the model to address the mirror effects present in our data,

namely the log likelihood ratio transformation of memory strengths by Glanzer, Hilford,

and Maloney (2009). Next, we give a summary of the ten datasets that were used in the

model fitting along with a description of how the parameters used in the fitting matched

the experimental manipulations. We then describe how the models were fit using

hierarchical Bayesian methods to get simultaneous estimates of both subject and group

level parameters. We then present the results of the model fitting procedure along with

analyses of the resulting group and subject level parameters to compare the respective

contributions of the sources of interference.

The Model

We follow the tradition of several memory models and represent both items and

contexts as vectors of features. To simplify description as much as possible, we define items

as single stimuli that are presented to the participant and the context as a representation
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that defines the list episode. We follow several other episodic memory models in our

assumption that item features and context features are independent of each other

(G. D. A. Brown et al., 2000; Criss & Shiffrin, 2004; Dennis & Humphreys, 2001;

Humphreys, Bain, & Pike, 1989; Mensink & Raaijmakers, 1988; Murdock, 1997; Shiffrin &

Steyvers, 1997)1.

Bindings between items and contexts are represented as outer products of the

constituent item and context vectors. Each element of an outer product is a multiplication

of elements in the constituent vectors. A similar way to represent bindings is the

convolution operation, in which the diagonals of the outer product matrix are summed

together, reducing the outer product to a vector (e.g.: Murdock, 1982; Eich, 1982; Jones &

Mewhort, 2007). Both the outer product and convolution bindings are similar in that they

are both conjunctive representations of their participating constituents, rather than

linkages between nodes in an associative network. Conjunctive representations are

associations that are represented much in the same way as individual items are, but bear

little similarity to their constituent item vectors. We have chosen to use the outer product

over the convolution to represent binding because it is more analytically tractable and

simpler, as the additional summation in the convolution introduces noise into the binding

(Pike, 1984).

Evidence supporting conjunctive representations comes from a study by Dosher and

Rosedale (1989) in which participants studied triplets of items and were tested on pairs

from the triplets in an associative recognition task. Successful priming was only found

when the entire triplet was completed by the prime, such as if a triplet ABC was studied

and item A preceded the pair BC. Dosher and Rosedale (1989) found no evidence for

priming on partial matches, such as item A preceding a BF pair trial. Similarly, Hockley

1Another possible assumption that is employed by the temporal context model (Howard & Kahana,

2002) is that context features are the previously encountered items, causing a high correlation between item

features and context features. However, models that employ this assumption of context have yet to be

applied comprehensively to data from recognition memory paradigms.
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and Cristi (1996b) conducted a judgment-of-frequency (JOF) task in which both items and

pairs were studied and participants made JOFs on both studied items and pairs. Some of

the items that were presented alone were constituents of the pairs, e.g.: item A presented

alone, and also as part of pair A-B. Hockley and Cristi (1996b) found that the frequency of

A had no influence on the judged frequency of A-B, as if the A representations and A-B

representations did not overlap with each other.

When a list of items is studied, the model stores outer products of the item and the

list context on each trial. These outer products are then summed together to produce an

occurrence matrix Mi:

Mi =
∑

a

ritemCs ⊗ Ia (1)

where C denotes a context vector, I denotes an item vector, and the subscript s refers to

the fact that the context vector represents the study episode. To account for variation in

strength of learning, due either to different rates of presentation, different numbers of

presentations, or differences among participants in their ability to encode the material, we

use a scalar ritem that is applied to the outer products as a learning rate parameter.

When a list of pairs are studied for an associative recognition task, the model stores

three-way outer products between the two items in the pair and the list context as a mode

three tensor product. These tensor products are then summed together to produce the

co-occurrence tensor Mc:

Mo =
∑

a,b

rassocCs ⊗ Ia ⊗ Ib (2)

where rassoc is the learning rate for associative information. We would like to emphasize

that we employ a separate tensor representation for associative recognition purely for

mathematical convenience and are not committed to the idea that the occurrence matrix

and co-occurrence tensor reflect different neurological substrates or stores. We also make

the simplifying assumption that when participants are studying word pairs in an
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associative recognition task the only inter-item associations that are formed are among the

pair members (a similar assumption was made by Gillund & Shiffrin, 1984).

We allotted a separate learning rate parameter for associative information (rassoc)

based on the finding that encoding manipulations produce different effects on item and

associative recognition. For instance, Hockley and Cristi (1996a) found that deep encoding

manipulations that emphasize item information enhance item recognition but punish

associative recognition, whereas deep encoding manipulations that emphasize associative

information enhance both item and associative recognition. Thus, our model allows for the

possibility that encoding strength can be strong in both item and associative recognition,

weak in one task but not the other, etc.

Memory strength is computed by combining the cues available at retrieval into an

outer product and matching it against the appropriate memory store. In the case of item

recognition, this involves construcing an outer product of the probe cue and the context

cue employed at retrieval. This matrix is matched against the occurrence matrix Mi:

s = (C ′
s ⊗ I ′

a).Mi (3)

where s is a scalar that represents the memory strength generated from the global match of

the cues against the contents of memory. The dashes on the context and item vectors are

used to indicate that the item vector representing the probe and the context vector

representing the context at the time of test may not perfectly resemble the vectors that

were used at the time of study. A cue for a target item may not resemble the vector that

was originally stored due to variation in perceptual processing of the stimulus (McClelland

& Chappell, 1998). The context cue employed at test may not resemble the study context

because it is either an imperfect reinstatement of the study context (G. D. A. Brown et al.,

2000; Dennis & Humphreys, 2001) or a context that has drifted from the original stored

study context as a consequence of the events that have intervened between study and test

(Howard & Kahana, 2002; Mensink & Raaijmakers, 1988; Murdock, 1997). For the present
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purposes, we are agnostic as to whether the context cue employed at test has merely

drifted from its original representation or was actively reinstated at test. However, it

should also be mentioned that the question of how a context representation could be

reinstated is an unsolved problem in contextual models of episodic memory.

The equation is the same for associative recognition, except it involves combining

both item cues with the context vector into a tensor representation and matching it against

the co-occurrence tensor Mc. The equation is as follows:

s = (C ′
s ⊗ I ′

a ⊗ I ′
b).Mc (4)

It is common at this stage for the vectors to be generated from sampling distributions

with a finite number of elements. The number of elements in a vector can be considered a

parameter of the model despite the fact that it contains no obvious psychological

interpretation. When this parameter is free to vary in a model fit, the model parameters

are no longer able to be identified in models such as REM (Montenegro, Myung, & Pitt,

2011) and BCDMEM (Myung, Montenegro, & Pitt, 2007). As a consequence, it is common

practice for the vector size parameter in a model to be fixed to an arbitrary value.

We instead use an approximate analytic solution that specifies the similarities

between the vectors without specifying the content of the vectors themselves. Such an

approach is convenient as it allows the different sources of interference in retrieval to be

parameterized as matches and mismatches among the context and item vectors. The

analytic solution is obtained by decomposing the retrieval equation into each of the

component matches in a manner similar to that used by Humphreys, Pike, et al. (1989) in

their analyses of the global matching models. An advantage of the analytic solution is that

the explicit likelihood function of the model’s predictions allows the model to be efficiently

fit using Markov chain Monte Carlo (MCMC) methods.

For the case of item recognition, Equation 3 can be rewritten by decomposing the

occurrence matrix Mi into matches among all of the stored memories. If the probe item is
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a target item, the equation is as follows:

s = (C ′
s ⊗ I ′

t).[ritem(Cs ⊗ It) Self Match (5)

+
∑

i∈L,i6=t

ritem(Cs ⊗ Ii) Item Noise

+
∑

u∈P,u6=s

(Cu ⊗ It) Context Noise

+
∑

u∈P,u6=s,z /∈L

(Cu ⊗ Iz)] Background Noise

The first term in the right column is the original studied item in the study list

context. The match between this matrix and the matrix cue can be referred to as the self

match (match to both item and context cues) which is not present in the matching

equation for a lure. The self match determines the difference in the means between the

signal and noise distributions.

The second term in the right column is all of the study list items that are not the

target item. The L subscript refers to the set of all of the list items. Similarity between the

cue item I ′
t and the stored list items produces item noise. As was previously mentioned, the

majority of the original global matching models tended to only consider self matches and

item noise and never considered the role of pre-experimental interference. Nonetheless,

interference from pre-experimentally stored memories could be expected to play a role in

memory retrieval, and we consider their possible matches below.

The third term in the right column is the match of the probe item to all of its

pre-experimentally stored representations. The u subscript of the context vector denotes

that these stored contexts are different from the study list context and the U subscript in

the sum refers to the set of all contexts over a lifetime that are not the study list context.

Similarity among the reinstated context cue C ′
s and the pre-experimental contexts produces

context noise at retrieval. The BCDMEM model can be considered an example of a global

matching model that only considers the self matches and context noise at retrieval.

The fourth term in the right column is the match of the probe item to everything else

that has been stored in memory. That is, all memories that mismatch in both item and
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context information are contained in this term. If these memories overlap with the matrix

cue they would produce interference that we refer to as background noise. As we have

mentioned previously, this term does not contribute in most memory models, with the

exceptions of the TODAM (Murdock & Kahana, 1993a, 1993b) and TODAM2 (Murdock,

1997) models along with a variant of the SAM model presented by Gronlund and Elam

(1994). Equation 5 can be rewritten as the match between the test cues and the stored

vectors in memory:

s =ritem(C ′
s.Cs)(I

′
t.It)+ Self Match (6)

∑

i∈L,i6=t

ritem(C ′
s.Cs)(I

′
t.Ii)+ Item Noise

∑

u∈P,u6=s

(C ′
s.Cu)(I ′

t.It)+ Context Noise

∑

u∈P,u6=s,z /∈L

(C ′
s.Cu)(I ′

t.Ii) Background Noise

The three sources of interference (item noise, context noise, and background noise)

are now described as matches and mismatches between the item and context vectors.

These dot products can be parameterized using normal distributions:

C ′
s.Cs ∼ Normal(µss, σ2

ss) Context Match (7)

C ′
s.Cu ∼ Normal(µsu, σ2

su) Context Mismatch

I ′
t.It ∼ Normal(µtt, σ2

tt) Item Match

I ′
t.Ii ∼ Normal(µti, σ2

ti) Item Mismatch

The means and variances of the distributions of dot products are the parameters of

the model. This approach is similar to the kernel trick employed by support vector

machines (Schölkopf & Smola, 2002). The choice of the normal distribution offers

mathematical convenience for this appplication by allowing separate specification of the

mean and variance parameters. As we will discuss below, this is necessary to avoid

covariances.
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The matches in Equation 7 include the match between the test context and the

context of study (context match, indexed by subscript ss), the match between the test

context and contexts prior to the study list (context mismatch, subscript su), the match

between the probe cue and its own stored item representation (item match, subscript tt),

and the match between the probe cue and other items stored in memory (item mismatch,

subscript ti).

The distributions of the matches and mismatches from Equation 7 are substituted

into the terms for Equation 6 to derive mean and variance expressions for the signal and

noise distributions. Because each interference term is the multiplication of an item

match/mismatch by a context match/mismatch, and each are represented by normal

distributions, each term is a multiplication of normal distributions which results in a

modified Bessel function of the third kind with mean and variance as follows:

E(X1X2) =µ1µ2

V (X1X2) =µ2

1
σ2

2
+ µ2

2
σ2

1
+ σ2

1
σ2

2

Given the large number of list items and non-list items that are stored in the

occurrence matrix, the final distribution of memory strength is the sum of many product

distributions and the sum is approximately normal by virtue of the central limit theorem.

The mean and variance for the old and new distributions are as follows:

µold =ritemµssµtt + ritem(l − 1)µssµti + mµsuµtt (8)

µnew =ritemlµssµti + mµsuµtt (9)
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σ2

old =r2

item(µ2

ssσ
2

tt + µ2

ttσ
2

ss + σ2

ssσ
2

tt)+ Self Match (10)

r2

item(l − 1)(µ2

ssσ
2

ti + µ2

tiσ
2

ss + σ2

ssσ
2

ti)+ Item Noise

m(µ2

suσ2

tt + µ2

ttσ
2

su + σ2

suσ2

tt)+ Context Noise

n(µ2

suσ2

ti + µ2

tiσ
2

su + σ2

suσ2

ti) Background Noise

σ2

new =r2

iteml(µ2

ssσ
2

ti + µ2

tiσ
2

ss + σ2

ssσ
2

ti)+ Item Noise (11)

m(µ2

suσ2

tt + µ2

ttσ
2

su + σ2

suσ2

tt)+ Context Noise

n(µ2

suσ2

ti + µ2

tiσ
2

su + σ2

suσ2

ti) Background Noise

where l is the length of the list, m is the number of pre-experimental memories of the

target item, and n is the total number of background memories. The rows of Equation 10

can be viewed as the contributions of the self match, item noise, context noise, and

background noise. Equations 10 and 11 are identical with the exception of the self match

variance term which is only in Equation 10 and the fact that item noise is scaled by l − 1 in

Equation 11 instead of l.

These equations also reveal the various effects of item noise, context noise, and

background noise: each of them contribute additional variance to both the old and new

distributions. What disentangles these interference sources is the selective influence of

experimental manipulations. Increases in the number of list memories l and increases in

the learning rate r increase the item noise, increases in the prior occurrences of the cue m

increase the context noise, and increases in the number of other stored memories n

increases the background noise. All of these manipulations increase the total variance in a

linear fashion.

Some simplicitations are made in order to reduce the number of parameters and avoid

covariances. Specifically, in Equation 6, one can see that there are multiple item matches
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and context matches across the different interference terms. To avoid covariances between

these matches, we fix the parameters µti and µsu to zero, a simplification which also has

the effect of fixing the mean of the lure distribution at zero. There is precedent for such an

approach, as both the Minerva 2 (Hintzman, 1988) and TODAM (Murdock, 1982) models

have a lure distribution that is fixed at zero by usage of zero-centered vectors, which ensures

that the expected match between any two vectors representing different items is zero.

In addition, we are more interested in the variance contribution in the context noise

and background noise term than we are in identifying the number of stored memories. For

that reason, we ignore the m term and instead allocate separate context mismatch

variability parameters to high and low frequency items to reflect the varying degrees of

context noise. We denote the combined influence of m and σ2

su as parameter ρ.

Additionally, we eliminate the entire background noise term and instead substitute a

separate variance parameter to reflect its contribution, which we denote as β. The

simplified equations are as follows:

µold =ritemµssµtt (12)

µnew =0

σ2

old =r2

item(µ2

ssσ
2

tt + µ2

ttσ
2

ss + σ2

ssσ
2

tt)+ Self Match (13)

r2

item(l − 1)(µ2

ssσ
2

ti + σ2

ssσ
2

ti)+ Item Noise

(µ2

ttρ + ρσ2

tt)+ Context Noise

β Background Noise
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σ2

new =r2

iteml(µ2

ssσ
2

ti + σ2

ssσ
2

ti)+ Item Noise (14)

(µ2

ttρ + ρσ2

tt)+ Context Noise

β Background Noise

Each interference term in Equations 13 and 14 arises from combinations of the

matches and mismatches of context and item information. The mean of the target

distribution is a multiplication of the learning rate ritem, the mean of the item match µtt,

and the mean of the context match µss. In our fits of the model to data, we fixed the mean

of the item match µtt to one for simplicity2. We vary the mean context match µss across

conditions that vary in retention interval to reflect the loss of study context information

from contextual drift or imperfect reinstatement of the study context. For conditions where

testing is either immediate or follows shortly after the study list, we fix the value of µss at

one.

All mismatch parameters contribute to the variances of the distributions rather than

the means. The self match variability is a function of the mean and variances of the item

and context matches (as we will see below, appropriate choices of these parameter values

can instill higher variance in the target distribution than the lure distribution). The item

noise term is a function of the number of list items multiplied by the variability in the item

mismatch σ2

ti, which is scaled by both of the context match parameters. The context noise

term is a function of the variability in the context mismatch ρ scaled by both of the item

match parameters.

Both the self match and item noise terms are scaled by the learning rate. Thus, as

the encoding strength is increased, both the self match variability and the item noise are

increased. The increase in item noise is the locus of the list strength effect. In the list

2It would be plausible for the mean of the item match to vary across conditions that vary in stimulus

strength. It is extremely plausible that the different stimulus classes in our investigation vary in item

strength, but was simpler to assume that all of the differences arose from differences in learnability.
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strength datasets we will be considering in this article, two list conditions are used: one

where all items are presented once (the pure weak condition) and one where half the items

are presented four times and half the items are presented once (the mixed condition).

Specification of mixed list interference requires learning rates for weak and strong items

along with separate item noise terms for each learning rate that are added together. A list

strength effect would be present if performance on the once presented weak items is worse

in the mixed list relative to the pure weak list, and arises if the item noise from the strong

items is sufficiently larger than the item noise from the weak items. As we will later

demonstrate, a null list strength effect can be predicted if either a.) item noise is

sufficiently low from a low value of the item mismatch parameter σ2

ti or b.) the ratio of

background noise to item noise is sufficiently high such that the strong item interference

presents only a negligible addition to the total interference.

To avoid redundancy in the text, derivations of the distributions for associative

recognition can be found in Appendix A. The same distributions for the item and context

matches and mismatches are used. The mean and variances of the resulting memory

strength distributions for intact and rearranged pairs are as follows:

µint. =rassocµssµ
2

tt (15)

µrearr. =0

σ2

int. =r2

assoc(2µ2

ssµ
2

ttσ
2

tt + µ2

ssσ
4

tt + σ2

ssµ
4

tt + 2σ2

ssµ
2

ttσ
2

tt + σ2

ssσ
4

tt)+ Self Match (16)

r2

assoc(l − 1)(µ2

ssσ
4

ti + σ2

ssσ
4

ti) Item Noise

βassoc Background Noise
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σ2

rearr. =2r2

assoc(2µ2

ssµ
2

ttσ
2

ti + µ2

ssµ
2

ttσ
2

ti + σ2

ssµ
2

ttσ
2

ti + σ2

ssσ
2

ttσ
2

ti)+ Partial Match (17)

r2

assoc(l − 2)(µ2

ssσ
4

ti + σ2

ssσ
4

ti)+ Item Noise

βassoc Background Noise

The interference terms are very similar to the derivations for item recognition with a

few exceptions. The first is that there is no context noise term; this is because the

associative recognition task involves random pairings of unrelated words and thus the

probability of having seen a given pair multiple times prior to the experiment is negligible

(this assumption would not apply if previously associated pairs are employed). Second,

there is an additional partial match term for the rearranged pairs in Equation 17. This

reflects the fact that for a rearranged pair A-D, there are two partially matching pairs in

memory: A-B and C-D. Additionally, given that there are likely to be many more

combinations of item-item-context bindings than single item-context bindings, a separate

background noise term was allotted for the co-occurrence tensor (βassoc). All of the model

parameters along with their psychological interpretations and experimental manipulations

that change them can be found in Table 1. Next, we describe the likelihood ratio

transformation of memory strengths that is necessary to capture the full range of mirror

effects seen in recognition memory data.

Table 1

Description of each of the model’s parameters, including their boundaries and which

conditions they change.

Param Bounds Description

ritem;

rassoc

0 : 1 Learning rates for items and associations. Increase with

study time or repetitions.

Continued on next page
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Table 1 - continued from previous page

Param Bounds Description

µss 0 : 1 Context match mean: matching strength of test context

cue to stored context. Contributes to the mean of the

target distribution. Decreases with study-test delay.

σ2

tt 0 : ∞ Item match variability: Variability of the match of the

item cue to the stored item. Increases the variability of

the target distribution relative to the lure distribution.

σ2

ss 0 : ∞ Context match variability: Variability of the match of

the context cue to the stored context. Increases the

variability of the target distribution relative to the lure

distribution.

ρ 0 : ∞ Context mismatch variability: Contributes to the

amount of context noise in the model. Expected to vary

with word frequency and is zero for items not seen in

prior contexts.

σ2

ti 0 : ∞ Item mismatch variability: Contributes to the amount

of item noise in the model. Magnifies effects of list

length and list strength manipulations. Varies by stim-

ulus class.

βitem;

βassoc

0 : ∞ Background noise for items and associations. Obscures

effects of list length/list strength on performance. Varies

by stimulus class.

Φ −∞ : ∞ Response criterion. 0 represents an unbiased criterion.
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The Context Mismatch Parameter, the Word Frequency Effect, and the

Likelihood Ratio Transformation of Memory Strengths

A strong constraint on models of recognition memory is the word frequency mirror

effect, in which low frequency (LF) words have higher hit rates and lower false alarm rates

than high frequency (HF) words3. The mirror effect was described as a challenge to simple

strength models of recognition memory (Glanzer & Adams, 1985, 1990). As we will

demonstrate, this is partially true. The basic pattern of the mirror effect can be achieved

using the memory strength computation in our model, but there is evidence from two

alternative forced choice (2AFC) testing that suggests a mirror ordering in the means of

the distributions, which requires a likelihood ratio transformation of memory strengths.

The locus of the word frequency effect in the model is the context mismatch

variability parameter ρ, which primarily contributes to the context noise term in Equations

13 and 14 for item recognition. From inspection of the equations, one can see that context

noise is produced by a multiplication of the item match parameters µtt and σ2

tt along with

the context mismatch variability parameter ρ. Critically, when context mismatch

variability is zero, there is no context noise. This reflects the idea that there is no

similarity between the current context and the previously stored contexts: the current

context cue C ′
s is perfectly able to isolate the list items from pre-experimentally stored

memories. This is an implicit assumption in the early global matching models that

assumed that only the list items contributed to interference at retrieval.

When context mismatch variability is greater than zero, greater interference arises

from items that are more frequently represented in memory. As a consequence, high

frequency words suffer more interference than low frequency words. Model predictions with

different values of the context mismatch parameter ρ can be seen in the middle panel of

Figure 2. It is interesting to note that the model is able to predict a mirror effect of word

3A mirror effect refers to any manipulation that exerts opposite effects on the hit rates and false alarm

rates (Glanzer & Adams, 1985)
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frequency: as frequency increases, hit rates decrease and false alarm rates increase. This is

because context noise, like item noise, is a variance term for both target and lure items.

For a fixed decision criterion, an increase in variance of both distributions will cause a

mirror effect.

Glanzer and Bowles (1976) conducted a thorough test of the locus of the word

frequency effect using 2AFC tests. In a 2AFC tests, it is assumed that a response criterion

for a stimulus is not used. Instead, the choice is selected that is furthest on the decision

axis (T. D. Wickens, 2002). Glanzer and Bowles (1976) manipulated the composition of the

choices on 2AFC tests, using all possible combinations of old and new items such as LF-old

and LF-new trials (LO-LN), LF-old and HF-new trials (LO-HN), HF-old and LF-new trials

(HO-LN), and HF-old and HF-new trials (HO-HN). The mirror effect was obtained in all

cases, and the ordering of the probability of correct choice was as follows: LO-LN >

LO-HN ≈ HO-LN > HO-HN. While the occurrence of the mirror effect in 2AFC testing is

challenging to criterion shift accounts of the mirror effect (e.g.: Gillund & Shiffrin, 1984),

inspection of the top right panel of Figure 2 reveals that the variance account in our model

is capable of addressing this pattern (LO-LN > LO-HN ≈ HO-LN > HO-HN).

However, there two more trial types that the variance account is unable to address.

Both of these trial types can be considered null comparisons because they are not valid

trials with one correct choice and one incorrect choice. In both types of trials, one word is

LF and the other is HF, but in one there are two targets (LO-HO) and in another there are

two lures (HN-LN). Surprisingly, in the target trials, the LF word is chosen more often

(p(LO, HO) > .5) but in the lure trials, the HF word is chosen more often (p(HN, LN)

> .5). One can see that in Figure 2, the variances account fails to produce choice

probabilities that are greater than .5 for the null comparison trials. Glanzer and Bowles

(1976) noted that what is necessary is a mirror ordering arrangement of the means of the

signal and noise distributions, such as LN < HN < HO < LO. Mirror arrangements of the

underlying distributions can be produced using a log likelihood ratio transformation of the
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memory strengths.

The Log Likelihood Ratio Transformation. Several current models of

recognition memory employ likelihood ratios as the basis of a recognition memory decision

to produce the mirror effect (Dennis & Humphreys, 2001; Glanzer & Adams, 1990;

Glanzer, Adams, Iverson, & Kim, 1993; McClelland & Chappell, 1998; Shiffrin & Steyvers,

1997). In log likelihood ratio models, decisions are not made on the basis of memory

strength, but are instead made on the basis of a ratio of the densities of the signal and

noise distributions. To understand how the mirror effect is derived from a likelihood ratio,

take a point on the x axis of the signal and noise distributions in the top left panel of

Figure 2. Compare the relative heights of the targets and lures of the HF distributions at

that point: that ratio is the likelihood ratio for the stimulus that elicited that value of

memory strength. On the same point on the x axis, consider the LF distributions. Note

that in the case of target items, the density of the target distribution greatly exceeds the

density of the lure distribution due to the lower overlap of the distributions, producing

higher likelihood ratios. LF words have lower overlap among the target and lure

distributions than HF words, producing higher likelihood ratios and increasing their hit

rate. The opposite is the case for lures, in that there is greater lure-to-target density for LF

words, producing lower likelihood ratios and a lower false alarm rate relative to HF words.

A psychological interpretation of the likelihood ratio transformation is that memory

strength is not considered alone, but is instead considered along with the knowledge about

the memorability of the stimlus (similar to the account proposed by J. Brown, Lewis, &

Monk, 1977). As we will see, the expected memorabilities need not correspond perfectly to

the actual memory strength distributions.

The mirror effect has been demonstrated to be a regularity of the likelihood ratio

transformation (Glanzer et al., 1993, 2009). There are other advantages to the likelihood

ratio transformation, such as the concentering of the likelihood ratio distributions in

response to manipulations that decrease performance (Glanzer, Adams, & Iverson, 1991;
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Hilford, Glanzer, & Kim, 1997; Kim & Glanzer, 1993, 1995), shorter zROC lengths for

conditions of stronger performance (Stretch & Wixted, 1998a; Glanzer et al., 2009), as well

as higher variances for distributions that are further from the criterion (as measured by

old-old and new-new zROC slopes: DeCarlo, 2007; Glanzer et al., 2009). Additional

discussion on data that have supported or challenged likelihood ratio models can be found

in the General Discussion.

We have employed analytic solutions for the log likelihood ratio transformation that

were developed by Glanzer et al. (2009) to be used with unequal variance normal signal

detection models. After the transformation has been applied, it results in log likelihood

ratio distributions that are non-central chisquare in shape. We have had to modify the

equations to consider cases in which the model has access to incomplete information about

the study episode. For instance, consider a case in which items were either studied once

(weak) or four times (strong). During the test phase, participants are tested on weak and

strong targets in addition to lures. This leads to three memory strength distributions: one

for lures, one for weak targets, and one for strong targets. If it’s assumed that during weak

target trials participants calculate the likelihood ratio using the weak target distribution as

reference, the model has already presupposed memory of the test stimulus. Instead, under

conditions in which mixed lists of items are studied, the expected strength in the likelihood

ratio calculation is a distribution that reflects the average of the learning rate parameters

corresponding to the weak and strong items4. Expected strengths were used in the

likelihood calculations in the BCDMEM model (Dennis & Humphreys, 2001; Starns,

White, & Ratcliff, 2010). The modified equation for the likelihood ratio transformation can

be found in Appendix B. For all other parameter variations outside of the learning rate

differences in mixed strength study lists, the expected parameter values are identical to the

4Another case where expected strengths would be employed is for modeling the effects of serial position.

Items from different serial positions have different study-test lags, suggesting different values of the mean

context match µss. The expected context match at test could be constructed from the average of the context

match parameters for each serial position.
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actual parameter values of the memory strength distributions.

Predictions of the log likelihood ratio transformation can be seen in the bottom row

of Figure 2. The left panel reveals that the transformation correctly produces the mirror

ordering of the distributions (LN > HN > HO > LO). The model produces patterns that

are quite similar to the variance account, but inspection of the 2AFC predictions in the

right panel of Figure 2 reveals that the model is correctly able to predict null comparisons

that are quite close to the experimental data (p(LO, HO) and p(HN, LN) > .5). The log

likelihood ratio transformation is applied to all model predictions from this point on in the

article.

Unequal Variance Between the Target and Lure Distributions of Memory

Strength

The slope of the z-transformed ROC is almost uniformly less than one in the

recognition memory literature (Egan, 1958; Glanzer, Kim, Hilford, & Adams, 1999;

Heathcote, 2003; Ratcliff, Sheu, & Gronlund, 1992; Ratcliff, McKoon, & Tindall, 1994).

Within an SDT model, the common interpretation is the variability of the target

distribution is greater than the lure distribution. When the distributions are normal in

shape, the slope is the ratio of standard deviations σnew/σold.

How can unequal variance be produced by our model? The variances of the target

and lure distributions in item recognition are nearly identical except that for the case of

targets, there are l − 1 items in the item noise term and an additional self match term. If

the self match variability exceeds the item noise for a single item (before being scaled by l),

then targets will exhibit higher variability than lures. The model can accomplish this with

sufficient values of either the item match variability (σ2

tt) or context match variability (σ2

ss).

The effects of these variables can be seen in Figure 3 for both item recognition (top) and

associative recognition (bottom): both the item match variability parameter σ2

tt and

context match variability parameter σ2

ss were set to .02 and separately incremented to
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higher values. As the values of these parameters are increased, one can see that the ratio of

standard deviations decreases.

Why do item and context match variabilities produce unequal variance between the

target and lure distributions? One might be inclined to think that the target item was seen

in the list context, so variation in how the item was processed or variation in the match of

the test context to the stored context should affect targets but not lures. However, both of

these factors also affect the degree of match to previously stored memories. Inspection of

Equations 13 and 14 reveals that the item mismatch in the item noise term is scaled by the

context match and the context mismatch in the context noise term is scaled by the item

match. Unequal variance is produced because in the self match term of Equation 13, there

are more non-zero means contributing to the variance calculation (the learning rate r, the

item match µtt, and the context match µss). Thus, the simple answer is that the variability

of the target distribution increases naturally with its mean, however the magnitude of this

increase is modulated by the item and context match variability parameters. If the item

and context match variability parameters exceed the item and context mismatch variability

parameters, unequal variance that resembles the magnitude found in recognition memory

experiments can be produced. As the item and context matching strengths decrease to

zero, the ratio of standard deviations should approach 1. Ratcliff et al. (1994) found that

with very low study times, the slope of the zROC is very close to 1. We constrain the

values that these two parameters take by including ROC data, namely the dataset of

DeCarlo (2007), in our model fit.

Much of the discussion about the source of unequal variance in recognition memory

has focused on the hypothesis of Wixted (2007) that unequal variance arises due to

variability in the strength of learning. That is, some items on the study list may be

encoded with more strength than others, producing an additional source of variability for

target items. The variability in learning strength hypothesis has been tested recently with

mixed results (Koen & Yonelinas, 2010, 2013; Starns, Rotello, & Ratcliff, 2012; Jang,
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Mickes, & Wixted, 2012). We would like to note that variability in the item match (which

could arise from factors such as variability in the perceptual or semantic processing of the

probe item) along with variability in the context match (which could arise from noise in

either the contextual reinstatement process or the contextual drift process) are plausible

contenders for sources of unequal variance that have not received attention in the

literature. We do not mean this to imply that variability in the strength of learning is not

responsible for unequal variance, but merely that unequal variance may reflect variability

in several processes employed at both encoding and retrieval.

The Item Mismatch Variability Parameter and List Length/List Strength

Predictions

As mentioned in the introduction, global matching models that only consider the role

of item noise at retrieval predict detrimental effects of list length and list strength on

recognition memory performance. From inspection of the item noise terms for item

recognition (Equations 13 and 14) and associative recognition (Equations 16 and 17), one

can see that item noise is produced by a multiplication of the item mismatch variability

parameter σ2

ti, the context mismatch variability parameter σ2

ss, the learning rate r, and the

number of items or pairs on the list l. The most critical of these parameters is the item

mismatch variability. If this is set to zero, the entire item noise term is zero and no effect

of list length or list strength is predicted. For positive values of the item mismatch

variability parameter, increases in the number of list items l or the learning rate r increase

the total item noise variance, producing poorer performance in conditions of higher list

length or list strength, respectively.

These predictions can be seen in Figure 4 for both item recognition (top) and

associative recognition (bottom). Depicted are two demonstrations for three different

values of the item mismatch variability parameter σ2

ti: 0, .02, and .04. The first

demonstration is of a list length manipulation in which list length is varied between 1 and
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80 items or pairs. Item noise increases linearly with increases in the list length for positive

values of item mismatch variability. Consequently, performance decreases rapidly with

increases in list length. When there is no item mismatch variability, item noise is zero and

no effect of list length is predicted.

The list strength paradigm was simulated by using a 30 item list in item recognition

and 30 pairs in associative recognition. Half of the items are baseline items that were

studied with learning rate r = 1.0. The other half are interference items and were studied

with learning rates varying between .05 and 2.5 and performance was assessed on the

baseline items. As mentioned previously, for mixed lists of strong and weak items, the

likelihood ratio computation compares items to a mixed distribution of strong and weak

items. Thus, as the strength of the interference items is increased, the strength of the

mixed distribution increases. This increase in the expected memorability of test items

decreases the hit rates and false alarm rates of the non-strengthened items. This allows the

model to predict the strength based mirror effect in item and associative recognition, which

is where strengthening a set of items increases the hit rate of the strengthened items and

simultaneously decreases the false alarm rate (Hirshman, 1995; Hockley & Niewiadomski,

2007; Stretch & Wixted, 1998b).

Due to the decrease in hit rates and false alarm rates that occur with increases in

strength, the list strength effect can be more easily observed by observing how d′ changes

as the strength of the interference items and pairs is increased. When item mismatch

variability is zero, there is no item noise and the strength of the interference items/pairs has

no impact on performance. For positive values of item mismatch variability, performance

degrades quickly as the strength of the interference items and pairs is increased5.

5One should note that throughout this article, we follow convention in the recognition memory literature

by visualizing performance in the model and the data using equal variance d′ measures. When there is unequal

variance between the signal and noise distributions, changes in bias result in changes in d′. Inspection of

Figure 4 reveals that when the item mismatch variability parameter is zero, d′ improves with list strength.

This is due to the fact that both the log likelihood ratio distributions of targets and lures are shifted downward
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One may also note that effects of both list length and list strength are smaller in

associative recognition than in item recognition. That is because associative recognition

involves the multiplication of two items instead of one, meaning that the item mismatch

variability parameter σ2

ti is squared. When the values are less than one, σ2

ti’s influence on

item noise will be larger for item recognition than for associative recognition. However, it is

not the case that the item mismatch variability parameter has no visible effect on

associative recognition predictions.

A number of researchers have conducted investigations using mixed lists of strong

and weak pairs in associative recognition. On the test lists, rearranged pairs that came

from both strong and weak pairs were presented and the false alarm rates were compared.

A majority of investigations have found no difference between weak and strong rearranged

pairs (e.g.: Buchler, Light, & Reder, 2008; Kelley & Wixted, 2001). As initially noted by

Osth and Dennis (2014), the degree to which false alarm rates increase with strength in a

mixed list is a consequence of item noise. To understand why, consider the partial match

term in the equation for σ2

rearr.:

2r2

assoc(2µ2

ssµ
2

ttσ
2

ti + µ2

ssµ
2

ttσ
2

ti + σ2

ssµ
2

ttσ
2

ti + σ2

ssσ
2

ttσ
2

ti)

When item mismatch variability is zero, the interference from the two partial matches A-B

and C-D to a rearranged pair A-D reduces to zero. When it is positive, the partial match

term scales by the learning rate rassoc, meaning that the two stored pairs exert greater

interference on a rearranged pair cue as their strength is increased. This means that for a

mixed list of strong and weak pairs, strong rearranged pairs suffer greater partial match

interference when item mismatch variability is high.

The effect of item mismatch variability on mixed lists of strong and weak pairs can be

seen in Figure 5. Three different levels of the parameter were compared (σ2

ti = 0, .015, .03)

for a mixed list with 15 weak pairs studied with a learning rate rassoc = 1.0 and 15 strong

as list strength is increased.
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pairs were studied with rassoc = 2.5. When item mismatch variability is zero, false alarm

rates are equivalent between weak and strong rearranged pairs. However, as the item

mismatch variability is increased, false alarm rates are considerably higher for strong

rearranged pairs than for weak rearranged pairs. As we will discuss later, most

investigations have found equivalent false alarm rates between weak and strong rearranged

pairs (Cleary, Curran, & Greene, 2001; Kelley & Wixted, 2001; Osth & Dennis, 2014).

While null effects of list strength (e.g.: Ratcliff, Clark, & Shiffrin, 1990) and list

length (e.g.: Dennis et al., 2008) are commonly found with word stimuli, novel

non-linguistic stimuli such as fractal and face images have been found to be susceptible to

effects of both list length (Kinnell & Dennis, 2012) and list strength (Osth et al., 2014;

Norman, Tepe, Nyhus, & Curran, 2008). As we will demonstrate in the fits to our datasets,

this can be accommodated by alotting separate item mismatch parameters to each stimulus

class to reflect the idea that the item representations of each stimulus class may vary in

their degree of inter-item similarity. Modeling the complete interference contributions

between all the stimulus classes would require a matrix of item mismatch variability

parameters that reflects item similarity within a given stimulus class and between the

different stimulus classes. However, given that in all of the datasets included in our model

fit only test one stimulus class, we simplify treatment by only considering within-class

interference.

Background Noise

From our description of the item mismatch variability parameter, it might seem as if

large values of that parameter will always produce positive effects of list length and list

strength. However, this is not the case. As noted by Murdock and Kahana (1993a, 1993b),

a large contribution from pre-experimental memories can be sufficient to drown out

differences between two conditions that vary in their level of item noise, such as differences

in list length or list strength.
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The effect of the background noise parameter on list length and list strength

predictions can be seen in Figure 6. The item mismatch variability parameter was set at

.03, which was seen to produce relatively large item noise effects in Figure 4. Background

noise (β) was varied for both item and associative recognition. The most obvious effect is

that background noise degrades performance. However, as background noise increases, the

increases in item noise with list length and list strength are relatively small compared to

the interference already present in memory, and one can see that performance decreases at

a smaller rate as list length or list strength are increased when the background noise

present in memory is high.

While we have simplified the background noise contribution to a single parameter,

the original parameterization describes it as follows:

n(µ2

suσ2

ti + µ2

tiσ
2

su + σ2

suσ2

ti)

where n is the number of memories of the given stimulus class. Specifically, one can see

that both n and the item mismatch variability parameter σ2

ti determine the total

background noise. Given that the item mismatch variability parameter varies across

stimulus classes and that each stimulus class likely varies in its number of entries in

memory, it is also reasonable for the background noise to vary across stimulus classes. In

our fits, β varies across stimulus classes but is constant across all other manipulations.

The demonstration that background noise can mask effects of list length and list

strength is critical to our understanding of the sources of interference in recognition

memory. Dennis and colleagues have previously argued that null effects of list length and

list strength support the idea that there is no item noise in memory (Dennis & Humphreys,

2001; Osth & Dennis, 2014), whereas the presence of a significant contribution of

background noise is a plausible alternative. Thus, null effects of list length and list strength

do not necessitate a pure context noise model with no item noise. The model fits to a large

number of experimental datasets allow us to distinguish between these possibilities.
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The Model Fit

As previously mentioned, multiple possibilities in the parameter values can be

responsible for recognition memory being impervious to manipulations of list length and

list strength on recognition memory performance for words. For instance, null effects of list

length and list strength could be predicted by a model with context noise as the sole source

of interference (like in the BCDMEM model) or they could be predicted with a high ratio

of background noise to item noise (like in the TODAM models). Similarly, overall levels of

performance can reflect a strong degree of learning or low contributions of interference.

The fact that multiple parameter combinations can qualitatively predict similar outcomes

implies that the resulting parameter estimates of the model will not be independent but

correlated with each other (e.g.: Turner, Sederberg, Brown, & Steyvers, 2013). Thus, the

modeling exercise requires a robust model fitting procedure.

To properly measure the parameters required to estimate the interference

contributions to recognition memory, we fit the model within a hierarchical Bayesian

framework. The virtues of hierarchical Bayesian methods for fitting cognitive models (Lee,

2008, 2011; Lee & Vanpaemel, 2008; Pooley, Lee, & Shankle, 2011; Rouder & Lu, 2005;

Shiffrin, Lee, Kim, & Wagenmakers, 2008; Vandekerckhove, Tuerlinckx, & Lee, 2011) and

in fitting data from recognition memory paradigms (Dennis et al., 2008; Pratte & Rouder,

2011; Pratte, Rouder, & Morey, 2010; Morey, Pratte, & Rouder, 2008; Turner, Dennis, &

Van Zandt, 2013) have been well established. While traditional techniques such as

minimizing the sum of squared deviations between the model’s predictions and the data

(approximate least squares) only provide point estimates for the model’s parameters, one of

the advantages of Bayesian analyses is that they quantify the uncertainty in the parameter

estimates of the model as probability distributions over each parameter which are referred

to as posterior distributions. Given that we are interested in quantifying the respective

contributions of the interference contributions, properly measuring the uncertainty in these

estimates is necessary.
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Additionally, while it is common for modelers to aggregate across subjects and fit

psychological models to only the group data, one problem is that fitting group estimates of

the data often provides different parameter estimates than when the fits to the individual

participants are averaged together (Estes & Maddox, 2005). Bayesian analyses can

overcome this problem by usage of hierarchical models that jointly estimate the parameters

of the group and the individual participants. This is accomplished by establishing

hyperparameters that represent the group level parameters in combination with individual

participant parameters. Each relevant model parameter (such as r, σ2

ti, β, etc.) has its own

set of hyperparameters, namely a mean and variance or precision parameters, that specify

the prior distribution across all participants that each individual particiant’s parameters are

sampled from. A hierarchical fit provides posterior distributions on each model parameter

for each participant along with posterior distributions for the hyperparameters of each

model parameter that reflect the group-level parameters. Fitting individual participants in

a modeling exercise such as this is critical, as there may be significant individual differences

among participants in the magnitudes of the respective interference contributions.

As was previously mentioned, each interference source increases the variance of both

the signal and noise distributions. In order to properly constrain the model parameters, it

is required to include all of the relevant manipulations that affect the parameters of the

model. It was for this reason that we included a large number of datasets, which include

manipulations of list length, list strength, and also include mixed lists of strong and weak

pairs in the associative recognition task, all of which constrain the estimates of item noise.

We have additionally included two experiments that include manipulations of word

frequency, which constrain the context noise parameter. Background noise is the remaining

interference in the memory system and provides a constant source of noise that is

unaffected by the experimental manipulations. In the next section, we will discuss the ten

recognition memory datasets that are included in the model fit.
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Datasets Included in the Model Fit

Rather than fit each dataset separately, we imposed significant constraint on the

model by fitting all of the datasets simultaneously and constrained parameters across

datasets. An advantage of the hierarchical Bayesian procedure is that individual

participant parameters can be modeled while simultaneously constraining across different

experiments or datasets by restricting the hyperparameters to be the same across datasets.

Hyperparameters were only allowed to vary across datasets where appropriate. For

instance, the item mismatch variability parameter σ2

ti varies across stimulus classes,

meaning that the Dennis et al. (2008) dataset, which employed words as stimuli, receives a

different hyperdistribution for σ2

ti than for a dataset that used fractals as stimuli (such as

Kinnell & Dennis, 2012, Experiment 2). However, other datasets that used words, such as

the Osth and Dennis (2014) and the DeCarlo (2007) studies, share the same σ2

ti

hyperdistribution that corresponds to word stimuli.

Here, we describe the datasets included in our model fit, their findings, the relevant

hyperparameters they constrain, and briefly review the surrounding literature. A summary

of all of the datasets used in the fitting can be seen in Table 2.

Table 2

Datasets included in the hierarchical Bayesian fit to the data.

Dataset Task Stim. N Resp. Manip.

DC - Ex 1A IR Words 72 6 con. Word frequency: LF and HF

DLK IR Words 48 YN

List length: 20 vs. 80 items

Word frequency: LF and HF

Unfilled vs. filled delay

KD - Ex 1 AR Words 28 YN List length: 24 vs. 96 pairs

KD - Ex 2 IR Faces 39 YN List length: 20 vs. 80 items

KD - Ex 3 IR Fractals 32 YN Same as above

Continued on next page
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Table 2 - continued from previous page

Dataset Task Stim. N Resp. Manip.

KD - Ex 4 IR Scenes 40 YN Same as above

ODK - Ex 1 IR Fractals 88 YN
List strength: 32 items 1x vs.

16 items 1x 16 items 4x

ODK - Ex 2 IR Faces 96 YN Same as above

ODK - Ex 3 IR Scenes 71 YN Same as above

OD - Ex 1 AR Words 80 YN
List strength: 32 pairs 1x vs.

16 pairs 1x 16 pairs 4x

Notes: Stim. = stimulus, N = number of participants, resp. = response type

collected in the experiment, manip. = manipulations used in the experiment. DC

= DeCarlo (2007), DLK = Dennis, Lee, & Kinnell (2008), KD = Kinnell &

Dennis (2012), ODK = Osth, Dennis, & Kinnell (in press), OD = Osth & Dennis

(2014), IR = item recognition, AR = associative recognition, YN = yes-no

recognition, 6con = 6 point confidence rating scale.

The ROC in item recognition. As described earlier, the slope of the

z-transformed ROC is almost uniformly less than one in the recognition memory literature

(Egan, 1958; Glanzer et al., 1999; Heathcote, 2003; Ratcliff et al., 1992, 1994), a finding

which has been used to advocate for the unequal variance signal detection model (Wixted,

2007). The ubiquity of the unequal variance interpretation of zROC slopes is further

supported by evidence from response time models. Starns, Ratcliff, and McKoon (2012)

found that the Ratcliff diffusion model (Ratcliff, 1978; Ratcliff, Van Zandt, & McKoon,

1999) could only fit the zROC slopes from a binary ROC paradigm (in which participants

give yes or no responses, but the relative proportions of targets and lures are manipulated

across conditions) if the variability of the drift rates for targets was larger than the

variability for lures. More recently, Starns and Ratcliff (2014) fit a large number of

recognition memory datasets that lacked complete ROC functions and found that a
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diffusion model with higher drift rate variability for targets received better support than a

diffusion model with equal variance across the drift rates for targets and lures.

As mentioned previously, unequal variance between the target and lure distributions

can be produced in our model by choosing the appropriate values of the item and context

match variability parameters σ2

tt and σ2

ss. However, many of the datasets listed below lack

the necessary data to constrain these parameters, in that they did not include

manipulations of target vs. lure proportions or confidence ratings. It was for this reason

that we additionally selected a relatively simple ROC experiment to constrain these

parameters, namely Experiment 1A of DeCarlo (2007). This experiment tested native

English participants for item recognition of both high and low frequency words using six

point confidence ratings. To model this dataset, five hyperparameters were selected for the

response criteria required to make the confidence ratings that were not employed in any of

the other datasets. Differences between the word frequency classes were modeled by usage

of the context mismatch variability parameter ρ: separate hyperparameters were used for

both low and high frequency words. The presentation time for the stimuli was lower than

for the other datasets (one second per stimulus), so this dataset was allotted its own

hyperparameters for the learning rate r. Given that this experiment used immediate

testing, the mean context match parameter µss was fixed at 1.

The List Length Paradigm. Manipulations of the length of a study list have been

a large constraint on models of memory, including models of recognition memory (Chappell

& Humphreys, 1994; Clark & Gronlund, 1996; Dennis & Humphreys, 2001; Gillund &

Shiffrin, 1984; Johns, Jones, & Mewhort, 2012; McClelland & Chappell, 1998; Shiffrin et

al., 1990; Shiffrin & Steyvers, 1997), free recall (G. D. A. Brown, Neath, & Chater, 2007;

Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005; Farrell, 2012; Polyn,

Norman, & Kahana, 2009; Raaijmakers & Shiffrin, 1981; Sederberg, Howard, & Kahana,

2008), and serial recall (Botvinick & Plaut, 2006; G. D. A. Brown et al., 2000; Henson,

1998; Farrell, 2012; Lewandowsky & Murdock, 1989). In recognition memory, the earliest
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demonstration of the detrimental effect of list length on recognition memory performance

was found by Strong (1912). In the several decades that followed, the list length effect was

replicated extensively in both item (Bowles & Glanzer, 1983; Cary & Reder, 2003; Gillund

& Shiffrin, 1984; Gronlund & Elam, 1994; Murnane & Shiffrin, 1991a; Nobel & Shiffrin,

2001; Ratcliff & Murdock, 1976; Underwood, 1978) and associative recognition (Clark &

Hori, 1995; Nobel & Shiffrin, 2001) and has been used as support for pure item noise

models of recognition memory (Clark & Gronlund, 1996; Gillund & Shiffrin, 1984).

However, as noted by Dennis and Humphreys (2001), a number of confounds exist in

the previously published list length designs that may be artifactually causing a list length

effect in recognition memory performance that we will briefly summarize here. First, if

participants are tested immediately after completion of the study list, the average retention

interval for items in the long list is longer than that of the short list. This confound can be

overcome by equating the retention intervals across the two list length conditions by using

a period of filler activity after the short study list is complete. Another confound is the

fact that when immediate testing is used after a long list, participants may be more

inclined to use a context representation that strongly favors the end-of-list items, rather

than reinstating a list-wide context, a confound which can be overcome by having

participants partake in additional filler task activity. An additional confound is that

attention is likely to decrease through the duration of the study list, producing weaker

encoding for the late list items relative to the early list items, a point which was first raised

by Underwood (1978). This confound can be remedied by comparing items from equivalent

serial positions from both the short and long list conditions.

When all of these confounds have been controlled, the investigations by Dennis and

colleagues have found no effect of list length on performance when words are used as

stimuli both in item recognition (Dennis & Humphreys, 2001; Dennis et al., 2008; Kinnell

& Dennis, 2011) and associative recognition (Kinnell & Dennis, 2012, Experiment 1).

Other investigations have found no effect of list length on performance in item recognition.
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Schulman (1974) found no difference in 2AFC recognition performance between study lists

of lengths 25, 50, and 100 items when the retention intervals and test positions were

equated across the conditions. Jang and Huber (2008) found no difference between list

lengths of 6 and 24 items in a 2AFC recognition task that interpolated between two lists

that were later tested for free recall. Murnane and Shiffrin (1991a, Experiment 3) found no

effect of list length on yes-no recognition performance when study-test lag was controlled.

While some might conclude that the controls employed in these list length paradigms

might be sufficient to eliminate any effect of list length in recognition memory

performance, this is not the case. Kinnell and Dennis (2012) tested novel non-linguistic

stimuli, specifically images of fractals, faces, and natural scenes, in single item recognition

using the same controls employed in the other investigations. Significant effects of list

length were found for fractals and faces but no effect of list length was found for natural

scenes. Kinnell and Dennis (2012) posited that the differences associated with the different

stimulus classes may be attributed to different levels of item noise, with word stimuli and

natural scenes being exempt from item noise at retrieval while faces and fractals suffer

from item noise, possibly due to having more distributed item representations (we return

to the issue of how different stimulus classes can suffer from different degrees of item noise

in the General Discussion).

Included in the model fit are five experiments using the list length paradigm: the

dataset of Dennis et al. (2008) along with the four experiments by Kinnell and Dennis

(2012). All of the experiments use two list length conditions which all employ a 1:4 list

length ratio from the short list to the long list. Additionally, all of the experiments only

test the first 20 items (first 32 pairs for the associative recognition experiment) on the

study list to make the test lists across the two list length conditions comparable. The five

datasets comprise all of the stimuli that are employed in the model fit: words are employed

in the study of Dennis et al. (2008) and the associative recognition experiment by Kinnell

and Dennis (2012, Experiment 1). Faces, fractals, and natural scenes were compared using
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separate experiments by Kinnell and Dennis (2012, Experiments 2-4, respectively).

The dataset of Dennis et al. (2008) was somewhat more extensive than the other

datasets, as it also manipulated the length of a post study list delay period in addition to

two different levels of word frequency. In the unfilled delay condition, recognition testing

began immediately after the long list and 3 minutes after the end of the short list. In the

filler condition, in contrast, recognition testing began an additional 8 minutes after the end

of the long list and 11 minutes after the end of the short list. To capture the different levels

of performance for each delay, separate hyperparameters for the mean context strength

parameter µss were allocated: one for the long list in the unfilled condition to allow for the

possibility of poor contextual reinstatement, and another for both list length conditions in

the filler task condition. To capture the effects of word frequency, the same context

mismatch variability hyperparameters used in the fit to the dataset of DeCarlo (2007) were

used to capture the effects of low and high frequency words in this dataset.

To test for the hypothesis that the different stimulus classes are subject to different

degrees of item noise, separate hyperparameters for the item mismatch variability

parameter σ2

ti were allowed for each stimulus class. Osth et al. (2014) argued that the

detrimental effects of list length and list strength observed with specific non-linguistic

stimuli are too small to be accommodated by a pure item noise model and that these

effects may be being mitigated by background noise from the memory system. For this

reason, different hyperparameters for the background noise parameter βitem were allowed

for each stimulus class. Additionally, separate background noise hyperparameters were

allowed for word pairs in associative recognition to allow for the possibility that many more

inter-item bindings are being stored in the co-occurrence tensor than item-context bindings

in the occurrence matrix. Since the experiments of Kinnell and Dennis (2012) also used

filler tasks that are of the same length as the filler task of Dennis et al. (2008), the same

hyperparameters for the mean context strength were shared across all of these experiments.
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The List Strength Paradigm. The null list strength effect was initially

discovered by Ratcliff et al. (1990), who found that recognition performance for weak items

was not harmed when they were accompanied by strong items on a study list and that

strong items did not benefit from being accompanied by weak items relative to strong

items. The null list strength effect was found in all seven of their experiments, regardless of

whether the strengthening occurred via massed study, massed repetitions, or spaced

repetitions. The list strength paradigm was extensively revisited in the two decades to

follow, resulting in several replications of the null list strength effect in item recognition

(Hirshman, 1995; Kahana, Rizzuto, & Schneider, 2005; Murnane & Shiffrin, 1991a, 1991b;

Ratcliff et al., 1994, 1992; Shiffrin, Huber, & Marinelli, 1995; Yonelinas, Hockley, &

Murdock, 1992) and was recently demonstrated in associative recognition by Osth and

Dennis (2014) using both yes/no and 2AFC testing. The finding of the null list strength

effect has become a canonical constraint on recognition memory models (Chappell &

Humphreys, 1994; Dennis & Humphreys, 2001; Johns et al., 2012; McClelland & Chappell,

1998; Norman & O’Reilly, 2003; Shiffrin et al., 1990; Shiffrin & Steyvers, 1997).

The vast majority of the investigations that found no effect of list strength on

recognition memory performance used single words or word pairs as study and test stimuli.

Following the investigation of Kinnell and Dennis (2012), Osth et al. (2014) tested images

of fractals, faces, and natural scenes for the presence of a list strength effect while

simultaneously employing the list length controls advocated by Dennis and colleagues6. A

significant list strength effect was found for fractals with both yes/no and 2AFC testing

while null effects of list strength were found for faces and scenes (although a significant list

strength effect was found using artificial faces by Norman et al., 2008). Osth et al. (2014)

used this finding to support the hypothesis of Kinnell and Dennis (2012) that novel

6As noted by Osth et al. (2014), while the controls for differences in retention interval, attention, and

contextual reinstatement are not commonly applied in list strength paradigms, they can similarly contribute

to the artifactual finding of a list strength effect.
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non-linguistic stimuli may be more susceptible to the effects of item noise.

An additional regularity of the list strength paradigm is the strength based mirror

effect, in which strengthening a set of list items results in higher hit rates for those items

along with a lower false alarm rate. Hirshman (1995) found this pattern to be ubiquitous

in the early published list strength paradigms, and several investigations have replicated

the effect in both item recognition (Criss, 2006, 2009, 2010; Hockley & Niewiadomski,

2007; Singer, 2009; Starns, Ratcliff, & White, 2012; Starns et al., 2010; Starns, White, &

Ratcliff, 2012; Stretch & Wixted, 1998b) and associative recognition (Clark & Shiffrin,

1992; Hockley & Niewiadomski, 2007; Osth & Dennis, 2014). Furthermore, all of the

non-linguistic stimuli in the study by Osth et al. (2014) exhibited a strength based mirror

effect.

Included in the model fit are four experiments using the list strength paradigm: the

datasets of Osth et al. (2014) and Osth and Dennis (2014). All of these experiments

compared lists of 32 unique items or pairs of items across two conditions: a pure weak

condition where all items or pairs were presented once, along with a mixed list condition

where half of the items or pairs were presented once and the other half were presented four

times. To make the tests of both list conditions comparable, all repetitions in these studies

occurred after all of the unique items were presented once. Fractals, faces, and natural

scenes were the stimuli of Osth et al. (2014, Experiments 1-3, respectively) and word pairs

were employed in the study of Osth and Dennis (2014). Only the yes-no data from these

investigations were employed.

In all experiments, hit rates for strong items or pairs greatly exceeded those of weak

items or pairs. This was accommodated by allocating a separate learning rate ritem or rassoc

for the items or pairs that were presented four times. To guarantee that learning rates for

strong items exceeded those for weak items, the samples of the strong learning rates were

added to the weak learning rates. The value of the strong learning rates along with the

value of the item mismatch variability parameter influence the magnitude of the list
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strength effect.

One aspect of the associative recognition dataset that distinguishes it from the item

recognition datasets is that the test lists in the mixed lists comprised rearranged pairs

constructed from both weak (once presented) and strong (four times presented) pairs.

Several studies have made such a comparison and found equivalent false alarm rates to

both weak and strong pairs in young adults (Buchler et al., 2008; Cleary et al., 2001; Gallo,

Sullivan, Daffner, Schacter, & Budson, 2004; Kelley & Wixted, 2001; Mickes, Johnson, &

Wixted, 2010; Osth & Dennis, 2014)7, which can be considered a broken within-list

strength based mirror effect, although some studies have found reduced false alarm rates

for strong pairs under specific conditions such as delayed responding or substantial

strength differences between weak and strong pairs (Light et al., 2004; Malmberg & Xu,

2007; Xu & Malmberg, 2007). A unique aspect of the Osth and Dennis dataset is that both

an intact and broken strength based mirror effect were observed: false alarm rates were

lower in mixed lists than in pure weak lists (an intact across-list strength based mirror

effect), but false alarm rates to weak and strong pairs were equivalent in the mixed list (a

broken within-list strength based mirror effect). As was previously mentioned, the false

alarm rates between weak and strong pairs is an additional constraint on the item

mismatch variability parameter σ2

ti.

A Note on Response Criteria

In the Turner, Dennis, and Van Zandt (2013) model fit, the criteria of the model were

fixed at 0.0, which reflects the point on the log likelihood ratio scale where an item is

equally likely to be a target or a lure. Nonetheless, some recent evidence has suggested

7Higher false alarm rates to strong pairs have been observed in older adults (Buchler, Faunce, Light,

Gottfredson, & Reder, 2011; Light, Patterson, Chung, & Healy, 2004). While one possibility for this result

is that older adults suffer from more item noise at retrieval, another possibility is that they rely more on

item information in the associative recognition task than in younger adults, possibly due to a poorer ability

to encode and use associations (Naveh-Benjamin, 2000).
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that there is substantial variability in criteria across participants. Aminoff et al. (2012)

found reliable individual differences in criteria across participants and found they were

predicted by such psychometric variables as personality traits and affect. Kantner and

Lindsay (2012) found that individual differences in response criteria were stable across

recognition tests that were up to a week apart, although they varied somewhat across

different stimulus materials.

Thus, we allowed for individual differences in the decision criterion parameter by

having each participant’s criterion sampled from a set of hyperparameters. Additionally,

given the differences among different experiments in terms of the perceived difficulty of the

stimulus materials, we have allowed different hyperparameters for each experiment to be

used. Criteria were not allowed to vary across conditions or across trials within a given

experiment.

A Note on Participant Exclusion

The studies of Kinnell and Dennis (2012), Osth et al. (2014), and Osth and Dennis

(2014) all used experimental parameters that were quite similar to each other. Nonetheless,

the studies of Osth and Dennis and Osth et al. excluded participants who exhibited d′ that

was zero or less in one of their experimental conditions, as these were likely participants

who were not properly following instructions. As a consequence, the performance of the

groups in these studies was noticeably higher than those of the Kinnell and Dennis

experiments. To ensure that the data from the studies are comparable to each other, we

used the same exclusion criteria on the experiments from Kinnell and Dennis. This

resulted in the exclusion of twelve participants from Experiment 1, one participant from

Experiment 2, and eight participants from Experiment 4. No participants from Experiment

3 met these exclusion criteria.
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The Hierarchical Bayesian Model

It is quite common to express hierarchical Bayesian analyses as graphical models

(Jordan, 2004). However, due to the large number of datasets being used in the fit in

addition to the fact that several parameters are constrained across the fits, a complete

graphical model would be too large and cumbersome to be useful to the reader. Instead, we

have presented a general graphical model in Figure 7 that describes the parameters of the

model whereas descriptions of the entire set of hyperparameters and the datasets and

conditions to which they apply can be found in Table 3.

One of the advantages of the Bayesian approach is the ability to restrict the

parameter space via a specified prior distribution to reflect a priori beliefs about how the

parameter is distributed (Vanpaemel & Lee, 2012). However, given that this model has not

been previously fit to data, we use nearly non-informative priors instead which place

approximately equal likelihood over all values in the parameter space. For participant

parameters that are bounded between 0 and 1 (r and µss), parameters were sampled from

beta distributions that were reparameterized in terms of the mean (λ) and variance (ν)

parameters of the beta distribution. This reparameterization is achieved from the initial

parameters α and β by setting α = λν and β = (1 − ν)λ. Prior distributions on these

parameters were as follows:

λ ∼Beta(.5, 2)

ν ∼InverseGamma(.1, .1)

For parameters that are bounded between 0 and ∞ (σ2

tt, σ2

ss, σ2

ti, ρ, and β), participant

parameters were sampled from lognormal distributions. For parameters that are bounded

between −∞ and ∞ (the criterion parameters), participant parameters were sampled from

normal distributions. Prior distributions on the mean (ω) and precision (ξ) of the normal
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and lognormal distributions were specified as follows:

ω ∼Normal(0, .001)

ξ ∼InverseGamma(.1, .1)

All of the model’s parameters were used to calculate the means and variances of the

memory strength distributions according to Equations 12, 13, and 14 for item recognition

and Equations 15, 16, and 17 for associative recognition. The memory strength

distributions were then converted to log likelihood ratio distributions using the equations

in Appendix B. For the experiments that used the yes-no response procedure, hit (h) and

false alarm (f) rates were calculated by taking the area above the response criterion. Hit

(H) and false alarm (F ) count predictions for each participant i in a given condition j in

experiment k were sampled from a binomial distribution:

Hi,j,k ∼Binomial(hi,j,k, Tj,k)

Fi,j,k ∼Binomial(hi,j,k, Lj,k)

where T and L refer to the number of target and lure trials. For the DeCarlo (2007)

experiment which utilized confidence ratings, h and f were calculated for each confidence

category c by calculating the area between the criteria for the middle responses, the area

above the highest criterion for the highest confidence rating, and the area below the lowest

criterion for the lowest confidence rating. H and F predictions for each confidence category

were sampled from a multinomial distribution:

Hc1,i, ..., Hc6,i ∼Multinomial(hc1,i, ..., fc6,i, T )

Fc1,i, ..., Hc6,i ∼Multinomial(fc1,i, ..., fc6,i, L)

where c1 is the lowest confidence rating and c6 is the highest confidence rating.

The hierarchical model was fit using JAGS software (Plummer, 2003). The data were

fit to all 594 participants from each of the ten aforementioned datasets simultaneously. The
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data from each participant were the raw response counts for targets and lures in each

condition. The results of the model fit are based on 32 chains, each consisting of 10,000

samples after 4,000 burn-in samples were discarded. Chains were visually checked for

convergence.

Table 3

All hyperparameters included in the hierarchical model.

Param. Number Cond. Datasets

ritem

1 Words (1 sec.) DC

2 Words (3 sec.) DLK

3 Fractals 1x KD Ex 2; ODK Ex 1

4 Fractals 4x ODK Ex 1 (Mixed list cond.)

5 Faces 1x KD Ex 3; ODK Ex 2

6 Faces 4x ODK Ex 2 (Mixed list cond.)

7 Scenes 1x KD Exp 4; ODK Ex 3

8 Scenes 4x ODK Ex 3 (Mixed list cond.)

rassoc

1 Pairs 1x KD Ex 1; OD

2 Pairs 4x OD (Mixed list cond.)

µss

1 Short delays (3.5 min) ODK Ex 1, 2, 3; OD

2 Long delays (8 min) DLK; KD Ex 1, 2, 3, 4

3 Long list, no filler DLK

σ2

tt 1 All All datasets

σ2

ss 2 All All datasets

σ2

ti

1 Words DLK; DC; KD Ex 1; OD

2 Fractals KD Ex 2; ODK Ex 1

3 Faces KD Ex 3; ODK Ex 2

4 Scenes KD Ex 4; ODK Ex 3

Continued on next page
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Table 3 - continued from previous page

Param. Number Cond. Datasets

ρ
1 LF words DLK; DC

2 HF words DLK; DC

βitem

1 Words DLK; DC

2 Fractals KD Ex 2; ODK Ex 1

3 Faces KD Ex 3; ODK Ex 2

4 Scenes KD Ex 4; ODK Ex 3

βassoc 1 Pairs KD Ex 1, OD

Φ

1-5 Confidence DC

6 DLK

7 KD Ex 1

8 KD Ex 2

9 KD Ex 3

10 KD Ex 4

11 ODK Ex 1

12 ODK Ex 2

13 ODK Ex 3

14 OD Ex 1

Notes: Param. = parameter, cond. = condition, DC = DeCarlo (2007),

DLK = Dennis, Lee, & Kinnell (2008), KD = Kinnell & Dennis (2012), ODK

= Osth, Dennis, & Kinnell (in press), OD = Osth & Dennis (2014), 1x =

once presented, 4x = four times presented. Note that each parameter receives

its own mean and variance/precision parameter - see the text for details.
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Analysis of the Model Fit

In our presentatation of the fit of the model to the data, we present both group level

predictions and predictions for the individual participants. To assess the goodness of fit at

the group level, we follow convention established in the recognition memory literature and

restrict analyses to hit and false alarm rates and d′. Group level predictions were derived

from the means of the hyperparameters which correspond to group-level estimates of the

relevant parameters. For parameters that were lognormally distributed, the hypermean ω

parameters were transformed as eω, which is both the geometric mean and median of the

lognormal distribution8.

Space precludes depiction of how the set of 594 individual participant parameters of

the model were able to fit the data. Instead, we depict the individual hit and false alarm

counts from each participant along with the model’s posterior predictive distribution.

Unlike the group level predictions, the posterior predictive distribution uses the entire

hyperdistribution: hit and false alarm predictions are generated for each sample of the

mean and variance/precision parameters. For analysis of the individual participants’

interference contributions, individual participant parameters were used. The predictions

and data are depicted on a scatterplot with hits on the y-axis and false alarms on the

x-axis.

Where necessary, inferential statistics were performed on model parameters by taking

the difference between the means of the hyperparameters and evaluating the proportion of

samples that are above zero, which measures the probability of a difference between the

two model parameters. Additionally, all density estimates on the posterior distributions

were performed using Gaussian kernel density estimation.

8The arithmetic mean of the lognormal distribution is eω+1/2ξ2

. We preferred usage of the geometric

mean/median eω due to the strong degree of skew in the lognormal distribution, which makes the arithmetic

mean a worse measure of central tendency.
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Parameter Estimates

Posterior distributions of the group means for each parameter can be seen in Figure

8. Several parameters largely conform to expectations. The learning rate r is highest in

conditions of strong performance: repeated items in the list strength experiments have the

highest learning rates, and the learning rate is higher in the Dennis et al. (2008) dataset

than the DeCarlo (2007) dataset, which is sensible given the higher presentation time in

the former experiment. Learning rates were also higher for better performing stimulus

classes, with words, word pairs, and scenes showing the highest learning rates and fractals

and faces exhibiting the poorest learning. The context match parameter µss was expected

to vary with study-test delay: estimates of this parameter varied by the duration of filler

activity as predicted, with the lowest values seen for the 8 minute filler activity and higher

values for the 3.5 minute filler activity and the long list, no filler condition of Dennis et al.

(2008) to reflect poor contextual reinstatement. The context mismatch parameter ρ, which

influences the magnitude of context noise, varied as expected with higher values for high

frequency than low frequency words to reflect their greater occurrences in memory. A

slightly negative bias in the criteria (Φ) can be seen for all stimulus classes except for

scenes, which exhibit a more conservative bias.

As was previously mentioned, Osth et al. (2014) attributed the small item noise

effects seen for nonlinguistic stimuli to a higher degree of both item and background noise

than word stimuli would exhibit, and the resulting parameter estimates conformed to these

predictions. Both the item mismatch parameter σ2

ti and the background noise parameter β

vary by stimulus class largely as predicted. Difference distributions for these parameters

can be seen in Figure 9. The highest values for the item mismatch variability parameter

are for fractals and faces. For fractals, 95.4% of the fractals minus words difference

distribution lies above zero. For the faces minus words comparison, 99.9% of the difference

distribution lies above zero. Images of natural scenes do not appear to differ significantly

from words, as only 33.7% of the scenes minus words difference distribution lies above zero.
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For the background noise parameter, fractals, scenes, and pairs differ significantly from

words, with 99.9%, 99.2%, and 100% of the area of the respective difference distribution

lying above zero. While faces appear to exhibit more background noise than words, 82.6%

of the area of the faces minus words difference distribution lies above zero. Further

comparison of the complete interference estimates for each stimulus class can be seen in the

section Interference Contributions.

The Model Fit

While the primary purpose of fitting the model to data was to measure the

magnitudes of the different interference contributions, interpretation of the model

parameters is also reliant on the model achieving a good quantitative fit to the data. In

this section, we present the model’s predictions alongside both the group and individual

participant data. For the group data, rather than compare the hit and false alarm rates

generated from frequentist methods, we separately estimated the hit and false alarm rates

for each dataset using simple hierarchical models and depict the predicted rates from the

group mean parameters. Details of how the binomial and multinomial rates were estimated

can be seen in Appendix C.

Word Frequency and Confidence Ratings: Fit to DeCarlo (2007). The fit

to the DeCarlo (2007) dataset can be seen in Figure 10 for the standard ROC and Figure

11 for the z-transformed ROC. To generate a density estimate of the ROC function, the

density was estimated on all of the points of the confidence based ROC simultaneously.

Inspection of the graphs reveals that the model exhibits a close correspondence to the

experimental data, with better predicted performance for LF words than HF words.

The model misses slightly on the zROC slopes: predicted zROC slopes for the median

zROC points for the data are .81 and .83 for LF and HF words whereas the model

produced zROC slopes of .91 and .95 for LF and HF words. This may be because

inspection of Figure 11 reveals that the data’s zROCs for HF words are slightly curvilinear,
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whereas the model is only capable of producing linear zROC slopes. Curvilinear zROC

slopes have been attributed to various factors, such as the presence of recollection

(Yonelinas, 1994), probability mixtures of encoded and non-encoded items (DeCarlo, 2002),

and decision noise (Ratcliff & Starns, 2009). We would like to emphasize that the primary

purpose of including this dataset in our omnibus fit was not to discriminate between

different theoretical explanations of ROC functions, but to constrain the parameters of the

model that are principally responsible for producing unequal variance between the target

and lure distributions, namely the variance in the item and context match parameters σ2

tt

and σ2

ss. Inspection of Figure 8 reveals that the parameters are well constrained by the

data, as their posterior distributions appear within only a limited range of their prior

distributions, which are broad and non-informative.

Individual participant data along with the model’s posterior predictive distribution

can be seen in Figure 12. One can see that the density of the model’s predictions closely

follows the density of the individual participant responses.

List Length, Word Frequency, and Study-Test Delay: Fit to Dennis, Lee,

and Kinnell (2008). The fit to the group data of Dennis et al. (2008) can be seen in

Figure 13. For this dataset and all remaining datasets, the density estimates of the

posterior distributions of both the rates estimated from the data along with the model’s

predicted rates are depicted using teardrop plots, which are vertical depictions of the

posterior distribution. A teardrop plot is constructed by plotting a posterior distribution

sideways for both the left and the right. Areas of the teardrop plots with greater width

indicate higher density regions of the posterior distribution.

The model achieves an excellent fit to the data, with the posterior distributions of the

model’s predictions aligning very closely with the posterior of the group data. As

mentioned previously, this dataset exhibited a small list length effect in the no filler

condition while there was no effect of list length in the filler condition, similar to what is

seen in the data. Dennis et al. (2008) argued that when study lists are immediately
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followed by a test list, participants might be more likely to use an end-of-list context than

reinstate a list-wide context. We allowed for this possibility by allowing a separate set of

µss hyperparameters for the long list in the no filler condition. While inspection of Figure 8

revealed that the poor contextual reinstatement µss parameter ended up quite high, it was

still sufficient to allow the model to predict a small effect of list length in the no filler

condition.

Due to the low estimate of the item mismatch variance parameter σ2

ti for word

stimuli, the model predicts virtually no effect of list length in the filler condition. The

model also predicts the word frequency mirror effect in the data, predicting both higher hit

rates and lower false alarm rates for low frequency words. The performance decrement of

delayed testing in the 8 minute filler condition is also addressed by the model, although the

magnitude of the performance decrement on both the data and the model’s predictions

appears to be small.

One should also note that several of the parameters used in the fit to this dataset

were constrained across other datasets. The context mismatch variability parameters ρ for

low and high frequency words, along with the background noise parameter β and item

mismatch variability parameter for word stimuli σ2

ti were also employed in the fit to the

data from DeCarlo (2007). The item mismatch variability parameter for word stimuli was

also used in the fits to the experiments that employ word pairs, namely the associative

recognition experiments that manipulate list length and list strength conducted by Kinnell

and Dennis (2012) and Osth and Dennis (2014).

Individual participant data along with the model’s posterior predictive distribution

can be seen in Figure 14. One can see that the density of the model’s predictions closely

follows the density of the data.
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List Length and List Strength with Non-Linguistic Stimuli: Fit to Kinnell and

Dennis (2012) and Osth et al. (2014)

Fits to all of the datasets with non-linguistic stimuli, specifically fractals, scenes, and

faces, can be seen in Figure 15. This includes the list length experiments conducted by

Kinnell and Dennis (2012) and the list strength experiments conducted by Osth et al.

(2014). The fit to the data is quite good, with the model’s predictions falling within the

posterior distribution of the data for every comparison. Inspection of the list strength data

reveals that the model is adept at predicting the large strength based mirror effect for

fractals and for faces, with much lower false alarm rates being predicted for the mixed

condition than for the pure weak condition.

The magnitude of the list length and list strength effects is difficult to evaluate on the

basis of hit rates and false alarm rates alone. d′ estimates can be seen in Figure 16. For

fractals and faces, both the data and the model reveal lower d′ in the long list and mixed

list conditions relative to the short list and pure weak conditions. As was previously

mentioned, the detrimental effects of list length and list strength are quite small in both

the data and the model’s predictions. For scenes, there is no effect of list length or list

strength. These predicted effects correspond to the differences in item mismatch variability

depicted in Figure 8, as list length and list strength effects are predicted for the stimuli

with the highest values of item mismatch variability.

Individual participant data along with the model’s posterior predictive distribution

for both the list length and list strength paradigms can be seen in Figures 17 and 18. The

fit appears to be quite good.

List Length and List Strength with Word Pairs in Associative Recognition: Fit

to Kinnell and Dennis (2012) and Osth and Dennis (2014)

Fits to the datasets that employ the associative recognition task with word pairs can

be seen in Figure 19. This includes the list length experiment of Kinnell and Dennis (2012,
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Experiment 1) and the experiment of Osth and Dennnis (2014) that utilized yes/no

responding. The fit to the data is good, with the model predictions falling within the

posterior distributions of the data. Nonetheless, the fit to the list length experiment is

somewhat worse than the fit to the list strength experiment. This is in part because the

performance of the participants appear to be much poorer in the list length experiment

than in the list strength experiment despite the similar experimental parameters employed

in both experiments. d′ estimates can be seen in Figure 20. The model predicts no effect of

either list length or list strength on associative recognition performance. While

performance appears to be somewhat poorer in the long list, this effect was found to not be

significant by Kinnell and Dennis (2012) in their analyses.

As mentioned previously, the item mismatch variability parameter σ2

ti is not just

constrained by the manipulations of list length and list strength, but higher values of σ2

ti

predict higher false alarm rates to strong rearraned pairs than weak rearranged pairs in

mixed lists. Inspection of Figure 19 reveals that the model predicts nearly equivalent false

alarm rates between weak and strong rearranged pairs, like in the data. Thus, the model is

able to simultaneously predict the cross-list strength based mirror effect (lower FAR in the

mixed list than in the pure weak list) as well as the broken within-list strength based

mirror effect (weak FAR = strong FAR). This is because the strength estimates used in the

likelihood ratio calculation are list-wide: when the strength of a list changes, the strength

estimates change. However, on a given test list, the strength estimates are not permitted to

change across trials. This is conceptually quite similar to the hypotheses of Stretch and

Wixted (1998b) and Hockley and Niewiadomski (2007), who posited that criterion shifts

occur across lists but stay relatively constant within a test list.

Individual participant data along with the model’s posterior predictive distribution

for both the list length and list strength paradigms can be seen in Figures 17 and 18.
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Interference Contributions

To evaluate the contributions from each interference component, the means of the

hyperparameters were used to calculate each interference component according to

Equations 14 and 17. Because the variance of the self match is less relevant than the other

contributions, only the components of the lure distribution were used in the calculation.

For word pairs in associative recognition, we combined the partial match and item noise

terms from Equation 17 due to the shared influence of the item mismatch variability

parameter on their predicted magnitudes. Density estimates of the item noise, context

noise, and background noise calculated for each dataset in the fit can be seen in Figure 22.

Given that context noise was only measured for single word stimuli, context noise is only

present in the fits to DeCarlo (2007) and Dennis et al. (2008).

Figure 22 depicts the total interference contributions in order from smallest to

largest. For the item noise estimates, only the conditions with the highest item noise were

used (long lists in list length manipulations and mixed lists in list strength manipulations).

One can see that the item noise contributions for words and scenes along with context

noise for low frequency words rank as the smallest interference contributions out of all of

the interference contributions. Figure 22 also confirms that the differences in the item

mismatch variability parameters across stimulus classes extends to the total item noise as

well. Item noise is significantly higher for fractals and faces than for single words, word

pairs, and scenes. Additionally, the largest interference estimates appear to be background

noise and context noise for high frequency words. Despite the fact that background noise

estimates were low for single words, they appear to be quite large relative to the other

interference contributions. Item noise, in contrast, does not appear to dominate the other

interference contributions in any of the datasets.

To elucidate the relative contributions of each interference component, proportions of

total interference were calculated for each interference term. For each dataset, the

condition with the highest item noise was used (long lists in the list length experiments
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and mixed lists in the list strength experiments). Given that the dataset of (DeCarlo,

2007) used shorter lists (70 items) than the longest lists in the (Dennis et al., 2008) dataset

(80 items), only the dataset of the Dennis et al. fit was used in this analysis. Additionally,

given that only one context noise term contributes at retrieval, separate analyses were

performed for the low and high frequency words.

Proportions of total interference can be seen in Figure 23, which contains bar plots of

the median proportion of total interference for each interference component along with the

95% highest density interval (HDI). For single words, word pairs, and scenes, item noise is

extremely close to zero in its contribution to the total interference. For fractals and scenes,

item noise occupies a much greater proportion of the total interference. Nonetheless, for

fractals and faces, background noise occupied a significantly greater proportion of

interference than item noise in the list length datasets, with 99.5% and 97.8% of the

background noise minus item noise difference distribution above zero for fractals and faces,

respectively. The differences are more ambiguous for the list strength datasets, with 94.2%

and 86.1% of the background noise minus item noise difference distribution above zero for

fractals and faces. For scenes and word pairs, background noise occupies virtually all of the

total interference.

Converging evidence was found in an analysis of the interference contributions of the

individual participants. For each participant, difference distributions were constructed

between the item noise of the highest item noise condition and the other interference

contributions. Following statistical conventions, differences among the interference

contributions were deemed significant if 95% of the area of the difference distribution lied

above zero. For words in the Dennis et al. dataset, all of the participants exhibited

significantly higher background noise than item noise and significantly higher context noise

for high frequency words than item noise. For both word pairs and scenes, all of the

participants exhibited higher background noise than item noise in both the list length and

list strength datasets. For fractals, one participant exhibited significantly higher
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background noise than item noise for the list length dataset. Otherwise, for both fractals

and faces, none of the participants exhibited a dominant interference contribution.

One of the surprising findings of this analysis is that context noise is virtually zero for

low frequency words (median of .03% of total interference), with background noise

occupying nearly all of the interference (median: 98.7%). For high frequency words,

roughly equivalent levels of context noise and background noise are present. How could low

frequency words exhibit such little context noise? In our fits, we collapsed across the

number of occurrences of a word (m) and the variability in the similarity to previous

contexts (σ2

su). One possibility is that contexts are quite dissimilar to previous contexts,

meaning that the true value of σ2

su is quite low. High frequency words may suffer from

considerable interference not because of the overlap among contexts, but due to their

frequent exposures (a high value of m).

While we have reported that the model’s fit is quite good, a model can often times fit

well because it is overfitting the data (Pitt & Myung, 2002). One way to ensure that a

model is capturing the underlying structure of the data is to fit the model to only a sample

of the total data and evaluate how well it performs on the remaining data, a technique

called cross validation. We performed a k fold cross validation procedure, which has been

shown to outperform the leave-one-out cross validation (LOOCV) method (Arlot & Celisse,

2010). In the k folds procedure, the data is equally divided into k sections, or folds, and

the model is independently fit to each fold. For each fold, the model’s generalizability was

evaluated by comparing the model’s predictions to the withheld data. Not only was the

model well able to fit the withheld data, but parameter estimates were consistent with

those derived from the main fit. The description and results of the cross validation

procedure can be seen in Appendix D.
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General Discussion

When cues are globally matched against the contents of memory the output of the

retrieval process can be characterized on the basis of matches and mismatches to the item

and context cues employed at retrieval. We fit a global memory model based on the tensor

model of Humphreys, Bain, and Pike (1989) that directly parameterizes the matches and

mismatches to the item and context cues to ten recognition memory datasets. The model

allows for an analytic estimation of the contributions of item noise, context noise, and

background noise that directly follow from the parameters of the model. While a model is

made more flexible by inclusion of all possible interference sources, the fact that the

different stimulus classes differed along these dimensions in psychologically meaningful

ways supports taking such a comprehensive approach. Moreoever, the parameters of our

model were constrained by the manipulations of strength, list length, list strength, word

frequency, study-test delay, along with the different stimulus classes. Maximum constraint

was imposed on the model by constraining several of the model’s parameters to be constant

across several of the datasets in the fit, which contained a total of 594 participants.

Resulting parameter estimates derived from a hierarchical Bayesian analysis revealed

that item noise plays a rather small role in retrieval, although the magnitude of its

influence depends on the stimulus class. Estimates of item noise were jointly constrained

by the manipulations of list length, list strength, as well as the simultaneous testing of

weak and strong pairs in a mixed list. For words, word pairs, and scenes, item noise is

extremely close to zero and interference stems entirely from pre-experimental sources,

namely context noise and background noise. For fractals and faces, item noise is much

larger, although background noise appears to be the dominant source of interference for

these stimulus classes in some comparisons (the list length datasets). None of the analyses

revealed a dominant influence of item noise in any of the stimulus classes or individual

participants. These results were particularly surprising because the contributions of

background noise have generally been ignored by models of episodic recognition. In the
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following sections, we discuss the implications for these parameter estimates in the

recognition memory literature, such as what the parameter estimates imply about the

underlying representations of linguistic and non-linguistic stimuli and comparisons to

previous investigations which have argued for higher magnitudes of item noise.

Plausibility of Low Item Noise

While the results of our model fit demonstrate that item noise makes a relatively

small contribution to the total interference in recognition memory tasks, it does not specify

what the vector representations of the items are that would result in low item noise. It has

been argued that no interference among the items can be exhibited when item

representations are orthogonal to each other (Dennis & Humphreys, 2001; Osth & Dennis,

2014). At a psychological level, this would imply that item representations are dissimilar

and share no features with each other. The results of our fitting imply that there is a

non-zero contribution of item noise at retrieval, which rejects the notion of orthogonal item

representations. Nonetheless, a close approximation would be employing relatively sparse

item representations, meaning that they are not completely orthogonal but exhibit minimal

overlap with each other.

Some might find such an idea implausible, especially given that words in recognition

memory tasks are often perceived as similar to each other in meaning, phonology, and

surface form. How then could their representations be dissimilar? A number of theories of

hippocampal function describe the function of the hippocampus as creating sparse high

dimensional representations from overlapping inputs (Kumaran & McClelland, 2012; Marr,

1971; McClelland, McNaughton, & O’Reilly, 1995; Treves & Rolls, 1992; Norman &

O’Reilly, 2003; O’Reilly & McClelland, 1994; O’Reilly & Rudy, 2001), allowing the

hippocampus to exhibit fast learning, discriminate among highly similar novel inputs, and

minimize interference, all qualities that are critical for performance on episodic memory

tasks. Tasks which require the similarity among the items to be emphasized can employ
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the distributed representations in the neocortex that have been developed from experience,

which is a central component of the complementary learning systems (CLS) theory

(McClelland et al., 1995).

Another possible interpretation is that item representations are multidimensional and

that their dimensions can be weighted based on their relevance to a cognitive task, as

proposed by the generalized context model (GCM: Nosofsky, 1986, 1991). In this regard,

dimensions among the items in a recognition memory task that emphasize their similarity,

such as their shared semantics or surface appearance, may be de-weighted for optimal

discrimination of old from new items. This approach yields similar interpretations as to the

hippocampal theories, in that representations of items are not fixed, but adapt to the task

faced by the participant. Thus, the results of our model fitting do not imply that word

representations are dissimilar in all cognitive tasks, merely that they are dissimilar in

episodic memory.

Another possible objection to the finding of minimal item noise in recognition

memory is that in the free recall task, manipulations of list length (Murdock, 1962;

Roberts, 1972; Ward, 2002) and list strength (Malmberg & Shiffrin, 2005; Ratcliff et al.,

1990; Tulving & Hastie, 1972) exhibit robust decrements on recall performance. How could

a memory system which exhibits minimal interference among the items in recognition

memory exhibit such strong competition among the items in a free recall task? As it turns

out, the majority of current free recall models exhibit competition among the items not

because of overlap in their item representations, but due to usage of a sampling with

replacement memory search process (Davelaar, 2007; Wixted & Rohrer, 1994).

In resampling models, the context cue initiates the probabilistic sampling of items

that are most strongly bound to the list context. As recall progresses, previously recalled

items are not removed from the set of recall candidates. Instead, they can continue to be

sampled by the search process instead of items that have not yet been recalled. List length

effects fall naturally from resampling models as longer lists contain more candidates to be
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output, decreasing the probability that any particular item will be sampled. It has been

demonstrated by both Wixted and Rohrer (1994) and Davelaar (2007) that resampling

allows for the prediction of both list length effects and the increase of inter-response times

as recall proceeds (Murdock & Okada, 1970). Additionally, other current resampling

models of free recall with specified item and context representations, such as the model of

Davelaar et al. (2005) and the temporal context model (Howard & Kahana, 2002;

Sederberg et al., 2008), employ orthogonal item representations and predict detrimental

effects of list length on free recall performance, which demonstrates that similarity among

the list items is not necessary to predict competition among the items in free recall.

While TCM and the model of Davelaar et al. have not simulated the list strength

paradigm, resampling provides an intuitive explanation: increasing the strength of a subset

of list items increases their sampling probability and decreases the sampling probability of

the non-strengthened items (Wixted, Ghadisha, & Vera, 1997). Resampling also provides a

similar and intuitive explanation of the finding of output interference in recall tasks

(Dalezman, 1976; Dong, 1972; Roediger, 1974; Roediger & Schmidt, 1980). Across a

number of experiments, it has been demonstrated that recalling a subset of the list items

decreases the recall probability of the remaining items. If it is assumed that the act of

recall strengthens the recalled items (as was assumed by the SAM model, Raaijmakers &

Shiffrin, 1981), then the sampling probability of the recalled items will increase at the

expense of the non-recalled items, producing output interference as a consequence.

Thus, while it is clear that the free recall task exhibits evidence for competition

among the list items at retrieval, the success of free recall models in addressing effects of

list length, list strength, and output interference comes from the usage of resampling

during memory search. These effects do not necessitate inter-item similarity among the list

items and a model such as ours that exhibits minimal item noise in recognition memory

could be capable of exhibiting competition in a free recall task through the usage of

resampling at retrieval during a free recall task.
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Arguments for Item Noise Models

There have been a number of experimental findings in the recognition memory

literature that have been used to argue for a larger contribution of item noise than we have

estimated in our model fits, specifically the effects of manipulations of semantic similarity

and decrements in performance that occur through recognition testing. Here, we discuss

these arguments in detail and describe how they are in fact compatible with the results and

interpretations from our modeling work.

Effects of Semantic Similarity on Recognition Memory. One line of evidence

that has been used to argue for the idea that item noise plays a substantial role in

recognition memory is the finding that semantic similarity among studied items impairs

performance. Typically, this is accomplished in recognition experiments by increasing the

number of studied items from the same semantic category, and decreases in performance

with increasing category length are often observed (e.g.: Arndt & Hirshman, 1998; Criss &

Shiffrin, 2004; Dewhurst & Anderson, 1999; Robinson & Roediger, 1997; Shiffrin et al.,

1995). For instance, Shiffrin et al. (1995) conducted an experiment in which participants

studied a large number of categories with different numbers of exemplars, where categories

were defined as words associatively related to a prototype word. Robust decrements in d′

were observed as category length increased from two to nine exemplars (Experiments 1 and

2, although Experiment 4 in the Appendix found no effect of category length on d′ when

category length was increased from one to ten exemplars). Another line of evidence

concerns findings from the Deese-Roediger-McDermott (DRM: Deese, 1959; Roediger &

McDermott, 1995), in which inclusion of a number of highly associated exemplars on a

study list causes participants to falsely endorse a strong associate of the exemplars, a

tendency which also increases with category length (Robinson & Roediger, 1997). On the

surface, these results are consistent with the predictions of item noise models which predict

that as more similar items are entered into memory, it becomes increasingly difficult to

discriminate between studied and unstudied exemplars from the same category (Clark &
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Gronlund, 1996).

While our present model fits demonstrate that the magnitude of the item noise

contribution for words is quite small, we have fit data from experiments that employed lists

of unrelated words. As we have previously mentioned, the magnitude of item noise is

dependent on the stimulus class. Thus, one possibility is that unrelated words exhibit very

low inter-item similarity whereas words that share a semantic category are sufficiently

similar to generate more substantial degrees of item noise. This approach was undertaken

by Johns et al. (2012) who used a holographic memory model where the item

representations are high dimensional vectors generated from a large text corpus of over

30,000 documents. Specifically, each dimension in the vector reflected a particular

document in the corpus and the dimension took a value of one if the word occurred in that

document and a zero otherwise. The resulting vectors were quite sparse, and consequently

there was virtually no overlap among the vectors of unrelated words and no effects of list

length and list strength were predicted in their simulations of the model. However, similar

words overlap quite substantially due to their co-occurrence in documents among the

corpus, and for that reason the model was able to predict higher false alarm rates for

semantically related lures in the DRM paradigm.

However, there are a number of complications from category length designs that

prevent us from endorsing the view that semantically similar words exhibit high degrees of

item noise. Specifically, evidence suggests that other factors complicate the interpretation

of category length and DRM effects. Changes in performance across category length do not

appear to be purely a consequence of having studied similar content, but also appear to

reflect the usage of category labels as cues to guide retrieval.

Pure item noise models predict that as category length is increased, performance

should decrease monotonically, as the higher number of similar studied items in memory

makes it more difficult to discriminate between studied items and highly similar lures.

However, Neely and Tse (2009) found that the change in performance is actually
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non-monotonic, with performance increasing as category length increased from 1 to 2

items, decreasing to the baseline level as category length increased to eight, and further

decreasing as category length increased to fourteen items. Neely and Tse (2009) suggested

that the increase in performance could be achieved if additional category labels are used at

retrieval, allowing memory to be more focused on items from a studied category if the

category length is relatively small (such as when category length is 2 items).

When category labels get used as cues along with the studied items, the task begins

to resemble an associative recognition task, as the question being asked by the participant

during a recognition test is no longer “Did I see this item on the study list?" but “Is this

item an exemplar of one of the categories I studied?"9 Such a view predicts that increases

in category length, which would increase the likelihood that category labels would be used

as cues, should produce an increase in the ability to discriminate studied categories from

unstudied categories. Dennis and Chapman (2010) found exactly this pattern. They

conducted a category length experiment where category length and list length were

manipulated by presenting eight categories with category lengths of one, three, and ten

exemplars. Since the list length increased as the category length is increased, a pure item

noise model predicts that discrimination of studied from unstudied categories should get

worse with increasing length. Instead, false alarm rates to exemplars from unstudied

categories decreased as category length was increased. Fits of the REM model found that

the model predicted an increase in the false alarm rate to exemplars from unstudied

categories. This pattern of data was well accounted for by the BCDMEM model, which

exhibits no item noise, by assuming that category length increases the likelihood that

category labels are used as cues in conjunction with the probe at retrieval.

Another prediction from pure item noise accounts of the category length effect is the

within-category choice advantage on forced choice tests (Clark & Gronlund, 1996; Clark,

1997; Hintzman, 1988). A counter-intuitive prediction of the models is that on a 2AFC

9We would like to acknowledge Michael Humphreys for conceiving of this analogy.
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recognition test, recognition should be superior when both choices are from the same

category than when both choices are from different categories. The models make this

prediction because when two similar items are presented, the memory strengths of the two

items are correlated. When the difference between the two memory strengths is calculated,

the covariance between the two similar items gets subtracted out, resulting in a difference

distribution that has lower variance for within-category choices than for between-category

choices. While Hintzman (1988) found confirmatory evidence for this prediction, Maguire,

Humphreys, Dennis, and Lee (2010) noted that Hintzman compared between and within

category choices as a between subjects manipulation, which may have changed the way

participants approached the test. Additionally, participants were tested using booklets,

which did not properly control for lag between presentations, the order of testing, etc. In

the experiments of Maguire et al., categories were generated from either word association

norms or taxonomically generated categories and the authors found no within-category

choice advantage in all experimental conditions. They additionally confirmed the null

hypothesis by using the Bayesian analysis developed by Dennis et al. (2008).

Nonetheless, a remaining question concerns why discriminability has often been found

to decrease with category length. There are two such confounds that can address this

regularity in category length experiments. First, when lists of semantic categories are

studied, performance has been found to decrease with within-category serial position in

recognition memory (Carey & Lockhart, 1973), free recall (Carey & Lockhart, 1973; Wood

& Underwood, 1967), and cued recall (Jakab & Raaijmakers, 2009; Mulligan & Stone,

1999). Many investigations of category length do not control for within-category serial

position, and an implication of this result is that longer categories tend to contain target

items from later within-category serial positions, degrading performance. In Neely and

Tse’s Experiment 4, when within-category serial position was controlled there was no

impairment in discriminability as category length was increased from two to fourteen

exemplars. In another condition where items came from later within-category serial
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positions, a category length on discriminability was found10.

The second confound concerns a measurement issue in category length designs,

namely the usage of d′ to measure discriminability. A difficulty with usage of d′ is its

assumption of an equal variance signal detection model, which is almost uniformly violated

in ROC experiments. If an equal variance model is used in the analysis, changes in the

response criterion can additionally change d′ (Rotello, Masson, & Verde, 2008) and for that

reason, da is often recommended for analysis. Cho and Neely (2013) conducted a category

length experiment where they employed category lengths of two, eight, and fourteen

exemplars using both old/new recognition with confidence ratings and 2AFC testing. They

additionally insured that for all category lengths the same number of items were tested in

each category and that all items came from the same serial position in the category. While

category length increased hit rates and false alarm rates and decreased d′, there was no

effect of category length on da, suggesting that a criterion shift may have been taking

place. An alternative possibility is that manipulations of category length increase the mean

of both the target and lure distributions to equivalent degrees. While item noise accounts

make this prediction, they further predict that the variance of both distributions should

increase and performance should decrease as a consequence. Nonetheless, usage of a

category label as an additional cue may have the effect of shifting both distributions

upward without decreasing discriminability. Additionally, Cho and Neely (2013) found no

effect of category length on 2AFC recognition performance and no within-category choice

advantage in the 2AFC tests, replicating the results of Maguire et al. (2010).

Another issue with category length designs concerns the production of implicit

10Neely and Tse (2009) proposed that attention might decrease with category length, in a manner similar to

the way it has been proposed to decrease with list length. Another possibility is that decreases in performance

with within-category serial position are due to prediction based learning mechanisms, whereby the encoding

strength is inversely proportional to how predictable an item is given the history of learning. Prediction

based learning has been used to account for primacy effects (Davelaar, 2013; Farrell & Lewandowsky, 2002;

Lewandowsky & Murdock, 1989), spacing effects (Murdock, 2003), and distinctiveness effects (Farrell, 2006).
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associative responses (IAR) during list presentation, which can occur when lists contain

words that are strongly associated to reach other (e.g.: silk, web, legs, are associates of

spider) rather than being members of the same taxonomic category (e.g.: spider, dog, cat

are members of the category animal). While controlled studies have found no effect of

category length using taxonomic categories (Cho & Neely, 2013; Neely & Tse, 2009),

Maguire et al. (2010) found a large effect of large effect of category length on 2AFC

performance for associative categories while finding no effect of category length when

taxonomic categories are used. Similarly, the studies that have found DRM effects, which

are possibly the biggest false memory effects found in list memory paradigms, often employ

associatively related categories (Roediger & McDermott, 1995; Robinson & Roediger,

1997). The distinction between taxonomic and associative categories is relevant because

during presentation of a list of strong associates, it is very likely that participants may

spontaneously generate associatively related words, leading participants to falsely attribute

their presentation to having occurred on the study list (Underwood, 1965).

Dennis and Humphreys (2001) proposed an IAR account of both category length and

DRM effects and argued that these effects do not speak directly to similarity among the

item representations. The IAR hypothesis is similar to the source monitoring account of

false memory (Johnson, Hashtroudi, & Lindsay, 1993), which proposes that false memory is

a consequence of the participant being unable to distinguish between events that actually

occurred and imagined events. Consistent with the IAR hypothesis, Maguire et al. (2010)’s

experiments using associative categories found a robust effect of category length on 2AFC

performance that were accompanied by no within-category choice advantage. This result

would be expected if increases in category length increased the likelihood of generating

other category exemplars during study, impairing discrimination of seen from unseen

category exemplars. However, if the exemplars exhibited dissimilar representations like we

are hypothesizing here, no within-category choice advantage would be expected. Item noise

accounts, in contrast, predict both a category length effect on discriminability and a
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within-category choice advantage.

The lack of decrement in discriminability with increasing category length in

controlled designs, the lack of within-category choice advantage, and the better

discrimination of studied categories from unstudied categories with increasing category

length are contrary to the the pure item noise account of category length effects. However,

we would like to state explicitly that these results do not preclude the idea that item

representations for semantically similar items exhibit more similarity to each other than

unrelated words, making them more susceptible to item noise. In fact, this idea is highly

plausible. Instead, these results indicate that other cognitive factors appear to be

contributing to the observation of category length effects with categories constructed from

word stimuli, and these factors complicate making inferences about the differing

susceptibility to item noise across differring degrees of semantic similarity of the stimuli.

The higher similarity among the item representations for similar words may be so

negligibly small that category length would have to be manipulated to much higher

numbers than in conventional experiments to observe effects consistent with the item noise

account, such as the within-category choice advantage.

Additionally, we have restricted this discussion to experiments that have employed

words as stimuli, as that accounts for the majority of the category length experiments that

have been conducted. Our modeling results indicate that certain non-linguistic stimuli may

be more susceptible to item noise than word stimuli, indicating that category length effects

consistent with the item noise account should be detectable using non-linguistic stimuli.

Consistent with this idea, Konkle, Brady, Alvarez, and Oliva (2010) found robust category

length effects in 2AFC testing using photos of objects. Furthermore, they employed many

of the same controls employed by Cho and Neely (2013)’s investigation which failed to find

category length effects with words, such as always testing the same number of items for

each category length and testing the same serial positions within each category.
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Decrements in Performance Through Recognition Testing. One of the more

recent lines of research that has been used to argue for models where item noise is the bulk

of interference in recognition memory concerns the decrease in performance across test

trials in a recognition memory test, which has been robustly observed in many experiments

(Annis, Malmberg, Criss, & Shiffrin, 2013; Criss et al., 2011; Gillund & Shiffrin, 1984; Kim

& Glanzer, 1995; Malmberg, Criss, Gangwani, & Shiffrin, 2012; Murdock & Anderson,

1975; Peixotto, 1947; Ratcliff & Hockley, 1980; Ratcliff & Murdock, 1976; Schulman, 1974).

While this finding had been known for some time, it was unclear whether the observed

decrease was due to the experience of the test items or the increase in retention interval

due to the passage of time. Recently, Criss et al. (2011) argued that the decrease in

performance was purely due to accumulated item noise, as one of their experiments

(Experiment 2) included a condition where recognition testing was delayed by a 20 minute

filler task. The 20 minute delay exhibited only a relatively small decrement to performance

and was much smaller than the decrement that was observed through the course of

recognition testing, thus ruling out the hypothesis that the testing decrement is due to the

passage of time. Converging evidence for the argument that the testing decrement reflects

item noise comes from Murdock and Anderson (1975), who found that the magnitude of

the testing decrement increased with the number of choices on a forced choice recognition

test. If all items on each forced choice trial are added to the contents of memory, then it

naturally follows that trials with more choices should exhibit greater performance

decrements as a consequence of the higher item noise.

Possibly the biggest challenge to the item noise hypothesis of the testing decrement is

that it is unable to explain the fact that the number of test items exhibit much larger

decrements on performance than the number of study items, which typically exhibit no

decrement at all under controlled conditions. For instance, Schulman (1974) compared list

lengths of 25, 50, and 100 items with equated retention intervals across each list length

condition and compared performance across blocks of 25 2AFC trials. For each test block,



SOURCES OF INTERFERENCE 74

performance was equivalent across the different list length conditions and yet there were

considerable decrements in performance across the test blocks. A pure item noise account

predicts poorer performance both in later test blocks and for larger list length conditions.

A plausible contender to the item-noise hypothesis is that contextual drift through

the course of testing impairs performance. That is, each test trial may alter the context

cue, which decreases the match to the studied items and consequently decreases recognition

performance. The majority of contextual drift theories assume that items, not the passage

of time, are the sources of contextual change (Mensink & Raaijmakers, 1988; Murdock,

1997; Howard & Kahana, 2002). Thus, Murdock and Anderson’s (1975) observation that

more choices on a forced choice trial cause greater decrements in performance can be

understood as greater contextual change as a consequence of experiencing more items on

each trial. While one could argue that the contextual drift explanation is ad hoc, several

investigators have independently posited the idea that retrieval from episodic memory

causes contextual change (Jang & Huber, 2008; Klein et al., 2007; Sahakyan & Hendricks,

2012). In Jang and Huber’s investigation, they found that retrieval during episodic tasks

produced greater contextual change than other forms of retrieval, which can explain why

testing produced far greater decrements in recognition memory performance in Criss et al.’s

(2011) investigation than that of a 20 minute retention interval.

To demonstrate that the contextual drift account can reasonably account for the

testing decrement, we simulated the paradigms of Schulman (1974) and Murdock and

Anderson (1975) with our model. Group-level predictions from the model for the dataset of

Schulman (1974) were derived by using hyperparameters that most closely resembled the

experimental parameters of the Schulman experiment. Due to the usage of high frequency

word stimuli, a short study-test delay, and a two second study time, we used the context

mismatch variability parameter for high frequency words, the mean context match for the

three and a half minute delay, the item mismatch variability parameter for word stimuli,

and the learning rate for the three second study time (which had to be multiplied by .9 to
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get better resemblance to performance). All individual trials were simulated, and after each

trial, two items were added to the contents of memory that corresponded to the two

choices on each test trial. The mean context match for test items was set to one to reflect

the greater recency for test items over study items.

The model predictions can be seen in the left panel of Figure 24. One can see that

the model correctly predicts no decrement of increasing list length (the data show better

performance in longer lists, although the differences were not significant), but fails to

produce levels of item noise that are sufficient to produce a testing decrement as large as

what is seen in the data. We simulated the contextual drift assumption by assuming that

for each item on each test trial, the mean match to context for study and test items was

multiplied by .9955 to reflect contextual drift caused by recognition testing. Predictions

from the contextual drift assumption can be seen in the right panel of Figure 24, and one

can see that it succeeds in capturing both critical aspects of the data: no effect of list

length on recognition performance is predicted, while performance decreases dramatically

with each block of recognition testing.

Group-level predictions for the dataset of Murdock and Anderson (1975) can be seen

in Figure 25. Given that there was immediate testing in their experiment, the mean match

to context parameter µss was set to one. The study time and word frequency for the

experiment was not specified, although we obtained reasonable correspondence with the

data using the learning rate r from the three second study time and the context mismatch

variability ρ for high frequency words. The left panel shows the predictions from the model

when no contextual drift is employed and each test item is added to the contents of

memory. One can see that while performance is worse as the number of choices is

increased, the level of item noise is insufficient to produce any significant decrements across

testing. The right panel shows the performance of the model with the additional

assumption that each item on a test trial multiplies the mean match to context by .9985.

One can see that the model correctly predicts a larger decrease as the number of choices on
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each forced choice trial was increased.

A more recent result that has been used to argue for an item noise interpretation of

the testing decrement comes from an investigation that used blocked categories at test.

Malmberg et al. (2012) conducted an experiment where all studied words came from two

semantic categories and included a blocked condition where the test list was divided into

two blocks of 150 2AFC trials where each block tested a different semantic category.

Performance decreased monotonically through the test list until the category switch point,

at which point performance increased considerably and subsequently decreased over further

test trials. In a control condition, all category exemplars were randomized through the test

block, performance decreased monotonically through testing. Malmberg et al. (2012)

argued that these results are not only consistent with item noise theories, which predict

that the magnitude of interference is dependent on the similarity of the cues to the

contents of memory, but are also comparable to the release from proactive interference (PI)

results of Wickens and colleagues (D. D. Wickens, 1970; D. D. Wickens, Born, & Allen,

1963). In release from PI paradigms, recall of trigrams is found to decline over trials, which

has been attributed to a buildup of PI from the preceding trials (Keppel & Underwood,

1962). However, when the category of the to-be tested material is suddenly shifted, such as

from digits to consonants, recall improves to around the level of the first trial. This effect

has been dubbed release from PI because it is as if the shift in the similarity of the learned

material prevents memory from suffering any interference from previous trials.

While the data of Malmberg et al. are compelling, their interpretation that the

release from PI effect in their data is a consequence of item noise critically assumes that

the original release from PI phenomenon observed by Wickens and colleagues was also due

to the similarity of the item representations. An alternative conception is that release from

PI is generally due to usage of new cues at retrieval when studied categories are switched

(Gardiner, Craik, & Birtwistle, 1972; Humphreys & Tehan, 1992; Tehan & Humphreys,

1995, 1996; Watkins & Watkins, 1975). Watkins and Watkins (1975) proposed a cuing
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explanation of the release from PI phenomenon in their description of the cue overload

principle, which states that performance degrades as the number of items associated with a

cue is increased. By their view, when the category of the to-be tested material is suddenly

switched, participants use a new category cue to guide their retrieval which exempts items

from earlier trials to enter into the sampling set at recall.

A cuing explanation can similarly be given for the results of Malmberg et al., in that

an obvious switch of the categories midway through testing may have prompted subjects to

use a new category cue in conjunction with the item cue to overcome the contextual drift

that had occurred throughout the test. Additionally, while there was a release from PI

effect that was observed when large blocks of items were tested, no release from PI was

observed when categories were shifted every five trials during testing, which is inconsistent

with the item noise account of the testing decrement. One possibility is that there are costs

associated with switching category cues that make it less likely when blocks are short,

which is a view that is endorsed by the original authors: “It is less clear how long a block

must be in order to observe a relase from output interference. There are likely costs

associated with switching the contents of retrieval cues, say from emphasizing one set of

item features representing category membership rather than another set." (Malmberg et al.,

2012, p. 4).

Evidence for Differentiation Models of Recognition Memory. Throughout

this article, we have restricted discussion of item noise to simple global matching models

that predict detrimental effects of list length and list strength on recognition memory

performance when the item representations bear similarity to each other. Another class of

models, referred to as differentiation models, were introduced to predict the null list

strength effect in recognition memory. These models include a variant of the SAM model

(Shiffrin et al., 1990) along with the REM (Shiffrin & Steyvers, 1997) and SLiM

(McClelland & Chappell, 1998) models. In differentiation models, the first presentation of a

study list item creates a new memory trace corresponding to that item, whereas subsequent
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reptitions update that memory trace. The repetitions not only make the representation

more responsive to its own cue, but also makes the representation less similar to other

items. Thus, strength has the functional effect of decreasing the item noise among the

stored item representations with increasing strength, whereas more traditional item noise

models predict increasing item noise with increased strength. Increases in list length do not

induce differentiation but instead create new memory traces, and thus differentiation

models predict a detrimental effect of list length on recognition memory performance.

The original motivation behind the differentiation mechanism was to predict a

dissociation between list length and list strength effects. As previously mentioned, while

there were many published effects showing detrimental effects of increasing list length,

Dennis and colleagues (e.g.: Dennis et al., 2008) have demonstrated that these appear to

be due to confounds present in list length designs that show no effect of list length for word

stimuli when controlled. While non-linguistic stimuli such as fractals and faces show worse

performance in longer lists (Kinnell & Dennis, 2012), the same stimuli appear to be

susceptible to list strength effects as well (Osth et al., 2014). With the exception of face

images, which appear to be more susceptible to manipulations of list length than list

strength, in the data and modeling from our fits there appeared to be no dissociation

between the effects of list length and list strength, as stimuli appeared to be affected

negatively by both manipulations or they were not affected. Thus, there is not strong

evidence for a dissociation between list length and list strength effects that warrants a

differentiation mechanism.

Another prediction of differentiation models is the strength based mirror effect (Criss,

2006). Because increased strength makes a stored memory trace less confusable with other

item representations, lures will exhibit considerably less similarity to the contents of

memory when the memory traces are strong than when they are weak, making it such that

the false alarm rate should reduce as memory traces are strengthened. As stated

previously, this pattern is robustly observed in item recognition (Hirshman, 1995; Stretch
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& Wixted, 1998b) and associative recognition (Clark & Shiffrin, 1992; Hockley &

Niewiadomski, 2007; Osth & Dennis, 2014). An alternative explanation of the strength

based mirror effect is that it is caused by a criterion shift. That is, higher expected

memory strength for a tested study list may cause the participant to adopt a stricter

response criterion for the tested items, reducing the false alarm rate.

To counter the criterion shift argument, Criss (2009, 2010) has presented evidence in

support of the predictions of differentiation models by demonstrating that memory

strength for lures is reduced under conditions of higher strength. Criss (2009) tested

participants under pure weak and pure strong conditions and asked them to indicate their

confidence on a 20 point scale. Distributions of subjective memory strength were lower for

lures following a pure strong list than following a pure weak list. To counter the argument

that this was the product of a criterion shift, a manipulation of target probabilities on the

test list did not have any effect on the strength estimates for lures, despite the fact that it

affected bias on their yes/no repsonses. In addition, Criss (2010) estimated parameters of

the Ratcliff diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008) and found that drift

rates for lures were lower in a pure strong condition than in a pure weak condition, whereas

a target probability manipulation only affected the starting point of evidence accumulation

and exhibited no effect on the drift rates.

A difficulty in interpretting these results is that they do not only support

differentiation models, but additionally support the overall class of likelihood ratio models.

Our model, which employs a likelihood ratio transformation of the memory strengths, not

only predicts lower FAR under conditions of higher strength but also predicts that the log

likelihood ratio distribution for lures should also exhibit a lower mean than the

corresponding distribution for lures studied in a weak study list.

A critical difference between our model and the differentiation approach lies in what

generates a shift in the distribution of evidence for lures when strength is increased. In

differentiation models, the strength based mirror effect is produced by encoding processes
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that produce more resilient memory traces. In our model, it is the higher expected memory

strength during a test that holds lures to a higher standard of evidence, producing lower

likelihood ratios. Starns et al. (2010) noted that when a list of items is strengthened, both

the encoding conditions and test expectations are confounded with each other. To separate

the two accounts, they had participants undergo a traditional list strength paradigm with

pure weak, mixed, and pure strong lists, but on the mixed lists they manipulated test

expectations by only testing participants on the weak items or the strong items while

informing participants about the strength composition of the test list. Differentiation

models predict lower false alarm rates for stronger study lists regardless of what is expected

on the test list. In contrast, false alarm rates were predicted by test expectations, as lower

false alarm rates were observed in the strong test lists and higher false alarm rates were

observed in the weak test lists. False alarm rates to weak test lists were nearly equivalent

to false alarm rates on the pure weak study lists, and similarly false alarm rates to strong

test lists were nearly equivalent to false alarm rates for the pure strong study lists.

A potential counter-argument to the results is that both differentiation and test

expectations play a role in producing the strength based mirror effect. However, Starns et

al. (2010) manipulated strength at two different levels. On some mixed and pure strong

lists, the strong items were presented twice (strong 2X condition), whereas on others, the

strong items were presented five times (strong 5X condition). False alarm rates in the pure

weak tests were identical in both the strong 2X and strong 5X conditions, which can be

easily explained by assuming that in both lists the lure items were held to the same

expectations of memory strength. A differentiation model that also uses expected memory

strength to alter the likelihood ratios predicts a lower FAR in the strong 5X condition

because those memory traces are more differentiated than in the strong 2X condition.

Subsequent investigations have also found that distributions of subjective memory strength

(Starns, White, & Ratcliff, 2012) and drift rates for lures (Starns, Ratcliff, & White, 2012)

are shifted when test expectations are manipulated following a mixed strength study list.
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Thus, the available evidence suggests that differentiation is not necessary to explain

either the null list strength effect or the strength based mirror effect. However, we do not

mean to suggest that there is no mechanism of differentiation. Differentiation of item

representations over the long term is both plausible and useful in describing how item

representations evolve with experience even in cognitive domains outside of memory. For

instance, McClelland et al. (1995) conducted simulations of the Rumelhart (1990) network

of concept learning and demonstrated how differentiation occurs over training. The

network is trained on propositions such as “A robin is a bird" and “A tree has branches."

McClelland et al. (1995) discovered that during the initial training, all of the agents (robin,

tree, etc.) exhibited similar hidden layer representations regardless of how similar they

were to each other. As training proceeded to its conclusion, the hidden layer

representations diverged and dissimilar entitites (such as robin and tree) exhibited

dissimilar hidden layer representations.

One distinction between the differentiation of concepts observed by McClelland et al.

and the episodic differentiation models such as SAM, REM, and SLiM, however, is that the

episodic models are multiple trace models where separate copies of the item representations

are stored in memory. Additionally, the episodic models posit that when a stimulus is

presented in a new context, a new episodic trace is created and it is during subsequent

presentations within that new context that differentiation of the episodic trace occurs

(Criss, 2006, 2009). In the Rumelhart (1990) network, there is no obvious distinction

between creating and differentiating representations, and differentiation operates on a

larger timescale than that of a study list in a recognition memory experiments. Below, we

posit that long-term differentiation may be able to explain the differences between the item

noise estimates of linguistic and non-linguistic stimuli.
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Differences Between Linguistic and Non-Linguistic Stimuli

Another finding in our parameter estimates was the higher estimates of item

mismatch variability and item noise for fractals and faces than for words and scenes. Why

would representations of faces and scenes be more susceptible to item noise? One

possibility that was initially raised by Kinnell and Dennis (2012) is that fractals and faces

have more overlap in their representations, making them more likely to suffer from effects

of list length and list strength. But why would stimuli such as faces and fractals exhibit

more overlap in their representations as opposed to words and scenes? One hypothesis is

that long term experience unitizes stimulus representations to minimize within-class

similarity. That is, untrained stimuli begin with overlapping representations, making them

susceptible to other stored stimuli that they are similar to and thus they suffer from high

degrees of item noise and background noise. However, as stimuli become unitized through

training, they exhibit less similarity to other stored stimuli but still match their own

previously stored representations, making them susceptible to context noise.

This hypothesis was initially proposed by Reder, Angstadt, Cary, Erickson, and Ayers

(2002) to explain the non-monotonic relationship between word frequency and recognition

memory performance. While low frequency words outperform high frequency words, very

low frequency words exhibit worse performance than low frequency words and exhibit

higher hit rates and false alarm rates (Wixted, 1992; Chalmers, Humphreys, & Dennis,

1997; Zechmeister, Curt, & Sebastian, 1978). Reder et al. (2002) conducted a training

study with pseudowords and found that initial training increased hit rates and false alarm

rates, but after six weeks of training, a mirror effect was evident with respect to training,

with less frequently trained pseudowords exhibiting higher hit rates and lower false alarm

rates. Similar results were found by Nelson and Shiffrin (2013) using Chinese characters as

the stimuli. A training study using very low frequency words conducted by Chalmers and

Humphreys (1998) found that definitions might facilitate unitization, in that training

without definitions hurt performance on the words, whereas training with definitions
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improved performance on the very low frequency words to around the level of low

frequency words. Converging evidence for the unitization hypothesis could be found by

observing how susceptible stimuli are to list length effects through training.

Item noise estimates for natural scene photographs closely resembled those of single

words. Aside from the generally higher performance for pictorial stimuli (Brady, Konkle,

Alvarez, & Oliva, 2008; Shepard, 1967; Standing, 1973), representations of scenes may

resemble words due to the fact that labels can easily be applied to segments of the images.

The idea that pictorial stimuli have linguistic representations was posited by Paivio (1971,

1976), who argued that pictures have “dual codes" possessing both perceptual and

linguistic information. Evidence for this hypothesis comes from the finding that recognition

performance for pictures is still superior to single words when the test stimuli are labels

instead of the pictures themselves (Paivio, 1976; Madigan, 1983). Similarly, a mirror effect

that resembles the word frequency mirror effect can be found for pictorial stimuli. Karlsen

and Snodgrass (2004) found that both pictures and words rated high in familiarity

exhibited lower hit rates and higher false alarm rates than those rated low in familiarity,

whereas in free recall both pictures and words rated high in familiarity were better recalled.

What kind of model could explain the unitization process? Decreasing the

within-class similarity for a stimulus set is very similar to the principle of differentiation

employed in differentiation models such as SAM, REM, and SLiM. However, a critical

distinction we would like to address is that differentiation models of episodic memory

operate over the short term, whereas we argue that a differentiation-like process operates

over longer time scales. Specifically, in short-term differentiation models, presentation of a

familiar stimulus in a new context creates a new representation and subsequent

presentations refine that newly created representation (Criss, 2006, 2009). We hypothesize

that there is no distinction between creating and updating episodic item representations.

Familiarization with a stimulus decreases its overlap with other stimuli of the same class,

minimizing item noise and background noise, but increasing the susceptibility of the
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stimulus to context noise as it becomes bound to more contexts with further experience.

The current modeling exercise gives no insight as to how the minimization of the

overlap might occur. A complete model of episodic and general memory would need to

describe how the item representations evolve with experience and would require long-term

training data to constrain the parameters that guide the transitions (see Nelson & Shiffrin,

2013, for one such attempt). One possiblee mechanism for stimulus unitization is

competitive auto-association. While our current model only describes associations between

the item and context layers, within-layer connections for the items could be implemented

as well (e.g.: J. A. Anderson, Silverstein, Ritz, & Jones, 1977). Distributed item

representations could become more sparse over long term experience if each item layer is

competitive such that only a small number of units can be active at a given time, which is

achieved in neural networks by usage of the k-winner takes-all (kWTA) algorithm. Norman

and O’Reilly (2003) used the k-WTA algorithm in recognition memory to show that item

representations could become more sparse as a consequence of experience, indicating that

such an approach shows promise for this endeavor.

On the Plausibility of the Likelihood Ratio Transformation

In our model, the mirror effect is captured via usage of a log likelihood ratio

transformation of the memory strengths. Glanzer et al. (1993) argued that the usage of the

likelihood ratio transformation obviates the need for a criterion shift to capture the mirror

effect. Support for the usage of such a transformation comes not just from being able to

capture the mirror pattern of hit and false alarm rates, but from several confirmed

predictions of specific changes in the shapes of the likelihood ratio distributions in

responses to experimental manipulations. Glanzer et al. (1993) demonstrated that

conditions which produce better performance produce old and new distributions that are

not only further from the center of the decision axis (where the log likelihood ratio is zero),

but also that the variances of both the old and new distributions are higher for conditions
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of better performance. Conversely, as performance degrades, both the old and new

distributions converge at the center of the decision axis. Glanzer et al. (1991) referred to

this prediction as concentering.

A consequence of concentering is that if one were to consider distributions for high

and low frequency lures, or high and low frequency targets, discriminability between the

two distributions corresponding to the word frequency classes improves as performance is

increased. In other words, the magnitude of the word frequency effect is dependent on the

level of performance. Glanzer and colleagues tested this prediction using the

aforementioned 2AFC null comparison procedure of Glanzer and Bowles (1976) where two

targets (null target trials) or two distracters (null distracter trials) of different word

frequency classes are tested. The likelihood ratio models make the prediction in this

paradigm that both the probability of choosing the LF target on null target trials

(p(LO, HO)) and the probability of choosing the HF distracter on null distracter trials

(p(HN, LN)) should increase under conditions of better performance. Glanzer and

colleagues have confirmed this prediction for manipulations of study time (Kim & Glanzer,

1993), repetitions (Hilford et al., 1997), study-test delay (Glanzer et al., 1991), and

decrements in performance with recognition testing (Kim & Glanzer, 1995). In each of

these experiments, better performance usually corresponded to higher values of both

p(LO, HO) and p(HN, LN). The latter finding is quite surprising, as the two stimuli were

not studied and yet the decision between them is still influenced by the nature of the study

episode, such as how much study time was allotted to the study list items.

Moreover, a recent analysis of Glanzer et al. (2009) confirmed a number of

predictions from likelihood ratio models across a large number of ROC experiments. The

prediction that variance of the underlying distributions increase with increases in

performance was confirmed by constructing ROCs where false alarm rates from different

conditions are compared (e.g.: HF FAR vs. LF FAR) and measuring the slope of the

z-transformed ROC. Higher variances for better performing conditions were found across a
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large number of manipulations, including word frequency, study time, repetitions, and

study-test delay. Another prediction was that the overall length of the zROC points should

be shorter for conditions of better performance, which was confirmed across a number of

experiments and initially tested and confirmed by Stretch and Wixted (1998a).

While these investigations found evidence for the distributional predictions of

likelihood ratio models, a direct test of the psychological theory behind likelihood ratio

models was conducted by Wixted and colleagues. Likelihood ratio models assume that

participants use information about the stimulus to make their recognition decisions.

Stretch and Wixted (1998b) reasoned that if this is the case, then if participants were to

study mixed lists of strong and weak items and at test were presented with cues to denote

whether the item was strong or weak, participants should use this to inform their

recognition decisions and exhibit a higher false alarm rate for weak cues. In contrast, the

data showed that participants had equivalent false alarm rates to strong and weak cues.

Morrell, Gaitan, and Wixted (2002) conducted similar experiments that yielded the same

conclusions. In their experiments, participants studied a category where exemplars were

repeated several times (strong category) and another category where items were only

presented once (weak category). False alarm rates to weak and strong categories were

equivalent. Based on these data, Wixted and colleagues argued that participants do not

appear to use the strength cues on a trial-by-trial basis, casting doubt on whether

participants are transforming memory evidence on the basis of expected memorability.

However, recent evidence from Starns and colleagues suggests that participants can

use experimenter provided cues to inform their recognition judgments. In the

aforementioned study by Starns et al. (2010), after studying a mixed list, when

participants were told that they would be tested on only weak or strong items, false alarm

rates very closely resembled false alarm rates from the pure weak and pure strong tests.

Further tests of the Stretch and Wixted (1998b) procedure have also found that

participants can adjust expectations to the colors that denote different levels of strength.



SOURCES OF INTERFERENCE 87

Hicks and Starns (2014) found that participants exhibited different false alarm rates to

different color strength cues when strong and weak items were tested in separate blocks of

40 items. Starns and Olchowski (2014) found a similar compliance with colored strength

cues when the weak and strong items required different response keys using randomized

presentation of the strength cues.

Similarly, other studies have found different false alarm rates for conditions outside of

the color cue procedure. Singer and Wixted (2006) tested categories from different

retention intervals and found different false alarm rates for immediate and delayed

categories when the two categories were studied two days apart. Furthermore, an ROC

analysis that compared the false alarm rates from the immediate and delayed categories

revealed higher variability for the immediate categories, a result which is consistent with

the predictions of likelihood ratio models. Singer (2009) found different false alarm rates

for strong and weak categories when a pleasantness ratings task was used at encoding,

contrary to the results of Morrell et al. (2002). While these results show a willingness to use

experimenter provided cues to inform recognition decisions appears to support likelihood

ratio models, why do these data provide support for while the investigations of Stretch and

Wixted (1998b) and Morrell et al. (2002) did not? One possibility is that participants

regularly rely on likelihood ratios to make recognition decisions, but have difficulty in

mapping their expected memorabilities to novel experiment provided cues such as color,

which would not be expected to be predictive of memory strength a priori. Procedures

such as blocking and making different responses may facilitate usage of the strength cues.

Other Sources of Variability in Recognition Memory

One source of variability that was not included in the model fit was trial-to-trial

variability in criterion placement. A number of criterion noise models of signal detection

have been developed that include such variability (Benjamin, Diaz, & Wee, 2009; Mueller

& Weidemann, 2008; Wickelgren, 1968). However, one of the critical challenges in
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incorporating criterion variability into a model fit is identifying its contribution from the

variability in memory strength. Benjamin et al. (2009) proposed that such measurement

can be done using an ensemble recognition paradigm in which participants give yes/no

decisions not to one stimulus, but to ensembles of old and new words that vary in the

number of words contained in the ensemble, with the logic being that ensemble size

constrains memory strength variability but does not affect criterion variability. However,

the approach of Benjamin et al. (2009) remains somewhat controversial, as Kellen, Klauer,

and Singmann (2012) have argued that Benjamin et al. (2009) severely over-estimated

criterion noise in their dataset. They demonstrated in their model fit that if decision

criteria are allowed to shift across the ensemble sizes, criterion variability estimates

decrease dramatically.

Another approach that avoids the usage of new paradigms involves usage of response

time models to quantify decision noise. The majority of current sequential sampling models

of response time employ trial-to-trial variability in the starting point of evidence

accumulation (S. D. Brown & Heathcote, 2008; Ratcliff et al., 1999; Usher & McClelland,

2001), a source of decision noise which has been described as analogous to criterion

variability in a signal detection framework (Benjamin, 2013; Benjamin et al., 2009). While

sequential sampling models are quite successful in their ability to measure aspects of the

decision-making process such as response caution, bias, and the strength of the evidence,

they are not able to specify the contributions of encoding and interference that are

contributing to the evidence used in the decision. One possible extension of our model is to

use a back-end sequential sampling model to produce decisions, allowing the model to not

only make response time predictions but also to estimate the contribution of decision noise.

We were not able to undertake such an approach in the current investigation because much

larger numbers of correct and error responses are needed in each response category than

are contained in our present datasets to properly estimate the response time distributions

(Ratcliff & McKoon, 2008).
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Conclusion

Our fits of a global matching model which parameterizes the matches and

mismatches to item and context demonstrated that the bulk of interference comes from

experiences prior to the list-learning episode (context noise and background noise), with

confusable stimuli such as fractals and faces exhibiting at most small contributions of item

noise. While these parameter estimates may seem counter-intuitive, they appear to be

quite consistent with a wide variety of findings in the recognition memory literature as well

as theories in cognitive neuroscience that advocate sparse distributed item representations.

Additionally, the model was able to fit quite well to a variety of manipulations of

stimulus class, strength, list length, list strength, study-test delay, and word frequency.

Several of these variables have been considered challenging to the first generation of global

matching models, while the results of our modeling work suggest that the initial global

matching models are quite capable of addressing these results by parameterizing the

similarities between the representations. An additional advantage to parameterizing

similarities instead of vectors is that it obviates the need for a vector size parameter, which

affects the identifiability of the model parameters (Montenegro et al., 2011; Myung et al.,

2007). Small effects of list length and list strength are well accommodated by low values of

item mismatch, unequal variance between targets and lures can be explained with item and

context match variability, and mirror effects are capably explained by a likelihood ratio

transformation of memory strengths. The global matching model we present is both simple

and tractable, and shows promise in being extended to other memory tasks.
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Figure 1 . Diagram of the different sources of interference on retrieval within a global

matching model. Depicted is a simplification the contents of memory, which include

memories formed during the study list episode and memories from prior contexts. The

probe cue and the study context are matched against the contents of memory

simultaneously. The self match refers to an exact match on item and context information,

in that the cues are matched against a representation of the cue item formed during the

study list episode. Item noise refers to a match on context information but a mismatch on

context information, in that the items are different from the probe cue but the memories

were formed during the list episode. Context noise refers to a match on item information

but a mismatch on context information, in that the memories are of the cue item but were

formed prior to the list episode. Background noise refers to a mismatch on both item and

context information. The magnitudes of each source of interference depend on the

similarities between the matches and mismatches on item and context information.
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Figure 2 . Graph displaying how changes in the context mismatch variability can account

for the word frequency mirror effect using both the raw memory strengths (top row) and

after the log likelihood ratio transformation (bottom). In the left column are signal and

noise distributions for low (ρ = .025) and high (ρ = .4) values of the context mismatch

variability paramter, which correspond to low and high frequency words. In the middle

column are predicted hit and false alarm rates for values of the context mismatch

variability parameter ranging from .025 to 1.0. In the right column are the data from the

2AFC paradigm employed by Glanzer and Bowles (1976) along with model predictions

(LF: ρ = .05, HF: ρ = .4). All other model parameters are as follows: list length of 30

items, ritem = .4, µtt = 1, µss = 1, σ2

tt = .025, σ2

ss = .075, σ2

ti = .002, βitem = .1.
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Figure 3 . Graph displaying the effects of changes on the item match and context match

variability parameters (σ2

tt and σ2

ss). Both parameters were initially set to .001. As both

parameters are increased, the variability of the target distribution increases more than the

variability of the lure distribution. Other parameters of the model were set as follows: list

length = 20, ritem = 1, rassoc = 1, µtt = 1, µss = 1, σ2

ti = .002, ρ = .1, βitem = .15,

βassoc = .45.
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Figure 4 . Graph displaying demonstrations of the effects of the item mismatch variability

parameter on both item recognition (top row) and associative recognition (bottom row),

which controls the amount of item noise in the model. Depicted are simulations of a list

length paradigm (left) and a list strength paradigm (middle column: HR and FAR

predictions, right column: d′ predictions). In the list length paradigm, the number of study

list items was manipulated between 1 and 80. In the list strength paradigm, 30 items were

studied, half were baseline pairs studied with learning rate ritem = 1.0 and the other half

were interference items studied with ritem ranging between .05 and 2.5. The other

parameters of the model were set as follows: ritem = 1, rassoc = 1, µtt = 1, µss = 1,

σ2

tt = .025, σ2

ss = .075, ρ = .1, βitem = .1, and βassoc = .1
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Figure 5 . Graph displaying demonstrations of the effects of the item mismatch variability

parameter (σ2

ti = 0, .015, .03) on a mixed list of weak and strong pairs in associative

recognition. Parameters were as follows: 15 weak pairs encoded with rassoc = 1.0, 15 strong

pairs encoded with rassoc = 2.5, µtt = 1, µss = 1, σ2

tt = .025, σ2

ss = .075, and βassoc = .1
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Figure 6 . Graph displaying demonstrations of the effects of background noise both item

recognition (top row) and associative recognition (bottom row). Background noise (βitem

and βassoc) was varied between 0, .4, and 1.2. Depicted are simulations of a list length

paradigm (left) and a list strength paradigm (middle column: HR and FAR predictions,

right column: d′ predictions). In the list length paradigm, the number of study list items

was manipulated between 1 and 80. In the list strength paradigm, 30 items were studied,

half were baseline pairs studied with learning rate ritem = 1.0 and the other half were

interference items studied with ritem ranging between .05 and 2.5. The other parameters of

the model were set as follows: ritem = 1, µtt = 1, µss = 1, σ2

tt = .025, σ2

ss = .075, σ2

ti = .03,

ρ = .001.
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Figure 7 . General graphical model representation of the hierarchical Bayesian fit of the

recognition memory model. Description of the entire set of hyperparameters can be found

in Table 3. Note: SM = self match, IN = item noise, CN = context noise, BN =

background noise.
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Figure 8 . Posterior distributions for all hyperparameters in the omnibus fit. Depicted

parameters are the learning rate r (learning rates for strong items/pairs are the sum of the

weak and strong learning samples and are indicated by dashed lines), the mean context

match µss, the variance in the item match σ2

tt, the variance in the context match σ2

ss, the

item mismatch variance σ2

ti, the context mismatch variance ρ, the background noise β,

along with the decision criteria Φ. Note: DLK = Dennis, Lee, and Kinnell (2008) dataset,

DC = DeCarlo (2007) dataset.
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σ2

ti (left) and the background noise parameter β (right).
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Figure 10 . Density estimates of the ROC function for both the data of DeCarlo (2007, left)

and model (right) for low (top) and high (bottom) frequency words. The circles indicate

the median of the hit and false alarm rate posterior distributions for each ROC point.
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Figure 11 . Density estimates of the zROC function for both the data of DeCarlo (2007,

left) and model (right) for low (top) and high (bottom) frequency words. The circles

indicate the median of the z-transformed hit and false alarm rate posterior distributions for

each ROC point.
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Figure 12 . Individual participant responses for each confidence rating and word frequency

class for the data of DeCarlo (2007). Predicted confidence counts from the model are

shown as the colored density estimates.
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Figure 13 . Fit to the data of Dennis et al. (2008) for all conditions. Depicted are the

density estimates from group level parameters for both the data and the model, along with

median posterior estimates for the data (circles) and the model (x’s).



SOURCES OF INTERFERENCE 124

0 2 4 6 8 10
0

2

4

6

8

10

Hi
ts

Short List, LF

0 2 4 6 8 10
0

2

4

6

8

10

Hi
ts

Long List, LF

0 2 4 6 8 10
0

2

4

6

8

10

Hi
ts

Short List, HF

0 2 4 6 8 10
0

2

4

6

8

10

Hi
ts

Long List, HF

0 2 4 6 8 10
FA

0

2

4

6

8

10
Hi

ts

Short List, LF

0 2 4 6 8 10
FA

0

2

4

6

8

10

Hi
ts

Long List, LF

0 2 4 6 8 10
FA

0

2

4

6

8

10

Hi
ts

Short List, HF

0 2 4 6 8 10
FA

0

2

4

6

8

10

Hi
ts

Long List, HF
No

 F
ill

er
Fi

lle
r

Fit to Dennis et al. (2008): Individual Participants

Figure 14 . Individual participant hit and false alarm counts from the Dennis et al. (2008)

dataset for all conditions. Predicted hit and false alarm counts from the model are shown

as the colored density estimates.
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Figure 15 . Hit and false alarm rates for the data and the model fit to the list length

experiments of Kinnell and Dennis (2012, left) and the list strength experiments of Osth et

al. (2014, right). Depicted are the density estimates from group level parameters for both

the data and the model, along with median posterior estimates for the data (circles) and

the model (x’s).
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Figure 16 . Hit and false alarm rates for the data and the model fit to the list length

experiments of Kinnell and Dennis (2012, left) and the list strength experiments of Osth et

al. (2014, right) that employ non-linguistic stimuli. Depicted are the density estimates

from group level parameters for both the data and the model, along with median posterior

estimates for the data (circles) and the model (x’s).
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Figure 17 . Individual participant hit and false alarm counts for the short (left) and long

(right) list conditions for fractals (top), faces (middle), and scenes (bottom). Predicted hit

and false alarm counts from the model are shown as the colored density estimates.
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Figure 18 . Individual participant hit and false alarm counts for the pure weak (left) and

mixed weak (middle) and mixed strong (right) conditions for fractals (top), faces (middle),

and scenes (bottom). Predicted hit and false alarm counts from the model are shown as

the colored density estimates. False alarms are the same for the mixed weak and mixed

strong conditions while the hits to 4X presented items are in the mixed strong plot.
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Figure 19 . Hit and false alarm rates for the data and the model fit to the list length

experiments of Kinnell and Dennis (2012, left) and the list strength experiments of Osth

and Dennis (2014, right) that employ word pairs in an associative recognition task.

Depicted are the density estimates from group level parameters for both the data and the

model, along with median posterior estimates for the data (circles) and the model (x’s).
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Figure 20 . Hit and false alarm rates for the data and the model fit to the list length

experiments of Kinnell and Dennis (2012, left) and the list strength experiments of Osth

and Dennis (2014, right) that employ word pairs in an associative recognition task.

Depicted are the density estimates from group level parameters for both the data and the

model, along with median posterior estimates for the data (circles) and the model (x’s).
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Figure 21 . Individual participant hit and false alarm counts for list length experiments of

Kinnell and Dennis (2012, left) and the list strength experiments of Osth and Dennis

(2014, right) that employ word pairs in an associative recognition task. Predicted hit and

false alarm counts from the model are shown as the colored density estimates. For the

mixed strong condition, hits and false alarm counts are from the strong intact and strong

rearranged pairs.
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Figure 22 . Density estimates for item noise, context noise, and background noise for all

datasets. Notes: LF = low frequency, HF = high frequency, LL = list length, LS = list

strength.
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Figure 23 . Median proportions of total interference for item noise, context noise, and

background noise (bg. noise) for the datasets of Dennis et al. (2008), Kinnell and Dennis

(2012), Osth et al. (2014), and Osth and Dennis (2014). Error bars represent the 95%

highest density interval (HDI). Notes: LF = low frequency, HF = high frequency.
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Figure 24 . Group level predictions for the Schulman (1974) paradigm using parameters

derived from the model fit, where on each individual trial two items are added to the

contents of memory. The left panel shows the model predictions without parameter

modification, while the right panel shows the model’s predictions where each item on a test

trial multiplies the mean context match by .9955. Due to an inavailability of the original

data from the Schulman (1974) dataset, the data means were approximated from the

graphs in the original article.
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Figure 25 . Group data and model predictions for the Murdock and Anderson (1975)

paradigm, where the number of choices on a forced choice recognition test was manipulated

between two and six. The left panel shows the model predictions without parameter

modification, while the right panel shows the model’s predictions each item on a test trial

multiplies the mean match to context by .9985. Note: The depicted data reflect averages

across serial positions on the study list.
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Appendix A

Derivations for the Mean and Variance of Memory Strength in Associative Recognition

In associative recognition, the co-occurrence tensor Mc can be decomposed into the

memories that are contributing to the memory strength s that is generated at retrieval

from a list of pairs L. Pairs stored during the list episode are scaled by the associative

learning rate rassoc. Given that we are investigating datasets in which the word pairs are

random pairings of unrelated words, we can assume that the probability of having seen a

pair combination prior to the experiment is negligible and thus the context noise term can

be omitted. We also assume no common words among the word pairs:

sintact = (C ′
s ⊗ I ′

a ⊗ I ′
b).rassoc(Cs ⊗ Ia ⊗ Ib)+ Self Match

∑

i,j∈L,i,j 6=a,b

rassoc(Cs ⊗ Ii ⊗ Ij)+ Item Noise

∑

u∈P,u6=s

(Cu ⊗ Ia ⊗ Ib) Background Noise

If the probe cue is a rearranged pair, there is no self match. However, there are two

partial matches terms. For a list of pairs A-B, C-D, E-F, etc., a rearranged pair A-D will

have a partial match to the stored A-B and C-D pairs:

srearranged = (C ′
s ⊗ I ′

a ⊗ I ′
d).rassoc(Cs ⊗ Ia ⊗ Ib) Partial Match

+ rassoc(Cs ⊗ Ic ⊗ Id) Partial Match

+
∑

i,j∈L,i,j 6=a,b,c,d

rassoc(Cs ⊗ Ii ⊗ Ij) Item Noise

+
∑

u∈P,u6=s

(Cu ⊗ Iy ⊗ Iz) Background Noise

The above equations can be rewritten as matches and mismatches between the item

and context vectors:
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sintact =rassoc(C
′
s.Cs)(I

′
a.Ia)(I ′

b.Ib)+ Self Match (18)

∑

i,j∈L,i,j 6=a,b

rassoc(C
′
s.Cs)(I

′
a.Ii)(I

′
b.Ij)+ Item Noise

∑

u∈P,u6=s

(C ′
s.Cu)(I ′

a.Iy)(I ′
a.Iz) Background Noise

srearranged =rassoc(C
′
s.Cs)(I

′
a.Ia)(I ′

d.Ib)+ Partial Match (19)

rassoc(C
′
s.Cs)(I

′
a.Ic)(I

′
d.Id)+ Partial Match

∑

i,j∈L,i,j 6=a,b,c,d

rassoc(C
′
s.Cs)(I

′
a.Ii)(I

′
b.Ij)+ Item Noise

∑

u∈P,u6=s

(C ′
s.Cu)(I ′

a.Iy)(I ′
a.Iz) Background Noise

The matches and mismatches of the context vectors can be substituted using the

same parameters for the normal distribution used in Equation 7 for item recognition.
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Appendix B

Equations for the Log Likelihood Ratio Transformation of Memory Strength

For our model, we used the analytic expressions for the likelihood ratio transformation

derived by Glanzer et al. (2009) for both the equal variance and unequal variance normal

distributions. In our model, the ratio of standard deviations σnew/σold depends on a

number of model parameters, and ratios can be one or greater although ratios below one

are the most common. Following Glanzer et al., we use X to refer to samples on the

memory strength axis and Λ to refer to log likelihood ratios.

The equations described in Glanzer et al. (2009) describe a fully informed likelihood

ratio model where the actual memory strengths are equivalent to the strengths used in the

likelihood ratio. As described in the text, the expected strengths in the likelihood ratio

need not be equivalent to the actual strengths. In the mixed lists in our list strength

datasets, we assume that despite the fact that tested items have different strengths, the

same expected strengths in the likelihood ratio are used for each item. We describe the

expected strengths as “subjective strengths." We describe the actual means and standard

deviations of the memory strength distributions as µ and σ, while the subjective means

and standard deviations of the memory strength distributions are denoted as ρ and τ .

Glanzer et al.’s equations were written expressed for the case where σnew = 1 and

differences in strength were expressed as different values of µold. For that reason, in their

expressions d′ and d equal µold in the unequal variance and equal variance models,

respectively. Given that in our model both σnew and σold vary, all parameters are

normalized by τnew before usage in any of the equations below.

For the equal variance log likelihood ratio transformation, we use the equations in

Appendix A of Glanzer et al. (2009). This results in normal distributions with means and

variances as follows:
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E(Λ|Old) =d′2/2

E(Λ|New) =d′µold − d′2/2

V ar(Λ) =d′2σ2

old

where d′ = ρold/τnew. µold and σ2

old are normalized by τnew and τ 2

new, respectively.

For the unequal variance log likelihood ratio transformation, we use the equations in

Appendix B of Glanzer et al. (2009). Like with the equal variance case, σnew is assumed to

be one. The parameter ς refers to the subjective ratio of standard deviations τold/τnew. The

resulting log likelihood ratio distributions are non-central chisquare distributions, where

the x is:

Φ + (d2)/[2ς2(ς2 − 1)] − (d2/2ς2) − log(ς)

σ2

X(ς2 − 1)/2ς2

where Φ is the criterion on the log likelihood ratio axis and d = ρold/τnew, σ2

X is the actual

variance of the target or lure distribution normalized by τ 2

new. The noncentral chisquare

distribution has one degree of freedom and non-centrality:

(
−d/(ς2/2) − µX

σX

)2

where µX and σX are the actual means and standard deviations of the target or lure

distribution normalized by τnew. Predictions for old or new items can be derived from these

equations by substituting values of the appropriate distribution for µX and σX .

One should note that it is also possible for our model to produce cases where

σnew > σold (although in the model fits, it was quite rare). Hit and false alarm rate

predictions are produced for this case by merely taking using the cumulative distribution

function with the parameters above, while in the standard σold > σnew case, hit and false

alarm rates are produced by subtracting the cumulative distribution function from one.
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Appendix C

Binomial and Multinomial Rate Estimation

While some investigations estimate the relevant parameters from signal detection theory (d′

and c) and derive the hit rate h and false alarm rate f directly from those estimates

(Dennis et al., 2008; Pooley et al., 2011), we did not want the rates to have to conform to a

particular signal detection model. Instead, rates h and f were estimated directly from the

hit and false alarm counts:

Hi,j,k ∼Binomial(hi,j,k, Tj,k)

Fi,j,k ∼Binomial(hi,j,k, Lj,k)

Confidence counts were sampled from a multinomial distribution:

Hc1,i, ..., Hc6,i ∼Multinomial(hc1,i, ..., fc6,i, T )

Fc1,i, ..., Fc6,i ∼Multinomial(fc1,i, ..., fc6,i, L)

All rates for individual participants in the yes/no conditions were sampled from

reparameterized beta distributions, which uses a mean parameter λ and variance

parameter ν:

hi,j,k ∼Beta(λh,j,k, νf,j,k)

fi,j,k ∼Beta(λh,j,k, νf,j,k)

Separate λ and ν parameters were used for each hit and false alarm rate for each

condition. The hyperparameters for the means and variances used nearly non-informative

priors:
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λj,k ∼Beta(.5, 2)

νj,k ∼InverseGamma(.1, .1)

For the confidence counts in the DeCarlo (2007) dataset, multinomial rates for each

confidence category were sampled from reparameterized beta distributions, but were

subsequently normalized to sum to one. We designate the samples before normalization as

hc and fc:

hcc1,i, ..., hcc6,i ∼Multinomial(λh,c1,i, ..., fh,c6,i, T )

fcc1,i, ..., fcc6,i ∼Multinomial(λf,c1,i, ..., ff,c6,i, L)

Rates h and f were obtained by normalization:

hc1,i, ..., hc6,i = hcc1,i/k, ..., hcc6,i/kh,i

fc1,i, ..., fc6,i = fcc1,i/k, ..., fcc6,i/kf,i

where k is

kh,i = kh,c1,i + kh,c2,i + ... + kh,c6,ikf,i = kf,c1,i + kfc2,i + ... + kf,c6,i (20)

Each rate parameter was estimated with four chains of 5,000 samples each after a

burn-in period of 1,500 samples using JAGS software.
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Appendix D

Cross Validation

To assess the generalizability of the model, we performed a cross validation procedure. In

cross validation, model generalizability is assessed by fitting a model’s parameters to a

sample of the complete data while withholding some portion of remaining data.

Subsequently, the model’s fit is assessed by comparing its predictions to the withheld data.

For the present purposes, we have adopted a k fold cross validation procedure, which has

been shown to outperform the leave-one-out cross validation (LOOCV) method (Arlot &

Celisse, 2010). In the k folds procedure, the data is equally divided into k sections, or folds,

and the model is independently fit to each fold. To perform this procedure, we randomized

the trial order of each participant’s data and divided it up into eight folds (k = 8) due to

the fact that eight was the largest number of observations for the associative recognition

datasets. An equal number of observations for each condition and trial type were in each

fold. The model was fit using the same prior distributions and number of chains (32) as in

the original model fit.

For each fold in the cross validation, predictions for the withheld data were generated

from the participant parameters in each fold from a single randomly selected set of

parameters from each participant’s posterior distribution. Subsequently, the predictions for

each set of withheld data were summed together to produce a complete set of predictions

for the withheld data. As an example, if there were eight observations per condition, a

randomly selected set of parameters was used to generate predictions for the single

withheld observation in each condition. For each fold there would be a single withheld

observation, and the predictions from each of the eight folds were summed to produce a

complete set of predictions (eight observations) for the withheld data for each participant.

To compare the predictions of the withheld data against the model, we used the rate

estimation procedure described in Appendix C to estimate the posterior distributions on

the hit and false alarm rates. The model’s predictions were compared against the original
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data in the same manner was used in the body of the text. Namely, posterior distributions

on the group means for the hit and false alarm rates of both the data and the model were

compared against each other. Depictions of the ROC and zROC data and predictions from

DeCarlo (2007) can be seen in Figures D1 and D2, fits to the Dennis et al. (2008) dataset

can be seen in Figure D3, fits to the data from the experiments using non-linguistic stimuli

can be seen in Figure D4, and fits to the associative recognition data can be seen in Figure

D5. One can see from inspection of the figures that the fit is quite good, and any

impairment in the fit appears to be quite minor. This may be because several of the

constraints on the model are operating across multiple datasets.

To assess the consistency in the parameter estimates across each of the folds, we

calculated the proportion of total interference in the same manner as depicted in Figure 23.

Median proportions of total interference for each interference contribution in each fold can

be seen in Table D1. One can see that there is qualitative consistency across the eight

folds. Each fold is in agreement with the conclusions of the main fit, namely that item

noise is not a dominant source of interference in any of the datasets. Where there is the

weakest across-fold consistency is in the two datasets that use fractals as stimuli. However,

inspection of the interference proportion estimates of the main fit in Figure 23 reveals that

the datasets that employ fractals as stimuli have the widest confidence intervals of all of

the fits.

Table D1

Median proportions of total interference for each interference contribution (IN = item

noise, CN = context noise, BN = background noise), as measured by each of the eight folds

in the cross validation procedure.

Folds

Interference 1 2 3 4 5 6 7 8

Dennis et al. (2008): LF Words

Continued on next page
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Table D1 - continued from previous page

Folds

Interference 1 2 3 4 5 6 7 8

IN .0008 .0027 .0004 .0007 .0041 .0004 .0019 .0029

CN .0003 .0005 .0006 .0001 .0016 .0000 .0002 .0004

BN .9955 .9888 .9936 .9961 .9841 .9971 .9917 .9872

Dennis et al. (2008): HF Words

IN .0004 .0014 .0002 .0004 .0021 .0002 .0009 .0015

CN .0502 .4914 .4966 .4870 .4961 .4921 .4855 .4885

BN .4928 .9888 .4977 .5089 .4959 .5048 .5064 .5012

List Length: Fractals

IN .1064 .2002 .1769 .0784 .2815 .2044 .1157 .1693

BN .8934 .7998 .8231 .9215 .7184 .7955 .8842 .8306

List Strength: Fractals

IN .1583 .2888 .2475 .1207 .4141 .3132 .1724 .2441

BN .8417 .7119 .7525 .8793 .5859 .6868 .8276 .7558

List Length: Faces

IN .3065 .3322 .3178 .3195 .2996 .2705 .3203 .2545

BN .6935 .6678 .6821 .6804 .7000 .7294 .6797 .7455

List Strength: Faces

IN .3922 .4173 .3975 .4157 .3749 .3561 .3964 .3206

BN .6088 .5827 .6025 .5842 .6250 .6438 .6035 .6793

List Length: Scenes

IN .0000 .0000 .0000 .0000 .0001 .0000 .0002 .0000

BN .9999 .9999 .9999 .9999 .9999 .9999 .9998 .9999

List Strength: Scenes

Continued on next page
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Table D1 - continued from previous page

Folds

Interference 1 2 3 4 5 6 7 8

IN .0000 .0000 .0000 .0000 .0002 .0000 .0003 .0000

BN .9999 .9999 .9999 .9999 .9998 .9999 .9997 .9999

List Length: Pairs

IN .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000

BN .9999 .9999 .9999 .9999 .9998 .9999 .9999 .9999

List Strength: Pairs

IN .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000

BN .9999 .9999 .9999 .9999 .9998 .9999 .9999 .9999
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Figure D1 . Density estimates of the ROC function for both the data of DeCarlo (2007,

left) and cross validation model fit (right) for low (top) and high (bottom) frequency

words. The circles indicate the median of the hit and false alarm rate posterior

distributions for each ROC point.
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Figure D2 . Density estimates of the zROC function for both the data of DeCarlo (2007,

left) and cross validation model fit (right) for low (top) and high (bottom) frequency

words. The circles indicate the median of the z-transformed hit and false alarm rate

posterior distributions for each ROC point.
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Figure D3 . Fit to the data of Dennis et al. (2008) for all conditions. Depicted are the

density estimates from group level parameters for both the data and the model, along with

median posterior estimates for the data (circles) and the model (x’s). Density estimates are

depicted as teardrop plots, which vertically depict the entire posterior distribution by

plotting them sideways (see the main text for more description).
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Figure D4 . Hit and false alarm rates for the data and the cross validation model fit to the

list length experiments of Kinnell and Dennis (2012, left) and the list strength experiments

of Osth et al. (2014, right) that employ non-linguistic stimuli. Depicted are the density

estimates from group level parameters for both the data and the model, along with median

posterior estimates for the data (circles) and the model (x’s).
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Figure D5 . Hit and false alarm rates for the data and the cross validation model fit to the

list length experiments of Kinnell and Dennis (2012, left) and the list strength experiments

of Osth and Dennis (201, right) that employ word pairs in an associative recognition task.

Depicted are the density estimates from group level parameters for both the data and the

model, along with median posterior estimates for the data (circles) and the model (x’s).


