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Summary

How plants interact with sunlight is central to the existence of life and provides a

window to the functioning of ecosystems. Although the basic properties of leaf

spectra have been known for decades, interpreting canopy-level spectra is more

challenging because leaf-level effects are complicated by a host of stem- and

canopy-level traits. Progress has been made through empirical analyses and

models, although both methods have been hampered by a series of persistent

challenges. Here, I review current understanding of plant spectral properties with

respect to sources of uncertainty at leaf to canopy scales. I also discuss the role

of evolutionary convergence in plant functioning and the difficulty of identifying

individual properties among a suite of interrelated traits. A pattern that emerges

suggests a synergy among the scattering effects of leaf-, stem- and canopy-level

traits that becomes most apparent in the near-infrared (NIR) region. This explains

the widespread and well-known importance of the NIR region in vegetation

remote sensing, but presents an interesting paradox that has yet to be fully

explored: that we can often gain more insight about the functioning of plants by

examining wavelengths that are not used in photosynthesis than by examining

those that are.
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I. Introduction

The ability to relate information obtained at one scale to
patterns and processes that manifest themselves at another
is a common theme among all fields of science. In the
discipline of terrestrial ecology, methods by which leaf-,
plant- and stand-level observations can be related to land-
scapes, regions and continents have been the subject of
much discussion (e.g. Ehleringer & Field, 1993; Enquist
et al., 2003). Although a variety of approaches have been
proposed, there is widespread agreement that remote sens-
ing holds a central and irreplaceable role. Remote platforms
provide the only means of viewing large portions of the
Earth’s surface at regular intervals and the selective absorp-
tion and reflectance of light by plants allow optical sensors
to gather tremendous amounts of information relevant to
the function of ecosystems. However, the success of this
approach depends on our understanding of factors affect-
ing plant spectral properties and our ability to interpret
reflectance data from a wide range of ecosystems.

Although the basic structure of vegetation reflectance
spectra has been understood for some time (e.g. Gates
et al., 1965), the variability that exists among leaves, plants
and ecosystems presents serious challenges for efforts to
attribute spectral variation to structural or biochemical vari-
ables. The earliest attempts to study plants from space were
based on the distinct optical properties of live vegetation in
the visible and near-infrared (NIR) regions. Whereas reflec-
tance in the visible is typically low because of the absorption
properties of pigments, reflectance in the NIR is high
because individual leaves and whole plant canopies strongly
scatter NIR energy (Gates et al., 1965; Knipling, 1970).
Although the functional basis for high NIR scattering
remains an active area for research, early work demonstrated
that this difference in visible vs NIR reflectance could be
significantly related to various properties of plant density or
canopy ‘greenness’ (e.g. Tucker, 1979).

The advent of broad-band Earth-observing satellites, such
as Landsat and the advanced very high resolution spectro-
radiometer (AVHRR), in the 1970s and 1980s resulted in
efforts to produce simple vegetation indices, based largely
on NIR ⁄ visible reflectance ratios, that captured broad varia-
tion in dominant vegetation properties (e.g. Gutman,
1991). Subsequent broad-band sensors, including the mod-
erate-resolution imaging spectroradiometer (MODIS), had
improved radiometric and geometric characteristics (Justice
et al., 1998) as well as a greater number of spectral bands,
allowing refinement in the vegetation indices used to infer
vegetation condition (Huete et al., 2002). In the nearly four
decades since they first became available, data from broad-
band instruments have led to an impressive number of
regional and global investigations that include characteriza-
tion of land use and vegetation type (e.g. Running et al.,
1995; Hansen et al., 2000), vegetation biomass (e.g. Myneni

et al., 2001), leaf area index (LAI; e.g. Turner et al., 1999;
Zheng & Moskal, 2009), light use efficiency (e.g. Hilker
et al., 2008), primary productivity (e.g. Potter, 1999;
Running et al., 2004), plant water status (e.g. Nishida
et al., 2003), wildfire frequency and severity (e.g. Brewer
et al., 2005), habitat conservation areas (Wiens et al.,
2009), and biophysical variables that influence climate
(Schaaf et al., 2002).

Despite these accomplishments, broad-band sensors carry
limitations associated with the fact that they sample only
portions of the solar spectrum and at bandwidths that are
too wide to discern subtle, but important, features related
to vegetation composition, biochemistry and physiological
activity. For these reasons, a parallel set of investigations
have pursued use of imaging spectroscopy, or high spectral
resolution remote sensing, with respect to plant traits that
can best be estimated using narrow-band features or full
spectrum reflectance. This work grew initially from agricul-
tural research that used benchtop spectrometers to estimate
protein, fiber and nitrogen (N) contents of vegetable crops
and animal feeds (e.g. Thomas & Oerther, 1972; Norris
et al., 1976). Subsequent studies sought to refine statistical
methods and explored spectral features related to leaf nutri-
ents and biochemical compounds that influence the biogeo-
chemistry of native ecosystems (Wessman et al., 1988;
Martin & Aber, 1994; Curran & Kupiec, 1995; Kokaly &
Clark, 1999). At the plant level, portable spectrometers are
increasingly used for similar purposes, but factors such as
leaf structure and stem geometry introduce additional
sources of variability (e.g. Yoder & Pettigrew-Crosby, 1995;
Milton et al., 2009). Similarly, the ability to deploy
spectrometers on aircraft and satellite platforms has
emerged as a useful tool for landscape to regional ecological
analysis (Ustin et al., 2004) and has led to new plans for
future high spectral resolution Earth observation satellites.
Nevertheless, such instruments present a variety of new
challenges including removal of atmospheric effects (Gao
et al., 2009), understanding the influence of canopy struc-
ture (e.g. Roberts et al., 2004), and interpreting reflectance
spectra from floristically mixed pixels (e.g. Ollinger &
Smith, 2005; Plourde et al., 2007).

Although there has been much progress in the use of pas-
sive optical remote sensing for vegetation analysis, persistent
uncertainties related to sources of variability in vegetation
spectral properties still pose challenges. Some of these stem
from difficulties in discerning vegetation types that are
functionally different, but too similar spectrally to be differ-
entiated with existing instruments (Kokaly et al., 2009).
Other challenges involve commonly observed reflectance
patterns, particularly in the NIR region, that either cannot
easily be explained by current understanding of how plants
absorb and reflect light or that can result from numerous
combinations of leaf- and canopy-level traits. Given
the importance of understanding ecosystem response to
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environmental change and the planned development of new
space-based remote sensing instruments such as HyspIRI
(National Research Council (NRC), 2007), efforts to
enhance our ability to interpret vegetation spectral patterns
are needed.

In this paper I review current understanding of spectral
reflectance patterns in plants with respect to known sources
of variability and uncertainties that limit current applica-
tions of remote sensing. In doing so, I revisit some of the
basic mechanisms governing interactions between plants
and incident radiation, and highlight developments span-
ning > 45 yr of research. I also discuss a persistent challenge
in understanding the drivers of plant spectral patterns that
requires further examination: the issue of functional conver-
gence among plant traits and the difficulty of assessing the
relative importance of individual traits that covary with a
suite of plant properties. Treatment of these topics draws
from a wide body of literature, use of leaf and canopy radia-
tive transfer models (the PROSPECT and SAIL models:
Verhoef, 1984; Jacquemoud & Baret, 1990; Jacquemoud
et al., 2000, 2009), and data from recent investigations of
canopy spectral properties in forests (Martin et al., 2008;
Ollinger et al., 2008).

Research on the spectral properties of plants has pro-
duced a greater body of knowledge than can be adequately
covered in one short review and many important lines of
investigation have necessarily been omitted. Instead, the
objective was to provide a review that ties basic physical
mechanisms of plant–light interactions to the challenges of
understanding variability across leaves, stems and canopies.
Although the focus is on reflectance features relevant to pas-
sive optical remote sensing platforms, active sensors such as
Light Detection and Ranging (LiDAR) and Radio
Detection and Ranging (radar) play an increasingly impor-
tant role in vegetation remote sensing. Ecological applica-
tions of these sensors have been reviewed elsewhere and
typically focus on detection of the vertical or three-dimen-
sional structure of plant canopies (Lefsky et al., 2002;
Treuhaft et al., 2004). Here, treatment of these sensors will
focus on cases where their fusion with data from passive
optical sensors can improve understanding of canopy spec-
tral properties.

II. Physical properties of incident radiation

Most of the radiation emitted by the sun occurs in the range
of 200 to 2500 nm (Fig. 1a), with a peak at c. 500 nm and
a distribution that approximates the emission spectra of a
black body at 5800�K, as described by Planck’s law. In the
atmosphere, light is scattered by dust, atmospheric mole-
cules and aerosols and is absorbed at various wavelengths by
a variety of gases. Whereas much of the incident ultraviolet
energy is absorbed by O2 and O3, there are few absorbers in
the visible portion of the spectrum (400–700 nm), making

the atmosphere transparent in this region. The dominant
absorber in the NIR region is H2O, which has strong
absorption features centered at 1450, 1950 and 2500 nm
and weaker features at 980 and 1150 nm. Minor absorption
features in the NIR region are caused by CO2, O2, N2O
and CH4. Given the strong and variable influence of the
atmosphere, efforts to use aircraft and satellite sensors to
estimate vegetation reflectance (e.g. Fig. 1b) must account
for atmospheric interference, often using models that esti-
mate atmospheric composition and radiation transfer (e.g.
Gao et al., 2009).

Rather than being distributed evenly over the solar spec-
trum, the energy per quantum of light declines from shorter
to longer wavelengths. Roughly half of the energy in inci-
dent radiation reaching the Earth’s surface is in the visible
wavelengths, with the remaining half being in the near- and
mid-infrared. This has an important effect on interactions
between sunlight and plants and is why, for example, evolu-
tion has selected for pigments that absorb narrower, more
energetic wavelengths to drive the photochemical reactions
of photosynthesis.

(a)

(b)

Fig. 1 (a) The solar radiation spectrum above and below the
atmosphere, and (b) typical reflectance spectra of ( ) crop, ( )
tree and ( ) soil surfaces (Gueymard, 2004).
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III. Sources of variability in vegetation
reflectance

Interactions between incident radiation and plants are extre-
mely complex, because of diversity in the size, shape,
composition, and arrangement of cells, leaves, stems and
plants within ecosystems. However, the biophysical basis
for nearly all such interactions can be grouped into one of
two categories: absorbance and scattering, with scattering
being further subdivided into reflectance and transmittance.
Absorbance includes light absorbed by pigments, liquid
water and a number of other plant constituents (Blackburn,
1998; Ceccato et al., 2001; Kokaly et al., 2009). Because
specific absorption features are caused either by changes in
electronic energy states or changes in the vibrational or
rotational properties of molecules, absorption features for
individual plant compounds tend to occur in discrete
portions of the spectrum rather than being distributed over
a broader range of wavelengths.

By contrast, scattering occurs whenever solar radiation of
any wavelength crosses a boundary between two substances
that differ in their refractive index. The difference between
the refractive indexes of air (1.0) and liquid water (1.33)
causes the well-known illusion of a stick bending when
dipped in a pool. Early studies using crops estimated the
refractive index of cell walls in a leaf by replacing the inter-
cellular air spaces with various fluids (Knipling, 1970;
Gausman et al., 1974; Woolley, 1975). The refractive index
of the substance that minimized scattering and reflectance
was assumed to be equal to that of the cells. Values obtained
using this method varied between 1.4 and 1.5 depending
on the degree of leaf hydration, with lower values coming
from well-watered leaves.

Although difficult to quantify precisely, the overall degree
of scattering in leaves is a function of the number and
arrangement of cellular and intercellular surfaces that refract
light. With a large enough number of refracting surfaces, the
directional properties of light within the leaf become effec-
tively homogenized. For photosynthetically active wave-
lengths (which largely overlap with visible wavelengths), this
has the effect of maximizing absorption by pigments and
enhancing overall rates of CO2 fixation (Evans, 1999;
Gutschick, 1999). For NIR wavelengths, where absorbance
by leaf constituents is either small (Knipling, 1970; Woolley,
1971; Jacquemoud & Baret, 1990) or altogether absent
(Merzlyak et al., 2002), scattering increases the likelihood
that photons will exit the leaf in very different directions
from the direction of entry. This provides the biophysical
basis for high leaf-level reflectance in the NIR region.

1. Leaf and canopy water content

Water is typically the most abundant substance by mass in
healthy leaves and its effects on leaf optical properties are

substantial. The influence of leaf water on reflectance
includes both direct effects, those caused by the absorption
properties of water itself, and indirect effects, those associ-
ated with other leaf properties that change with hydration
and water stress. As with water absorption in the atmo-
sphere, the direct effects of liquid water in foliage include
distinct features at 1450 and 1950 nm, with weaker features
at 980 and 1150 nm. The more general rotation-vibration
features of water molecules cause additional absorption
beginning at c. 1400 nm and increasing at longer wave-
lengths. This causes the characteristic pattern of declining
reflectance at wavelengths beyond the maximum values in
the NIR plateau (Fig. 1b).

The consistency of direct water absorption features has
enabled them to be included in leaf optical models (e.g.
Jacquemoud et al., 2000) and has led to the development of
simple band ratio indices for characterizing plant water via
remote sensing (e.g. the normalized difference water index
(NDWI; Gao, 1996) and the plant water index (WI;
Peñuelas et al., 1997)). Importantly, field and laboratory
measurements of leaf water are often expressed in relative
terms as a fraction of leaf weight, whereas leaf- and canopy-
level reflectance spectra are influenced by the total amount
of water present. To address this problem, several investi-
gators have related spectral indices to estimates of equivalent
water thickness (EWT), which can be expressed in units of
mass or depth for whole canopies as well as individual leaves
(Gao & Goetz, 1995; Ceccato et al., 2001).

Although direct effects of water content on plant spectra
are reasonably straightforward, the situation is complicated
by indirect effects and plant structural properties that covary
with water status. Many, if not most, aspects of plant func-
tion are related in some way to changes in water content. As
an illustration, Zygielbaum et al. (2009) collected leaf spec-
tra from maize (Zea mays) plants over a 7-d period during
which water stress was induced by withholding water.
Relative to a well-watered control group, leaves experienc-
ing water deficits exhibited the expected response of
increased reflectance in the mid-infrared (beyond 1400 nm;
Section IV.2, Fig. 5). However, similar increases were also
observed in the visible and NIR regions, resulting in an
overall increase in reflectance across the full range of 400–
2400 nm. The response in the visible may be attributed to
stress-induced declines in leaf pigments, but the response in
the NIR, which lacks strong absorbers of any kind, suggests
an indirect effect of drying via changes in leaf structure and
scattering. In other cases, variation in EWT has been shown
to result from differences in leaf area, leaf density and dry
matter content (Serrano et al., 2000; Ceccato et al., 2001).
Because these variables can affect reflectance in similar spec-
tral regions, attempts to derive more refined water indices
have used radiative transfer models capable of assessing
structural properties that covary with, but are not a direct
result of, changes in EWT (e.g. Ceccato et al., 2002a,b).
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2. Leaf pigments

Leaf pigments, including chlorophyll a and b (Chla and b),
carotenoids, anthocyanins and a variety of accessory pig-
ments, have perhaps the most apparent and well-studied
effects on leaf optical properties, given their roles in the
light-harvesting reactions of photosynthesis and in various
aspects of stress avoidance (Govindjee, 2002). The fact that
pigments are strong absorbers in the visible region and are
abundant in healthy vegetation causes plant reflectance
spectra to be generally low and less variable in the visible
relative to NIR wavelengths (e.g. Asner et al., 1998;
Fig. 1b). Chlorophyll, the major light-harvesting com-
pound in plants, absorbs strongly in the red (650–700 nm)
and blue (400–500 nm) regions (Fig. 2), although absorp-

tion in the blue by carotenoids often prevents this region
from being useful in chlorophyll estimation. Carotenoids,
which include the carotenes and xanthophylls, absorb pri-
marily in the blue. Carotenoids play a number of roles in
plants, including light harvesting for photosynthesis and, in
the case of xanthophylls, dissipating energy to avoid damage
by excess light (Demmig-Adams & Adams, 1996).
Anthocyanins, often referred to as the ‘stress pigments’,
occur in the cytoplasm (rather than in chloroplasts) and are
believed to provide protection from stressors such as tem-
perature, excess light, UV radiation and the presence of
strong oxidants (Chalker-Scott, 1999; but also see Gould &
Quinn, 1999). Anthocyanins absorb in similar wavelengths
as chlorophyll, albeit with weaker features in the yellow and
red, giving many leaves their autumn colors during senes-
cence (e.g. Feild et al., 2001).

Because of their strong absorbance properties and
important physiological roles, considerable effort has been
put into estimating pigment concentrations from leaf and
canopy reflectance. These include methods using labora-
tory- and field-based spectrometers (e.g. Sims & Gamon,
2002; Gitelson et al., 2006, 2009) as well as aircraft- and
space-based imaging spectrometers (Ustin et al., 2009).
The majority of studies have focused on chlorophyll esti-
mation, because of the dominant role of chlorophyll in
light harvesting and because spectral overlap makes estima-
tion of other pigments challenging. Nevertheless, methods
to characterize carotenoids and anthocyanins have also
been explored (Gamon et al., 1990; Gitelson et al., 2006,
2009). Detection of xanthophylls is of particular interest
because of their role in dissipation of excess energy during
times of stress. The ability to track changes in xanthophyll
concentrations through time has given rise to new methods
for monitoring changes in photosynthesis and instantaneous
light use efficiency (e.g. Gamon et al., 1992, 1997; PRI in
Table 1).

Collectively, investigations into pigment reflectance
properties have produced a wide variety of spectral detec-
tion indices (Table 1), most of which involve some combi-
nation of narrow bandwidths in the visible portion of the
spectrum. Interestingly, some indices used for chlorophyll
detection also make use of reflectance at wavelengths of
800 nm or greater, where the direct effect of pigments is
negligible. These include the normalized difference vegeta-
tion index (NDVI) and the ratio vegetation index (RVI).
Their relationship with chlorophyll concentrations carries
the implication that pigment concentrations covary with
structural leaf tissue attributes that drive scattering and
reflectance in this region. Although progress in under-
standing pigment effects on plant spectral properties has
been substantial, limitations of our present knowledge are
highlighted by the wide variety and lack of uniformity of
reflectance indices used to estimate pigment concentrations
(Table 1).

(a)

(b)

Fig. 2 (a) Reflectance spectra for a range of chlorophyll
concentrations simulated with the PROSPECT (Jacquemoud &
Baret, 1990) model. Because chlorophyll is a strong absorber in
the visible but not in the near-infrared (NIR) region, the model
assumes no effect of changes in chlorophyll on the NIR portion of
the spectrum. Other model parameters were set using values
typical for a deciduous leaf (dry matter = 0.01 g cm)2, equivalent
water thickness (EWT) = 0.012 cm; N = 2). (b) Expanded view
of the visible region from (a) showing chlorophyll absorption
patterns in the blue (c. 400–500 nm) and red (c. 650–700 nm)
wavelengths.
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3. Leaf N and nonpigment biochemical constituents

Nonpigment leaf constituents – including N, proteins, lig-
nin and cellulose – influence leaf spectral properties directly
through their individual absorption properties, and indi-
rectly through their relationship with leaf structural and
biochemical attributes that affect scattering and reflectance.
Whereas pigments are the dominant absorbers in the 400–
700 nm range, most absorption features caused by nonpig-
ment compounds occur at longer wavelengths and are gen-
erally weak, resulting from vibrations and bond stretches of
various carbon (C), N, hydrogen and oxygen bonds (e.g.
Curran, 1989; Smith et al., 2003; Kokaly et al., 2009).

These features are easiest to discern using dry foliage in
laboratory studies (e.g. Kokaly & Clark, 1999), which bene-
fit from the controlled environment and precision of labora-
tory instruments, and from the absence of water absorption,
which can overshadow biochemical absorption features at
wavelengths beyond 1400 nm (Kumar et al., 2001).

Despite these challenges, efforts to investigate leaf bio-
chemistry using remote instruments began with the advent
of aircraft imaging spectrometers (e.g. Wessman et al.,
1988) and have progressed steadily with sensors that have
improved spectral and radiometric characteristics (e.g.
Matson et al., 1994; Smith et al., 2003; Martin et al.,
2008). Particular interest has focused on estimating foliar N

Table 1 Examples of spectral vegetation indices and their applications

Index Equation Application References

Carter & Miller stress (CMS);
Carter stress (CSc and CSd)

R694
R760

;R605
R760

;R710
R760

Chl content Carter & Miller (1994);
Carter (1994)

Datts index (DattsCI) R850�R710
R850�R680

Chl content Datt (1999)

Difference vegetation index (DVI) R810 – [(R610 + R661) ⁄ 2] Canopy Chl density Broge & Leblanc (2001)

Enhanced vegetation index (EVI)1 GðRNIR�RredÞ
RNIRþC1ðRredÞ�C2ðRblueÞþL

Photosynthetic activity Huete et al. (2002)

Gitelson & Merzlyak
chlorophyll index (GM)

R750
R700

Chl content Gitelson & Merzlyak (1994)

Green normalized difference
vegetation index (GNDVI)

R810�½ðR510�R561Þ=2�
R810þ½ðR510þR561Þ=2� Chl content Gitelson & Merzlyak (1997)

Modified red edge ratio (mSR) R750�R445
R705þR445

Chl content Sims & Gamon (2002)

Normalized difference
vegetation index (NDVI)

R800�R680
R800þR680

Chl content and
energy absorption

Gamon et al. (1997);
Gamon & Surfus (1999)

Normalized difference
water index (NDWI)

R860�R1240
R860þR1240

Liquid water content
of vegetation canopies

Gao (1996)

Photochemical reflectance index (PRI) R531�R570
R531þR570

Carotenoids;
xanthophyll cycle

Gamon et al. (1992), (1997)

Pigment-specific normalized
difference (PSND)

R800�R675
R800þR675

;R800�R650
R800�R650

Chla and Chlb content Blackburn (1998)

Pigment-specific simple ratio
(PSSRa, PSSRb and PSSRc)

R800
R675

;R800
R650

;R800
R470

Chla and Chlb content;
carotenoids

Blackburn (1998), (1999);
Sims & Gamon (2002)

Plant senescence reflectance
index (PSRI)

R680�R500
R750

Carotenoids; Chl content Merzlyak et al. (1999);
Sims & Gamon (2002)

Ratio analysis of reflectance
spectra (RARSa, RARSb and RARSc)

R675
R700

; R675
R650�R700

;R760
R500

Chla and Chlb content;
carotenoids

Chappelle et al. (1992);
Blackburn (1999)

Ratio vegetation index (RVI) R800
R680

Chl content Pearson & Miller (1972);
Broge & Leblanc (2001);
Sims & Gamon (2002)

Red edge NDVI (rNDVI) R750�R705
R750þR705

Chl content Gitelson & Merzlyak, (1994),
Sims & Gamon (2002)

Red ⁄ Green Index (RGI)
P700

i¼600
Ri=

P600

i¼500
Ri Anthocyanin Gamon & Surfus (1999);

Sims & Gamon (2002)
Second soil-adjusted vegetation
index (SAVI2)2

RNIR
Rredþða=bÞ

Canopy Chl density Broge & Leblanc (2001)

Structure-insensitive pigment
index (SIPI)

R800�R445
R800�R680

Carotenoids; Chl Peñuelas et al. (1995);
Sims & Gamon (2002)

Water index R900
R970

Canopy water content Peñuelas et al. (1997)

R, reflectance.
1EVI variables: G, gain factor; L, canopy background adjustment factor; C1,2, aerosol influence coefficients.
2a and b in SAVI2 are soil line coefficients (e.g. a = 1 and b = 0 for bare soil).
Wavelength numbers are in nanometers.
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concentrations, given the role of N as a nutrient and the
useful information it can convey about a variety of eco-
system processes. Recent efforts have involved characteriza-
tion of N transformations in soils (e.g. Ollinger et al.,
2002), invasion of nonnative tree species (Asner &
Vitousek, 2005), forest response to atmospheric N deposi-
tion (McNeil et al., 2007) and patterns of productivity and
C assimilation (Smith et al., 2002; Ollinger et al., 2008).

Although N itself is a relatively small component of leaf
mass, most of the N in leaves is associated with pigments and
proteins involved in photosynthesis. The most notable
N-containing leaf constituent is Rubisco, which can contain
up to 50% of the N in leaves (Elvidge, 1990) and is consid-
ered to be the most abundant protein on Earth. Nevertheless,
there is still uncertainty surrounding the effects of N on leaf
spectra and the degree to which N detection using imaging
spectroscopy has been based on direct effects of N-containing
compounds or the indirect effect of related leaf traits.
Although spectral patterns associated with N-H stretch or
C-H stretch features in proteins are often cited as key drivers
of the correlation between reflectance spectra and measured
N concentrations, some of these features are located in areas
that are sensitive to water and leaf or canopy structure. As an
example, the most heavily weighted bands in the foliar N cali-
bration by Smith et al. (2003) are located either on the
shoulders of mid-infrared water absorption features or in the
regions of the NIR plateau and red edge inflection point.
These latter features are sensitive to structural properties that
influence scattering, as will be discussed in the following
subsection ‘Vegetation architecture’. Similarly, Ollinger et al.
(2008) found a strong correlation between canopy N con-
centration (%N) and reflectance across broad portions of
the NIR plateau (800–1400 nm) when summarizing a large
data set from temperate and boreal forests of North America.
This trend was strong enough to dominate overall patterns
of shortwave canopy albedo and was probably the result
of covariation between %N and some structural trait that
influences overall patterns of scattering and reflectance.

Given the interdependence between N, water and leaf
structure in regulating various aspects of C assimilation and
plant energy regulation, confounding effects that will influ-
ence the interpretation of reflectance spectra are to be
expected. In many cases, the resulting N detection methods
can still be reliable to the extent that these relationships
hold up across the conditions for which they are applied.
Nevertheless, efforts to tease apart the specific drivers of
individual features are needed if existing capabilities are to
grow beyond mapping current conditions to modeling and
prediction under future scenarios of change.

4. Vegetation architecture

The influence of plant biochemical compounds involves
direct effects on light absorption, as well as indirect effects

of associated structural features that affect scattering. Here,
plant structural features are explored in greater detail.
Although the physical processes that cause scattering are less
wavelength-dependent than the processes that cause absorp-
tion, the spectral signature of scattering is not manifested
uniformly. This is because of the selective effects of absorb-
ers, which determine which wavelengths of scattered radia-
tion can exit the leaf. Because the two dominant absorbers
in plants are pigments, which absorb in the visible, and
water, which absorbs primarily in the mid infrared
(> 1400 nm), the NIR (c. 750–1400 nm) represents the
region in which leaves are the most optically transparent. As
a result, the NIR region is dominated by high reflectance
and is influenced by structural properties at the leaf, stem
and canopy scales.

Leaf structure Given the large number of cells and cell
wall surfaces in leaves (Fig. 3), leaf structural characteristics
play an important role in scattering light, and their effects
have been studied intensively. Leaf reflectance includes both
specular and diffuse components, both of which are influ-
enced primarily by internal leaf surfaces. Cuticular leaf
waxes are nearly transparent to visible and infrared radia-
tion, so relatively little incident light is reflected directly
from a leaf surface (Knipling, 1970). Leaf reflectance is thus
primarily a function of multiple scattering within leaf meso-
phyll tissues (Baranoski & Rokne, 1997; Slaton et al.,
2001), which is influenced by the arrangement of cells
within the mesophyll.

Palisade cells (Fig. 3a), for example, can be described as
‘light pipes’ that help direct light to the interior of cells, ensur-
ing chlorophyll absorption for photosynthesis (Gausman
et al., 1969; Vogelmann & Martin, 1993; Knapp & Carter,
1998). Based on this alone, leaves with a higher proportion of
spongy mesophyll to palisade mesophyll cells might be
expected to scatter more light, resulting in higher NIR reflec-
tivity. However, because NIR absorption by leaf tissues is
negligible, this light-channeling function may be limited to
visible wavelengths. Further, studies that have examined
scattering properties at this scale have determined that the
ratio of mesophyll cell surface to intercellular air spaces
appears to be the more dominant driver of NIR reflectance
(e.g. Knipling, 1970; Woolley, 1971; Nobel et al., 1975;
Slaton et al., 2001; Castro & Sanchez-Azofeifa, 2008).

Leaf thickness, geometry and orientation have also been
shown to influence leaf reflectance (Knapp & Carter, 1998;
Ourcival et al., 1999; Moorthy et al., 2008). For instance,
light incident on flat leaves with a thin epidermal layer and
long palisade cells generally reflect more NIR light than
short, cylindrical needles with thick cell walls and undiffer-
entiated mesophyll (Vogelmann & Martin, 1993; Knapp &
Carter, 1998; Johnson et al., 2005). Additional factors such
as leaf physiognomy (e.g. bifacial vs unifacial leaves) and
orientation can offset or accentuate these differences. For
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example, the top or face of a bifacial leaf (the adaxial leaf
surface) generally has higher NIR reflectance than the back
of a leaf (abaxial surface; Woolley, 1971; Hoque & Remus,
1996; Baranoski, 2006). Transmittance, in contrast, is
greater across the entire infrared region (c. 750–2400 nm)
when abaxial, as opposed to adaxial, surfaces are facing the
light source (Woolley, 1971; Hoque & Remus, 1996;
Baranoski, 2006).

Stem characteristics In addition to structural properties of
individual leaves, the number, shape and arrangement of
leaves growing along a stem also influence scattering (e.g.
Niinemets et al., 2002; Niinemets & Fleck, 2002; Walcroft
et al., 2005). The spatial distribution of foliage along a stem
describes foliage aggregation, or clumping. Clumping indi-
ces have become common for describing the degree of
aggregation of foliage (e.g. Chen & Black, 1992).
Clumping estimates are based on the size and distribution
of gaps in foliage; in forests, this applies both within a shoot
and along a stem (Chen & Cihlar, 1995a,b; Chen, 1996).
Clumping indices generally range from 0 to 1, and decrease
with increasing clumping – the smaller the clumping factor,
the more clumped the canopy (Chen, 1996).

The effects of clumped foliage on light scattering are
complex, and can vary with light conditions, leaf angle and
leaf shape. For example, needles clustered within an ever-
green shoot produce self-shading, and tend to reflect less.
However, the angular distribution of needles around the
stem can affect the level of self-shading – for example,
needles at the top of evergreen canopies tend to be more
spherically oriented around in order to intercept light from
more angles (Cescatti & Zorer, 2003). Regardless, high levels
of foliage clumping generally correspond to large numbers of
gaps in canopy surfaces, resulting in deeper light penetration
and less light interception by foliage. This has been observed
in both needleleaf and broadleaf plants (Baldocchi &
Hutchison, 1986; Niinemets & Fleck, 2002; Niinemets
et al., 2004; Walcroft et al., 2005), although the effect of
clumping has been considered more important in needleaf
plants (Niinemets et al., 2004).

NIR reflectance is generally lower for conifer crowns than
broadleaf crowns, a pattern that has been at least partly
explained by the recollision property. The recollision prop-
erty is the probability that a photon scattered from a leaf in
a canopy will interact within the canopy again, increasing
its chances of being absorbed (Smolander & Stenberg,

(a) (b)

Fig. 3 Schematic representation of leaves with laminar (a) and needle (b) structure and their general cell arrangements. The leaf depicted in (a)
is the broadleaf Liriodendron tulipifera L. (USDA Natural Resources Conservation Service (NRCS), 2010), although the cross-section shows an
internal structure typical of many broadleaf deciduous species. The needleleaf example in (b), Picea rubens Sarg. (USDA Natural Resources
Conservation Service (NRCS), 2010), displays a more tightly packed cell structure, with undifferentiated palisade and spongy mesophyll layers.

8 Review Tansley review
New
Phytologist

� 2010 The Author

New Phytologist � 2010 New Phytologist Trust

New Phytologist (2010)

www.newphytologist.com



2005). While this property describes much of the within-
shoot scattering in conifers, it cannot account for all the
variation in NIR reflectance between broadleaf and conifer
species. Differences in the direction of scattering, as well as
in absorption properties of needles, leaves and woody mate-
rial have been suggested as additional sources of variation in
NIR reflectance between these functional types (Smolander
& Stenberg, 2003; Rautiainen & Stenberg, 2005).

Canopy structure Whole-canopy structure can affect pat-
terns of scattering and absorption by, for example, influenc-
ing the depth at which photons first encounter foliage and
the probability that they will interact with additional leaves
after these initial interactions. One of the most widely used
descriptors of canopy structure is leaf area index (LAI),
which is defined as the ratio of total leaf area to ground area.
Although LAI is important to understanding the overall
nature of canopies, it aggregates elements of crown shape,
canopy density, clumping, gaps and fractional vegetation
cover. As a result, LAI alone cannot fully describe the effects
of canopy structure on reflectance. Indeed, canopies with
similar LAI often have significantly different NIR reflec-
tance, attributed to variation in a multitude of components
(e.g. Nagler et al., 2004; Rautiainen et al., 2004; Smolander
& Stenberg, 2005).

The effect of whole-canopy structure on reflectance can
be partitioned into factors that describe the inner crown
structure and those that describe the outer canopy surface
(Rautiainen et al., 2008). Shoot and branching architecture
influences the inner crown structure, and includes factors
such as the heights at which leaves and branches are
attached to stems, as well as their lengths, distribution, freq-
uency and angles of inclination or orientation (Niinemets
& Lukjanova, 2003; Rautiainen et al., 2008). Leaf orienta-
tion in a canopy is characterized through an estimate of leaf
angle distribution (LAD). LAD incorporates the gradient
between vertically and horizontally inclined leaves within
canopies (e.g. King, 1997; Alton & North, 2007; Posada
et al., 2009) and can describe the general shape of the
crown. Crown shape, together with canopy volume, density
and gap fraction, influence the reflectance of the outer can-
opy surface (Hall et al., 1995; Rautiainen et al., 2004).

In principle, the effects of outer canopy structure on light
absorption and scattering are similar to the effects of leaf
and stem structure inside a crown, generalized over a larger
spatial scale. As an example, the directional distribution of
photon scattering within a crown has been described by the
recollision probability. An implication of this theory is that
multiple scattering within the crown allows for a higher
probability of photon absorption, and hence lower reflec-
tance (Smolander & Stenberg, 2003; Rautiainen &
Stenberg, 2005; Smolander & Stenberg, 2005). Further,
scattering of photons within the crown is largely dependent
on the orientation of leaves (Ganapol et al., 1999), where

large leaf inclinations (i.e. vertically oriented leaves) permit
deeper penetration of light within the canopy (Ellsworth &
Reich, 1993). A similar phenomenon has been described
for the outer canopy surface of an old-growth Douglas-fir
(Pseudotsuga menziesii (Mirbel) Franco) stand: vertically
elongated spaces between dominant trees permit deep pene-
tration of incident radiation, and subsequent scattering and
absorption within these spaces have the effect of reducing
whole-canopy reflectance (Parker et al., 2004).

Individual components of outer canopy structure such as
crown volume, density and shape have also been examined
relative to canopy reflectance. For instance, Rautiainen
et al. (2004) observed that coniferous canopies with the
same LAI had lower overall reflectance if their crowns were
more conical than ellipsoidal in shape. Additionally, they
found that, in stands with smaller canopy closure and lower
LAI, scattering appeared to be dominated by reflectance
from materials on the ground, whereas in dense stands with
high canopy closure and high LAI, scattering from tree
crowns was dominated by crown shape (Rautiainen et al.,
2004).

These observations suggest the relative importance of
individual components of canopy structure on whole-canopy
reflectance. Yet some of these components remain challeng-
ing to characterize. Leaf orientation, for example, is measured
either with a protractor or clinometer, or estimated from
photography (Jacquemoud et al., 1995; Close & Beadle,
2006). Because accurate measurements of leaf orientation
for whole canopies are challenging and, therefore, rare,
canopy LAD is generally set to one of several aggregated
functional groups (e.g. spherical, planophile, erectophile or
plagiophile; Ganapol et al., 1999) or estimated as a mean
leaf inclination angle (Jacquemoud et al., 1995). This has
implications for the prediction accuracy of canopy reflec-
tance models, which are typically very sensitive to variation
in LAD inputs (e.g. Asner, 1998; Fig. 5). Quantifying
errors associated with LAD assumptions is difficult because
few studies have the field measurements necessary to accom-
plish this or to evaluate LAD variation within functional
groups. Recent developments in LAD measurement using
narrow-beam terrestrial laser scanners (Eitel et al., 2010)
could substantially improve this situation.

IV. The combined effects of multiple traits on
whole-canopy reflectance

The preceding section considered individual sources of vari-
ability in vegetation reflectance, including leaf water content,
biochemical constituents and various components of plant
structure. In each case, the role of a given factor is governed
by physical and biological processes that influence scattering
and absorption of light at different wavelengths. At the scale
of whole canopies, reflectance patterns represent the inte-
grated effects of all of the above (e.g. Roberts et al., 2004),
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often influenced by multiple species and functional groups.
Because this is the scale at which most aircraft and satellite
remote sensing instrument observations are made, interpret-
ing the data they provide can be challenging.

To date, most of the effort toward interpreting whole-
canopy reflectance patterns has involved empirical methods
that relate observed reflectance to measured vegetation char-
acteristics or models of plant–light interactions that can be
solved or manipulated in a way that helps interpretation of
reflectance measurements. While these approaches can be
effective under many circumstances, they also have impor-
tant limitations, especially where various combinations of
individual plant properties can yield similar whole-canopy
spectra or where multiple spectrally important plant traits
covary and cannot be separated statistically.

1. Vegetation indices and other empirical methods

Relationships between plant traits and canopy reflectance
features have been derived through the use of multiple
regression and other least-squares statistical methods (e.g.
Wessman et al., 1988; Martin et al., 2008) and, more com-
monly, spectral vegetation indices (e.g. Chappelle et al.,
1992; Lichtenthaler et al., 1996). Indices from broad-band
platforms such as MODIS and Landsat have been widely
used for estimating vegetation density and activity at regio-
nal to global scales (e.g. Huete et al., 2002; Freitas et al.,
2005; Di Bella et al., 2009). However, relative to the
number of plant traits they have been used to predict, the
number of spectral features in most commonly used reflec-
tance indices is small. As an example, the widely used
normalized difference vegetation index (NDVI; Table 1)
uses reflectance in just two spectral bands, but has been
related to a much larger number of vegetation properties. At
the time of writing, an ISI search on ‘NDVI’ and ‘vegetation’
yielded > 2500 publications when restricted to journals of
ecology, remote sensing and plant science. Among these arti-
cles, variation in NDVI has been related to properties such as
LAI (e.g. Thenkabail et al., 2000; Houborg & Boegh,
2008), chlorophyll (e.g. Reddy et al., 2001), N stress (e.g.
Peñuelas et al., 1994), foliar biomass (e.g. Freitas et al., 2005;
Mirik et al., 2005; González-Alonso et al., 2006), fractional
vegetation cover (e.g. Rundquist, 2002; Nagler et al.,
2004), foliar water potential (e.g. Stimson et al., 2005), and
plant primary production (e.g. Tucker & Sellers, 1986;
Burke et al., 1991; Paruelo et al., 1997), to name just a few.

That so many vegetation traits have been estimated using
such a small number of spectral features presents a conun-
drum. Either the underlying drivers of reflectance patterns
vary across the ecosystems included in various studies, or,
more likely, a series of interrelated factors have a collective
influence on reflectance, possibly with the degree of impor-
tance for each varying across systems. This not a criticism,
but it does highlight the need for further progress in identi-

fying specific underlying drivers and for remote sensing
instruments that can provide more detailed information
about canopy structure and reflectance.

It is also interesting that variation in vegetation indices
involving visible and NIR radiation are often driven to a
greater extent by variation in NIR reflectance than by varia-
tion in visible reflectance. As an illustration, data from
Ollinger et al. (2008) allow comparison of canopy N in
temperate and boreal forests with NIR reflectance, and
three commonly used indices: NDVI, RVI and the differ-
ence vegetation index (DVI) (Table 1). Across the study
sites, reflectance in the NIR was more variable and more
strongly related to canopy %N than reflectance in the visi-
ble. In fact, canopy %N was more tightly correlated with
NIR reflectance on its own than with most of the two-band
indices. The contribution of reflectance in the visible was
small and, in most cases, added noise to an otherwise strong
trend (Fig. 4). Results such as this present another interest-
ing paradox: that the physiological activity of vegetation is
often more strongly related to reflectance at wavelengths
that are not used in photosynthesis than to those that are.
This is, in part, a result of the effectiveness of multi-
layered canopies at absorbing visible light, which causes
reflectance in this region to be lower and less variable com-
pared with reflectance over other portions of the spectrum.
By contrast, scattering and reflectance in the NIR region
vary considerably and are driven by factors that appear to
covary with plant traits such as photosynthetic capacity,
light use efficiency and foliar %N (Green et al., 2002;
Kergoat et al., 2008; Ollinger et al., 2008). The nature
and potential causes of these associations have only been
partially explored and are discussed further in Section V
below.

2. Modeling plant–light interactions

Leaf and canopy reflectance models can generally be
grouped into two broad classes—descriptive models and
physically based models (Asner & Wessman, 1997; Kumar
et al., 2001). Descriptive models explain absorption and
extinction of light, and include stochastic and ray tracing
models, which trace paths of photons through a leaf or can-
opy to determine patterns of scattering (e.g. Govaerts et al.,
1996; Baranoski & Rokne, 1997; Rochdi et al., 2006;
Schlerf & Atzberger, 2006; Alton & North, 2007).
Physically based models account for absorption and scatter-
ing processes based on sensitivities to leaf and ⁄ or canopy
geometry and biochemistry and thus describe leaves and
canopies in terms of their composition, arrangement, geom-
etry, density, and shape (Jacquemoud & Baret, 1990; Li &
Strahler, 1992; Dawson et al., 1998; Ganapol et al., 1998).
In practice, many models represent a hybridization of these
approaches, and all of them incorporate some aspect of radi-
ative transfer theory (Chandrasekhar, 1960).
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Plant reflectance models are designed and parameterized
to capture specific factors that influence light absorption and
scattering. Through iterative adjustment of parameters, pre-
dictions can be made about their relative effects on patterns
of reflectance. Most models can also be calibrated or
inverted, in which case reflectance is measured rather than
predicted and used to solve for one or more parameters (e.g.
Schlerf & Atzberger, 2006; Liang, 2007). Model inversion
requires care and involves some means of estimating values
for all parameters that are not being retrieved through inver-
sion (Darvishzadeh et al., 2008; Hedley et al., 2009). This
can be problematic, given data limitations and the challenges
of measuring properties such as leaf angle distribution and
intercellular leaf structure. Errors in model structure or pre-
scribed parameter values yield errors in the variables
retrieved through inversion. Further, neither forward nor
inverse model solutions are necessarily unique (Weiss &
Baret, 1999; Darvishzadeh et al., 2008). Different combina-
tions of parameters can produce similar reflectance spectra,
confounding an understanding of causal relationships
between vegetation characteristics and reflectance.

Fig. 5 illustrates the information obtained from two
established radiative transfer models, PROSPECT and
SAIL (Verhoef, 1984; Jacquemoud & Baret, 1990;
Jacquemoud et al., 2009), which were used to examine the

relative effects of biochemical and structural parameters on
visible and NIR reflectance at leaf (PROSPECT) and can-
opy (SAIL) scales. I conducted a sensitivity analysis using
PROSPECT to examine the effects of four parameters that
affect leaf-level reflectance: (1) chlorophyll concentration;
(2) dry matter content; (3) liquid water content (EWT);
and (4) a parameter defining leaf structure (N). The result-
ing leaf spectra demonstrated the predicted effect of chloro-
phyll content in the visible portion of the spectra; variability
in water content in the mid-infrared portion of the spec-
trum (> 1400 nm); and variability in dry matter content
(e.g. specific leaf weight) and leaf structure, which influence
the entire spectrum (Fig. 5a). The model’s sensitivity to leaf
structure is noteworthy because this parameter is perhaps
the most difficult to define and measure. In concept, leaf
structure includes variables such as leaf thickness, fraction
of intercellular airspace, and epidermal and mesophyll cell
dimensions (e.g. Jacquemoud & Baret, 1990; Govaerts
et al., 1996; Baranoski & Rokne, 1997; Ganapol et al.,
1998, 1999). In the model, these factors are simplified into
a single value that serves as an index of the number of air ⁄
cell wall interfaces within the mesophyll (Jacquemoud
et al., 2009). Although this is conceptually straightforward,
it represents a parameterization challenge because there is
no easily measured real-world counterpart.

(a) (b)

(c) (d)

Fig. 4 Relationships between spectral vegetation indices and canopy nitrogen (N) concentration for 232 forested plots from US and Canadian
temperate and boreal forests using data from Ollinger et al. (2008) and Martin et al. (2008). The normalized difference vegetation index
(NDVI) (a), ratio vegetation index (RVI) (b) and difference vegetation index (DVI) (c) were calculated by averaging spectra collected by the
Airborne Visible ⁄ InfraRed Imaging Spectrometer (AVIRIS) in the near-infrared (NIR; c. 840–880 nm) and red (c. 620–670 nm) regions of the
spectrum, mimicking the spectral ranges of related bands from MODIS. Only DVI, which represents the difference between reflectance in the
NIR and red, correlates with field-measured canopy %N as well as NIR reflectance on its own (d). Vegetation indices were calculated as in
Table 1. Regression statistics are as follows: NDVI, r2 = 0.21, P < 0.0001, rmse = 0.46; RVI, r2 = 0.03, P = 0.0144, rmse = 0.51; DVI,
r2 = 0.69, P < 0.0001, rmse = 0.29; NIR, r2 = 0.64, P < 0.0001, rmse = 0.30.
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Spectral variability at the canopy scale was examined with
the SAIL model, which was run using leaf-level spectra from
PROSPECT representing typical needleleaf evergreen and
broadleaf deciduous tree species. For each of these types,
the effect of canopy structure was examined by altering val-
ues for LAI and LAD. The SAIL model is sensitive to LAI,
particularly in the NIR region, although the effect saturates
at high LAI values (Fig. 5b). Over the range of values exam-
ined, the effect of LAD on NIR reflectance appears to be
greater than that of LAI alone, not only in the NIR region,

but across the entire spectrum—for example, canopies with
horizontally oriented leaves tend to have higher overall
reflectance than those with vertically oriented leaves
(Fig. 5b). Because accurate LAD measurements are not gen-
erally available this is among the least certain of the canopy
modeling parameters (Ganapol et al., 1999).

The challenges of modeling reflectance patterns for com-
plex plant canopies are further evidenced by the difficulty of
duplicating field-measured spectra with models. As an
example, Coops & Stone (2005) simulated spectral variation

(a)

(b)

Fig. 5 (a) Leaf reflectance spectra predicted by the PROSPECT model, generated using a range of values for chlorophyll (Chl) concentration,
dry matter content, equivalent water thickness (EWT), and the structure parameter N. In each case, parameters not being varied were held
constant using typical deciduous broadleaf values (Chl = 40 lg cm)2; dry matter = 0.01 g cm)2; EWT = 0.012 cm; N = 2). (b) Variability in
canopy-scale reflectance, as estimated by the PROSPECT and SAIL models. Modeled spectra from PROSPECT for a typical deciduous
broadleaf (using standard values from Fig. 5a) and a typical evergreen needle (Chl = 20 lg cm)2; dry matter = 0.02 g cm)2; EWT = 0.02 cm;
N = 1) were used in SAIL to test the effect of varying leaf area index (LAI) and leaf angle distribution (LAD) (values shown are mean leaf
angle) on whole-canopy reflectance. For model runs with variable LAI, LAD was held at 20o. Model runs with variable LAD were conducted at
LAI = 5. Output from both models was generated using WinSAIL v.1.00.04. USDA, Agricultural Research Service (ARS), Hydrology and
Remote Sensing Laboratory, Beltsville, MD, USA.
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from 400 to 1000 nm in N-deficient Pinus radiata needles
using the LIBERTY model (Dawson et al., 1998). They
identified chlorophyll and moisture content as key para-
meters to capture the effects of N deficiency. Predicted
reflectance varied only in the visible portion of the spectra,
consistent with the examples from PROSPECT in Fig. 5.
Field-measured spectra, however, showed significant varia-
tion in the NIR region as well, where the most N-deficient
needles had the lowest NIR reflectance, and the least N-
deficient needles had the highest. Although the NIR region
is not thought to be affected directly by these variables, they
apparently influence, or covary with, other variables that do
affect it (e.g. leaf structure, LAD and LAI). Capturing these
patterns in models will continue to be a challenge until we
gain a clearer understanding of the multiple interdependen-
cies among plant traits.

V. Functional convergence among optically
important traits

A challenge to interpreting canopy spectral properties that
has emerged throughout this review is the issue of inter-rela-
tionships among multiple plant traits that each have an
effect on reflectance. That this challenge exists is far from a
new idea and, in the ecological and ecophysiological litera-
ture, convergence among plant traits has been an active
research topic for some time (e.g. Grime, 1977; Mooney &
Gulmon, 1979; Wright et al., 2004). All plants must com-
pete for light, water and nutrients, and investments for
acquiring any one resource necessarily involve tradeoffs that
alter the ability to obtain others. As evolution selects for
species that optimize the acquisition and efficient use of all
needed resources, nature becomes populated by a limited
number of viable combinations of key traits and growth
strategies. As an example, different strategies for optimizing
leaf-level C gain lead to convergence among traits such as
leaf lifespan, leaf mass per unit area (LMA), allocation to
defense, N concentrations, photosynthetic capacity and
dark respiration, among others (e.g. Mooney & Gulmon,
1979; Reich et al., 1997, 1999; Wright et al., 2004, 2005).
Successful combinations of leaf traits also have consequences
for canopy and stand properties involving C allocation,
wood density, crown geometry, branching architecture, leaf
angle distribution and probably others that have yet to be
explored.

As should by now be evident, many of the traits subjected
to convergence have important effects on how plants
absorb, scatter and reflect light. In some cases, this can aid
applications of remote sensing in that plant functional types
often have distinctive spectral signatures that can be
detected using newly available instruments. Ustin &
Gamon (2010) even suggest extending the functional type
concept to include plant ‘optical types’ through integration
of remote sensing and ecological theory. In other cases, the

ability to tease apart the relative effects of individual traits
remains an important goal and a substantial challenge.
There are also times when canopy reflectance is itself an
important vegetation property, rather than simply provid-
ing a method for remotely sensing some other variable. As
an example, the relationship between canopy %N and NIR
reflectance shown in Fig. 6(a) occurs over a wide enough
range of wavelengths and ecosystems to drive an overall
trend between %N and shortwave surface albedo (Ollinger
et al., 2008; Hollinger et al., 2010; Fig. 6b). Because vege-
tation albedo exerts an important influence on climate (e.g.
Bonan, 2008), this relationship raises a question of whether
factors affecting plant N status also influence climate
through altered surface energy exchange. However, because

%N
(a)

(b)

Fig. 6 (a) AVIRIS reflectance spectra from the forested plots in
Fig. 4 (Ollinger et al., 2008) plus cropland plots in Hollinger et al.
(2010) grouped into 11 classes of canopy %N. Variability is most
pronounced in the near-infrared (NIR) region, but an increase in
reflectance with increasing %N is apparent for most wavelengths
above c. 800 nm. This pattern spans a wide enough range of the
solar energy spectrum to drive an overall trend between canopy %N
and shortwave albedo. This can be seen in (b), which shows canopy
%N in relation to growing season albedo from the MODIS
instrument (MOD43B; Schaaf et al., 2002) for pixels centered on
the eddy flux tower sites examined by Ollinger et al. (2008) and
Hollinger et al. (2010). triangles, forest (evergreen); squares, forest
(deciduous); diamonds, cropland.
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changes in N availability do not affect all plant traits
equally, answering this question requires that specific causal
mechanisms be identified. For instance, whereas N-induced
changes in leaf-level traits might occur over relatively short
time periods, changes in canopy architecture may take years,
if they occur at all.

The issues discussed above suggest a need for research on
plant trait relationships that emphasize factors affecting
reflectance. Multiple lines of evidence suggest that factors
such as cellular leaf anatomy, leaf clumping, crown geome-
try and leaf angle distribution vary predictably with more
well-studied variables like photosynthetic capacity and foliar
%N, particularly relative to scattering and reflectance in the
NIR region. Several such relationships, both established
and hypothesized, are shown in Fig. 7. For instance,
Hollinger et al. (2010) suggested that leaf-level %N should
be correlated with anatomical leaf properties that influence
scattering. High rates of photosynthesis require both high
levels of N-containing enzymes and corresponding changes
in leaf anatomy that permit rapid diffusion of CO2 to the
chloroplasts. Among these changes is an increase in the ratio
of mesophyll cell surface area exposed to intercellular air
spaces per unit leaf area (Ames : A; Nobel et al., 1975;
Longstreth et al., 1985). Consistent with this idea are
results obtained by Slaton et al. (2001), who found a strong
correlation between NIR leaf reflectance and the Ames : A
ratio among a variety of alpine angiosperms. Other related
factors such as leaf thickness and leaf density also vary with
photosynthetic capacity (Smith et al., 1997) and probably
also affect leaf scattering.

Leaf-level associations can influence stem- and canopy-
level architecture in ways that accentuate the resulting canopy
spectral properties. Leaves adapted to low resource supply
(e.g. evergreen needles) tend to have low N concentrations,
low rates of CO2 assimilation and more densely packed cell
structures, traits that are both causally and correlatively asso-
ciated with lower NIR reflectance. Relative to faster growing
plants, the limited availability of carbohydrates these leaves
produce should limit rates of stem elongation, resulting
in leaves that are more densely clustered, or more highly
clumped, along the stem. As discussed in Section III, this,
too, is a trait that serves to reduce reflectance in the NIR
region. Evidence for the association between nutrient avail-
ability and leaf clumping was provided by Niinemets et al.
(2002), who studied Scots pine (Pinus sylvestris) growing on
sites of varying fertility and found significant inverse relation-
ships between %N and various needle clumping indices,
including needle area density and needle number per unit
shoot axis length. All of these results suggest stem-level traits
that accentuate leaf-level reflectance properties.

Leaf angle is known to play an important role in resource
optimization through its effects on light interception, leaf
temperature, transpiration and nutrient use efficiency (e.g.
Ehleringer & Comstock, 1989; King, 1997; Ackerly,

1999). It is also widely included in canopy radiative transfer
models, which generally predict higher reflectance as leaf
orientation shifts from vertical to horizontal (Verhoef,
1984; Asner, 1998; Fig. 5). Yet there have been few
attempts to integrate canopy optimization models with
models of reflectance, and the degree to which variation in
reflectance across native ecosystems is driven by changes in
leaf angle distribution is not well understood. This is not
surprising, given the difficulties of obtaining accurate LAD
measurements and quantified LAD over complex plant can-
opies. Nevertheless, evidence that does exist indicates pre-

Fig. 7 Examples of convergence among spectrally important plant
traits discussed in the text, showing typical values for leaf and
canopy traits among several broad groups of tree species. Leaf and
tree line drawings are from USDA Natural Resources Conservation
Service (NRCS) (2010). Values shown are averages taken from the
following sources: ‡NERC foliar chemistry database (2010); §Reich
et al. (1995, 1999); †ratio of total crown depth to average crown
diameter (Takahashi, 1996; R. A. Hallett, unpublished data). Panels
at the bottom show idealized relationships among several other
variables that exhibit some degree of convergence and are known to
be related to NIR reflectance. Variables are: Ames : A, ratio of
mesophyll cell surface area exposed to intercellular air spaces per
unit leaf area; LMA, leaf mass per unit area; LAD, leaf area
distribution (low to high values corresponding to horizontal to
vertical foliage, respectively); CAmax, canopy photosynthetic
capacity; clumping (lower values corresponding to greater foliar
clumping along the stem).
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dictable relationships between LAD and other variables
included in Fig. 7. A number of studies have observed that
optimal use of light within canopies is achieved by varying
both leaf angle and leaf N content (e.g. Hollinger, 1996;
Posada et al., 2009) and, across species, variation in leaf
angle has been related to varying degrees of resource limitation
(e.g. King, 1997; Valiente-Banuet et al., 2010). Similarly,
N fertilization experiments involving eucalyptus seedlings
(Eucalyptus nitens; Close & Beadle, 2006), wheat (Triticum
aestivum; Brooks et al., 2000) and rice (Oryza sativa L. Tari
et al., 2009) have all demonstrated that leaf angle shifts
from more vertical to more horizontal orientation as N
nutrition increases.

In addition to leaf- and stem-level traits, plants growing
under resource-poor conditions tend to have lower ratios of
allocation to wood vs foliage (e.g. Litton et al., 2007), which
should constrain lateral branching and crown diameter.
Theoretical studies of optimal resource allocation in canopies
suggest patterns that are consistent with this and predict that
reductions in N supply and other forms of stress should
result in narrower, more conical, tree crowns (Cohen &
Pastor, 1996). As with the leaf-level effects of stress-adapted
species, the effect of this type of crown structure on whole-
canopy reflectance is expected to be a decrease in reflectance
across the infrared region (Rautiainen et al., 2008).

Collectively, the examples above point toward strong
associations among plant traits that affect scattering over
scales ranging from cells to canopies. Interestingly, all of the
examples discussed suggest a synergy among the effects of
individual traits that becomes most apparent in the NIR
region; leaf-level traits that produce low NIR reflectance
tend to be associated with stem- and canopy-level traits that
have a similar influence. This poses a serious challenge for
remote detection of specific plant properties, but suggests
an emergent property of ecosystems that results from opti-
mization of plant form and function across multiple scales.
If so, this puts canopy spectral features among the suite of
variables that can be broadly used to define plant function.

VI. Conclusions

In reviewing knowledge about the factors affecting canopy
reflectance, several interesting themes have emerged. In
attempts to identify specific drivers of reflectance, uncer-
tainties related to scattering presently outweigh uncertain-
ties related to absorbers (pigments, water, etc.). This is
perhaps because absorbers influence specific spectral regions
and can be measured more easily than structural properties.
Factors such as leaf anatomy and leaf angle distribution
affect scattering over all wavelengths in ways that are diffi-
cult to quantify. This presents a challenge for understanding
reflectance in the NIR region, where multiple combinations
of interdependent properties can yield similar patterns of
reflectance. This does not necessarily restrict our ability to

estimate present-day vegetation attributes, but it does pre-
vent us from predicting changes in reflectance under novel
environmental conditions.

Improved understanding of underlying factors affecting
canopy reflectance patterns should be aided in the future by
several developments in sensor technology and data avail-
ability. Planned Earth observation missions such as the
HyspIRI imaging spectrometer and the DESDynI LiDAR-
RaDAR instrument (National Research Council (NRC),
2007) will, for the first time, provide global coverage of
vegetation spectral properties and vertical structure. In the
USA, the forthcoming National Ecological Observatory
Network (NEON) will collect annual aircraft hyperspectral-
LiDAR data at higher spatial resolutions for a representative
set of ecosystems (Kampe et al., 2010). These efforts will
increase by several orders of magnitude the data available to
examine vegetation spectral and structural properties over a
wide range of ecosystems.

Interpreting data from new aircraft and satellite mis-
sions will require complimentary efforts to collect relevant
field measurements, especially for structural variables that
have historically been difficult to obtain. Here, too, newly
available sensors should provide ample opportunities for
progress. For example, ground-based LiDAR sensors can
provide much greater detail on canopy structural features
than can be obtained through conventional methods (e.g.
Strahler et al., 2008). Similarly, new approaches for tower-
based canopy spectroscopy can provide insights into tempo-
ral patterns in reflectance and can greatly improve methods
for correcting issues of view angle geometry (Hilker et al.,
2009).

Finally, realizing the full potential of the above approaches
will require an in-depth integration of remote sensing and
ecological theory. In the ecological literature, theories of
resource optimization have greatly expanded our ability to
interpret patterns of plant form and function. Similarly,
models that capture the biophysical interactions between
plant canopies and incident radiation have advanced our
understanding of reflectance. With improved data for
model parameterization and validation, integration of these
approaches holds enormous potential for future advance-
ments in our understanding of ecosystems.
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