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Abstract
Background: There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure
patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is
important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be inti-
mately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including
data visualization), and interpretation. Methods: In this manuscript, we review the challenges associated with the analysis of safety
endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. Results:We
share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and
interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared
to other sources. Conclusions: Clinical trials are an important source of safety data that contribute to the totality of safety
information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the
efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.
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Introduction

Randomized clinical trials are the gold standard for evaluating

the efficacy of any new intervention. Trials are adequately

sized and powered so that for a small number of primary (and

potentially secondary) endpoints, sponsors can establish the

benefit of a novel therapy over the current standard of care in

a predefined population of patients. Clinical development pro-

grams are designed to control variability and to ensure the

quality of the generated data; therefore, the patients recruited

to participate are those who meet a long list of study eligibility

criteria. This naturally tends to exclude patients with other co-

occurring disease, as well as those individuals taking 1 or more

concomitant medications to address signs or symptoms, since

both can potentially confound trial outcomes. Though efficacy

is often the primary goal, sponsors collect myriad other data

during the course of development to assess the safety of the

intervention under investigation to better characterize the

benefit-risk profile. For instance, phase I animal studies may

indicate that the drug may not be safe for human use, phase I

studies of cytotoxic chemotherapies in oncology patients may

identify a maximum tolerated dose, or studies of dose-response

in phase II could simultaneously assess efficacy and tolerability

for selecting doses for further study. However, the examination

of safety in early phases typically focuses on severe toxicities

expected to occur in a small number of patients or healthy

subjects over a limited duration of time. Further, animal studies

may not be predictive of the effect observed in humans.1 In

practice, there are numerous safety endpoints to consider as a

medical product proceeds through clinical development.

Drug-related death and disease progression are obvious safety

outcomes, and data for adverse events (AEs), laboratory

abnormalities, vital signs, physical examinations, hospita-

lizations, electrocardiograms (ECGs), and patient-reported

outcomes (PROs) for quality-of-life (QOL) can suggest other

safety and tolerability concerns for the patient. In addition,
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efficacy outcomes that fail to improve or worsen over time

contribute to the questionable safety of the new treatment. The

goal is to identify safety signals as early as possible, prevent or

mitigate further safety issues where feasible, and to highlight

areas requiring greater focus during postapproval safety

monitoring.

There has been an increased emphasis on the proactive and

comprehensive evaluation of safety endpoints to ensure patient

well-being throughout the medical product life cycle.2 In fact,

depending on the severity of the underlying disease, it may be

appropriate to plan safety assessments as early as the start of

the development program. Though there has been some

advancement in the quantitative evaluation of safety outcomes

in clinical trials,3-5 the methodologies available are often

descriptive in nature because of a number of practical

challenges:

1. Efficacy trials are sized and powered to identify dif-

ferences among treatments for a small number of effi-

cacy endpoints. Because of the rarity of many safety

outcomes, the available sample size, even when com-

bined across several trials, results in treatment com-

parisons for safety that are often underpowered.

2. Safety trials enriched with a sicker population to limit

trial size and duration may create issues of

generalizability.6,7

3. There are numerous safety endpoints that are repeat-

edly measured over time. If statistical testing is per-

formed to identify differences among the study

treatments without appropriate adjustment for multi-

plicity, this may lead to false positive findings. How-

ever, strict adjustment for multiplicity may further

limit the already finite power available to detect safety

signals. The analysis should strive for a reasonable

balance of type I and type II errors.

4. Safety outcomes have important characteristics to con-

sider including duration, severity, and investigator’s

assessment of causal relationship to drug, resulting

in numerous sensitivity analyses.8 Further, it is unclear

which collection of event attributes would warrant

consideration as the “primary” analysis.

5. Analyses within subgroups and by duration of therapy

are important. For example, certain patient character-

istics may contribute to an increased risk of safety

outcomes, and certain patient populations, such as

pediatrics, may have additional requirements to estab-

lish the safety profile.9-12 Further, alternate estimands

of patient safety should be considered. For example,

safety outcomes are typically summarized for patients

receiving at least 1 dose of study therapy, but analyses

on alternate populations, such as patients who adhere

to study therapy and/or complete the trial are impor-

tant to consider.13

6. Not all safety endpoints and analyses can be prespeci-

fied. While the disease under investigation, the

mechanism of action of study therapies, or animal

models may suggest safety issues likely to occur dur-

ing the course of the trial, unplanned safety issues may

emerge, making it difficult to prespecify appropriate

analyses in advance. For example, several drugs that

have caused severe drug-induced liver injury (DILI) in

humans have not exhibited clear hepatotoxicity in

animals.1

7. Safety issues may occur spontaneously at any time

during the trial, and often may occur between study

visits. This adds complexity for summarizing results

across time, and may result in some level of missing

data for events that depending on the assumptions,

could impact inference between study arms.

8. Medical classifications may be inaccurate and coded

inconsistently.2,14,15

9. Safety could be associated with duration of therapy.

Special consideration needs to be taken in studies

where severe safety outcomes may lead to differential

rates of drop out between the treatment arms (here we

refer to the number of patients with the event per total

number of patients), since patients with longer follow-

up have greater opportunity to experience 1 or more

safety outcomes.16 The point estimates should always

be interpreted in the context of the length of the obser-

vation/follow-up time. Note that drop out due to an

adverse event is itself an important safety endpoint.

Further, statistical challenges are present when the

censoring mechanism is not independent of the event,

as this is a common assumption in many time-to-event

analyses.

10. All therapies carry some level of risk, and for more

severe diseases, patients may be more willing to

accept a greater degree of toxicity in order to obtain

an important benefit than they would be for less grie-

vous conditions. For example, natalizumab remains an

important option for patients suffering from aggres-

sive multiple sclerosis despite the potential risk of

acquiring progressive multifocal leukoencephalopathy

(PML), an opportunistic viral infection of the brain

that can lead to severe disability or death. Patients with

no prior immunosuppressant therapy and between 49

and 72 months of exposure to natalizumab have a 6/

1000 rate of becoming positive for the JC virus, the

underlying cause of PML.17 Balancing the potential

benefits and risks of new therapies is challenging, and

this is currently an area of active research.18,19

11. Trials for chronic indications are too short to ade-

quately assess long-term safety outcomes. Clinical

trials are often short in duration compared to the treat-

ment duration patients might experience in real life.

Single-arm extension studies may be used to obtain

long-term safety information, but this is at the expense

of no concurrent control group to assess differences

between the treatments (though open-label rates can
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be compared to background disease rates; see Schnell

and Ball20 and Duke et al21 for examples) . For chronic

diseases, AE analyses in clinical trials will most likely

underestimate the actual rate of occurrence and possi-

bly even the severity of events. Additionally, “the

safety evaluation during clinical drug development is

not expected to characterize rare adverse events, for

example, those occurring in less than 1 in 1000

patients.”22

12. Safety analyses need to consider individual as well as

collective ethics. Generally, in order to consider a

therapy effective, a statistically and clinically signifi-

cant treatment effect needs to be observed between the

treatment arms. It is insufficient to identify individuals

cases where patients may derive benefit from the drug,

unless underlying patient characteristics can be shown

to contribute to the response, as is the case for

trastuzumab for breast cancer patients who are positive

for human epidermal growth factor receptor 2

(HER2þ).23 As described above in (1), it may be dif-

ficult to identify population shifts in important safety

parameters within an individual trial. However,

whether a shift in population occurs or not for a given

safety parameter, it is still necessary to identify indi-

vidual patients experiencing severe outcomes in order

for them to receive appropriate care. For example,

many drugs pulled from the market because of severe

DILI caused death or liver transplantation at rates �1

in 10,000.1 The EudraVigilance Expert Working

Group maintains a list of important medical events

(IMEs) for which it may be important to screen AE

data for the presence of individual cases.24,25

Because of the reasons outlined above, the unfortunate irony

is that when the understanding of safety is at its most critical,

for example, as it is in cytotoxic chemotherapies in oncology,

the insight is more difficult to obtain. Despite these challenges,

it is important to proactively plan for a comprehensive safety

evaluation and signal detection at the start of any development

program, a plan that considers the underlying challenges of the

disease, as well as the unique features of treatment and patient

management. This manuscript is the first in a series of papers

from the American Statistical Association (ASA) Biopharma-

ceutical Section Safety Working Group to examine various

sources of safety data and the statistical strategies for appro-

priate design and analysis. Our goal here is to describe and

discuss comprehensive safety assessment across the plethora

of endpoints collected in clinical trials; we limit discussion of

safety outcomes and the related analyses where the safety end-

points are considered primary.6,7,26 We describe the data

sources available to influence the design and analysis of clin-

ical trials supporting medical product development. We sum-

marize the current state of safety analysis and reporting in

clinical trials, and share our recommendations for the statistical

and graphical methodologies necessary to appropriately

analyze, report, and interpret safety outcomes, referring to

US and European regulatory and other international guidance

documents on safety where appropriate. Finally, we discuss the

advantages and disadvantages of safety data obtained from

clinical trials compared to other sources.

Available Data Sources for Safety

Safety Data From Premarketing Clinical Trials

Safety data is continuously evaluated at all stages of drug

development, and the amount of data available depends on

the stage of development. The safety profile of an investiga-

tional drug is determined from the analysis of safety informa-

tion obtained from nonclinical and clinical studies.

Nonclinical development is a stage of research that begins

before clinical trials can begin and during which important

feasibility, iterative testing, and drug safety data are collected.

The nonclinical safety assessment for marketing approval of a

pharmaceutical usually includes pharmacology studies, gen-

eral toxicity studies, toxicokinetic and nonclinical pharmaco-

kinetic studies, reproduction toxicity studies, genotoxicity

studies, and for drugs that have special cause for concern or

are intended for a long duration of use, an assessment of

carcinogenic potential.27 The clinical phase of development

involves the following: phase I studies determine safety and

dosing in healthy volunteers (patients in oncology studies);

phase II studies initially determine efficacy and safety in

patients with the disease or condition; phase III studies deter-

mine safety and efficacy in sufficiently large number of

patients with the disease or condition. The safety information

from clinical trials collected include AEs, laboratory mea-

surements, vital signs, ECGs, and other tests relevant to the

indication being studied.

The aim of drug safety regulation is to protect trial par-

ticipants and patients from severe safety outcomes through

early detection and prevention. During the safety review of

a new drug application, regulatory agencies critically exam-

ine whether a drug is safe for its intended use. They assess

the adequacy of testing for safety and determine the signif-

icance of the AEs and their impact on the approvability of

the drug. Finally, regulatory agencies determine the safety

issues to be included in the product labeling should the drug

be approved and decide whether additional safety studies

are needed.

Randomized controlled trials are the gold standard of scien-

tific testing for new drugs. Based on the premarketing safety

database, the relevant AEs and the risk factors for those events

are identified. Adverse events are usually categorized accord-

ing to the following domains: seriousness, expectedness of the

event, relatedness, intensity, incidence, duration, latency, and

time to resolution. The relationship between drug exposure and

AEs is also assessed. However, there are inherent limitations to

what can be learned from the premarketing safety database

based on clinical trials.
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Data Standards and Medical Coding

Data standards and medical coding dictionaries are important

in that they make it easier to integrate information on safety

outcomes from multiple sources, including clinical trials,

observational or postmarket studies. The coding of events such

as AEs is a process of converting investigators’ verbatim terms

to standardized terms. In the early 1990s, the International

Conference on Harmonisation (ICH) identified the need for a

standard international medical terminology for coding events

for use in clinical trials worldwide. The adoption of a dedicated

single standardized terminology offered a number of clear

advantages for regulators, industry, and other stakeholders:

� Eliminated the need to convert data from one terminol-

ogy to another, thus preventing the loss and/or distortion

of data, and allowing for a savings in resources

� Improved the ease, quality, and timeliness of the data

available for effective analysis, exchange and decision

making

� Allowed for effective cross-references and analysis of

data through a consistent terminology throughout the

different stages of the development of a medicinal

product

� Facilitated the electronic exchange of data relating to

medicinal products

The Medical Dictionary for Regulatory Activities (Med-

DRA) is a medical terminology dictionary developed to clas-

sify AE information associated with the use of pharmaceutical

and other medical products.14 MedDRA employs a 5-level

hierarchy of terminology allowing for the grouping of similar

events, listed here in larger to smaller groups: System Organ

Class (SOC), High Level Group Term (HLGT), High Level

Term (HLT), Preferred Term (PT), and Lowest Level Term

(LLT). It is used in the registration, documentation and safety

monitoring of products through all phases of the development

cycle (ie, from clinical trials to postmarketing surveillance).

Regulatory authorities and the pharmaceutical industry are able

to readily exchange and analyze safety data by coding adverse

event data to a standard set of MedDRA terms. In addition to

individual MedDRA terms, standardized MedDRA queries

(SMQs) were developed to support signal detection and mon-

itoring.15 SMQs are validated, standard sets of MedDRA terms

that have undergone extensive review, testing, analysis, and

expert discussion by a working group of MedDRA and product

safety experts. Some SMQs are a straightforward collection of

terms, while others are based upon an algorithm of terms from

more than 1 group. Some SMQs have hierarchical relationships

with other SMQs. While MedDRA makes it possible to stan-

dardize event terminology, this coding step needs to be per-

formed with care as improper coding may lead to missed safety

signals. Examples of coding problems include splitting similar

AEs among several PTs, lumping different verbatim terms to

the same preferred term, or the lack of an adequate term or

definition.

Corresponding to MedDRA for adverse events, the World

Health Organization’s Drug Dictionary (WHO-DD) is used to

identify concomitant medications.28,29 The WHO-DD is orga-

nized based on Anatomical Therapeutic Chemical (ATC) clas-

sifications. Each medicinal product is classified according to

the primary organ or system on which it acts and its chemical,

pharmacological, and therapeutic properties.

In addition to the use of a standard medical terminology

dictionaries, there has been a push to have standards in the

acquisition, exchange, and submission of clinical research data.

The Clinical Data Interchange Standards Consortium (CDISC)

is an open, multidisciplinary, neutral, tax-exempt, nonprofit

standards-developing organization formed to develop and sup-

port global, platform-independent data standards that enable

information system interoperability to improve medical

research and related areas of healthcare.30-32 CDISC Standards

specify how to structure the data; they do not specify what data

should be collected or how to conduct clinical trials, assess-

ments, or endpoints. The US Food and Drug Administration

(FDA) and the Pharmaceuticals and Medical Devices Agency

(PMDA) of Japan require the use of CDISC standards for reg-

ulatory submissions. The use of data standards makes it more

straightforward for regulatory agencies to analyze clinical trial

data for safety signals using standard reports, and even com-

bine data across multiple sponsors to assess the safety across

similar medical products.

Current Statistical Strategies and Analyses
for Safety

Safety Analysis Plans

A proactive strategy is necessary to ensure an objective and

systematic evaluation of safety endpoints. A Program-wide

Safety Analysis Plan (PSAP) was recommended by the Safety

Planning, Evaluation and Reporting Team to document the

statistical aspects of safety during clinical development and

postmarketing activities (SPERT).2 Although a PSAP is cur-

rently not required by regulatory agencies, several sponsors

have adopted and implemented a PSAP (or a similar document

by a different name) to document the appropriate data to collect

and analyses to perform in order to characterize the safety

profile of the new therapy throughout the product life cycle.

As added benefits, the PSAP can facilitate ongoing interactions

with regulatory agencies regarding current safety strategies,

and can aid in the evaluation of the benefit-risk profile of the

new therapy in the postmarketing stage. For example, the PSAP

may be helpful in order to reach an agreement with a regulatory

agency on the definition of an event of interest. This can be

done through submitting the full or relevant section of a PSAP.

The contents of a PSAP are flexible, and can be amended as

needed. With respect to timing, initial development of the

PSAP would begin prior to phase II in order to complete the

first version of the standard data collection plan, with input

from different functional groups such as biostatistics, safety,
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clinical, and regulatory.2 In contrast to the PSAP, the Statistical

Analysis Plan (iSAP) for the Summary of Clinical Safety (SCS)

limits analyses to development activities completed prior to

submission, and is often finalized while phase III studies are

ongoing.

Analysis Population

As ICH E9 points out, in the absence of drop out, poor com-

pliance, failed eligibility criteria, or missing data, the analysis

population would be “self-evident.”33 However, in the real

world the appropriate analysis population is often less clear.

Intent-to-Treat (ITT, strictly all randomized patients as rando-

mized) is preferred compared to Per Protocol (PP, such as

patients who complete the study and are compliant) as the

analysis population for efficacy endpoints in superiority clin-

ical trials.33-36 However, arguments have been made for both

the ITT and PP populations as the primary analysis population

for non-inferiority clinical trials, though the most appropriate

choice may depend on numerous factors that may be challen-

ging to prespecify.36-39 The primary concern over the analysis

population, particularly for non-inferiority trials, concerns the

bias inherent in estimated treatment effects, its magnitude, and

direction. Ideally, the choice of analysis population should

minimize this bias, or provide conservative estimates of treat-

ment effects considering the goals of the trial. Like non-

inferiority, safety analyses experience similar disagreements

over the most appropriate analysis population. Consolidated

Standards of Reporting Trials (CONSORT) recommends using

ITT for safety endpoints.40 However, the Council for Interna-

tional Organizations of Medical Sciences (CIOMS) suggested

that safety analyses using the ITT population may underesti-

mate treatment differences between the groups (often cited as

an advantage in superiority trials of efficacy endpoints).41 Fur-

ther, a recent PhRMA safety working group favored the rec-

ommendations of the CIOMS.2 Similar to CIOMS and the

PhRMA working group, we recommend that safety outcomes,

at least for superiority trials, are analyzed for patients receiving

at least 1 dose of study therapy as they were treated (Safety

Population).2,41 The appropriate population for non-inferiority

trials, similar to the debate for efficacy endpoints, is less clear

and would benefit from further research.

The CIOMS report does suggest other analysis populations,

such as those patients who receive a prespecified number of

doses, though even the authors admit that such analyses may be

biased, with an unknown direction of bias. Other possibilities to

assess the impact of analysis population include summaries of

safety generated at an earlier time point to capture all available

patients, or periodic assessments based on the duration of expo-

sure. Draft European regulatory guidance makes a similar rec-

ommendation for this latter point specifically to account for the

bias likely to occur owing to differential patient dropout

between study arms.16 However, any notable differences

between the treatment arms, such as drop-out rates and reasons

or medication compliance, should be examined to determine

the extent of any bias on treatment estimates. Further, substan-

tial differences between the ITT and Safety Populations may

require additional sensitivity analyses for safety outcomes.

Similar to analyses of efficacy for ITT and PP populations,

comparable findings between the ITT and Safety populations

will provide comfort in the study results. Forthcoming revi-

sions to ICH E9 may suggest further estimands appropriate for

the analysis of safety.13 However, the bottom line for clinical

trialists is to minimize the extent of dropout and missing data

and to maximize the quality and compliance in any trial.

Safety Monitoring

Data and safety monitoring in clinical trials can be defined as a

planned, ongoing process of reviewing the data collected in a

clinical trial with the primary purpose of protecting the safety

of trial participants, the credibility of the trial, and the validity

of trial results.42,43 In guidance for clinical trial sponsors on the

Establishment and Operation of Clinical Trial Data Monitoring

Committees, the US FDA defined a clinical trial Data Moni-

toring Committee (DMC) as a group of individuals with perti-

nent expertise that reviews on a regular basis accumulating data

from 1 or more ongoing clinical trials.44 They noted that a

DMC is also known as a Data and Safety Monitoring Board

(DSMB), or a Data and Safety Monitoring Committee

(DSMC). An independent DMC is usually responsible for the

data and safety monitoring of randomized phase II and phase

III studies. Though it is possible to have an independent DMC

for phase I trials, it is not a common practice.

Sometimes safety reviews occur with the same frequency as

efficacy reviews, but safety reviews typically take place more

frequently. For interim safety review of randomized trials,

unblinded summary data and blinded individual data are often

provided to the DMC. Blinded monitoring of individual safety

data is usually performed by a study team or a study coordi-

nator. In addition to the safety analysis, an independent DMC

may request unblinded summaries of efficacy to evaluate the

benefit-risk profile when the study under review is considered

for early termination owing to a safety concern. Very often

industry-sponsored clinical programs utilize the same indepen-

dent DMC for all trials in a development program. Although

DMC decisions are advisory, they should be taken seriously by

company executives responsible for patient safety and study

validity and integrity.

As a follow-up to a 2012 guidance for safety reporting

requirements for investigational new drugs (INDs) and bioa-

vailability and bioequivalence studies, a 2015 draft guidance

for industry on Safety Assessment for IND Safety Reporting,

the FDA recommends that sponsors use a Safety Assessment

Committee (SAC).45,46 While its use is in early stages of imple-

mentation, the SAC should oversee “the evolving safety profile

of the investigational drug by evaluating, at appropriate inter-

vals, the cumulative serious adverse events from all of the trials

in the development program, as well as other available impor-

tant safety information (e.g., findings from epidemiological
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studies and from animal or in vitro testing) and performing

unblinded comparisons of event rates in investigational and

control groups, as needed, so the sponsor may meet its obliga-

tions under [21 CFR Section] 312.32(b) and (c).”47 The SAC is

distinct from a DMC. In most cases, an existing DMC will not

be able to function as an SAC because the DMC may meet too

infrequently and is often focused on a single trial, rather than

the entire safety database. Further, DMC recommends to the

sponsor when to modify or stop a study because the investiga-

tional drug is ineffective or reveals an important safety con-

cern. In contrast, the role of the SAC is to review accumulating

safety data to determine when to recommend that the sponsor

should submit an IND safety report to the FDA and investiga-

tors participating in the clinical program. Despite their distinct

roles, the SAC can participate in a discussion with a DMC

whether the conduct of a specific study should be revised based

on the currently available safety information.

Selected Monitoring Strategies

Discrete Monitoring

Here we focus on safety monitoring and assessment when

safety endpoints are primary or co-primary endpoints in a clin-

ical trial.46 For a general overview of safety monitoring in the

premarket setting see Fries et al.48 One example of a composite

(composed of multiple safety endpoints) primary endpoint is

Major Adverse Cardiovascular Event (MACE) or MACEþ in

Cardiovascular Outcome Trial (CVOT) in patients with type 2

diabetes mellitus (T2DM). MACE includes CV death, nonfatal

myocardial infarction (MI) and nonfatal stroke events, while

MACEþ usually includes MACE plus hospitalization for

unstable angina. Guidance on the assessment of CV risk for

non-insulin therapeutics for T2DM requires sponsors to rule

out excess CV risk pre- and postmarket, and suggests ways

of integrating data from pre- and postmarket evaluations to

assess risk margins.49 In particular, the guidance specified that

the upper bound of the 2-sided 95% confidence interval for the

estimated CV risk of an experimental treatment compared to a

control arm should be less than 1.8 in the premarketing evalua-

tion and less than 1.3 to meet the postmarketing requirement.

The ASA Biopharmaceutical Section Safety Working (BIOP

SWG) Group published a manuscript on the evaluation of CV

safety for drugs used to treat T2DM in an adult population

approved between 2002 and 2014 by the FDA.6 The group

discussed different strategies to address pre- and postmarketing

requirements for the CV safety in patients with T2DM:

1. Strategy 1

a. Stage 1: Meta-analysis of CV events observed in

phase II and phase III trials

b. Stage 2: CVOT

2. Strategy 2

a. Stage 1: CVOT

b. Stage 2: Meta-analysis of the Stage 1 CVOT and

a separate Stage 2 CVOT

3. Strategy 3

a. Stage 1: Interim analysis of an ongoing CVOT

b. Stage 2: Analysis of the completed CVOT

4. Strategy 4

a. Stage 1: Meta-analysis of CV events observed in

phase II and phase III trials and interim results of

an ongoing CVOT

b. Stage 2: Analysis of the completed CVOT.

A second manuscript published by the BIOP SWG outlined

statistical challenges encountered during the design and anal-

ysis stages of CVOTs and shared approaches to address these

challenges.7 For example, the treatment effect observed at mul-

tiple interim analyses is a source of multiplicity in need of

adjustment. The premarketing requirement to demonstrate

non-inferiority to a hazard ratio of 1.8 and the postmarketing

requirement to demonstrate non-inferiority to a hazard ratio of

1.3 can be handled using 1 or more CVOTs in combination

with adjudicated events obtained from phase II and III studies

via meta-analysis (eg, Strategy 3 or Strategy 4). The pre- and

postmarketing requirements to rule out excess CV risk can be

tested sequentially, or concurrent testing using interim results

from CVOTs can be employed. Group sequential boundaries

that permit early stopping to claim non-inferiority in both the

pre- and postmarketing settings can be implemented in these

cases. However, there is not much difference between the

sequential and concurrent testing when conservative spending

functions like the O’Brien-Fleming (OBF)–type spending func-

tion are used.50

Although the primary objective of a CVOT is to demon-

strate non-inferiority, some sponsors are interested in testing

for superiority to see if the new treatment demonstrates a CV

benefit compared to a control. There are 2 general approaches

to do this. The first strategy sizes a CVOT for superiority at the

design stage (eg, SAVOR CVOT with 16,500 patients). The

second strategy initially designs the trial with sufficient

power to test for non-inferiority, with an interim adaptation

to increase the number of events and patients to test for super-

iority at the end of the trial if the interim result is highly pro-

mising (eg, EXAMINE CVOT with 5400 patients). If the

interim result is not promising for superiority, the trial stops

with a non-inferiority claim (if reached) using fewer patients,

and completing sooner with less cost.

Continuous Monitoring

In some disease areas, toxicity monitoring might need to be

done on a continuing basis (eg, in oncology with cytotoxic

drugs). Ivanova et al summarized safety monitoring strategies

in oncology trials. Phase I oncology trials are designed to assess

the toxicity of novel therapies by identifying the MTD.51 How-

ever, given the relatively small number of patients in phase I

oncology trials, the recommended phase II dose can be impre-

cisely defined, leading to excessive toxicity in a phase II trial.

Most phase II trials are designed to terminate a study early if
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the treatment is not promising for further development, but it is

equally important to have stopping rules for toxicity. Frequen-

tist and Bayesian methods have been developed to evaluate

both toxicity and efficacy as bivariate variables. Most proposed

methods are 2-stage and range from equal weighting of the

efficacy and toxicity responses, to designs with variable

trade-offs between these 2 outcomes.52-54 Several authors pro-

posed Bayesian methods for the simultaneous monitoring of

both efficacy and toxicity that allow for trade-offs between

corresponding rates.55-60

A single interim analysis to assess safety and toxicity is

often not sufficient; continuous monitoring allows for stopping

at any point should the toxicity rate be unacceptably high.

Continuous monitoring rules can be based on Frequentist or

Bayesian methodologies. Among Frequentist approaches, the

Pocock boundary is recommended since it allows stopping the

trial for toxicity as early as possible. Alternatively, the sequen-

tial probability ratio test (SPRT) leads to a boundary very sim-

ilar to Pocock for a given sample size and type I error rate.51

Geller et al proposed a Bayesian stopping rule where the trial is

stopped if the posterior probability of the dose limiting toxicity

rate exceeding the ideal target rate (typically 0.20) is equal to or

higher than a prespecified value t.61 The value of t is often

chosen to be 0.90, 0.95, or 0.98. In practice, if prior information

about the toxicity rate is unavailable or deemed inappropriate

or unreliable by the study team, the Pocock or the Bayesian

boundary with a non-informative prior can be used. However,

the Bayesian boundary is recommended if there is reliable prior

information about toxicity. For clinical trials in oncology

where toxicities can be both life-threatening and/or take time

to develop, statistical designs that consider both stopping and

enrollment rules are recommended.62

Reporting Safety Analyses

Initial Steps

Death and disease progression, while important indicators of

patient safety, are often analyzed as primary efficacy endpoints

in clinical trials. Because the strong control of type I error is

well understood in these situations, even in the presence of 1 or

more interim analyses, we avoid further discussion specific to

these endpoints within this article. Instead, we refer readers to

key works on the statistical monitoring of clinical trials,63,64

and highlight recent references where safety outcomes serve as

primary endpoints.6,7,26 Here, we focus on the efficient report-

ing of the considerable volume of safety endpoints that are

collected within a clinical trial, with a primary focus on adverse

events. Given the challenges inherent to the analysis of safety

that were outlined above, it should come as no surprise that

clear insight is often out of reach. The traditional means of data

summary, such as tables and listings, are often ineffective for

communicating the story hidden within the data.65 Data visua-

lization is the key to effective communication of safety out-

comes; we reinforce this point through several examples below.

Our rationale for the focus on adverse events is due to the

fact that occurrences of clinically relevant changes in other

safety endpoints are reported as AEs. For example, significant

changes in the laboratory test alanine aminotransferase, an

important indicator of liver health, can be represented by the

adverse events “alanine aminotransferase abnormal,” “alanine

aminotransferase increased,” or “alanine aminotransferase

decreased” when using MedDRA. These categorizations natu-

rally occur in clinical practice (eg lab measurements above

some multiple of the upper limit of normal determined by age,

gender, and disease severity), though the resulting loss of infor-

mation tends to “disappoint” some statisticians.66,67 Despite

our limited mention of other safety endpoints, many of the

recommendations and analysis strategies made throughout this

manuscript still apply. We illustrate the various methodologies

using data from clinical trials of patients with aneurysmal sub-

arachnoid hemorrhage, type II diabetes mellitus (T2DM), or

chronic myeloid leukemia.68-70

Adverse events that occur since the previous study visit are

reported to the clinician by the patient or caregiver. Additional

AEs may be identified by the clinician through in-clinic or

laboratory assessments that have worsened since baseline.

Details on the severity or toxicity grade (National Cancer Insti-

tute’s Common Terminology Criteria of Adverse Events [NCI-

CTCAE]), seriousness, outcome, and duration of the event,

along with the action taken with study drug due to the event,

and the investigator’s opinion on the relationship to study med-

ication are recorded. As described above, verbatim text is

coded using MedDRA to maintain consistency in the reporting

and grouping of AEs within and across studies and develop-

ment programs. AEs are traditionally summarized by PTs and

grouped by SOC in order of decreasing frequency of occur-

rence. Binary outcomes, such as whether a patient experienced

a particular AE or not, are often reported using a risk difference

(p̂tj � p̂cj), risk ratio (p̂tj=p̂cj), or odds ratio (p̂tjð1� p̂cjÞ=
ð1� p̂tjÞp̂cj), where p̂ij is the probability of experiencing event

j of J possible AEs for treatment i.71,72 Pros and cons for the

various measures are discussed in Zhou et al.72 Risk differences

are presented in Figures 1 to 3.

Given the large number of potential comparisons of treat-

ment arms for adverse events, Crowe and coauthors suggested

a 3-tier approach for the analysis of AEs.2 Preplanned hypoth-

esis for tier I events, those AEs expected to occur or of con-

siderable clinical relevance for the disease (which may overlap

considerably with AEs of special interest), would typically not

receive adjustment for multiple comparisons unless there were

numerous tier I events to consider. Treatment comparisons for

unexpected commonly occurring (4 or more patients in a single

treatment arm) tier II events should consider adjustments for

multiple comparisons. Tier III events (those not in tiers I or II)

are rare and should be summarized in a listing. Appropriate

multiplicity adjustment for tier I (if required) and tier II events

should achieve a reasonable balance between committing type I

errors without overly sacrificing the power to detect potential

safety signals. The false discovery rate (FDR) provides a more
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balanced approach between type I error and power, since it

does not control the familywise error rate.73 The FDR, typically

prespecified at a ¼ 0.05, is the proportion of erroneous rejec-

tions among the rejected null hypotheses from a set of multiple

tests. In general, with J treatment comparisons of ordered

(smallest to largest) P values p(j), the FDR P value for the jth

hypothesis is

p�ðjÞ ¼
pðJÞ for j ¼ J

min p�ðjÞ;
j

ðj� 1Þ pðj�1Þ

0
@

1
A for j ¼ 1; 2; . . . ðJ � 1Þ

8>><
>>:

Corresponding simultaneous 95% FDR confidence intervals

can be defined by finding the largest j where pðjÞ � ja=J and

using a� ¼ ja=J for all J confidence intervals.74 An alternate

FDR methodology that considers the relationship among AEs,

the double FDR (DFDR), could also be considered for

analysis.75

A volcano plot of tier I and II events (Figure 1) is used to

summarize the incidence of adverse events for patients who

receive at least 1 dose of study therapy, often referred to as the

safety population.8,76,77 Since this example is taken from the

literature, we have no distinction between tier I and II events.

However, the tiers could be distinguished in practice by vary-

ing the bubble pattern (solid vs striped), or providing separate

plots for each tier. The x-axis represents the dasatinib minus

imatinib risk difference while the y-axis represents the –log10
transformation of the unadjusted P value from Fisher exact test.

Here, bubble area is proportional to the total number of all

patients that experience the particular adverse event, while

bubble color distinguishes event type. Alternatively, bubble

area could be proportional to the inverse of the variance of

the treatment effect. Unadjusted (–log10(0.05) ¼ 1.3) or

FDR-adjusted (–log10(0.0115) ¼ 1.9393, where a* ¼ 3/13 �
0.05 ¼ 0.0115) reference lines are drawn to emphasize statis-

tically significant events, those events where the center of the

bubble is above a particular reference line. Figure 1 clearly

communicates that anemia and vomiting are the most and least

common events; imatinib shows significantly greater FDR-

adjusted risk for fluid retention, muscle inflammation, and

nausea, with greater unadjusted risk for myalgia and vomiting;

and that the events with greater risk (though not statistically so)

Figure 1. Volcano plot of drug-related adverse events that occurred in at least 10% of treated patients with chronic myeloid leukemia.
Unadjusted vertical reference line drawn at –log10(0.05)¼ 1.3. FDR reference line drawn at –log10(0.0115)¼ 1.9393, where a*¼ 3/13� 0.05¼
0.0115. Horizontal reference line drawn at 0 to highlight no difference in risk between the treatments. Alternatively, the FDR reference line
could be drawn at –log10(maximum unadjusted P value � a*) as in Zink et al.77 The bubble area is proportional to the total number of patients
that experience an adverse event for both treatments combined. Data from Table 4 of Kantarjian et al.70 P values and confidence intervals were
computed in Ivanova et al.51 FDR, false discovery rate.
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on dasatinib are common and cytopenic. Such insight would be

challenging to obtain from a table of summary statistics. To

communicate additional details for important events identified

from the volcano plot, Figure 2 summarizes FDR intervals and

incidence rates using a forest plot and a dot plot.78,79

Before we proceed to the next section, it is worth noting that

the above analysis in Figures 1 and 2 considers events that

occur in at least 10% of treated patients, irrespective of sever-

ity, seriousness, or relationship to study therapy. In oncology,

for example, similar displays are often presented for the subset

of events viewed by the investigator to have a causal relation-

ship with treatment, with additional summaries limited to those

events with NCI-CTCAE grade 3 and above.16 Bubble color

within volcano plots can be used to illustrate different charac-

teristics, for example, by coloring according to average severity

or the proportion of events that are considered serious. Alter-

natively, bubbles could represent the cross-classification of

preferred term with 1 or more covariates. However, this

approach would likely limit power to identify meaningful dif-

ferences between the treatments. Figure 1 can be reproduced

considering the ordinality of varying characteristics to develop

meaningful subsets of events, using a heat map to summarize

the standardized effects across numerous volcano plots for

patients receiving at least 1 dose of study medication. The

standardized effect is the treatment difference divided by

the standard error of the treatment difference (similar to a

Z-statistic). The goal is to incorporate some level of statistical

significance into the summary of the treatment effects, since

the statistical significance for differences in proportions is

dependent on the original proportions of the individual groups.

In other words, the significance of a 10% difference will vary

whether the original rates were 15% versus 5%, compared to

55% versus 45%. For example, Figure 3 shows elevated risk for

placebo of vasoconstriction for all events, SAEs, and more

severe events, while nicardipine has elevated risk for phlebitis

across all event subsets, though with weaker results among

more severe events. Heat maps, such as Figure 3, can be

extended to assess the sensitivity of varying estimands and/or

patient populations, such as those patients that adhere to study

therapy.13 Depending on the number of events, however, heat

maps may need to be printed by system organ class, event tier,

or limited to the most common events.

Further Analysis Issues

The previous section highlights a starting point for safety

evaluation, and provides some recommendations for asses-

sing how various event characteristics can impact analysis

findings. However, there are several other event features to

consider in order to adequately portray the story hidden

within the safety data. The influence of time, which is related

to the exposure to study intervention or time since surgery or

another procedure, tends to be ignored in most presentations

of AEs. Since patients with longer follow-up have greater

Figure 2. FDR confidence intervals and event incidence for identified safety signals in patients with chronic myeloid leukemia. Presentation
suggested as in Amit et al.78 Left panel displays a forest plot of FDR intervals for dasatinib minus imatinib for signals identified from Figure 1; red
intervals indicate significantly increased risk for imatinib.79 Reference line is drawn at 0 to indicate no difference between dasatinib and imatinib.
Right panel presents a dot plot to communicate the incidence of each AE for each treatment arm. Data from Table 4 of Kantarjian et al.70 P values
and confidence intervals were computed in Ivanova et al.51 FDR, false discovery rate.
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opportunity to experience 1 or more safety outcomes, it is

important to consider exposure-adjusted incidence rates or

time to first events in studies with varying patient expo-

sure.16,72,80-85 However, exposure-adjusted incidence rates

assume a constant hazard rate across time. Liu and coauthors

suggest that this assumption is likely to hold for rare events,

though it should be assessed in practice since this expectation

may not apply for many events.81

Though some additional assumptions may be required, anal-

yses by time intervals can provide a more informative analysis

that makes it possible to view how the risk of AEs changes over

the course of a clinical trial. For example, the risk of certain

events may reduce as patients develop tolerability to the study

medications. Alternatively, greater exposure to drug may result

in an increased likelihood of certain events. Zink et al illustrate

how multiple volcano plots or animation can be used to com-

municate the instantaneous risk within time intervals.77 Similar

presentations can be used to present analyses of cumulative risk

over time. For example, guidance suggests presentations

of cumulative AE rates for oncology studies at 3, 6, and

12 months, with the addition of other time points depending

on the underlying nature of the disease and the duration of the

trial.16 Presentations of instantaneous risk by time interval is

one way to account for and summarize the recurrence of events

during the course of a clinical trial, though more formal

analyses to assess the average number of events experienced

over time are available.86-91 Koch et al present a large-sample

method to summarize the total number of events experienced

accounting for the correlation between event frequency and

patient exposure.80

Figure 3. Sensitivity analysis of treatment emergent adverse events in patients experiencing a aneurysmal subarachnoid hemorrhage. Stan-
dardized effect is the risk difference for experiencing an adverse event for nicardipine minus placebo divided by its standard error. Darker red or
blue indicates higher risk on nicardipine or placebo, respectively. Cells are white when the standardized effect cannot be calculated, most often
when no events occur. Because of space limitations, a subset of system organ classes is presented. Data are from Haley et al.68
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Zhou et al raise an important point that extremely rare

events should be analyzed using exact methods.72 Xu and

Kalbfleisch consider the use of propensity scores to account

for differences in patient characteristics between treatments in

studies of small size; propensity scores can also be applied to

the comparisons of treatments within subgroups.92,93 Given the

rarity of many individual events, an alternative strategy to

identify safety signals is to analyze groups of terms that

describe a particular medical condition using SMQs.8,15

Alternatively, Bayesian modeling can borrow strength across

related events through their hierarchical relationships.94-97

Other safety analyses consider the co-occurrence of events.98,99

Site-level comparisons of individual and overall event rates can

identify elevated patient risk at individual study sites.100,101

Coupled with basket analyses, between-site comparisons of

AEs can potentially uncover events that go unreported.102

Subgroups

Subgroups are frequently considered for the analysis of safety

and efficacy endpoints, with 70% of clinical trials reporting at

least some results within subgroups.103 Subgroup analyses are

beneficial in that they provide clinicians with information on

the potential for differential treatment response within impor-

tant demographic, genetic, disease, environmental, behavioral,

or regional characteristics.71,104 From a regulatory perspective,

such analyses are important to show that the estimated overall

effect is broadly applicable to patients and to assess risk-benefit

across the proposed indication, particularly when the study

population is heterogeneous.105 Further, examining results

within subgroups allows the study team to assess the consis-

tency and robustness of results obtained for the entire study

population, as well as to generate hypotheses for future

research.106 In trials of oncology, for example, subgroup anal-

yses are important to identify patients at increased risk for

severe toxicity of the prescribed treatments. Subgroup analyses

would likely be considered for important tier I events.

When reporting results within subgroups, transparency is

the key for appropriate interpretation of results. Details on

subgroup size and the number of subgroups assessed (not just

reported), whether subgroups were determined pre or post hoc,

multiplicity adjustments were applied, stratified randomization

was used, or heterogeneity was assessed through interaction

tests should be clearly described.107,108 For multiplicity, details

as to whether adjusted or unadjusted P values are presented or

simultaneous or unadjusted confidence or credible intervals

should be clearly described. However, regulatory guidance

appears to prefer presenting unadjusted P values and intervals

for subgroup analyses as they are “investigations [that] serve as

an indicator for further exploration.”105 Even though power

tends to be low for tests of interaction, many authors suggest

that heterogeneity of treatment effects should always be eval-

uated, and regulatory guidance encourages reporting estimates

and confidence intervals for these interaction tests.103,105,107

Further, the literature highlights that the presence and the size

of interaction depends on the choice of the measure of diver-

gence between the treatment groups.71,105

The measures used to determine heterogeneity should be

prespecified and clearly documented. Though Figure 4 sum-

marizes cardiovascular death or hospitalization in patients with

T2DM, identical displays can be generated for important tier I

events.69 Based on recommendations from the CHMP, interac-

tion tests are summarized using a forest plot in the right panel

and are based on unadjusted 95% confidence intervals for the

difference in treatment effects between the 2 subgroup levels

(level 1 minus level 2, eg, metformin effect minus sulfonylurea

effect).105 Confidence intervals in the right panel that cover 0

suggest that there is no difference among treatment effects

between the subgroup levels. However, this panel may help

communicate (based on the width of the intervals) that there

was little power available to identify a difference in the first

place. It is important to note that Figure 4 presents overlapping

subgroups. In other words, the same set of patients is presented,

partitioned into varying subgroup levels. Alternatively, recent

data-driven methodologies can be used to identify subgroups

using combinations of individual factors to characterize sets of

patients with differential response to treatment.93,109-116 For

safety outcomes, these methodologies can identify groups of

patients for whom the new therapy may be inappropriate. See

Alosh et al for a recent overview of statistical considerations

for subgroups in clinical trials.117

Meta-analysis

While FDR can limit false positives without overly sacrificing

power, the rarity of many safety endpoints will require a meta-

analysis of multiple studies for sufficient power to generate

meaningful inference for the safety population, as well as more

precise estimates of the treatment response within various sub-

groups.2,71,80,97,118 Meta-analyses should be preplanned and

assess the heterogeneity and poolability of the included clinical

trials using statistical methodologies, not simply reflect a naı̈ve

grouping of patients from multiple studies, since this ignores

the fact that data comes from different studies. As an additional

benefit, the availability of multiple trials allows the analyst to

assess the consistency of response within a particular subgroup

from one study to the next (ie, replication). As Li and coauthors

point out, it is possible to observe negative results (even sig-

nificantly so) within at least 1 subgroup when the result is

known to be homogeneous among all subgroups.119 Chuang-

Stein et al provide details and recommendations for fixed and

random-effects models for meta-analyses of safety endpoints.71

Finally, it is important to note that any meta-analysis methods

utilized should summarize the results of all appropriate studies

to avoid biased conclusions—this includes trials where treat-

ment arms may experience no events. For example, Marchenko

et al discuss the recent Nissen and Wolski meta-analysis for

T2DM.6,120

In 2016 the CIOMSWorking Group X published a report on

Evidence Synthesis and Meta-Analysis for Drug Safety.121 The
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goal of the CIOMS X report is to provide principles on appro-

priate application of meta-analysis in assessing safety of phar-

maceutical products to inform regulatory decision making.

Combining evidence on adverse events, where these were not

the focus of the original studies, is more challenging than com-

bining evidence on prespecified benefits. This focus on AEs

represents the main contribution of the current CIOMS X

report.

Advantages and Limitations of Clinical
Trials for Safety Evaluation

Clinical trials are often considered the pinnacle of evidence-

based medical research, and the data from safety outcomes are

of high quality, ensured by prospective and uniform data col-

lection, fastidious review and follow-up, and diligent querying

and cleaning. Further, centralized labs and event adjudication

are often adopted in clinical trials, which further improve the

consistency of data collection and quality. Standardized med-

ical dictionaries, such as MedDRA and WHO-DD, allow for

the consistency of reporting of numerous safety out-

comes.2,14,29 Safety data collected in clinical trials are also rich

and multifaceted. For example, it is possible to write detailed

narratives of severe AEs that summarize the details surround-

ing these events to enable understanding of the circumstances

that may have led to the occurrence and its subsequent man-

agement and outcome. Often these narratives include details on

medical history, concomitant medications taken at the time of

the event or prescribed as a result of the event, measurements of

important chemical and hematology analytes or other labora-

tory parameters, details on hospitalizations, and whether or not

the patient ultimately recovered. Direct interactions with inves-

tigators allows for the collection of data necessary to accurately

describe a patient’s safety profile. On the other hand, data

quality, lack of important detail, and consistency of collection

are several hurdles to overcome in the analysis of pharmacov-

igilance (PV) databases.

A concurrent control group and randomization are fre-

quently used in clinical trials to avoid confounding, and blind-

ing is widely used to effectively reduce bias. With patients

randomized to a concurrent control group and patients, inves-

tigators and the trial sponsor blinded to individual treatment

assignments, it is much more straightforward to estimate the

treatment effect in a clinical trial as compared to an observa-

tional study, where it is often a nontrivial task to delineate the

treatment effect from other confounding factors. Randomiza-

tion has the ability to provide some balance for covariates that

are unobserved or unknown to affect response. Further, unlike

PV databases, clinical trials are cohort studies where the

denominators are known. In other words, in PV databases there

are data available for AEs for patients taking specific drugs, but

not on the number of patients who do not experience events

when taking certain medications. It may be possible to estimate

denominators from insurance databases or sales data, though

Figure 4. Subgroup analysis of cardiovascular death or hospitalization in patients with type 2 diabetes mellitus. Unadjusted 95% confidence
intervals are based on the risk difference of cardiovascular death or hospitalization for rosiglitazone minus active control using a normal
approximation. Interaction tests are based on unadjusted 95% confidence intervals for the difference in treatment effects between the 2
subgroup levels (level 1 minus level 2). Bubble area in the left panel is proportional to the total number of patients within each subgroup level.
Data are from Home et al.69
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information on demographic and disease characteristics would

need to be available for useful analysis.122 In addition, PV

databases often suffer from issues like duplicated reports,

underreporting of AEs, overreporting of events for new prod-

ucts or after public media exposure of an AE or product, and

inconsistent reporting patterns.123-125 Data in clinical trials

allow for more straightforward and reliable comparison of

treatments and estimation of incidence and prevalence.

While there are many benefits to the quality of safety data

from clinical trials, there are serious limitations in terms of

safety monitoring and assessment. It may not be feasible to

power a study for safety endpoints of low frequency.22 Further,

the cost may be prohibitive and the sample size required may

be too large to feasibly recruit all the subjects needed for the

study.126 Even in the SCS when data from pivotal studies are

integrated for safety assessment, the sample size may not be big

enough for detecting rare events and/or moderate safety shifts.6

We advocate the importance of meta-analysis of clinical trials

for safety endpoints to address the issue associated with small

sample size of individual studies.2,118,121,127 However, the use

of simple pooling instead of meta-analysis in SCS is still com-

mon. In the guidance document on evaluating CV risk in thera-

pies for T2DM, FDA laid out detailed recommendations on

how to design and analyze data from multiple trials. Meta-

analysis and a 2-stage assessment approach were proposed.49

During drug development, although toxicity studies and ani-

mal models give us insights of the safety profile of a drug, the

actual clinical impact on patients may not be known before a

large number of patients are exposed to the drug. For example,

several drugs were pulled off from the market due to DILI.

However, “the drugs that have caused severe DILI in humans

have not shown clear hepatotoxicity in animals, generally have

not shown dose-related toxicity, and, as noted, generally have

caused low rates of severe injury in humans (1 in 5000 to

10,000 or less).”1 Further, while the disease under investiga-

tion, the mechanism of action of study therapies, or the above

toxicity studies or animal models may suggest safety issues

likely to occur during the course of the trial, unplanned safety

issues may emerge making it difficult to prespecify appropriate

analyses in advance. Protocols and analyses have to have suf-

ficient flexibility to address unplanned events, and the study

team requires the appropriate discipline to update the PSAP as

new information is learned to guide the design of future trials.

Another drawback of using premarket clinical trials for

safety assessment is that subjects enrolled in clinical trials may

not be representative of the general patient population. Clinical

trials are designed to control variability and to ensure the qual-

ity of the generated data; therefore, the patients recruited to

participate are those who meet a long list of study eligibility

criteria. Concomitant therapies and confounding diseases are

often listed in the inclusion/exclusion criteria. In addition, clin-

ical trials may also require patients to be able to complete the

clinical visits. Thus, clinical trials designed for efficacy enroll

patients that tend to be healthier and more uniform than the

general patient population. However, in order to conduct

CVOTs efficiently for patients with T2DM, the enrolled

patients are often sicker with a higher risk of CV events than

the general population.6 In either scenario, generalizing study

findings to the larger population of patients is not possible

without additional assumptions. Data from real-world sources

and PV databases often reflect greater diversity and are more

representative of patient experience.4,18,128,129

While clinical trials provide high-quality data and an initial

assessment of the safety profile of a new therapy, they cannot

fully characterize the safety profile on their own. Safety signals

are often quite small due to the above-mentioned reasons.

Thus, postmarket observational methods and real-world data

sources play a critical role in further improving the safety

profile of a drug.4,18,128-130

Conclusions

In this manuscript, the ASA Biopharmaceutical Section Safety

Working Group shared its recommendations for the statistical

and graphical methodologies necessary to appropriately mon-

itor, analyze, report, and interpret safety outcomes and dis-

cussed the advantages and disadvantages of safety data

obtained from clinical trials compared to other sources. As a

brief summary, it is important to proactively plan for a com-

prehensive safety evaluation at the start of any development

program, distinguishing between anticipated and unanticipated

events, considering the effects of patient exposure, utilizing

appropriate multiplicity adjustment and proper meta-analysis

across multiple trials, and examining consistency of findings

across subgroups and trials for replication of effects. Further,

given the number of potential sensitivity analyses required to

gain a clear picture of patient safety, the effective use of data

visualization is an important consideration to efficiently sum-

marize and review data on an ongoing basis. We further high-

lighted the importance of individual ethics, reminding sponsors

that evaluations that limit their analyses of safety outcomes to

identifying population shifts between treatments is insufficient.

We encourage sponsors to regularly screen for the IMEs sug-

gested by the EudraVigilance Expert Working Group; similar

guidance for the screening of serious and unexpected suspected

adverse reactions is suggested in the Federal Register and

recent draft FDA guidance on safety assessment.24,25,46,131

Proactive planning is further encouraged in the draft FDA

guidance on safety screening, which recommends that sponsors

develop the appropriate procedures and infrastructure for per-

iodic review of completed and ongoing clinical development

activities for suspected adverse reactions to study thera-

pies.46,132 This review includes identifying events that occur

more frequently in the treatment group compared to concurrent

or historical controls, as well as identifying any clinically

meaningful increase in rates of these events beyond what is

expected. The FDA acknowledges sponsor concerns over trial

integrity and the potential review of unblinded information.

Therefore, to accomplish the task outlined in the guidance, the

FDA suggests the formation of a SAC, a group comprised of
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individuals who are independent of study teams and can review

unblinded safety data to determine if reporting and further

intervention is required.

All of the above discussions focus on summarizing and

responding to safety outcomes as they occur. Recently, the

FDA published a document outlining the initiatives and inno-

vations to improve drug safety throughout the development life

cycle.133 For clinical trials, these efforts include identifying

and validating potential biomarkers that increase the likelihood

of drug-induced toxicities. For example, the Predictive Safety

Testing Consortium is actively engaged in discussions with the

FDA and EMA to qualify biomarkers for liver, muscle, cardiac,

kidney, testicular, and pancreatic injury. In another example,

the Division of Applied Regulatory Science (DARS) identified

a specific protein mediator of Stevens-Johnson syndrome and

toxic epidermal necrolysis (SJS/TEN), which allowed them to

identify a gene that, when disrupted, contributes to SJS/TEN.

DARS is currently evaluating tools that can be used to predict

the likelihood of patients experiencing drug-related AEs,

including those events not previously observed in clinical trials

from the compound under investigation, to help guide regula-

tory decision making and labeling. Similar to the initiatives and

innovations document of the FDA, the ASA Biopharmaceutical

Section Safety Working Group will author additional manu-

scripts that explore other individual sources of safety data

including registries, electronic health records, and pharmacov-

igilance databases to describe approaches to more effectively

leverage information within and between these sources.128,129

Readers interested in greater detail on the analysis and

reporting of safety outcomes in clinical trials can explore texts

by Jiang and Xia4 or Gould,5 or revisit Gilbert.3 For greater

therapeutic focus, readers can review a recent examination of

safety specific to clinical trials in oncology.51 Those interested

in graphical presentations of safety data have numerous sources

to review.65,78,134-139
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