GEOSPHERE

GEOSPHERE; v. 12, no. 2

doi:10.1130/GES01238.1

7 figures; 3 tables; 4 supplemental files

CORRESPONDENCE: gsab@nau.edu

CITATION: Riggs, N.R., Oberling, Z.A., Howell, E.R., Parker, W.G., Barth, A.P., Cecil, M.R., and Martz, J.W., 2016, Sources of volcanic detritus in the basal Chinle Formation, southwestern Laurentia, and implications for the Early Mesozoic magmatic arc: Geosphere, v. 12, no. 2, p. 439–463, doi:10.1130/GES01238.1.

Received 28 July 2015 Revision received 9 December 2015 Accepted 29 January 2016 Published online 9 March 2015

For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org

© 2016 Geological Society of America

Sources of volcanic detritus in the basal Chinle Formation, southwestern Laurentia, and implications for the Early Mesozoic magmatic arc

N.R. Riggs¹, Z.A. Oberling^{1,*}, E.R. Howell^{1,†}, W.G. Parker², A.P. Barth³, M.R. Cecil⁴, and J.W. Martz⁵

¹School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA
²Division of Resource Management, Petrified Forest National Park, Petrified Forest, Arizona 86028, USA
³Department of Earth Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
⁴Department of Geological Sciences, California State University Northridge, Northridge, California 91330, USA
⁶Department of Natural Sciences, University of Houston–Downtown, 1 Main Street, Houston, Texas 77002, USA

ABSTRACT

The Upper Triassic Chinle Formation in southwestern Laurentia is the oldest distinctive record of Early Mesozoic Cordilleran arc magmatism, in the form of detrital zircons and volcanic clasts. Initial deposition of the basal Shinarump and Mesa Redondo members, herein collectively called the Shinarump conglomerate, began in Late Triassic time, yet the earliest known arc magmatism is older by as much as 40 m.y.

Analysis of detrital zircons from eight sites in southeastern Nevada, southern Utah, and northeastern Arizona and volcanic-clast zircons from four of these sites provides a basis for understanding the evolution of the Early Mesozoic arc. Most Permian and Triassic detrital zircons from the Shinarump conglomerate have ages from ca. 260 to 220 Ma with rare grains as old as 280 Ma. These ages are compatible with derivation from sources in the magmatic arc to the west and southwest, including plutons of corresponding age in the Mojave Desert. Volcanic clasts are uniformly in the range 232–224 Ma; their age and zircon geochemistry argue against a source in currently exposed Mojave Desert Triassic plutons.

As a further test, we compared Th/U ratios of clast and detrital zircons with those of possible sources to the west. Th/U values of many detrital grains support their derivation from Triassic Mojave Desert plutons. Some detrital grains and those from the clasts, however, have Th/U values that are uniformly higher than those in Permo-Triassic Mojave Desert plutons and therefore argue for a different, unexposed source.

We propose that the early arc lay offshore of western Laurentia. Over time, plutons were emplaced across a range of continental crustal thicknesses that likely increased toward the east. At approximately 235–230 Ma, a land connection between the arc and retro-arc areas was established and fluvial sedimentation began. The observation that the youngest grain ages in our detrital samples are variable suggests that this land connection was tenuous for perhaps 10 m.y. until well into Chinle Formation sedimentation.

INTRODUCTION

The inception of the Early Mesozoic Cordilleran magmatic arc along western Laurentia is recorded by plutons in the Mojave Desert and Sierra Nevada of California, United States (Barth and Wooden, 2006), and in Sonora, Mexico (Arvizu et al., 2009; Riggs et al., 2010), and by rare forearc and intra-arc sedimentary successions in Sonora (González-León, 1997; González-León et al., 2005) and the Mojave Desert (Carr et al., 1997; Stevens et al., 2005; Rains et al., 2012). One of the compelling enigmas of the earliest (i.e., Permian-Early Triassic) stage of arc evolution is the lack of a coeval retro-arc sedimentary record. Lower-Middle Permian sedimentary units exposed in eastern California through western and southern Arizona to central Sonora are part of the miogeoclinal margin that was truncated in late Paleozoic time (Walker, 1988; Stone and Stevens, 1988; Bateman, 1992; Miller et al., 1992; Saleeby et al., 1992; Dickinson and Lawton, 2001). Detrital zircons in the Lower-Middle Triassic Moenkopi Formation are considered to record magmatism to the southeast, consistent with paleocurrents from that direction (Dickinson and Gehrels, 2008). Analysis of the oldest unit that carries a widespread, unmistakable record of the arc, therefore, is necessary to understand its evolving tectonic setting and evolution of the Late Triassic landscape as arc magmatism became dominant along the southwest margin of Laurentia.

The Upper Triassic Chinle Formation (Fig. 1) was deposited in a broad basin behind the early Cordilleran arc beginning at ca. 230 Ma (Lawton, 1994; Dickinson and Gehrels, 2008). The basal Chinle Formation, which comprises the fluvial Shinarump and Mesa Redondo members, records the earliest distinctive influx of arc-related detritus in the form of detrital minerals and volcanic clasts.

^{*}Present address: Call and Nicholas, Inc., 2475 N. Coyote Dr., Tucson, Arizona 85745, USA 'Present address: Noble Energy, 1625 Broadway, Suite 2200, Denver, Colorado 80202, USA

Figure 1. Map of Chinle Formation exposures (black) and Early Mesozoic magmatic arc (gray); arrows are paleocurrent directions (after Stewart et al., 1972b; Basdekas, 1993). Labels in boxes indicate Chinle sample sites. Inset map shows Proterozoic crustal provinces of southwestern Laurentia (after Wooden et al., 2012; Whitmeyer and Karlstrom, 2007). Coordinates are in Universal Transverse Mercator (UTM; NAD83 datum). P-Tr—Permo-Triassic; Ptz— Proterozoic.

We report here on a detailed detrital- and volcanic-zircon study of these basal fluvial sandstones and the volcanic clasts within them. Although paleocurrent directions (Stewart et al., 1972a) in general indicate that the Shinarump river systems flowed from southeast to northwest, a distinct Triassic detrital zircon signature together with the presence of Triassic volcanic clasts and local northeast flow directions record a significant contribution from the Cordilleran magmatic arc. We propose that the initial ~35–40 m.y. of arc magmatism occurred in an offshore arc, broadly analogous to the evolving Ryukyu arc-trench system, where the Philippine Sea is subducting under the Eurasian continental plate. As subduction became established and arc crust evolved and thickened by intra-arc contractional deformation and magmatism, the arc and retro-arc rose above sea level, providing a fluvial pathway for the deposition of arc-derived detritus into the Chinle basin. The dominant direction of flow and sedi-

ment flux, however, remained from the higher-elevation landmass to the east. Our purpose, therefore, is to document the diversity within the basal Chinle Formation and to propose how arc magmatism along the margin is reflected in these retro-arc sedimentary rocks.

TECTONIC SETTING

The Cordilleran magmatic arc developed across a truncated Paleozoic miogeoclinal margin along western Laurentia (Fig. 1) recorded by carbonate and siliciclastic passive-margin platform strata deposited on Precambrian basement. The early to mid-Paleozoic margin trended northeast-southwest, and Pennsylvanian–Permian sinistral strike-slip faulting created a northwest-southeast-trending margin along which the Cordilleran arc formed (Walker, 1988; Stone and Stevens, 1988; Bateman, 1992; Miller et al., 1992; Saleeby et al., 1992; Dickinson and Lawton, 2001). The oldest plutonic rocks and volcanic detritus that record arc magmatism are 270–260 Ma plutons in Sonora, Mexico (Arvizu et al., 2009; Riggs et al., 2010), and ca. 280–265 Ma volcanic cobbles in forearc sedimentary strata (Riggs et al., 2010; Lindner et al., 2012). Likewise, Miller et al. (1995) and Barth and Wooden (2006) documented Permian–Middle Triassic plutonism (260–235 Ma) in the Mojave Desert of California. Related volcanic sections are exposed in the El Paso Mountains region of southeastern California, where andesite has been dated at ca. 260 Ma (Martin and Walker, 1995), and in the east-central Sierra Nevada, where successions are generally younger (ca. 230–215 Ma; Barth et al., 2011) than the oldest arc rocks in the southern Mojave Desert and Sonora.

Concurrently with the major change in tectonic activity along western Laurentia, the late Paleozoic Ouachita orogen along southeastern Laurentia (Fig. 1) created highlands that were the source of detritus moving from southeast to northwest across southern Laurentia. The Lower–Middle Triassic Moenkopi Formation contains this detritus (Dickinson and Gehrels, 2008). Dickinson and Gehrels (2008) suggested that the western facies of the Moenkopi Formation were deposited in a flexural foreland related to the Permo-Triassic Sonoma orogen. Facies indicate a marine (Stewart et al., 1972b) or tidal-zone (Reif and Slatt, 1979) environment of deposition in the westernmost deposits of the Moenkopi Formation.

CHINLE FORMATION

Deposition of the Chinle Formation resulted from dynamic subsidence related to development of the Cordilleran magmatic arc (Lawton, 1994; Dickinson and Gehrels, 2008). The formation comprises several members that dominantly record diverse fluvial environments (Stewart et al., 1972a; Blakey and Gubitosa, 1983; Lupe and Silberling, 1985; Dubiel, 1991). The Late Triassic age of the unit is constrained by paleontologic data (Camp, 1930; Colbert and Gregory, 1957; Fisher and Dunay, 1984; Lucas and Hunt, 1993) and by U-Pb dating of detrital zircons (LA-ICPMS: Riggs et al., 2003; Dickinson and Gehrels, 2008; ID-TIMS: Irmis et al., 2011; Ramezani et al., 2011, 2014; Atchley et al., 2013). In most exposures, the Chinle Formation was deposited on a significant erosional surface on the underlying Moenkopi Formation and represents a marked overall change in depositional environment from marine-tidal-sabkha to continental fluvial.

Shinarump and Mesa Redondo Members

The most precise date for the lower part of the Chinle Formation is provided by Atchley et al. (2013). Zircons from a tuffaceous sandstone near the base of the Mesa Redondo Member yielded a maximum depositional age of 227.604 \pm 0.082 Ma. The Mesa Redondo and Shinarump members are likely lateral equivalents (see also supplementary data in Irmis et al., 2011), and thus

it is reasonable to infer that deposition of the Shinarump Member began no earlier than ca. 230 Ma (cf. Dickinson and Gehrels, 2008), as the sample dated by Atchley et al. (2013) does not come from the base of the formation.

The Shinarump Member comprises coarse to pebbly sandstone interbedded with conglomerate horizons. Clasts range from 1–2 cm to a maximum of 6–8 cm in diameter and are dominantly chert, quartzite, and limestone. Volcanic clasts are latitic, dacitic, and rhyolitic lava or tuff, are sparse, and make up a maximum of 5% of total clasts. Most clasts contain quartz, feldspars, and biotite (Table 1). Vitroclastic textures such as pumice and glass shards are common and indicate a pyroclastic origin, but evidence of welding is minor or lacking in the majority of clasts. A few clasts have euhedral phenocrysts and flow banding defined by devitrified glass and are interpreted as being derived from lava flow(s).

In general, volcanic clasts decrease in size and abundance from south to north, which has led to the speculation that the source of these clasts lay to the south in the "Mogollon Highlands" (Harshbarger et al., 1957; Stewart et al., 1972a; Dodge, 1973). Stewart et al. (1986) later noted that Mesozoic igneous rocks to the south of the Colorado Plateau are younger than Late Triassic and proposed that sources may have been faulted away from the area of southern Arizona, or lie hidden beneath younger cover. Reynolds et al. (1989) suggested that an unconformity between Proterozoic/Paleozoic rocks and Mesozoic sedimentary successions in western Arizona and eastern California records uplift that may have sourced detritus in the Chinle Formation, although those authors did not propose that this area was a source of volcanic material. More recently, Oberling et al. (2010) and Oberling (2015) have shown that volcanic clasts in the Shinarump Member show geochemical similarities to Triassic plutons in the Mojave Desert. Overall paleoflow was dominantly from the southeast (Stewart et al., 1972a; Blakey and Gubitosa, 1983), where highlands associated with the Ouachita orogen continued to contribute sediment. As discussed herein, however, the presence of volcanic clasts, Triassic detrital zircons, and local northeast-directed paleocurrents indicates that the Cordilleran volcanic arc was an additional and important source of detritus (e.g., Stewart et al., 1972b).

The Mesa Redondo Member is less well exposed than the Shinarump Member, overlying and interfingering with the Shinarump Member except where the Shinarump is not present (Cooley, 1958). In its type section and other regional exposures, the Mesa Redondo Member is dominantly siltstone and claystone with minor interstratified medium- to coarse-grained sandstone (Cooley, 1958; J.W. Martz and W.G. Parker, unpub. data). In many exposures of the Shinarump and Mesa Redondo members in northeastern Arizona, both units are capped by a well-developed plinthic oxisol (highly weathered deep soil horizon), locally referred to as the "mottled strata" (Stewart et al., 1972a; Dubiel and Hasiotis, 2011; Irmis et al., 2011) or "purple mottled unit" (Dubiel, 1987). This strongly suggests that these units are at least partially lateral equivalents (Irmis et al., 2011). Indeed, Akers (1964) did not distinguish the Shinarump and Mesa Redondo members in his geological map of eastern Arizona, and Therrien et al. (1999) interpreted the Shinarump and Mesa Redondo members together as channel and overbank deposits of the same fluvial system.

Sample	Quartz (%)	Feldspar (%)	Biotite (%)	Fe-Ti oxide (%)	Pumice and/or glass shards	Degree of welding
Holbrook						
103009-1B*	20%	-	-	_	-	-
103009-1C*	1%	-	2%	-	-	-
103009-1D	15%	trace	1%	_	-	-
103009-1E*	15%	8%	1–2%	_	-	-
103009-1G*	10%	-	2%	_	Х	Minor
103009-1H*	4–5%	_	_	_	-	_
103009-11	2%	_	_	_	Х	Moderate
103009-1J	10%	7%	1%	_	Х	_
103009-1K*	18%	trace	_	trace	Х	_
103009-1L	15%	7%	2–3%	_	-	_
052111-1A*	7%	8%	4%	_	х	Minor
052111-1B	15%	3%	2%	_	X	Minor
Cameron		2,0				
110609-14	6%	_	_	1%	x	Minor
110609-1R*	12%	_	_ 1%	-	_	_
110609-10*	12/6	_	170	_	Y	Minor
110609-10*	4-0%	-	-	-	×	Minor
110609-10	0-3%	- 1 5%	- 1%	-	×	Modorato
110609-1E	3%	4-5%	1 %	-	×	Moderale
110609-11	4%	13%	2-3%	2 %	×	-
110609-11	70/	1 70	-	1 %	×	– Moderate
110609-2A	7 %	—	-	1 70	^	Moderale
110609-26	5%	-	_	-	-	-
loseph City	100/	100/	10/			
JC-1	10%	10%	1%	1–2%	-	Moderate
JC-4	7%	4%	1%	_	X	Moderate
JCNEW-1A	13%	—	1–2%	trace	-	-
JCNEW-2A	10%	-	2%	10%	-	-
JCNEW-2B	7%	4%	2%	1–2%	-	_
JCNEW-2C	15%	1%	2%	2–3%	X	Minor
Hunt						
120309-1C	18%	-	1–2%	-	Х	Minor
120309-1D	4–5%	-	2%	1%	-	-
120309-1E	-	-	1%	7%	Х	Minor
120309-1F*	5%	1–2%	-	2%	Х	Minor
120309-1G*	-	-	-	-	Х	Minor
120309-1H*	12%	trace	trace	-	-	-
050511-1A	4%	-	1%	-	-	-
050511-2B	-	10%	3%	2%	-	-
050511-3A	4%	-	-	3%	Х	-
050511-3B	10%	2%	3%	1%	Х	-
050511-3C	-	-	-	-	Х	-
050511-3D	8%	-	3–4%	-	Х	Minor
050511-3E	4–5%	1–2%	1%	8%	Х	-
050511-3F*	10%	-	3%	-	Х	Minor
050511-3G	10%	3–4%	1%	trace	Х	Moderate

TABLE 1. MINERAL COMPOSITIONS AND VITROCLASTIC TEXTURES OF VOLCANIC CLASTS

Note: X indicates component present; - indicates component absent. *Sampled yielded zircons (Tables 2A, 2B).

Sample Sites

Samples from eight locations, including those first discussed by Howell (2010), form the basis for this study. In total, samples were collected over an area of ~80,000 km², between ~150 km and ~450 km inboard of the Cordilleran arc (Muddy Mountains, Nevada, to Hunt, Arizona; Fig. 1). Post-Triassic deformation along the edge of the Colorado Plateau and in western Arizona-southern Nevada probably resulted in net extension between these sites and the arc. Precise correlation of clastic sedimentary units is impossible across these distances, and as discussed herein, the detrital zircon signature suggests that both the Shinarump and Mesa Redondo members make up the basal unit of the Chinle Formation. Therefore, we use the term "Shinarump conglomerate" to refer to the basal clastic unit that overlies redbeds and shallow-marine strata of the Lower–Middle Triassic Moenkopi Formation. In all cases, samples were collected from as close to the base of the Shinarump conglomerate as possible; the Hunt sample was collected stratigraphically a few meters above the sandstone dated by Atchley et al. (2013). All sample sites were traditionally assigned to the Shinarump Member except as noted. Tables 2A (analyses by LA-ICPMS) and 2B (analyses by SHRIMP-RG) provide analytical data for Shinarump conglomerate clasts; the Supplemental Table¹ has all analytical data for sandstone samples.

Muddy Mountains, Nevada (Universal Transverse Mercator [UTM] Zone 11, 0724396, 4033271; datum is NAD83 for all locations)

The Muddy Mountains, Nevada, site (Fig. 1; sample 111311-1, Supplemental Table) comprises coarse-grained sandstone interbedded with minor matrix- to clast-supported conglomerate lenses. Clasts are well rounded, poorly to moderately sorted, and granule- to cobble-sized chert and quartzite; no volcanic clasts were found at this site.

Detrital zircons from the Muddy Mountains are euhedral to rounded, with about equal parts rounded, euhedral, and subhedral grains. Euhedral grains are acicular to barrel shaped. In general, cathodoluminescence (CL) imagery shows that zoning bands within euhedral grains are parallel to grain boundaries and concentric through the entire grain, whereas those within rounded grains are rarely complete. In some euhedral grains, however, truncated zoning bands are overgrown by euhedral zoned rims.

Paria, Utah (UTM Zone 12, 0414669, 4121637)

The Paria, Utah, sample site (Fig. 1; sample 080310-1, Supplemental Table) exposes medium- to coarse-grained sandstone interbedded with minor matrixsupported conglomerate. Chert and quartzite clasts are typically well-rounded granules to pebbles; volcanic clasts are tan to white, angular, porphyritic fragments 1–3 cm in diameter that commonly occur in lenses. Volcanic clasts were not collected for analysis, however, due to their small size. Detrital zircons from the Paria sample are dominantly subhedral to rounded, although rare grains are euhedral. Zoning bands are commonly truncated at grain boundaries. Euhedral and subhedral grains are barrel shaped to acicular.

Cedar Ranch, Arizona (UTM Zone 12, 0431976, 3933013; NAD 27)

The Cedar Ranch, Arizona, site (Fig. 1; sample 120310-2, Supplemental Table) is a small exposure on the northern margin of the San Francisco volcanic field. Medium- to coarse-grained sandstone is interbedded with conglomerate that contains well-rounded clasts of limestone, quartzite, and chert as much as 5 cm in diameter. Volcanic clasts were not found in the conglomerate at the Cedar Ranch site.

Far more of the detrital zircon grains from the Cedar Ranch sample are broken or blocky than in other samples. Most grains are barrel shaped or rounded; very few are acicular. In general, barrel-shaped grains have complete zoning bands preserved.

Cameron, Arizona (UTM Zone 12; sandstone: 0458111, 3993186; clasts: 0462820, 3970700)

Howell (2010) interpreted sandstone near Cameron, Arizona, (Fig. 1; sample Cameron, Supplemental Table) as Mesa Redondo Member. The sampled bed comprises large-scale trough cross-stratified, resistant but slope-forming medium-grained arkosic arenite with localized pebbles of chert and felsic volcanic material; the latter make up 2%–3% of clasts.

Clasts (sample 110609, Tables 2A, 2B) were collected from a moderately indurated, medium- to coarse-grained sandstone with conglomerate interbeds; this site is traditionally assigned to the Shinarump Member (Stewart et al., 1972a). The clasts range in size from pebble to cobble and are well rounded with poor to moderate sorting. The clast compositions range from quartzite, chert, and limestone to silicified and/or sericitized, porphyritic, rhyolitic tuff and lava; maximum clast size is 5–6 cm. CL imagery was obtained only on zircons from one clast; zoning bands in general parallel grain margins.

Holbrook, Arizona (UTM Zone 12, 0574867, 3863767)

The Holbrook, Arizona, site (Fig. 1; sample 052111, Supplemental Table; samples 103009, 052111, Table 2A) has the highest percentage of volcanic clasts of any of the Shinarump conglomerate exposures. The section comprises medium- to coarse-grained sandstone with conglomerate interbeds that contain clast- to matrix-supported, well-rounded, poorly sorted granules to cobbles. Petrified wood is common. Clasts are dominantly quartzite, chert, and limestone; volcanic clasts are ~5% of all clasts. Maximum clast size overall is 5–6 cm.

¹Supplemental Table. LA-ICPMS analyses of detrital zircons from the Shinarump conglomerate. Please visit <u>http://dx.doi.org/10.1130/GES01238.S1</u> or the full-text article on www.gsapubs.org to view the Supplemental Table.

								TAE	BLE 2A. L	A-ICPMS U	-Pb ZIRCON [Data fo	R SHINAR	UMP C	ONGLOME	RATE (CLASTS	Fi pl	or the lease v GES012	full-sizo /isit <u>ht</u> <u>38.S2</u> c	ed version o tp://dx.doi.o or the full-tex	of Table 2A org/10.113 at article or	
						Measured	l isotopic ra	tios					Isotopic ag	jes⁵				(n	/ww.gs	apubs.	org.		
Sample location and number	U ppmª	Th ppm ^a	²⁰⁷ Pb/ ²³⁵ U	% error	²⁰⁶ Pb/ ²³⁸ U	% error	Error Correlation 6/38–7/35	²⁰⁷ Pb/ ²⁰⁶ Pb	% error	Error Correlation 38/6–7/6	Age (Ma) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	error ²	Age (Ma) ²⁰⁶ Pb*/ ²³⁸ U	error	Age (Ma) ²⁰⁷ Pb*/ ²³⁵ U	error	Concordance Filter	Best age (Ma)	error	Th/U	Clast age	Average clast Th/U	
Cameron 110609-1C-1 110609-1C-2 110609-1C-4 110609-1C-3	255.728 164.794 124.462 326.967	489.844 193.449 114.637 209.043	0.2540 0.2518 0.2742 0.2850	0.0052 0.0064 0.0074 0.0062	0.0362 0.0364 0.0367 0.0402	0.0006 0.0006 0.0006 0.0008	0.7609 0.6833 0.6090 0.8256	0.0512 0.0507 0.0541 0.0511	0.0007 0.0009 0.0011 0.0006	0.0151 -0.0080 -0.0225 0.0974	249.8 225.1 374.8 246.3	55.5 62.9 63.4 52.5	228.9 230.7 232.0 253.8	3.7 4.0 4.0 4.8	230.0 227.7 245.6 254.8	4.3 5.2 5.9 4.8	1.00 1.01 0.94 1.00	229 231 232 254	4 4 4 5	1.924 1.169 0.925 0.632	Median age 231 Ma	1.34	
110609-1E-8 110609-1E-7 110609-1E-9 110609-1E-2 110609-1E-4 110609-1E-10	216.038 135.799 98.599 295.005 212.624 150.706	142.063 115.442 129.908 242.824 254.566 133.121	0.2495 0.2543 0.2495 0.2548 0.2526 0.2495	0.0058 0.0066 0.0076 0.0051 0.0069 0.0073	0.0356 0.0358 0.0358 0.0359 0.0359 0.0360	0.0006 0.0006 0.0007 0.0006 0.0007 0.0007	0.8021 0.6155 0.6460 0.8080 0.8467 0.6883	0.0507 0.0516 0.0506 0.0517 0.0511 0.0508	0.0007 0.0010 0.0012 0.0006 0.0008 0.0011	-0.1187 0.0505 -0.0439 0.0586 -0.2230 -0.0364	225.0 268.9 224.6 272.5 245.0 230.2	57.0 64.5 72.1 53.2 57.8 67.1	225.7 226.5 226.8 227.2 227.6 228.0	3.8 4.0 4.2 3.8 4.1 4.1	225.9 229.7 225.6 230.7 228.3 225.7	4.7 5.3 6.2 4.0 5.6 5.9	1.00 0.99 1.01 0.98 1.00 1.01	226 226 227 227 228 228	4 4 4 4 4 4	0.657 0.854 1.315 0.830 1.154 0.891	228 ± 2 Ma	1.29	236 232 232 232 232 232 232 232 234
110609-1E-3 110609-1E-6 110609-1E-5 110609-1E-1	190.245 76.337 380.046 68.547	203.605 580.025 653.358 53.980	0.2557 0.2705 0.2536 0.2622	0.0060 0.0109 0.0063 0.0081	0.0361 0.0361 0.0363 0.0364	0.0006 0.0007 0.0007 0.0007	0.7339 0.5448 0.8819 0.5865	0.0518 0.0551 0.0511 0.0523	0.0008 0.0019 0.0006 0.0013	0.0266 -0.1441 -0.1913 0.0413	278.4 415.3 245.2 300.1	58.8 89.6 53.2 73.5	228.4 228.4 230.0 230.5	3.8 4.2 4.6 4.4	230.9 242.0 229.2 235.9	4.8 8.7 5.1 6.5	0.99 0.94 1.00 0.98	228 228 230 231	4 4 5 4	1.074 3.611 1.713 0.801			222 220 TuffZrc Age = 227 80 +2.15 -1.32 Ma (97.9% conf, from coherent group of 10)
110609-1F-13 110609-1F-5 110609-1F-19 110609-1F-10 110609-1F-16 110609-1F-20 110609-1F-11	110.400 211.600 138.000 114.400 98.600 175.000 91.300	104.700 311.900 109.800 144.300 68.680 247.300 70.700	0.2456 0.2543 0.2490 0.2522 0.2534 0.2596 0.2544	0.0063 0.0044 0.0051 0.0052 0.0065 0.0049 0.0066	0.0355 0.0355 0.0356 0.0357 0.0356 0.0357 0.0358	0.0004 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005	0.6034 0.6165 0.5890 0.3738 0.5628 0.7381 0.5490	0.0502 0.0528 0.0510 0.0517 0.0517 0.0526 0.0519	0.0010 0.0007 0.0008 0.0010 0.0011 0.0007 0.0011	-0.1532 0.1419 0.1377 0.2423 -0.0677 -0.0680 -0.0196	204.3 321.9 241.3 272.2 272.2 309.8 281.0	65.5 53.3 58.3 63.8 0.0 54.7 66.7	224.7 224.8 225.4 225.9 226.1 226.2 226.7	2.7 3 2.7 2.8 3 3.2	223.3 230.4 225.6 228.2 229.6 234.7 229.9	5 3.6 4.1 4.2 5.2 3.9 5.4	1.01 0.98 1.00 0.99 0.98 0.96 0.99	225 225 225 226 226 226 226 227	3 3 3 3 3 3 3 3 3	0.957 1.479 0.798 1.276 0.695 1.416 0.781	228 ± 2 Ma	1.06	228 229 220 220 220 220 220 220 220
110609-1F-3 110609-1F-18 110609-1F-8 110609-1F-15 110609-1F-6 110609-1F-12 110609-1F-12	92.000 111.700 105.400 76.000 52.580 282.100 104.800	104.800 74.300 115.900 63.700 41.090 541.200	0.2585 0.2532 0.2507 0.2542 0.2543 0.2635 0.2505	0.0053 0.0057 0.0053 0.0066 0.0072 0.0045 0.0055	0.0358 0.0359 0.0360 0.0360 0.0361 0.0361	0.0005 0.0004 0.0004 0.0005 0.0005 0.0005	0.4574 0.3942 0.4368 0.4476 0.5625 0.7932 0.4634	0.0531 0.0520 0.0511 0.0522 0.0516 0.0533 0.0507	0.0010 0.0011 0.0010 0.0012 0.0012 0.0006 0.0010	0.1522 0.1565 0.1209 0.1246 -0.0981 -0.0425 0.1777	332.6 285.4 244.0 294.2 267.7 339.5 227.2	61.7 66.6 64.2 69.6 70.4 51.6 64.9	227 227.1 227.8 227.9 228.7 228.7 228.7	2.8 2.5 2.6 3.2 3.1 3.1 3.2	233.3 229.5 227 229.7 229.7 237.4 227.3	4.3 4.7 4.3 5.4 5.8 3.6 4.5	0.97 0.99 1.00 0.99 1.00 0.96 1.01	227 227 228 228 229 229 229	33333333333	1.146 0.664 1.110 0.847 0.776 1.933 1.631			
110609-1F-4 110609-1F-21 110609-1F-7 110609-1F-7 110609-1F-23 110609-1F-17	183.900 188.400 71.300 179.200 61.300 76.200	231.800 201.100 51.950 176.200 60.600 70.500	0.2503 0.2492 0.2550 0.2594 0.2543 0.2551 0.2534 0.2534	0.0044 0.0045 0.0078 0.0045 0.0071 0.0059	0.0362 0.0362 0.0362 0.0364 0.0364 0.0365	0.0005 0.0005 0.0005 0.0005 0.0004 0.0006 0.0006	0.2953 0.6394 0.4800 0.6653 0.3614 0.5283	0.0507 0.0506 0.0512 0.0524 0.0508 0.0502 0.0509	0.0008 0.0007 0.0013 0.0007 0.0014 0.0010	0.3575 0.0917 0.0734 -0.1189 0.1048 0.1043	222.6 249.4 302.9 229.5 204.3 237.2 212.5	59.0 55.8 72.6 56.4 79.6 64.3 72.0	220.0 228.9 229.1 229.4 230.2 230.3 230.9 221	2.8 2.9 3.3 2.6 3.4 3.7 2.1	227.3 225.8 231.4 233.8 229.9 230.4 229.7 229.2	4.3 3.6 3.6 6.2 3.6 5.7 4.7	1.01 0.99 0.98 1.00 1.00 1.01	229 229 229 230 230 231	3333342	1.271 1.072 0.734 0.988 0.978 0.932			
110609-1F-2 110609-1F-22 110609-1F-9 110609-1F-14	81.300 323.900 23.960 136.500	58.500 154.700 16.630 193.400	0.2523 3.0660 0.3220 0.4630	0.0063 0.0380 0.0330 0.0390	0.0365 0.2462 0.0376 0.0372	0.0005 0.0029 0.0008 0.0006	0.4312 0.9710 0.5569 0.6221	0.0504 0.0902 0.0609 0.0896	0.0012 0.0003 0.0051 0.0068	0.0817 0.0782 -0.3275 -0.4740	213.5 1428.9 635.7 1417.0	72.0 0.0 185.3 150.1	231 1418 237.9 235.1	3.1 15 5 3.7	228.2 1424.3 273 378	9.2 9.2 21 27	0.99 0.87 0.17	1429 discordant discordant	0 185 150	0.726 0.481 0.689 1.433			

TABLE 2A. LA-ICPMS U-Pb ZIRCON DATA FOR SHINARUMP CONGLOMERATE CLASTS (continued)

						Measured	d isotopic rat	ios					Isotopic a	ges⁵									
Sample							Error			Error	Age		Age		Age							Average	
location and		T I 0	20701 (2251)	0/	20601 (2281)		Correlation	20701 (20601		Correlation	(Ma)		(Ma)		(Ma)		Concordance	Best age		T 1 / 1 1	0	clast	
number	U ppmª	In ppm ^a	20/Pb/235U	% error	200Pb/200U	% error	6/38-7/35	20/PD/200PD	% error	38/6-7/6	20/PD^/200PD^	error	200PD^/200U	error	207 PD^/235U	error	Filter	(Ma)	error	In/U	Clast age	In/U	
Joseph City	000 540	005 770	0.0570	0 0004	0.0054	0 0007	0 7050	0.0500		0.0000	000 F		0045		000 4		0.07	004		4 000			
JC-8-19	208.513	335.778	0.2572	0.0064	0.0354	0.0007	0.7652	0.0528	8000.0	-0.0208	320.5	58.0	224.5	4.3	232.1	5.2	0.97	224	4	1.630	229 ± 2 Ma	1.12	242
JC-8-15	54.598	78.133	0.2620	0.0085	0.0356	0.0008	0.4392	0.0534	0.0015	0.2293	346.7	/6.8	225.2	4.8	235.7	6.8	0.96	225	5	1.458			238
JC-8-12	255.720	297.072	0.2528	0.0059	0.0356	0.0006	0.8086	0.0509	0.0008	0.0168	234.4	58.0	225.5	4.0	228.6	4.8	0.99	225	4	1.185			234
JC-8-5	327.964	596.336	0.2491	0.0053	0.0358	0.0006	0.8170	0.0505	0.0006	0.0222	216.7	53.6	226.8	3.8	225.6	4.3	1.01	227	4	1.862			₽ ²³⁰
JC-8-23	109.441	135.290	0.2550	0.0055	0.0358	0.0006	0.6099	0.0510	0.0008	0.1854	242.6	58.5	227.0	3.5	231.3	4.4	0.98	227	3	0.809			226
JC-8-18	117.600	117.889	0.2537	0.0067	0.0359	0.0007	0.6840	0.0514	0.0010	-0.0224	260.0	65.4	227.0	4.2	229.2	5.4	0.99	227	4	1.010			
JC-8-3	3/0.000	200.074	0.2000	0.0054	0.0359	0.0007	0.0007	0.0504	0.0005	0.1440	210.0	52.3 64.9	227.2	4.5	231.0	4.3	1.00	227	5	1.260			218 [10121C Age = 220.71 +1.14 -1.06 Ma (95.9% conf, from coherent group of 20)
JC-0-11	107 004	006 057	0.2505	0.0070	0.0359	0.0000	0.7914	0.0510	0.0010	-0.0909	239.4	04.3 77.7	227.3	4.9	220.4	0.2	0.04	227	5	1.209			
10-9-10	165.062	122.005	0.2700	0.0105	0.0300	0.0007	0.0130	0.0555	0.0015	-0.2310	100.1	61.9	220.1	4.1	241.0	0.2 5.6	1.01	220	4	0.905			
10-0-9	150 507	04 406	0.2497	0.0070	0.0301	0.0007	0.7407	0.0501	0.0009	0.0771	270.7	65.4	220.4	4.2	220.0	5.0	0.09	220	4	0.605			
IC-8-21	100 288	94.400	0.2303	0.0070	0.0302	0.0007	0.0524	0.0517	0.0017	0.0771	/63.0	78.6	229.0	3.6	233.7	7.2	0.90	229	4	0.010			
IC-8-6	68 674	120 /03	0.2790	0.0091	0.0302	0.0000	0.4009	0.0503	0.0017	_0.0030	3/0.1	70.0	229.2	1.0	249.0	73	0.92	229	4	1 760			
IC-8-1/	250 507	286 007	0.2071	0.0060	0.0362	0.0007	0.3070	0.0503	0.0013	0.0407	213.5	56.0	220.2	4.4	205.7	1.0	1.02	223	5	1 161			
JC-8-17	200.007	272 076	0.2403	0.0000	0.0302	0.0007	0.0202	0.0536	0.0007	0.0173	354.0	57.6	229.5	4.5	240.8	5.1	0.95	230	4	1 196			
JC-8-1	88 924	103 021	0.2000	0.0000	0.0364	0.0007	0.7000	0.0530	0.0000	0.0034	375.7	79.1	220.0	4.5	240.0	7.0	0.00	230	5	1 177			
JC-8-7	265 874	310 925	0.2730	0.0001	0.0004	0.0008	0.0027	0.0541	0.0010	0.0270	237.1	58.8	230.2	5.2	228.8	5.9	1.01	230	5	1 171			
JC-8-4	416 323	330 553	0.2545	0.0072	0.0004	0.0006	0.0000	0.0500	0.0006	-0.0275	246.7	54.0	230.6	3.6	220.0	4 1	1.01	231	4	0.807			
JC-8-2	225 800	177 711	0.2636	0.0061	0.0004	0.0006	0.7735	0.0515	0.0007	-0.0149	265.1	55.2	234.1	3.9	237.2	4.9	0.99	234	4	0.798			
JC-8-10	383 683	380 742	0.2561	0.0062	0.0371	0.0007	0.8412	0.0506	0.0007	-0 1004	223.7	55.1	234.5	4.6	231.8	4.9	1.01	235	5	0.854			
JC-8-13	213 096	141 758	3 0874	0.0640	0 2489	0.0050	0.9781	0.0899	0.0004	0.0622	1423.7	39.0	1431.3	25.9	1428.0	15.7	1.01	1424	39	0.651			
JC-8-20	320 355	10 338	3 0753	0.0010	0 2454	0.0038	0.9803	0.0907	0.0003	0.0398	1439.3	38.6	1414 1	19.4	1425.8	12.3	0.98	1439	39	0.029			
JC-8-22	187.731	142.949	0.2910	0.0142	0.0355	0.0005	0.4937	0.0603	0.0028	-0.2383	612.9	108.7	224.6	3.2	257.8	10.8	0.37	discordant	3	0.740			
														-					-				
JC-7-5	264 563	284 157	0 2456	0 0071	0 0352	0 0008	0 8589	0 0509	0 0007	-0 1133	236 1	573	223.2	53	223.2	59	1 00	223	5	1 069	228 + 3 Ma	1 20	248
JC-7-6	264 712	345 645	0.2556	0.0063	0.0357	0.0007	0.8213	0.0525	0.0007	-0 1099	306.9	55.3	226.1	44	230.8	5.1	0.98	226	4	1 294	220 2 0 104	1.20	240 box heights are 10
JC-7-1	84 597	98 024	0.2461	0.0086	0.0358	0.0007	0.6474	0.0506	0.0014	-0.0355	223.1	77.6	226.5	4.4	222.7	7.0	1.02	227	4	1 186			238 JC-7
JC-7-12	323 517	469 289	0 2540	0.0054	0.0359	0.0006	0 8087	0.0513	0.0007	0.0977	252 1	55.0	227.4	4.0	230.0	4.3	0.99	227	4	1 465			
JC-7-11	375 592	691 555	0 2513	0.0046	0.0360	0.0007	0.8819	0.0509	0.0005	0 2050	235.3	51.5	228.0	4 1	227.5	3.8	1.00	228	4	1 871			226
JC-7-8	931 961	822 103	0.2562	0 0044	0.0360	0.0006	0.8748	0.0515	0.0004	0.0651	263.7	49.4	228.1	3.5	231.4	3.5	0.99	228	4	0.886			222
JC-7-13	459.355	623.828	0.2538	0.0048	0.0360	0.0006	0.8044	0.0511	0.0006	0.1255	243.7	52.6	228.3	3.5	229.8	3.9	0.99	228	3	1.332			218 TuffZirc Age = 228.25 +2.96 -1.72 Ma
JC-7-3	195.477	168.032	0.2576	0.0067	0.0361	0.0007	0.7926	0.0520	0.0008	-0.0302	287.1	58.7	228.7	4.6	232.8	5.5	0.98	229	5	0.863			(97.8% conf, from coherent group of 13)
JC-7-10	427.030	492.272	0.2578	0.0047	0.0362	0.0006	0.8944	0.0513	0.0005	-0.0867	253.6	50.4	229.3	3.6	232.7	3.8	0.99	229	4	1.150			
JC-7-7	514.911	692.507	0.2646	0.0055	0.0364	0.0006	0.8833	0.0526	0.0006	0.1115	309.5	51.8	230.7	4.0	238.6	4.5	0.97	231	4	1.345			
JC-7-4	229.270	289.987	0.2671	0.0077	0.0365	0.0007	0.7052	0.0538	0.0011	-0.0864	363.6	63.5	231.2	4.1	239.9	6.1	0.96	231	4	1.155			
JC-7-9	129.755	104.302	0.2581	0.0062	0.0367	0.0006	0.6667	0.0518	0.0009	0.0876	276.0	61.7	232.5	3.6	233.8	4.8	0.99	232	4	0.790			
JC-7-2	537.259	651.784	0.2913	0.0085	0.0375	0.0009	0.8031	0.0569	0.0010	-0.0189	488.5	57.6	237.0	5.5	259.0	6.7	0.92	237	5	1.218			
JCNFW-2F-8	78 600	112 000	0 2551	0 0067	0 0354	0 0004	0 3314	0 0523	0 0014	0 0907	298.5	76 2	224	28	231.8	54	0.97	224	3	1 436	228 + 2 Ma	1.08	
JCNEW-2E-23	106.200	117.100	0.2532	0.0056	0.0355	0.0004	0.4823	0.0513	0.0010	0.0336	254.3	64.2	225	2.5	229.5	4.6	0.98	225	3	1.109			
JCNEW-2E-7	128.100	118.800	0.2678	0.0053	0.0356	0.0004	0.4441	0.0537	0.0009	0.0591	357.2	60.0	226	2.3	240.7	4.2	0.94	226	2	0.932			
JCNEW-2E-27	134.300	184.000	0.2552	0.0052	0.0357	0.0005	0.6395	0.0517	0.0009	0.0955	273.5	59.3	226	3.1	230.6	4.2	0.98	226	3	1.360			
JCNEW-2E-20	91.200	106.600	0.2602	0.0066	0.0359	0.0005	0.4733	0.0528	0.0012	0.0719	320.2	68.8	227	3	234.6	5.3	0.97	227	3	1.171			
JCNEW-2E-2	95.500	77.600	0.2537	0.0049	0.0359	0.0005	0.5440	0.0511	0.0009	0.0885	245.8	61.7	227	2.8	229.4	4	0.99	227	3	0.829			
JCNEW-2E-1	70.800	50.810	0.2524	0.0061	0.0359	0.0004	0.3076	0.0509	0.0012	0.1857	236.3	71.3	227	2.3	228.8	4.9	0.99	227	2	0.712			
											1						I				I		

	TABLE 2A, LA-ICPMS U-Pb ZIRC	ON DATA FOR SHINARUMF	CONGLOMERATE CLASTS	(continued)
--	------------------------------	-----------------------	---------------------	-------------

						Measured	d isotopic rat	tios					Isotopic aç	jes⁵									
Sample location and number	U ppmª	Th ppmª	²⁰⁷ Pb/ ²³⁵ U	% error	²⁰⁶ Pb/ ²³⁸ U	% error	Error Correlation 6/38–7/35	²⁰⁷ Pb/ ²⁰⁶ Pb	% error	Error Correlation 38/6–7/6	Age (Ma) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	error	Age (Ma) ²⁰⁶ Pb*/ ²³⁸ U	error	Age (Ma) ²⁰⁷ Pb*/ ²³⁵ U	error	Concordance Filter	Best age (Ma)	error	Th/U	Clast age	Average clast Th/U	
Joseph City (c JCNEW-2E-14 JCNEW-2E-29 JCNEW-2E-29 JCNEW-2E-24 JCNEW-2E-25 JCNEW-2E-26 JCNEW-2E-30 JCNEW-2E-30 JCNEW-2E-30 JCNEW-2E-30 JCNEW-2E-30 JCNEW-2E-31 JCNEW-2E-22 JCNEW-2E-12 JCNEW-2E-12 JCNEW-2E-28	ontinued) 100.200 70.200 159.700 48.720 88.700 119.800 158.000 155.600 155.600 155.600 155.600 130.600 70.000 164.900 78.900	73.000 101.200 235.000 59.600 95.900 111.500 187.600 197.200 98.400 127.100 154.000 184.700 71.900 177.500 110.600	0.2516 0.2594 0.2566 0.2632 0.2568 0.2565 0.2563 0.2504 0.2504 0.2508 0.2559 0.2559 0.2712 0.2649 0.2630	0.0060 0.0072 0.0045 0.0089 0.0069 0.0060 0.0040 0.0056 0.0099 0.0054 0.0049 0.0054 0.0049 0.0075	0.0359 0.0360 0.0360 0.0360 0.0360 0.0360 0.0361 0.0361 0.0362 0.0362 0.0362 0.0362 0.0362 0.0363 0.0363	0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004 0.0003 0.0004 0.0005 0.0005 0.0005 0.0005	0.5121 0.3233 0.6010 0.4760 0.5015 0.4765 0.5894 0.4561 0.4561 0.4561 0.45657 0.5113 0.6478 0.4827	0.0504 0.0520 0.0513 0.0531 0.0516 0.0515 0.0515 0.0514 0.0499 0.0499 0.0508 0.0499 0.0539 0.0499 0.0513	0.0010 0.0014 0.008 0.0017 0.0011 0.0011 0.0007 0.0009 0.0017 0.0009 0.0008 0.0008 0.0008 0.0013 0.0007 0.0012	-0.0050 0.1675 0.1310 -0.0086 0.0261 -0.0360 0.0078 -0.0772 0.0681 0.0258 0.0229 -0.0064 0.0120 0.0671	215.3 285.4 253.9 333.1 267.7 267.7 262.4 259.7 448.4 181.0 189.9 231.3 366.9 189.9 254.3	64.6 76.7 57.2 85.6 67.1 67.1 54.8 61.1 80.9 63.5 58.8 59.4 70.6 57.9 70.8	227 228 228 228 228 228 228 229 229 229 229	2.5 2.9 2.5 3.8 3.1 2.4 2.1 2.7 3.2 2.2 3.2 2.8 3.3 2.6 3.3	228.2 234.6 232.2 236.7 233 233.1 234.9 231.5 250.9 226.7 227 231.2 243.3 226.3 226.3 236.7	4.9 5.7 3.6 7.2 5.7 4.9 3.2 4.5 7.8 4.4 4 4 6.2 3.9 6	1.00 0.97 0.98 0.96 0.98 0.97 0.99 0.91 1.01 1.01 1.01 0.99 0.94 1.01 0.97	((iiii)) 227 228 228 228 228 228 229 229 229 229 229	3 3 3 4 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3	0.728 1.442 1.414 1.232 1.092 0.938 1.186 1.220 0.861 0.840 0.988 1.433 1.042 1.084 1.413			236 239 230 230 232 232 232 234 232 232 234 232 234 232 234 232 234 232 234 235 235 236 236 236 237 236 237 236 237 237 238 239 239 239 239 239 239 239 239
JCNEW-2E-13 JCNEW-2E-4 JCNEW-2E-9 JCNEW-2E-16 JCNEW-2E-19 JCNEW-2E-11 JCNEW-2E-3 JCNEW-2E-21	139.300 97.750 132.900 72.000 46.970 899.000 66.500 235.000	117.800 93.100 126.600 56.300 41.570 348.000 62.600 58.480	0.2541 0.2562 0.2638 0.2654 1.9260 4.1180 0.3380 2.7900	0.0059 0.0053 0.0048 0.0074 0.0260 0.0520 0.0350 0.0750	0.0364 0.0365 0.0366 0.0368 0.1837 0.2943 0.0371 0.2147	0.0005 0.0004 0.0005 0.0004 0.0020 0.0036 0.0006 0.0006 0.0049	0.5857 0.5402 0.6132 0.3042 0.6857 0.9924 0.7102 0.9812	0.0504 0.0510 0.0522 0.0513 0.0759 0.1009 0.0649 0.0931	0.0009 0.0009 0.0008 0.0014 0.0008 0.0002 0.0059 0.0006	0.1110 -0.0225 0.1685 0.0592 0.2363 -0.0295 -0.5953 -0.6198	211.2 241.3 294.2 254.3 1093.5 1639.8 771.1 1490.1	60.7 61.5 58.3 77.8 45.0 37.3 195.9 40.0	230 231 232 233 1087 1662 235 1253	3.4 2.5 3.2 2.4 11 18 3.8 26	229.7 231.4 238.1 238.6 1089.2 1657 289 1348	4.7 4.3 3.9 5.9 8.9 10 24 21	1.00 1.00 0.97 0.98 0.99 1.01 0.30 0.84	230 231 232 233 1093 1640 discordant discordant	3 3 2 45 37 196 40	0.846 0.941 0.953 0.789 0.892 0.389 0.951 0.249			
JCNEW-2D-1 JCNEW-2D-7 JCNEW-2D-6 JCNEW-2D-8 JCNEW-2D-9 JCNEW-2D-9 JCNEW-2D-10 JCNEW-2D-3 JCNEW-2D-5 JCNEW-2D-4	98.900 122.900 422.500 403.600 210.700 286.900 546.100 185.700 81.600 67.610	149.500 124.100 758.000 376.000 489.600 303.100 545.900 201.400 107.600 105.600	0.2490 0.2502 0.2491 0.2489 0.2493 0.2506 0.2511 0.2531 0.2636 0.4120	0.0062 0.0055 0.0039 0.0036 0.0050 0.0043 0.0039 0.0040 0.0058 0.0220	0.0351 0.0355 0.0355 0.0356 0.0356 0.0356 0.0359 0.0363 0.0365 0.0380	0.0004 0.0005 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004	0.5285 0.4800 0.8157 0.7213 0.6565 0.7010 0.8182 0.5312 0.3724 0.5163	0.0517 0.0511 0.0508 0.0508 0.0509 0.0511 0.0507 0.0502 0.0525 0.0791	0.0011 0.0010 0.0005 0.0005 0.0008 0.0006 0.0005 0.0007 0.0012 0.0037	-0.1143 -0.1814 -0.1892 0.1352 0.0631 -0.0467 -0.0166 0.2245 0.1711 -0.2420	272.2 245.3 231.3 230.4 237.7 243.5 225.4 203.3 307.2 1174.6	66.9 64.4 50.9 52.3 0.0 53.4 51.0 56.3 69.2 100.7	222.4 224.6 225.1 225.7 225.7 227.2 230 231.3 240.3	2.5 2.9 2.4 2.6 3.3 2.5 3 2.6 3 3.6	226.1 226.5 225.7 225.6 225.8 226.9 227.7 229 237.3 349	5.2 5.3 3.2 3 4.1 3.5 3.3 3.2 4.7 16	0.98 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.97 0.20	222 225 225 226 226 226 227 230 231 discordant	3 3 2 3 3 3 3 3 3 3 101	1.493 1.015 1.807 0.935 2.342 1.067 1.008 1.071 1.340 1.573	225 ± 3 Ma	1.34	236 232 232 232 232 232 232 232
Hunt 120309-1F-1 120309-1F-2 120309-1F-5 120309-1F-3 120309-1F-4	161.700 178.000 18.800 188.200 35.520	391.800 137.400 31.500 163.400 44.200	0.2469 0.2518 0.2690 0.2562 0.2700	0.0074 0.0058 0.0190 0.0060 0.0120	0.0351 0.0353 0.0353 0.0358 0.0358	0.0008 0.0008 0.0014 0.0007 0.0008	0.7267 0.7036 0.0700 0.7917 0.5018	0.0506 0.0521 0.0559 0.0518 0.0540	0.0010 0.0009 0.0042 0.0008 0.0020	0.0384 0.2996 0.3863 0.0522 -0.0541	222.6 287.6 448.4 277.5 371.0	65.0 61.6 172.7 57.6 94.8	222.1 223.8 223.8 226.7 229.5	4.8 4.9 8.9 4.6 4.9	223.7 227.8 240 231.3 241.8	6 4.7 15 4.9 9.4	0.99 0.98 0.93 0.98 0.95	222 224 224 227 230	5 5 9 5 5	2.427 0.772 1.681 0.872 1.252	Median age 224 Ma	1.40	

						Measured	d isotopic rat	ios					Isotopic a	ges⁵									
Sample							Error			Error	Age		Age		Age							Average	
location and							Correlation			Correlation	(Ma)		(Ma)		(Ma)		Concordance	Best age				clast	
number	U ppm ^a	Th ppm ^a	²⁰⁷ Pb/ ²³⁵ U	l % error	²⁰⁶ Pb/ ²³⁸ U	% error	6/38–7/35	²⁰⁷ Pb/ ²⁰⁶ Pb	% error	38/6–7/6	²⁰⁷ Pb*/ ²⁰⁶ Pb*	error	²⁰⁶ Pb*/ ²³⁸ U	error	²⁰⁷ Pb*/ ²³⁵ U	error	Filter	(Ma)	error	Th/U	Clast age	Th/U	
Hunt (continue	ed)																						
120309-1H-6	99.211	102.092	0.2484	0.0076	0.0351	0.0007	0.6072	0.0511	0.0012	0.0140	244.1	72.5	222.2	4.4	224.8	6.1	0.99	222	4	1.037	229 +3/–5 Ma	1.37	242 box heights are for
120309-1H-8	246.235	299.554	0.2467	0.0053	0.0353	0.0007	0.7944	0.0501	0.0007	0.1057	200.9	57.2	223.7	4.4	223.7	4.3	1.00	224	4	1.280			238 (120309-1H)
120309-1H-1	387.188	407.275	0.2495	0.0049	0.0359	0.0007	0.8666	0.0506	0.0005	0.0258	224.6	52.4	227.3	4.2	226.0	4.0	1.01	227	4	0.971			234
120309-1H-2	381.659	875.160	0.2577	0.0058	0.0360	0.0006	0.8225	0.0512	0.0006	-0.1090	248.6	53.9	227.7	3.8	232.5	4.7	0.98	228	4	2.243			8, 230
120309-1H-4	430.316	531.361	0.2534	0.0047	0.0363	0.0006	0.8119	0.0504	0.0005	0.0561	212.8	52.4	229.7	3.6	229.2	3.8	1.00	230	4	1.245			228
120309-1H-3	372.384	435.379	0.2533	0.0057	0.0365	0.0006	0.8750	0.0503	0.0005	-0.1778	208.6	52.8	230.8	3.7	229.0	4.6	1.01	231	4	1.173			218
120309-1H-5	207.720	309.045	0.2589	0.0064	0.0365	0.0006	0.7051	0.0515	0.0009	-0.0651	263.3	60.6	231.3	3.8	233.5	5.1	0.99	231	4	1.364			214 TuffZirc Age = 228.69 +2.60 -4.97 Ma (93% conf, from coherent group of 8)
120309-1H-7	219.409	351.881	0.2713	0.0078	0.03/2	0.0008	0.7351	0.0527	0.0009	-0.1256	316.5	60.7	235.2	4.9	243.2	6.2	0.97	235	5	1.622			
100000 10 17	101 000	100.000	0.0014	0.0001	0.0057	0.0004	0 5050	0.0504	0.0011	0.0104	000.4	05.0	000.0	0.0	000.0	4.0	0.00	000		1 010	000 . 0 Ма	0.01	
120309-10-17	121.300	1002 000	0.2014	0.0061	0.0357	0.0004	0.0208	0.0531	0.0011	-0.0104	042.1	40.0	220.2	2.0	230.2	4.0	1.00	220	3	1.213	229 ± 3 Ma	0.81	290 box heights are 10
120309-16-20	66 780	8/ 800	0.2511	0.0042	0.0350	0.0003	0.3127	0.0511	0.0004	0.2720	245.1	49.0	227	2.2	227.3	6.1	0.00	227	3	0.570			(<u>120309-1G</u>)
120309-1G-5	53 220	54 550	0.2301	0.0079	0.0364	0.0004	0.3938	0.0560	0.0016	0.0307	452.4	77.4	230.2	3.2	249.8	6.2	0.00	230	3	0.980			8
120309-1G-14	183 000	281 600	0.2528	0.0048	0.0364	0.0005	0 7404	0.0506	0.0006	-0.0125	220.8	54.3	230.7	3.1	229.6	3.9	1.00	231	3	0.657			₹ 250
120309-1G-13	202.500	315,100	0.2587	0.0044	0.0366	0.0004	0.6560	0.0519	0.0007	0.0237	279.7	55.7	231.9	2.5	233.5	3.5	0.99	232	3	0.639			230
120309-1G-9	376.100	247.000	0.2865	0.0037	0.0407	0.0005	0.7901	0.0516	0.0004	0.1163	269.1	49.5	257	2.8	255.7	2.9	1.01	257	3	1.520			210 TuffZirc Age = 229.15 +2.75 -2.95 Ma
120309-1G-3	97.900	75.900	0.2981	0.0064	0.0414	0.0006	0.5564	0.0522	0.0008	0.0722	295.1	58.6	261.2	3.4	264.6	5	0.99	261	3	1.285			(96.9% conf, from coherent group of 6)
120309-1G-1	239.700	103.500	0.3247	0.0060	0.0453	0.0007	0.7323	0.0527	0.0006	0.0293	315.9	52.8	285.8	4	285.3	4.6	1.00	286	4	2.321			
120309-1G-6	368.100	93.300	0.3287	0.0056	0.0457	0.0006	0.8029	0.0524	0.0005	0.0460	304.6	50.3	288.1	3.8	288.4	4.3	1.00	288	4	3.962			
120309-1G-16	71.000	54.400	0.7500	0.0160	0.0905	0.0012	0.7257	0.0607	0.0009	-0.1247	628.6	53.4	558.6	6.9	568.5	9	0.98	559	7	1.305			
120309-1G-4	173.100	81.800	3.1700	0.0470	0.2553	0.0035	0.9599	0.0910	0.0004	-0.1037	1446.0	38.9	1465	18	1450	11	1.01	1446	39	2.129			
120309-1G-15	79.300	89.350	3.1610	0.0490	0.2544	0.0037	0.9170	0.0913	0.0006	0.0790	1452.2	39.7	1460	19	1446	12	1.01	1452	40	0.889			
120309-1G-12	676.000	208.700	2.9490	0.0380	0.2365	0.0031	0.9797	0.0916	0.0003	-0.0711	1459.9	38.4	1368	16	1393.6	9.9	0.94	1460	38	3.208			
120309-1G-19	420.500	931.000	3.1800	0.0330	0.2531	0.0025	0.9718	0.0917	0.0002	0.0743	1460.1	38.3	1454	13	1451.6	8	1.00	1460	38	0.464			
120309-1G-7	396.100	341.400	3.1320	0.0370	0.2474	0.0033	0.9446	0.0927	0.0004	0.3831	1481.4	38.7	1425	17	1439.7	9.1	0.96	1481	39	1.163			
120309-1G-18	762.000	71.700	3.5470	0.0520	0.2659	0.0038	0.9907	0.0979	0.0002	-0.1345	1583.5	37.7	1519	19	1538	12	0.96	1584	38	10.530			
120309-1G-2	104.900	120.200	3.5500	0.0530	0.2576	0.0036	0.7005	0.1012	0.0011	0.0274	1646.2	42.2	14//	18	1537	12	0.90	1646	42	0.870			
120309-1G-10	31.300	17.430	4.0050	0.0730	0.2879	0.0041	0.8328	0.1017	0.0011	-0.0062	1655.4	42.1	1630	20	1633	15	0.98	1655	42	1.806			
120309-16-21	130.000	110,000	7.0660	0.0820	0.3883	0.0043	0.9658	0.1325	0.0004	0.0984	2131.9	35.4	2114	20	2120	11	0.99	2132	35	1.212			
120309-10-0	155.000	110.900	0.3010	0.0110	0.0304	0.0004	0.4230	0.0010	0.0021	-0.1556	039.2	05.0	230.4	2.0	200.5	0.5	0.30	uiscoruarit	00	1.304			
050511-20-2	17/ 000	232 000	0.2455	0.0040	0.0350	0 0004	0 6028	0 0/00	0 0008	0.0873	102.2	58.2	222	27	222 B	30	1.00	222	3	0 753	Median age	0.75	
050511-20-2	128 100	202.000	0.2400	0.0040	0.0351	0.0004	0.0020	0.0433	0.0000	0.0075	256.6	57.5	222	2.7	226.9	3.5	0.98	222	3	0.733	223 Ma	0.75	
050511-20-3	179 500	196 100	0.2000	0.0040	0.0001	0.0004	0.5050	0.0514	0.0000	-0.1621	322.8	61.7	224	3.2	234.7	5.4	0.00	224	3	0.012	220 1110		
050511-2C-4	74 300	99,800	0.2594	0.0000	0.0004	0.0005	0.3263	0.0523	0.0014	0.1021	302.9	76.1	226 1	3.2	233.9	5.7	0.00	226	3	0.745			
			0.2001	0.007.1	0.0001	0.0000	0.0200	0.002.	0.0011	001	002.0			0.2	200.0		0.07			0.1.10			
050511-3F-4	419,400	574.800	0.2458	0.0037	0.0353	0.0005	0.7587	0.0506	0.0005	0.1158	223.1	51.6	223.5	2.8	223.5	3	1.00	224	3	0.731	230 +6/–2 Ma	0.66	
050511-3F-7	165.400	347.300	0.2551	0.0054	0.0358	0.0005	0.7082	0.0513	0.0008	-0.0491	252.5	58.1	227	3.2	231.1	4.3	0.98	227	3	0.475			233 box heights are for 050511-3F
050511-3F-9	104.400	193.800	0.2626	0.0063	0.0359	0.0005	0.4070	0.0536	0.0011	0.1200	354.3	64.7	227.3	2.9	236.5	5.1	0.96	227	3	0.538			229
050511-3F-2	538.800	499.400	0.2534	0.0037	0.0360	0.0004	0.8084	0.0509	0.0004	0.1034	238.1	50.1	227.7	2.7	229.6	3	0.99	228	3	1.079			8 227
050511-3F-8	155.900	164.900	0.2539	0.0050	0.0360	0.0005	0.6957	0.0514	0.0008	-0.0694	259.3	57.4	228.1	3	230.1	4.1	0.99	228	3	0.942			225
050511-3F-11	86.630	157.500	0.2554	0.0073	0.0360	0.0006	0.6157	0.0516	0.0011	-0.1118	267.7	67.1	228.1	3.5	232.1	6.1	0.98	228	4	0.544			223
050511-3F-5	90.000	181.100	0.2544	0.0063	0.0362	0.0004	0.2102	0.0505	0.0013	0.2418	218.1	75.5	229	2.7	229.9	5.1	1.00	229	3	0.498			219 TuffZirc Age = 227.90 +1.10 -0.90 Ma (93% conf. from coherent group of 8)
050511-3F-1	118.200	247.000	0.2544	0.0063	0.0362	0.0005	0.6784	0.0509	0.0010	-0.1832	234.5	63.2	229.4	3	229.8	5.1	1.00	229	3	0.476			

						Measured	d isotopic ra	tios					Isotopic a	lges⁵									
Sample location and number	U ppmª	Th ppm ^a	²⁰⁷ Pb/ ²³⁵ L	J % error	²⁰⁶ Pb/ ²³⁸ U	J % error	Error Correlation 6/38–7/35	²⁰⁷ Pb/ ²⁰⁶ Pb	% error	Error Correlation 38/6–7/6	Age (Ma) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	error	Age (Ma) ²⁰⁶ Pb*/ ²³⁸ L	l error	Age (Ma) ²⁰⁷ Pb*/ ²³⁵ U	l error	Concordance Filter	Best age (Ma)	error	Th/U	Clast age	Average clast Th/U	
Hunt (continue	ed)																						
050511-3F-3	281.400	181.500	3.1720	0.0390	0.2532	0.0030	0.9666	0.0910	0.0003	-0.0019	1445.8	38.6	1455	15	1449.4	9.5	1.01	1446	39	1.546			
050511-3F-10	366.500	280.900	3.1710	0.0420	0.2542	0.0032	0.9701	0.0911	0.0003	-0.0766	1448.7	38.5	1462	16	1451	10	1.01	1449	38	1.303			
050511-3F-6	29.820	34.700	3.2150	0.0650	0.2488	0.0044	0.7894	0.0943	0.0011	0.0923	1514.1	43.7	1432	23	1458	16	0.95	1514	44	0.863			
Holbrook																							
103009-1G-11	128.000	148.500	0.2557	0.0063	0.0352	0.0005	0.5932	0.0524	0.0010	-0.0991	304.6	62.4	223	2.8	231.5	5	0.96	223	3	0.860	229 ± 2 Ma	0.91	238
103009-1G-1	108.900	82.600	0.2545	0.0060	0.0355	0.0005	0.5784	0.0518	0.0010	-0.0384	276.6	63.7	224.6	3	230.5	5	0.97	225	3	1.309			(103009-1G)
103009-1G-29	117.600	127.100	0.2530	0.0070	0.0358	0.0005	0.5679	0.0514	0.0012	-0.0886	258.8	70.6	226.5	2.9	228.6	5.7	0.99	227	3	0.926			
103009-1G-27	128.100	191.100	0.2574	0.0052	0.0359	0.0005	0.4540	0.0520	0.0009	0.0984	283.2	61.7	227.3	2.8	232.9	4.3	0.98	227	3	0.673			÷
103009-1G-6	184.900	346.200	0.2575	0.0050	0.0360	0.0005	0.5923	0.0516	0.0009	0.1123	265.5	59.5	227.8	2.9	232.5	4.1	0.98	228	3	0.535			228
103009-1G-17	213.000	374.000	0.2530	0.0049	0.0360	0.0005	0.6098	0.0512	0.0008	0.0624	250.3	57.6	227.9	2.8	229.3	4	0.99	228	3	0.564			222
103009-1G-35	148.900	195.900	0.2557	0.0047	0.0361	0.0005	0.54/4	0.0512	8000.0	0.12/6	251.6	57.0	228.4	2.8	231	3.8	0.99	228	3	0.756			218 TuffZirc Age = 229.15 +0.15 -0.75 Mi (94.8% conf, from coherent group of 22)
103009-1G-10	134.600	121.300	0.2775	0.0061	0.0361	0.0005	0.4647	0.0559	0.0010	0.1972	448.4	59.6	228.9	3.1	248.4	4.8	0.92	229	3	1.104			
103009-10-10	299.700	230.500	0.2548	0.0048	0.0362	0.0005	0.7794	0.0509	0.0006	-0.1048	235.4	53.0 52.7	229.1	2.9	230.3	3.9	1.00	229	3	0.017			
103009-10-20	131 700	429.000	0.2541	0.0052	0.0302	0.0003	0.0450	0.0508	0.0000	0.1920	230.9	62.6	229.1	2.5	229.7	4.2	0.98	229	3	1 1 20			
103009-1G-2	401 600	453 900	0.2560	0.0032	0.0362	0.0004	0.0304	0.0516	0.0006	-0.0407	268.2	52.6	229.2	2.5	231.3	3.5	0.00	229	3	0.887			
103009-1G-14	135.700	95.000	0.2720	0.0066	0.0362	0.0005	0.6041	0.0549	0.0010	0.0242	408.2	60.5	229.2	3.2	244	5.3	0.94	229	3	1.431			
103009-1G-21	107.700	252.800	0.2609	0.0062	0.0362	0.0005	0.5913	0.0527	0.0009	-0.1131	313.7	60.4	229.2	2.9	235.1	5	0.97	229	3	0.425			
103009-1G-33	209.500	371.400	0.2535	0.0040	0.0362	0.0004	0.5993	0.0511	0.0007	0.1452	245.8	55.3	229.2	2.7	229.3	3.2	1.00	229	3	0.565			
103009-1G-26	806.500	972.800	0.2561	0.0039	0.0362	0.0005	0.8725	0.0513	0.0004	-0.0808	254.3	49.7	229.3	3.1	231.4	3.2	0.99	229	3	0.827			
103009-1G-9	158.100	221.900	0.2565	0.0057	0.0363	0.0005	0.6238	0.0508	0.0008	0.0007	230.4	59.7	229.5	2.8	232.2	4.6	0.99	230	3	0.708			
103009-1G-19	238.800	234.100	0.2707	0.0048	0.0363	0.0004	0.7145	0.0540	0.0007	-0.1108	371.5	53.2	230	2.3	243.1	3.8	0.95	230	2	1.013			
103009-1G-36	718.200	896.000	0.2597	0.0041	0.0363	0.0005	0.8316	0.0515	0.0004	0.0863	262.4	49.6	230	2.9	234.3	3.3	0.98	230	3	0.799			
103009-1G-4	98.800	60.600	0.2601	0.0059	0.0364	0.0005	0.5390	0.0520	0.0010	-0.0627	285.4	63.1	230.2	2.9	234.5	4.7	0.98	230	3	1.604			
103009-1G-8	198.200	203.600	0.2583	0.0043	0.0365	0.0005	0.5964	0.0516	0.0007	0.1//4	265.9	56.5	231.4	2.9	233.2	3.5	0.99	231	3	0.972			
103009-10-32	545.400	598.000 215 700	0.2585	0.0033	0.0367	0.0005	0.8272	0.0507	0.0004	0.1055	228.0	50.2	232.8	3	233.4	2.7	1.00	233	3	0.903			
103009-10-10	310.500 407.000	282.000	0.2711	0.0041	0.0386	0.0005	0.0040	0.0514	0.0005	0.1403	257.0	50.2 50.4	241.4	3.4 3.3	243.4	3.3 3.1	0.99	241	3	1.019			
103009-1G-7	423 900	323 300	0.2733	0.0033	0.0394	0.0005	0.0220	0.0518	0.0005	0.1040	277.9	51.2	244.5	3.3	251.9	3.7	0.33	249	3	1.400			
103009-1G-37	273.500	128.000	0.3028	0.0050	0.0423	0.0006	0.7281	0.0518	0.0006	0.1591	276.1	51.9	267	3.5	268.4	3.9	0.99	267	4	2.120			
103009-1G-20	391.700	38.200	0.3258	0.0045	0.0448	0.0006	0.8128	0.0526	0.0004	0.1848	313.3	49.3	282.5	3.8	286.2	3.5	0.99	283	4	10.470			
103009-1G-3	410.800	262.600	0.5998	0.0090	0.0770	0.0010	0.8924	0.0567	0.0004	0.0365	481.4	46.4	477.8	6.3	477.4	5.6	1.00	478	6	1.564			
103009-1G-15	603.000	180.500	1.0130	0.0180	0.1048	0.0018	0.9697	0.0699	0.0003	-0.0958	924.5	42.0	643	10	710.6	9.4	0.90	643	10	3.313			
103009-1G-30	371.300	566.000	3.1290	0.0470	0.2469	0.0037	0.9745	0.0916	0.0003	-0.0602	1458.7	38.6	1422	19	1440	11	0.97	1459	39	0.650			
103009-1G-23	248.900	131.500	4.0240	0.0570	0.2881	0.0039	0.9658	0.1011	0.0004	-0.1333	1643.5	37.7	1631	20	1639	11	0.99	1643	38	1.903			
103009-1G-12	442.600	383.700	4.1230	0.0530	0.2913	0.0037	0.9857	0.1027	0.0002	-0.0909	1672.6	37.2	1648	18	1658	11	0.99	1673	37	1.149			
103009-1G-5	558.300	252.700	0.3478	0.0060	0.0406	0.0005	0.7000	0.0624	0.0008	0.0698	687.8	49.8	256.3	3.2	303.3	4.5	0.37	discordant	50	2.210			
103009-1G-13	114.400	173.200	0.3720	0.0310	0.0390	0.0006	0.7514	0.0695	0.0052	-0.6242	913.6	159.4	246.6	4	316	22	0.27	discordant	159	0.669			
103009-1G-22	547.500	173.200	2.5660	0.0640	0.1888	0.0045	0.9927	0.0986	0.0004	-0.4222	1597.4	37.9	1114	24	1290	19	0.70	discordant	38	3.210			
103009-1G-24	45.500	/2.600	0.3100	0.0110	0.0376	0.0005	0.4625	0.0605	0.0017	-0.0394	621.5	/4.4	238.1	3.1	274.5	8.5	0.38	discordant	/4	0.624			

TABLE 2A. LA-ICPMS U-Pb ZIRCON DATA FOR SHINARUMP CONGLOMERATE CLASTS (continued)

TABLE 2A. LA-ICPMS U-Pb ZIRCON DATA FOR SHINARUMP CONGLOMERATE CLASTS (continued)

						Measure	d isotopic rat	ios					Isotopic a	ges⁵									
Sample							Error			Error	Age		Age		Age							Average	
location and	11 nnma	Th nnm ³	207 Db /2351	% orror	206Db/238L	0/ orror	Correlation	207Db/206Db	0/ orror	Correlation	(Ma)	orror	(Ma)	orror	(Ma)	orror	Concordance	Best age	orror	Th/11	Cleations	clast	
	0 ppm	in ppm	U	% error	U	% error	0/30-//35	PD/PD	% error	38/0-//0	PD /PD	enor	200 PD /200	enor		enor	Filler	(IVIA)	enor	11/0	Clast age		
Holbrook (con	tinued)																						
052111-1A-16	131.700	136.500	0.2494	0.0062	0.0358	0.0005	0.6385	0.0501	0.0010	-0.0378	199.6	65.6	226.7	3.1	225.8	5.1	1.00	227	3	1.043	230 ± 2 Ma	1.05	238 box heights are 1d
052111-1A-6	161.800	237.100	0.2519	0.0052	0.0358	0.0005	0.5211	0.0503	0.0009	0.1612	208.9	50.7	226.8	3.1	228.5	4.1	0.99	227	3	1.485			
052111-1A-29	89.200	179.000	0.2598	0.0072	0.0358	0.0004	0.4423	0.0519	0.0012	0.0315	201.0	70.0 56.6	220.9	2.1	234.1	5.0 1	0.97	227	2	0.845			2 ²⁰⁴ 2 ³²
052111-1A-19	102.400	97 600	0.2572	0.0049	0.0359	0.0005	0.6779	0.0517	0.0008	0.1000	273.1	50.0	227	3.3 3.3	232.3	4	0.90	227	3	0.995			✓ 230 278
052111-1A-2	165 000	194 700	0.2553	0.0050	0.0360	0.0005	0.6794	0.0520	0.0003	0.1258	239.9	58.1	227.0	3.7	230.7	4.5	0.90	228	4	1 186			228
052111-1A-18	290,000	277 200	0.2576	0.0049	0.0360	0.0005	0.0734	0.0515	0.0006	-0.0918	262.8	53.4	228.2	3.1	233	4	0.98	228	3	0.962			224 TuffZirc Age = 229.75 +0.65 -1.35 Ma
052111-1A-22	133.000	177.300	0.2549	0.0058	0.0361	0.0004	0.6187	0.0509	0.0009	-0.1580	237.7	61.9	228.3	2.7	230.3	4.7	0.99	228	3	1.312			(95% conf, from coherent group of 26)
052111-1A-5	103.500	67.050	0.2621	0.0057	0.0360	0.0005	0.4441	0.0530	0.0011	0.2159	328.8	65.4	228.4	3.1	236.7	4.5	0.96	228	3	0.654			
052111-1A-28	204.100	170.100	0.2542	0.0044	0.0361	0.0004	0.6459	0.0511	0.0006	0.0672	245.8	54.1	228.7	2.7	230.7	3.5	0.99	229	3	0.846			
052111-1A-24	220.600	267.700	0.2539	0.0044	0.0362	0.0004	0.6937	0.0508	0.0007	-0.0163	229.9	55.3	229.1	2.6	229.6	3.6	1.00	229	3	1.243			
052111-1A-7	107.000	148.400	0.2577	0.0061	0.0362	0.0005	0.4317	0.0524	0.0011	0.1252	302.9	66.1	229.3	3	233.2	5	0.98	229	3	1.403			
052111-1A-10	148.800	234.500	0.2549	0.0055	0.0363	0.0005	0.5788	0.0509	0.0009	0.0479	234.5	62.2	229.7	3	230.9	4.5	0.99	230	3	1.575			
052111-1A-20	247.500	169.400	0.2583	0.0050	0.0363	0.0005	0.6165	0.0510	0.0007	0.1689	240.4	56.7	229.8	3.3	233.1	4	0.99	230	3	0.696			
052111-1A-13	186.100	165.200	0.2593	0.0054	0.0363	0.0004	0.7202	0.0517	0.0008	-0.2163	269.9	57.7	230.1	2.7	233.9	4.3	0.98	230	3	0.901			
052111-1A-25	125.000	93.600	0.2551	0.0053	0.0364	0.0005	0.5834	0.0510	0.0009	0.0571	242.2	62.4	230.1	3.3	230.5	4.3	1.00	230	3	0.760			
052111-1A-26	81.230	96.900	0.2529	0.0070	0.0364	0.0005	0.2255	0.0501	0.0014	0.2564	199.6	79.8	230.3	3	228.6	5.7	1.01	230	3	1.215			
052111-1A-12	202.900	201.000	0.2563	0.0053	0.0364	0.0005	0.7451	0.0510	0.0007	-0.1526	242.2	55.1	230.4	2.8	231.5	4.3	1.00	230	3	0.986			
052111-1A-11	187.200	141.500	0.2560	0.0043	0.0365	0.0005	0.5862	0.0507	0.0008	0.0651	227.2	58.9	231	2.9	231.8	3.6	1.00	231	3	0.767			
052111-1A-27	99.900	195 100	0.2531	0.0082	0.0305	0.0006	0.0498	0.0504	0.0012	0.0041	213.5	72.U	231.1	3./	229.0	0.0	1.01	231	4	1.3/4			
052111-1A-4	140.000	171 700	0.2500	0.0054	0.0366	0.0005	0.0021	0.0512	0.0008	-0.0605	247.0	00.7 61 3	231.0	3.1	232.4	4.5	0.00	232	3	1 1/3			
052111-14-3	131.200	101 600	0.2509	0.0059	0.0300	0.0005	0.0045	0.0516	0.0009	0.1007	266.4	61.5	231.7	3.1	234.1	4.0	1.00	232	3	0 785			
052111-1A-9	146 100	199 300	0.2585	0.0054	0.0368	0.0006	0.5797	0.0509	0.0009	0 1574	234.9	62.8	232.9	3.5	233.3	4.4	1.00	233	4	1 378			
052111-1A-15	192.000	199.900	0.2599	0.0052	0.0368	0.0005	0.5608	0.0517	0.0009	0.0721	273.1	61.0	232.9	2.9	234.4	4.2	0.99	233	3	1.063			
052111-1A-17	559.000	292.000	0.2686	0.0046	0.0370	0.0005	0.8569	0.0523	0.0005	-0.0845	296.4	49.9	234	3.2	241.4	3.6	0.97	234	3	0.530			
052111-1A-21	293.500	170.300	0.2398	0.0037	0.0340	0.0004	0.6573	0.0509	0.0006	0.1250	234.5	54.3	215.7	2.6	218.5	3	0.99	216	3	0.590			
052111-1A-23	421.900	673.300	3.2340	0.0410	0.2557	0.0032	0.9735	0.0914	0.0003	-0.1055	1454.3	38.5	1467	16	1464.4	9.8	1.01	1454	38	1.620			
052111-1A-8	387.000	294.600	3.2280	0.0440	0.2561	0.0035	0.9788	0.0918	0.0002	0.1600	1463.3	38.3	1470	18	1465	11	1.00	1463	38	0.778			
052111-1A-30	332.600	161.700	3.8670	0.0430	0.2787	0.0030	0.9732	0.1004	0.0003	0.1280	1631.3	37.6	1584	15	1606.1	8.9	0.97	1631	38	0.495			
052111-1C-9	97.200	182.000	0.2549	0.0074	0.0359	0.0006	0.6836	0.0517	0.0010	-0.1041	272.2	63.8	227.2	3.8	230.1	5.9	0.99	227	4	1.867	232 ± 2 Ma	1.46	box heights are for
052111-1C-20	209.000	231.000	0.2533	0.0053	0.0361	0.0006	0.7652	0.0516	0.0007	0.0439	269.1	55.7	228.4	3.9	229	4.3	1.00	228	4	1.148			244 (052111-1C)
052111-1C-8	158.400	400.000	0.2710	0.0063	0.0363	0.0005	0.6464	0.0537	0.0009	-0.0039	359.3	58.9	229.7	3.4	243.2	5.1	0.94	230	3	2.506			236
052111-1C-4	128.600	263.200	0.2609	0.0063	0.0363	0.0005	0.5381	0.0524	0.0011	0.0791	302.9	66.1	229.8	3.3	235.1	5	0.98	230	3	2.077			₹ 232
052111-1C-1	364.900	463.300	0.2587	0.0043	0.0364	0.0005	0.8023	0.0512	0.0006	-0.0564	247.6	52.5	230.6	3.2	233.5	3.5	0.99	231	3	1.256			228
052111-1C-10	110.400	212.800	0.2639	0.0060	0.0364	0.0005	0.6307	0.0527	0.0009	0.0480	315.9	60.7	230.7	3.2	238.1	4.7	0.97	231	3	1.938			224
052111-1C-11	132.100	163.100	0.2619	0.0059	0.0365	0.0005	0.6425	0.0517	0.0009	-0.0359	2/1./	61.1	230.9	3.3	236.5	4.9	0.98	231	3	1.241			220 TuffZirc Age = 231.75 +2.25 -1.05 Ma (95.9% conf, from coherent group of 20)
052111-10-2	224.700	348.500	0.2568	0.0046	0.0365	0.0004	0.6859	0.0509	0.0007	-0.0428	236.8	55.5	231.3	2.5	231.9	3./	1.00	231	3	1.561			
052111-10-22	70 100	58 600	0.2015	0.0093	0.0300	0.0006	0.3/31	0.0520	0.0015	0.035/	200.4	03.9 72 0	∠31.5 221 7	3.9 1	230.3 230.6	7.0 6.7	0.98	232	4	1.30/			
052111-10-10	337 000	306.000	0.2000	0.0004	0.0303	0.0007	0.4007	0.0002	0.0015	0.0972	102.2	70.0 53.1	231.7	4	239.0	0.7 3 F	1.01	232	3	1 170			
052111-10-17	191 800	349 000	0.2042	0.0045	0.0300	0.0005	0.7022	0.0459	0.0000	0.0390	250.3	56.3	231.0	37	230.3	0.0 4 R	0.00	232	4	1.170			
052111-10-24	340 900	253 200	0.2553	0.0048	0.0368	0.0005	0 7880	0.0504	0.0005	0.0128	212.6	52.4	232.4	3.3	230.7	3.9	1 01	233	3	0.745			
	510.000	200.200	0.2000	0.0040	0.0000	0.0000	0.7500	0.000-	0.0000	0.0120	2.2.0	02.7	202.0	0.0	200.7	5.5			l v	0.740			

						Measured	d isotopic rat	tios					Isotopic a	ges⁵									
Sample location and		-	207 DL /235 L		206 DL (238)		Error Correlation	20701 /20601	~	Error Correlation	Age (Ma)		Age (Ma)		Age (Ma)		Concordance	Best age		T 1 (1)		Average clast	
number	U ppm ^a	In ppm ^e	207 Pb/200	% error	200Pb/200U	% error	6/38-//35	20/PD/200PD	% error	38/6-7/6	207 PD^/200 PD^	error	200Pb^/200U	error	207 PD^/200	error	Filter	(Ma)	error	In/U	Clast age	Th/U	
Holbrook (cor	tinued)																						
052111-1C-16	429.900	304.000	0.2552	0.0044	0.0368	0.0005	0.8891	0.0506	0.0004	-0.0328	223.1	50.3	232.8	3.4	231.6	3.5	1.01	233	3	0.693			
052111-1C-12	820.000	1160.000	0.2916	0.0059	0.0370	0.0006	0.6642	0.0567	0.0010	0.0405	481.1	57.9	234	3.8	259.6	4.6	0.90	234	4	1.433			
052111-1C-18	309.700	348.600	0.2532	0.0046	0.0369	0.0006	0.7999	0.0505	0.0006	0.1317	216.7	53.9	234.1	3.8	229	3.8	1.02	234	4	1.131			
052111-10-23	97.900	204.500	0.2572	0.0067	0.0371	0.0006	0.6425	0.0506	0.0011	-0.0755	222.6	68.3 71.5	234.7	3.6	233.5	5.2	1.01	235	4	2.106			
052111-10-19	101.500	102.200	0.2098	0.0074	0.0371	0.0007	0.0232	0.0508	0.0012	0.0011	231.0	/1.5	234.0	4.3	234.2	0	0.00	230	4	1.009			
052111-10-13	88 300	160 800	0.2030	0.0045	0.0373	0.0006	0.9175	0.0510	0.0005	0.0030	274.0	0.0C	230.7	3.9 3.4	237.0	5.0	0.99	230	3	1.100			
052111-10-3	240.000	294 000	0.2702	0.0070	0.0370	0.0000	0.4700	0.0520	0.0012	_0.1004	398.8	54.1	195.4	2.8	240.2	3.8	0.30	195	3	1 244			
052111-1C-14	513 000	219,300	3 1500	0.00470	0.2515	0.0004	0.9848	0.0047	0.0007	0.0000	1448.9	38.4	1446	19	1448	12	1.00	1449	38	0.427			
052111-1C-6	24.300	78,100	0.4640	0.0250	0.0404	0.0011	0.6461	0.0828	0.0038	-0.1428	1264.5	97.8	255.1	6.5	384	17	0.20	discordant	98	3.218			
052111-1C-7	129.400	191.600	0.4460	0.0240	0.0363	0.0010	-0.5405	0.0911	0.0073	0.7873	1448.7	157.2	229.9	6.5	371	16	0.16	discordant	157	1.567			
											-	-			-	-			-				
103009-1C-24	132.900	175.600	0.2436	0.0065	0.0353	0.0006	0.7388	0.0501	0.0009	-0.0179	198.2	62.8	223.6	4	221.7	5.4	1.01	224	4	1.316	227 ± 2 Ma	0.87	240
103009-1C-12	265.400	224.000	0.2457	0.0053	0.0354	0.0005	0.6916	0.0506	0.0008	-0.0071	223.6	59.8	224.3	3.3	222.9	4.3	1.01	224	3	0.847			236
103009-1C-11	197.500	123.600	0.2491	0.0050	0.0355	0.0005	0.6835	0.0511	0.0008	-0.0323	243.1	58.3	224.5	3.2	225.7	4	0.99	225	3	0.628			232
103009-1C-4	143.500	104.400	0.2501	0.0053	0.0355	0.0005	0.6673	0.0502	0.0008	-0.1207	202.0	60.0	224.9	3	226.5	4.3	0.99	225	3	0.723			₽ 228
103009-1C-23	320.700	276.500	0.2470	0.0046	0.0355	0.0005	0.7657	0.0504	0.0006	0.0278	214.4	53.4	224.9	3.4	224	3.8	1.00	225	3	0.860			224
103009-1C-1	299.500	287.800	0.2489	0.0041	0.0356	0.0004	0.7190	0.0507	0.0005	-0.0085	227.7	52.4	225.3	2.7	226	3.3	1.00	225	3	0.969			220
103009-1C-10	119.700	71.600	0.2467	0.0059	0.0356	0.0006	0.7350	0.0503	0.0008	-0.1291	207.0	59.6	225.3	3.6	223.6	4.8	1.01	225	4	0.597			216 TuffZirc Age = 226.90 +1.40 -1.40 Ma (95% conf. from coherent group of 29)
103009-1C-13	120.400	148.900	0.2509	0.0063	0.0356	0.0005	0.5746	0.0508	0.0010	0.0533	233.1	63.2	225.4	3.2	227	5.1	0.99	225	3	1.247			
103009-1C-29	249.900	226.500	0.2532	0.0051	0.0356	0.0006	0.7199	0.0513	0.0008	0.1121	254.8	57.5	225.4	3.5	229	4.1	0.98	225	4	0.914			
103009-1C-8	207.000	179.600	0.2424	0.0045	0.0356	0.0005	0.6249	0.0499	0.0007	0.1246	188.0	56.9	225.5	3	220.3	3.7	1.02	226	3	0.867			
103009-1C-2	147.600	127.700	0.2523	0.0057	0.0356	0.0005	0.7014	0.0514	0.0008	0.0560	257.9	58.0	225.7	3.4	229.3	4.6	0.98	226	3	0.868			
103009-10-14	198.800	103.000	0.2490	0.0046	0.0356	0.0006	0.7397	0.0511	0.0006	0.0392	246.7	54.1	225.7	3.4	226	3.7	1.00	226	3	0.518			
103009-10-21	83.900 121 700	02.000 96.900	0.2593	0.0060	0.0350	0.0006	0.5209	0.0520	0.0011	0.1879	311.0	62.0	220.7	3.7	233.9	4.9	0.96	220	4	0.747			
103009-10-9	175 200	111 000	0.2525	0.0050	0.0358	0.0005	0.5534	0.0514	0.0009	0.1330	207.0	02.0 58.3	220.0	3.3 3.1	220.0	4.4	0.99	227	3	0.054			
103009-1C-15	192 500	209 800	0.2303	0.0040	0.0359	0.0006	0.0004	0.0500	0.0007	-0.0680	196.4	56.2	227.2	3.6	224.2	4.3	1.01	227	4	1 087			
103009-1C-18	73.800	42.260	0.2535	0.0063	0.0359	0.0005	0.5358	0.0524	0.0012	0.0696	302.9	69.3	227.4	3	229.2	5.1	0.99	227	3	0.568			
103009-1C-7	247.000	298.000	0.2487	0.0051	0.0360	0.0007	0.8532	0.0500	0.0006	0.0099	196.9	54.4	227.7	4.3	225.4	4.1	1.01	228	4	1.148			
103009-1C-17	170.000	100.500	0.2571	0.0046	0.0360	0.0006	0.6636	0.0514	0.0008	0.0598	260.1	57.4	228	3.5	232.2	3.7	0.98	228	4	0.592			
103009-1C-27	202.900	155.400	0.2489	0.0047	0.0361	0.0006	0.7780	0.0504	0.0006	0.1657	211.2	53.5	228.3	3.7	225.6	3.8	1.01	228	4	0.773			
103009-1C-20	130.800	81.200	0.2543	0.0058	0.0361	0.0005	0.5953	0.0510	0.0010	-0.0063	239.0	63.0	228.5	3	229.8	4.7	0.99	229	3	0.625			
103009-1C-5	224.000	209.000	0.2524	0.0046	0.0362	0.0004	0.6343	0.0510	0.0008	0.0256	242.2	57.2	229	2.7	228.4	3.7	1.00	229	3	0.914			
103009-1C-25	209.300	215.700	0.2572	0.0050	0.0362	0.0006	0.7252	0.0516	0.0006	0.1960	265.5	54.0	229.1	3.5	233.5	4	0.98	229	4	1.019			
103009-1C-26	236.400	191.500	0.2574	0.0055	0.0362	0.0006	0.8024	0.0513	0.0006	-0.1793	252.1	53.8	229.1	3.5	232.3	4.4	0.99	229	4	0.803			
103009-1C-28	194.200	300.500	0.2591	0.0063	0.0362	0.0006	0.6444	0.0513	0.0008	0.0413	253.0	58.9	229.5	3.7	233.6	5	0.98	230	4	1.552			
103009-1C-19	193.000	163.400	0.2624	0.0052	0.0364	0.0005	0.7186	0.0524	0.0007	0.0168	304.6	54.8	230.2	3.1	236.4	4.2	0.97	230	3	0.855			
103009-1C-6	122.500	79.600	0.2495	0.0057	0.0365	0.0006	0.6084	0.0500	0.0009	0.0831	194.1	63.5	231.2	3.7	226.6	4.8	1.02	231	4	0.651			
103009-1C-3	113.900	104.500	0.2554	0.0064	0.0370	0.0005	0.6357	0.0508	0.0009	-0.1110	230.4	62.9	234.5	3.2	231.3	5.3	1.01	235	3	0.923			
103009-1C-16	167.600	213.700	0.2576	0.0047	0.0371	0.0006	0.6692	0.0507	0.0007	0.1941	224.9	57.3	234.5	3.5	232.6	3.8	1.01	235	4	1.277			

TABLE 2A. LA-ICPMS U-Pb ZIRCON DATA FOR SHINARUMP CONGLOMERATE CLASTS (continued)

						Measured	l isotopic rat	ios					Isotopic ag	ges⁵									
Sample location and number	U ppm ^a	Th ppm ^a	²⁰⁷ Pb/ ²³⁵ U	% error	²⁰⁶ Pb/ ²³⁸ U	% error	Error Correlation 6/38–7/35	²⁰⁷ Pb/ ²⁰⁶ Pb	% error	Error Correlation 38/6–7/6	Age (Ma) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	error ²	Age (Ma) ²⁰⁶ Pb*/ ²³⁸ U	error	Age (Ma) ²⁰⁷ Pb*/ ²³⁵ U	error	Concordance Filter	Best age (Ma)	error	Th/U	Clast age	Average clast Th/U	
Holbrook (con 103009-1E-6	tinued) 297 544	305 981	0 2495	0.0050	0 0354	0.0006	0 7661	0.0508	0 0006	0 1868	229.9	54 5	224.3	37	226.9	39	0.99	224	4	1 047	228 + 3 Ma	1 17	
103009-1E-3	530.275	534.091	0.2505	0.0054	0.0355	0.0006	0.8866	0.0511	0.0005	-0.0624	246.7	51.3	225.2	4.0	227.2	4.3	0.99	225	4	1.045			234 box heights are for (103009-1E)
103009-1E-2	245.908	295.778	0.2498	0.0044	0.0356	0.0006	0.6790	0.0509	0.0007	0.1900	236.6	56.7	225.3	3.5	226.7	3.6	0.99	225	4	1.214			
103009-1E-7	113.919	144.307	0.2566	0.0067	0.0358	0.0007	0.5660	0.0521	0.0010	0.1360	288.9	64.8	227.0	4.3	231.5	5.5	0.98	227	4	1.279			964
103009-1E-4	203.789	174.075	0.2496	0.0058	0.0359	0.0006	0.7636	0.0512	0.0008	0.0275	248.2	58.2	227.0	3.9	226.5	4.7	1.00	227	4	0.864			226
103009-1E-8	245.217	408.749	0.2538	0.0060	0.0361	0.0008	0.7789	0.0514	0.0008	0.0705	256.6	58.0	228.5	4.7	229.9	4.8	0.99	229	5	1.688			222
103009-1E-9	148.669	250.448	0.2543	0.0068	0.0362	0.0006	0.6556	0.0509	0.0011	0.0066	236.8	66.6	229.2	4.0	230.2	5.6	1.00	229	4	1.697			218 TuffZirc Age = 227.80 +2.31 -2.64 Ma (97.9% conf, from coherent group of 10)
103009-1E-1	175.304	139.289	0.2484	0.0075	0.0363	0.0007	0.7754	0.0500	0.0009	-0.0895	196.2	63.1	229.9	4.5	225.4	6.1	1.02	230	4	0.803			
103009-1E-11	537.462	543.710	0.2542	0.0053	0.0363	0.0006	0.9105	0.0512	0.0006	0.0993	251.9	52.2	230.1	4.0	229.7	4.3	1.00	230	4	1.016			
103009-1E-5	1/3.596	1/5.267	0.2680	0.0054	0.0367	0.0006	0.5713	0.0528	0.0008	0.1117	319.4	57.4	232.3	3.5	240.8	4.3	0.96	232	4	1.029			
103009-1E-10	196.093	88.338	3.1149	0.0659	0.2498	0.0050	0.9736	0.0904	0.0004	-0.0610	1433.6	39.2	1438.7	25.5	1432.9	16.1	1.00	1434	39	0.454			
100000 414 7	150.000		0.0507	0 0055	0.0057		0.0040	0.0544	0 0005	0 0005	0404	50.4	005.0	4 -	000 F				-				
103009-1K-7	459.000	650.000	0.2527	0.0055	0.0357	0.0008	0.9246	0.0511	0.0005	-0.0085	243.1	50.4	225.8	4.7	228.5	4.5	0.99	226	5	1.431	Median age	1.24	
103009-1K-4	308.500	414.000	0.2513	0.0053	0.0358	0.0006	0.8523	0.0505	0.0006	-0.0993	219.4	54.1	226.9	3.6	227.5	4.3	1.00	227	4	1.330	228 Ma		
103009-16-2	439.000	701.400	0.2000	0.0052	0.0300	0.0007	0.0023	0.0513	0.0005	0.0921	203.0	0.10	220.2	4.2	232.2	4.3	1.00	220	4	0.005			
102009-11-0	590 900	192 700	0.2525	0.0052	0.0300	0.0007	0.9007	0.0500	0.0004	0.0129	224.0	49.9 50.5	220.4	4	229.4	4.2	0.00	220	4	0.925			
103003-1K-1	94 400	70 100	3.0620	0.0002	0.0000	0.0007	0.3001	0.0014	0.0000	_0.0437	1442.8	40.1	1402	23	1421	14	0.33	1443	40	0.000			
103009-1K-3	67 130	67 400	11 1700	0.0000	0.4673	0.0096	0.9731	0.0300	0.0008	-0 1143	2577.8	34.3	2469	42	2538	20	0.96	2578	34	0.991			
	000	0.1.00		0.2.00	0.1070	0.0000	0.0701		0.0000		201110	0.10	2.00	.=	2000	20	0.00	2010	•.	0.001			
103009-1H-4	518 000	525 000	0 2566	0 0046	0.0354	0 0006	0 8400	0.0518	0 0005	-0.0540	277 5	512	224.2	36	231.8	37	0.97	224	4	1 035	Median age	1.60	
103009-1H-1	57.590	72.400	0.2571	0.0087	0.0358	0.0008	0.5666	0.0520	0.0014	0.1418	285.4	76.7	226.8	5	231.9	7	0.98	227	5	1.256	227 Ma		
103009-1H-3	125.400	300.000	0.2610	0.0056	0.0359	0.0006	0.4854	0.0528	0.0010	0.2682	318.5	61.2	227	3.8	235.2	4.5	0.97	227	4	2.391			
103009-1H-2	270.600	462.200	0.2589	0.0051	0.0361	0.0007	0.8094	0.0516	0.0007	0.0637	269.1	54.2	228.7	4.1	233.6	4.1	0.98	229	4	1.735			
103009-1B-6	403.000	405.000	0.2468	0.0063	0.0346	0.0007	0.8987	0.0519	0.0006	-0.1432	279.7	52.4	219.1	4.6	224.3	5.1	0.98	219	5	1.021	223 ± 4 Ma	1.37	260
103009-1B-1	213.800	276.700	0.2540	0.0065	0.0349	0.0007	0.7969	0.0527	0.0008	0.0955	315.0	55.8	220.9	4.4	229.5	5.3	0.96	221	4	1.314			250 box heights are to 103009-1B
103009-1B-5	156.800	256.700	0.2535	0.0068	0.0350	0.0007	0.7641	0.0525	0.0009	-0.0054	308.5	60.3	221.6	4.4	229.1	5.5	0.97	222	4	1.648			
103009-1B-4	487.000	1310.000	0.2492	0.0054	0.0353	0.0007	0.9038	0.0514	0.0005	0.0403	256.6	51.3	223.3	4.5	225.7	4.4	0.99	223	5	2.732			e ²⁴⁰ ▼
103009-1B-11	191.600	189.400	0.2496	0.0054	0.0357	0.0007	0.7281	0.0512	0.0008	0.1981	249.8	57.1	226.2	4.1	226.1	4.3	1.00	226	4	0.985			230
103009-1B-10	654.000	580.000	0.2489	0.0053	0.0358	0.0007	0.9089	0.0504	0.0005	0.1040	214.9	50.7	226.4	4.3	225.5	4.3	1.00	226	4	0.886			220
103009-1B-8	363.700	350.300	0.2514	0.0065	0.0358	0.0007	0.8805	0.0511	0.0005	-0.1599	244.0	51.9	226.7	4.6	227.4	5.2	1.00	227	5	0.976			210 TuffZirc Age = 223.30 +3.40 -4.20 Ma (98.4% conf, from coherent group of 7)
103009-1B-2	219.400	81.300	3.4820	0.0690	0.2655	0.0056	0.9773	0.0947	0.0004	0.1065	1521.9	38.6	1523	28	1520	16	1.00	1522	39	0.376			
103009-1B-9	553.000	311.000	4.1450	0.0920	0.2716	0.0057	0.9926	0.1107	0.0003	-0.4764	1811.3	36.7	1547	29	1660	18	0.85	1811	37	0.567			
103009-1B-7	375.500	218.300	5.0500	0.1100	0.3200	0.0068	0.9904	0.1143	0.0003	0.1561	1868.6	36.5	1792	34	1824	18	0.96	1869	36	0.585			
103009-1B-3	280.000	206.400	2.7700	0.0730	0.1957	0.0046	0.9844	0.1031	0.0005	-0.2512	1680.8	38.1	1154	24	1360	19	0.69	discordant	38	0.722			

TABLE 2A. LA-ICPMS U-Pb ZIRCON DATA FOR SHINARUMP CONGLOMERATE CLASTS (continued)

^aConcentration data are normalized to the primary reference material (91500) and are accurate to ~ 10%. ^aConcentration data are normalized to the primary reference material (91500) and are accurate to ~ 10%. ^{tz07}Pb/²³⁵U calculated assuming a natural ²³⁵U/²³⁸U ratio of 137.88. ^cDiscordancy is measured by ²⁰⁶Pb/²³⁸U / ²⁰⁷Pb/²²⁶U for grains 1000 Ma and ²⁰⁶Pb/²³⁸U / ²⁰⁷Pb/²⁰⁶Pb for grains 1000 Ma. ⁴Age calculations are based on the decay constants of Jaffey et al. (1971).

									TABLE 2	2B. SHRI	MP-RG U-P	b ZIRCON DA	ta foi	R SHINARL	JMP CC	NGLOME	RATE C	CLASTS		For t pleas <u>/GES</u>	the full se visit 01238.5	-sized version http://dx.co 3 or the full	on of Tab <u>loi.org/1</u> l-text art	ble 2B, 0.1130 icle on
						Measu	ired isotopic	c ratios					ls	otopic ages	s (Ma)					wwv	v.gsapu	bs.org.		
		-	2001 1/000 51		00701 (00001		[co	mmon Pl	b corrected		error correlation	00701 + 100001 +		206Pb*/238U	. :	²⁰⁷ Pb*/ ²³⁵ U		Concordance	Best age				Average clast	
	U ppm	Th ppm	²³⁸ U/ ²⁰⁶ Pb	% error	²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb/ ²³⁵ U	% error	²⁰⁶ Pb/ ²³⁸ U	% error	6/387/35	^{20/} Pb*/ ²⁰⁶ Pb*	error	age	error	age	error	filter®	(Ma)	error	Th/U	Clast age	Th/U	
Cameron 110609-1B-2 110609-1B-7 110609-1B-7 110609-1B-8 110609-1B-9 110609-1B-8 110609-1B-5 110609-1B-4 110609-1B-3	178 211 238 275 456 201 506 155 168	202 230 245 402 1100 184 739 212 198	28.5212 28.1356 28.0159 27.9094 27.7506 27.6035 27.5749 27.4082 28.3440	1.01 0.91 0.86 0.82 0.64 0.94 0.59 1.05 1.01	0.0509 0.0511 0.0514 0.0504 0.0521 0.0536 0.0517 0.0532 0.0531	3.16 3.78 2.73 2.55 2.01 2.90 1.85 4.07 3.15	0.2460 0.2502 0.2395 0.2372 0.2591 0.2505 0.2583 0.2594 0.2027	3.3 3.9 4.0 3.7 2.1 5.2 1.9 4.7 11.2	0.0351 0.0355 0.0356 0.0357 0.0360 0.0361 0.0363 0.0364 0.0348	1.01 0.91 0.87 0.83 0.64 0.98 0.59 1.06 1.15	0.30 0.23 0.22 0.23 0.30 0.19 0.31 0.22 0.10	235 244 139 107 292 212 270 271 _212	73 87 91 84 46 119 42 105 280	222 225 226 227 228 229 229 230 223	2 2 2 1 2 1 2 2 2	223 227 218 216 234 227 233 234 187	7 9 8 5 12 5 11 21	1.01 1.01 0.97 0.95 1.03 0.99 1.02 1.02 1.02 0.84	222 225 226 227 228 229 229 230 discordant	2 2 2 1 2 1 2 2	1.134 1.087 1.027 1.460 2.412 0.918 1.458 1.369	227 ± 2 Ma	1.36	224 229 229 229 229 229 229 229
110609-1D-4 110609-1D-9 110609-1D-13 110609-1D-13 110609-1D-13 110609-1D-7 110609-1D-7 110609-1D-1 110609-1D-3 110609-1D-3 110609-1D-2 110609-1D-4 110609-1D-14	77 90 109 388 265 316 131 54 280 137 204 51 52 94 168	82 172 184 1219 347 430 227 72 194 45 144 36 90 131 180	29.5783 28.5663 28.0485 28.0164 27.7993 27.4505 27.4505 27.4548 26.8247 25.8074 3.9907 29.2040 28.9717 28.3059 28.5756	1.59 1.43 1.28 0.68 0.82 0.87 1.17 2.02 0.79 1.12 0.64 1.92 1.76 1.38 1.06	0.0520 0.0544 0.0542 0.0513 0.0514 0.0522 0.0556 0.0488 0.0518 0.0905 0.0585 0.0585 0.0599 0.0508	5.52 7.72 3.91 2.16 2.58 2.34 3.54 10.75 2.59 3.48 0.87 5.79 5.20 4.42 3.41	0.2132 0.2466 0.2665 0.2525 0.2392 0.2558 0.2607 0.2324 0.2431 0.2431 0.2469 3.1187 0.1668 0.2011 0.1699 0.2148	10.8 9.2 4.1 2.3 5.0 2.7 5.0 13.4 3.6 3.7 1.1 19.9 19.2 16.9 7.2	0.0336 0.0349 0.0357 0.0357 0.0358 0.0361 0.0362 0.0362 0.0372 0.0387 0.2505 0.0336 0.0336 0.0336 0.0336 0.03347 0.0347	1.66 1.45 1.28 0.68 0.87 1.19 2.04 0.80 1.12 0.64 2.14 1.99 1.54 1.11	0.15 0.16 0.31 0.30 0.17 0.32 0.24 0.15 0.22 0.31 0.59 0.11 0.10 0.09 0.15	2 254 380 255 119 258 291 26 68 278 1432 -195 -160 -666 -63	257 209 88 50 117 59 111 317 83 80 17 495 474 464 174	214 225 226 228 228 231 237 245 1442 215 216 222 224	3 3 2 2 2 2 3 5 2 3 9 4 4 3 2	196 224 240 229 218 231 235 212 221 248 1437 182 186 159 198	21 21 10 5 11 6 12 28 8 9 16 36 36 27 14	0.92 1.01 1.07 1.01 0.96 1.01 1.03 0.92 0.93 1.01 1.00 0.85 0.86 0.72 0.88	214 225 226 228 229 231 237 245 1432 discordant discordant	3 3 2 2 2 3 5 2 3 7 4 4 3 2	1.062 1.908 1.692 3.141 1.306 1.360 1.738 1.341 0.695 0.328 0.704	228 ± 7 Ma	1.46	25 20 22 23 24 25 25 25 26 10009-10 0000-10 00
110609-28-10 110609-28-5 110609-28-4 110609-28-2 110609-28-3 110609-28-3 110609-28-7 110609-28-7 110609-28-7 110609-28-7	243 134 137 257 93 429 134 65 35 57	251 160 239 898 100 695 180 117 57 46	28.9647 28.7658 28.1761 28.1293 28.0279 27.9076 27.8562 27.3931 27.5347 27.4338	0.82 1.15 1.29 0.81 1.34 0.66 1.18 1.63 2.21 1.75	0.0510 0.0496 0.0554 0.0511 0.0529 0.0503 0.0483 0.0510 0.0458 0.0509	2.61 3.68 3.76 2.58 4.17 2.12 5.78 6.35 7.27 5.86	0.2285 0.2377 0.2375 0.2426 0.2470 0.2432 0.2392 0.2032 0.1942 0.1807	3.9 3.9 7.5 3.2 5.6 2.7 5.9 15.0 14.1 21.6	0.0344 0.0348 0.0352 0.0355 0.0356 0.0358 0.0359 0.0360 0.0360 0.0360 0.0358	0.83 1.15 1.34 0.82 1.35 0.66 1.18 1.75 2.27 1.96	0.21 0.30 0.18 0.26 0.24 0.25 0.20 0.12 0.16 0.09	108 175 144 176 212 161 115 -295 410 -586	91 86 173 72 126 61 136 381 364 582	219 221 223 225 225 227 228 231 231 231	2 3 2 3 2 3 4 5 4	209 216 216 221 224 221 218 188 188 180 169	8 8 16 7 13 6 13 28 25 36	0.96 0.98 0.97 0.98 0.99 0.97 0.95 0.88 0.78 0.79	219 221 223 225 225 227 228 discordant discordant discordant	2 3 2 3 2 3 4 5 4	1.033 1.191 1.744 3.490 1.072 1.622 1.344	225 ± 6 Ma	1.64	238 24 20 222 24 24 24 24 25 24 24 24 25 25 26 27 27 27 27 27 27 27 27 27 27
Holbrook 103009-1G-3 103009-1G-5 103009-1G-5 103009-1G-8 103009-1G-6 103009-1G-2 103009-1G-1 103009-1G-1 103009-1G-12 103009-1G-4 103009-1G-7	378 144 139 244 202 542 139 327 426 101 88 77	462 233 233 603 236 1092 96 308 1168 206 116 120	29.1567 28.8849 28.8115 28.7128 28.2377 28.2790 28.1017 28.0258 27.6499 27.3845 27.5636 29.9533	0.67 1.12 1.13 0.85 0.94 0.56 1.12 0.73 0.65 1.32 1.38 1.48	0.0507 0.0525 0.0525 0.0512 0.0528 0.0516 0.0507 0.0511 0.0492 0.0526 0.0509 0.0500	2.14 3.50 3.54 2.68 2.90 1.75 3.54 2.32 2.08 4.08 4.47 4.77	0.2368 0.2328 0.2318 0.2266 0.2377 0.2433 0.2523 0.2417 0.2420 0.2465 0.2116 0.1818	2.4 5.3 6.5 4.7 5.1 2.4 3.7 3.4 2.3 5.8 10.3 12.9	0.0343 0.0345 0.0345 0.0352 0.0353 0.0356 0.0356 0.0361 0.0364 0.0359 0.0330	0.67 1.14 1.17 0.88 0.96 0.57 1.12 0.75 0.65 1.33 1.45 1.58	0.28 0.21 0.18 0.19 0.24 0.30 0.22 0.28 0.23 0.14 0.12	200 147 132 70 144 195 258 159 127 156 -183 -351	54 122 149 110 119 53 82 78 53 131 255 331	217 219 219 224 224 225 226 229 231 230 212	1 2 2 2 1 3 2 2 3 3 3 3	216 212 207 217 221 228 220 220 220 224 195 170	5 11 14 10 11 5 9 8 5 13 20 22	0.99 0.97 0.96 0.94 0.97 0.99 1.01 0.97 0.96 0.97 0.85 0.80	217 219 219 224 224 225 226 229 231 discordant discordant	1 2 2 2 2 1 3 2 2 3 3 3 3	1.222 1.612 1.673 2.469 1.169 2.016 0.691 0.942 2.738 2.045	224 ± 5 Ma	1.66	234 20 22 22 22 24 TuffZirc Age = 223.75 + 2.15 - 4.84 Ma (98.4% conf. from coherent group of 7)

The majority of grains are euhedral and have acicular habits, though some are barrel shaped. Although most zircons have well-preserved zoning bands, zoning patterns are commonly not apparent in rounded grains. Volcanic zircon grains are also euhedral, and in most cases zoning bands parallel crystal rims, although overgrowths are apparent in some cases.

Joseph City, Arizona (UTM Zone 12, 0565370, 3870314)

The Shinarump Member at Joseph City, Arizona, (Fig. 1; sample JCNEWss, Supplemental Table; samples JC, JCNEW, Table 2A) is medium- to coarsegrained sandstone with poorly to moderately indurated, matrix-supported conglomerate interbeds. Clasts are well-rounded, moderately sorted granules to cobbles of limestone, quartzite, and chert, with rare porphyritic volcanic clasts. Maximum clast size is 4–5 cm and volcanic clasts are ~2% of the total.

Cathodoluminescence imaging was not done on Joseph City detrital zircons, but zircon grains have a high percentage of euhedral, acicular forms. Fewer grains are rounded to barrel shaped. CL images from clast zircons are of very poor quality.

North Park, Arizona (UTM Zone 12, 0528073, 3885140)

The North Park, Arizona (Howell, 2010; Fig. 1; sample North Park, Supplemental Table), sample material is from matrix-supported, trough cross-stratified cobble conglomerate with sandstone lenses. The sample was collected dominantly from a coarse- to very coarse-grained subarkosic arenite, with a small portion taken from a fine- to medium-grained fraction at the same stratigraphic level. Clasts are limestone and quartzite and are generally 3–5 cm, with rare white volcanic clasts <3 cm in diameter. Zircons from the North Park sample were separated and analyzed as part of Howell's (2010) study and were not imaged.

Hunt, Arizona (UTM Zone 12, 0620522, 3836741)

Sandstone at Hunt, Arizona, has traditionally been assigned to the Mesa Redondo Member (Cooley, 1958) (Fig. 1; sample 050511-ss, Supplemental Table; samples 120309 and 050511, Table 2A). The sampled material is poorly to moderately indurated, coarse grained, and thin to medium bedded. Conglomerate interbeds and lenses are trough cross-bedded and 2–3 m thick and consist of matrix-supported, poorly to moderately sorted, well-rounded granules to cobbles of chert, quartzite, limestone, and ~1% porphyritic volcanic clasts that typically weather to a pitted texture. Maximum clast size is 4–5 cm.

Detrital zircons from the Hunt sample are approximately equal parts acicular, barrel shaped, and rounded. Many rounded grains do not have clear zoning bands. More rarely, subhedral grains have zone bands that are truncated along the grain margin. CL images of clast zircons show euhedral, concentrically zoned grains.

ANALYTICAL METHODS

Zircons were extracted from sandstone by standard methods (e.g., Gehrels, 2000) with minimal magnetic separation (0.1-0.3 amperes). Zircons from the Hunt, Holbrook, Joseph City, Cedar Ranch, Paria, and Muddy Mountains sandstone samples underwent annealing and chemical abrasion (cf. Mattinson, 2005; Riggs et al., 2013). Cathodoluminescence imaging to identify cores was done at Northern Arizona University using a JSM-6480LV scanning electron microscope. Zircons from the North Park and Cameron samples are from Howell (2010) and were not annealed or chemically abraded before analysis at the University of Arizona LaserChron Center. All detrital zircon samples were analyzed for U and Pb isotopes and for trace element concentrations at the University of California–Santa Barbara (UCSB) Laser Ablation Split Stream (LASS) facility using a Nu Plasma HR MC-ICPMS (high resolution multi-collectorinductively coupled plasma mass spectrometer), a Nu AttoM single collector ICPMS (Nu Instruments Ltd., Wrexham, UK), and an Analyte 193 excimer ArF laser-ablation system equipped with a HeLex sample cell (Photon Machines, San Diego, USA) using a 24 µm beam. Analyses are normalized against the 91500 zircon standard as a reference material (1062 Ma; Wiedenbeck et al., 1995). Data were reduced using lolite 2.31 software in Igor Pro 6.3. Error assessment follows Kylander-Clark et al. (2013).

Zircons from the Cameron site and a portion of the North Park sample analyzed at the University of Arizona LaserChron Center were ablated by a New Wave UP193HE Excimer laser (operating at a wavelength of 193 nm) using a spot diameter of 30 μ m. All measurements were made in static mode, using a Nu Plasma HR MC-ICPMS and Faraday detectors with 3 × 10¹¹ Ω resistors for ²³⁸U, ²³²Th, and ²⁰⁸Pb-²⁰⁶Pb, and discrete dynode ion counters for ²⁰⁴Pb and ²⁰²Hg. Ion yields were ~0.8 mV per ppm. Each analysis consisted of one 15 s integration on peaks with the laser off (for backgrounds), fifteen 1 s integrations with the laser firing, and a 30 s delay to purge the previous sample and prepare for the next analysis. In this analysis mode, ablation pits are typically ~15 μ m in depth. Uncertainties shown in Table 2B are at the 1 σ level and include only measurement errors. Data were reduced using an in-house program.

Zircons were extracted from volcanic clasts by standard methods, but were not annealed or chemically abraded. A minimum of four zircons were analyzed from each clast reported on here.

Zircons from most volcanic cobbles were also analyzed in the UCSB LASS lab using methods described above. Isotope ratios and elemental concentrations in zircons from four clasts (Table 2B) were measured using the U.S. Geological Survey SHRIMP-RG at Stanford University (California, USA). Zircons were mounted in epoxy and imaged with a CL detector on a scanning electron microscope. These images were used to guide selection of analysis points. Zircons were ablated using a ~30-µm-diameter, 5–6 nA O₂ primary beam. For Th and U concentrations and Pb/U ratios, data reduction used SQUID (a Microsoft Excel add-in that yields reduced and corrected isotope ratios and ages from raw SHRIMP U-Th-Pb data [www.bgc.org/isoplot_etc/squid.html]) and Isoplot software (www.bgc.org/isoplot_etc/isoplot.html), and followed procedures

described in Barth and Wooden (2006). All ion microprobe zircon ages were standardized against Braintree Complex zircon R33 (419 Ma; Black et al., 2004); ages of individual analytical spots are reported at the 1σ level.

Detrital zircon analytical data are provided in the Supplemental Table, and all age errors reported are 2σ , unless stated otherwise. Analyses were evaluated for discordance based on a comparison of ²³⁵U/²⁰⁷Pb and ²³⁸U/²⁰⁶Pb for Permian and Triassic grains, and of ²⁰⁷Pb/²⁰⁶Pb and ²³⁸U/²⁰⁶Pb for Proterozoic grains. Grains that were >10% normally discordant (i.e., ²³⁵U/²⁰⁷Pb age >10% older than ²³⁸U/²⁰⁶Pb age) or >5% reversely discordant (i.e., ²³⁸U/²⁰⁶Pb age >5% older than ²³⁵U/²⁰⁷Pb age) were not used in interpretations; these are indicated by "discordant" in Table 1 and the Supplemental Table.

RESULTS

Twenty-three volcanic clasts in the Shinarump Formation each yielded between three and 29 grains with Triassic ages; clasts range in age from ca. 232 Ma to ca. 224 Ma (Tables 2A, 2B). All sampled locations contain clasts across this age range. Most clasts have a narrow range of spot ages, with error assigned by Isoplot's TuffZirc of 1-5 m.y. (Tables 2A, 2B); we take 2 m.y. as a best estimate of analytical error. Rare older grains are likely antecrysts, and in only one case (sample 110906-1D, Table 2B) does a grain lie below and outside the error bar of the grains that are included by Isoplot in a TuffZirc plot. We infer the date assigned by TuffZirc to be the best estimate of crystallization age for the individual clasts. No grouping of ages is apparent, although the range of 227–229 Ma is most strongly represented (n = 13). Th/U ratios, which provide information about magma chemistry and may be a powerful tool for understanding the relation between detrital materials and putative sources (e.g., Riggs et al., 2012, 2013; Barth et al., 2013), vary relatively little. Averaged Th/U values for individual clasts in general cluster between 0.9 and 1.7 (Table 1). It is also noteworthy that clasts from the Hunt site, which has been assigned to the Mesa Redondo Member, have identical clast ages and Th/U values to Shinarump Member clasts.

Overall, detrital zircon signatures of the Shinarump Member have strong similarities as well as differences across our sample area (Figs. 2 and 3). All samples have a distinctive Triassic population, although the youngest zircon ages vary between locations. Detrital zircons from sandstones at the Paria and North Park sites are noteworthy in the low percentage of Permo-Triassic grains (8% and 17%, respectively) compared to 34–53% at Cameron, Cedar Ranch, Holbrook, Hunt, Joseph City, and Muddy Mountains. All samples have ca. 1400 Ma grains, and ca. 1100 Ma and 1600 Ma populations are common in most samples (Figs. 2 and 3).

Age data are complemented by Th/U values (Fig. 4). The majority of Permo-Triassic grains have Th/U values between 0.3 and 2.2; very few grains have ratios lower than 0.1.

Detrital zircons have a much broader range of Triassic ages than volcanic zircons at all sites. At Hunt and Holbrook, zircon ages and Th/U values of clasts

and Triassic grains overlap significantly, although at Hunt several grains form an older cluster and at Holbrook the range is broader. The Joseph City plot of age versus Th/U shows an isolated cluster of grains that has no apparent relation to clasts and just one grain that overlaps the dominant clast age and narrow Th/U ratio (Fig. 5). The North Park and Paria samples have very few grains in the 235–220 Ma range.

DISCUSSION

Derivation of Grains and Clasts

Detrital zircon grains fall into several major age groups. Rare Archaean and earliest Paleoproterozoic (ca. 3250–2500 Ma) grains in the Holbrook, Joseph City, and Paria samples (1.5% of total grains) were likely derived from eroded older sedimentary strata and/or cratonal rocks in the mid-continent. Dickinson and Gehrels (2008) noted similar-age grains only in their samples from the upper Chinle Formation, and considered it likely that the younger river system lay in closer proximity to these sources. Alternatively, our samples may have come from lower-order drainages that did not contribute significantly to the lower Chinle Formation trunk system described by those authors.

Paleo- through Neoproterozoic grains (ca. 2100–900 Ma) are more than half the grains in several samples and 52% of total grains. Within this large grouping, populations that represent southwest Laurentian tectonic elements are common (Fig. 1). Grains were derived from arc terrains related to the Yavapai (ca. 1800–1700 Ma) and Mazatzal (1700–1600 Ma) provinces and A-type "anorogenic" granites that range in age from ca. 1500 to 1300 Ma (Whitmeyer and Karlstrom, 2007). Lastly, Grenville-age (i.e., 1300–950 Ma) zircons are as much as 45% of analyzed grains from some Shinarump samples. Although plutons of these ages are exposed across southwestern Laurentia, Proterozoic zircons may also have been derived from uplifted and eroded Pennsylvanian–Permian sedimentary and metasedimentary strata that were part of the arc basement. Zircon grains with Proterozoic ages are common in these strata throughout southwestern North America (e.g., Soreghan et al., 2002; Soreghan et al., 2007).

The derivation of some Paleozoic grains is more complex. In contrast to the findings of Dickinson and Gehrels (2008) in Chinle Formation strata farther to the east, very few (<1%) Cambrian grains (540–500 Ma) are present in the samples analyzed here. Approximately 3% of grains lie in a poorly defined range from ca. 300 to ca. 450 Ma; zircons of this age were attributed by Dickinson and Gehrels (2008) to sources in the Ouachita orogen.

Permo-Triassic zircons make up 40% of all detrital grains. Understanding their source(s) requires review of current knowledge about the distribution Permo-Triassic magmatic rocks in southwestern, southern, and southeastern Laurentia. Dickinson and Gehrels (2008) noted that few arc-related grains were present in their samples, and inferred that grains <232 Ma were derived from

Figure 2 (on this and following page). Probability density plots for Shinarump conglomerate detrital zircon samples. Insets show Permian-Triassic grains only.

the Cordilleran arc, whereas those >245 Ma were derived from the "East Mexico" arc. The latter interpretation is supported by paleocurrents that dominantly indicate flow from the southeast. The few reliable dates that can be related to this arc, however, are from fine-grained lacustrine tuffs in the Quartermaster Formation and Dewey Lake Redbeds in west Texas that yield zircon ages of ca. 251 Ma (Fracasso and Kolker, 1985; Geissman et al., 2011). The source of tuffs of the Quartermaster and Dewey Lake Formations is unknown, but the fine grain size supports a distant source, most likely to the west or to the southeast. The majority of magmatic rocks of the East Mexico arc are dated by K-Ar (Torres et al., 1999). One important exception is the Tuzancoa Formation in Hidalgo, eastern Mexico, in which fossiliferous volcanic and volcaniclastic rocks are dated by fossil evidence as Late Permian in age (Rosales-Lagarde

Figure 2 (continued).

et al., 2005). These rocks, however, are marine and exposed ~2000 km south of the Chinle depocenter, and thus are not a likely source. Likewise, the Totol-tepec laccolith is dated by U-Pb as 289 ± 1 Ma (Keppie et al., 2004), but is much farther south than would be a likely source, as well as being an age that is very poorly represented in the Shinarump detrital population.

Cordilleran arc magmatism began by 270 Ma (Arvizu et al., 2009; Riggs et al., 2010), but detritus from that arc is present only locally in retro-arc sedi-

mentary strata older than Late Triassic (i.e., Lower Triassic Buckskin Formation; Sanchez et al., 2014). Preliminary results from Permian forearc rocks in Sonora, Mexico, indicate a strong influx of arc detritus at ca. 273 Ma (Riggs et al., 2014). The proximity of the Cordilleran arc, together with the growing body of information concerning its range of ages, makes it the most likely source region, thus requiring explanation of how the ages represented were mixed into the Shinarump depocenter.

Figure 3. Pie plots demonstrating major detrital-zircon age similarities and differences between Chinle Formation sample sites. Chinle exposures are shown in black; arrows indicate paleocurrent directions. Little correlation exists between percentages of different-age zircons and position with respect to the Cordilleran arc.

Figure 4. Th/U versus age plot for detrital grains.

The range of Permo-Triassic ages also bears examination, as dispersal paths must accommodate disparate areas that would have been sources. The oldest common Permian grains in our samples are ca. 280–285 Ma. These, together with ages to ca. 260 Ma, make up <5% of the total grains and are rare in all samples except North Park, and are inferred to derive from the Sonoran segment of the arc (Fig. 1).

The San Bernardino intrusive suite and plutons in the northern Mojave Desert (Fig. 1; Miller et al., 1995; Barth and Wooden, 2006) likely sourced ca. 260 and ca. 240 Ma grains in many of the samples. The correlation with the San Bernardino suite is suggested both by age and by similar Th/U ratios (Fig. 6). Data presented by Miller et al. (1995) do not include Th/U values; our preliminary results from these rocks show a reasonable overlap in Th/U values between 260–250 Ma grains in these plutons and in the detrital zircons in the Shinarump Member. Age and Th/U also support the derivation of ca. 235–230 Ma grains from the Granite Mountain suite (Fig. 1).

Many grains younger than ca. 230 Ma have less-certain sources. The intrusive suites documented by Barth and Wooden (2006) have only rare 230– 220 Ma ages. Additionally, many detrital grains in this range have Th/U ratios higher than both older components of the sandstones and rocks of the intrusive suites (Fig. 6). Riggs et al. (2012) speculated that an as-yet-undocumented source for zircons in middle Chinle Formation sandstones is buried or has been eroded, but lay approximately in the Colorado River basin.

The breakdown of ages and potential source areas allows distinctions to be drawn between the sample sites, leading, in turn, to enhanced understanding of dispersal pathways; sites are discussed here from west to east. The Muddy Mountains (Fig. 1) site contains a group of zircons between ca. 240 and 243 Ma which match the San Bernardino suite in age and Th/U, grains between 230 and 236 Ma likely derived from the Granite Mountains suite, and grains between ca. 225 and 230 Ma that do not have an obvious source. Thus we infer that this area, which was close to the arc, either was fed by a stream system that tapped a relatively confined area within the arc or received detritus from Plinian ash columns. Proterozoic grains are well represented and were derived either from uplifted arc basement or from easterly sources. The lack of igneous clasts, however, is surprising considering the likely proximity to the arc. It should be reemphasized, however, that overall the percentage of volcanic clasts in any Shinarump conglomerate bed is generally very low (i.e., \leq 5%), such that the clasts are more anomalous by their presence than absence.

The Cedar Ranch sample site contains two distinct groups of Permo-Triassic zircons. A diffuse cluster between ca. 237 and 240 Ma is consistent in age and Th/U ratios with derivation from the San Bernardino and/or Granite Mountain suites in the Mojave Desert. Zircon grains between ca. 230 and 225 Ma dominate the Permo-Triassic signature of this site. These grains overlap Mojave Desert plutons in age and Th/U to a lesser extent than the older grains, and are in part distinctive from similar-age grains in the Muddy Mountains sample. Thus we infer that some recycling of older grains may have occurred, but that the 230–225 Ma group reflects derivation from a specific part of the arc

Figure 5. Th/U versus age plot for zircons in volcanic clasts from Hunt, Holbrook, and Joseph City compared with detrital zircons in sandstone from the same sample site. Cameron site is not shown because clasts and sandstone were not collected from the same location.

Figure 6. Comparison of age and Th/U for detrital zircons, clast zircons, and Triassic plutonic suites of southern and southeastern California. Pluton data from the Mojave Desert suites are from Barth and Wooden (2006). Dashed line for Paria is due to the very few Triassic zircons in that sample (n = 6). Lighter-color band within Mojave plutonic field is area of few zircon ages.

and that these grains were genetically related to volcanic clasts found in other samples (cf. Riggs et al., 2013).

The North Park sample is unique in its comparatively high percentage (13%) of Permian grains. Six of these grain lie in a discrete cluster from 288 to 282 Ma, and their source is uncertain. Zircons of this age are inferred by Dickinson and Gehrels (2008) to derive from the East Mexico arc; we question this interpretation for reasons provided above. On the western margin of Laurentia, however, transcurrent faulting was likely active at ca. 280 Ma, and subduction was established by ca. 270 Ma. Thus these grains are not considered likely to be derived from the Cordilleran margin. The majority of grain ages are in a comparatively narrow range, from ca. 270 to 247 Ma (n = 13); ages and Th/U are compatible with derivation from the Mojave Desert plutons and the Sonora portion of the arc (Fig. 6).

The youngest grains from the Holbrook, Hunt, and Joseph City samples are very similar in their age and chemistry; Hunt and Joseph City samples additionally have an older group of grains in the ca. 240–260 range Ma that were likely derived from the San Bernardino suite and/or older plutons in the northern Mojave Desert (Miller et al., 1995); Th/U ratios support correlation with both suites of plutons (Fig. 6). Grains as young as 218 Ma may have been subject to lead loss; on probability density plots the maxima are between 226 and 223 Ma (Fig. 4), and these older ages may be more suitable estimates of the maximum depositional age. Th/U values are from within the range of the Granite Mountain suite to well above those values (Fig. 6). Clasts from all three sites, as well as those from Cameron, overlap the older part of the younger age range and have Th/U values that match higher detrital-grain values. We infer that these grains had a similar source to those from the Cedar Ranch site.

Grains that traveled from the Sonoran segment of the arc could reflect original deposition from ash clouds and strong dilution, or possibly longshore currents that brought detritus northward from the arc to be uplifted when detritus from the arc began to reach the continental landmass. Zircons that match plutons of the Mojave Desert in age and Th/U may have been carried by river systems or from ash clouds.

Paleotopography of the Early Mesozoic Arc

Our interpretation of the evolution of topography between the arc and retro-arc in Late Permian through Late Triassic time is by necessity constrained by a lack of detailed study of Late Permian rocks in southwest Laurentia. The southwest margin of Laurentia likely underwent induced subduction (cf. Gurnis et al., 2004; Stern, 2004; Saleeby, 2011) in Permian time as strike-slip fault-ing transitioned southward to subduction in northern Sonora, Mexico (Fig. 7; Arvizu et al., 2009; Riggs et al., 2010, 2014). Over time, Permian–Early Triassic magmatism became more widespread in California, forming an arc that lay offshore of the continental landmass. Very little detrital record remains of this time in equivalent-age strata, however, because the arc was marine and likely

Figure 7. Summary tectonic reconstruction. Map shows schematic setting of Pennsylvanian–Permian strike-slip faulting along the Cordilleran margin and subduction initiation in Permian–Triassic time. Shaded areas are Proterozoic crustal provinces as for Figure 1 inset. Background paleotopographic reconstruction, copyright Ron Blakey, Colorado Plateau Geosystems, used with permission. Pre C–Precambrian; AZ–Arizona; CA–California; NV–Nevada. For the full-sized version of Figure 7, please visit <u>http://dx.doi.org</u> /10.1130/GES01238.S4 or the full-text article on www.gsapubs.org.

sizes of plutons and volcanoes not to scale

did not have substantial subaerial topography. The sedimentary record of the back-arc is confined to arc-proximal units such as the Buckskin Formation in eastern California and western Arizona, which in its lower members is equivalent to the Moenkopi Formation (Reynolds and Spencer, 1989) and which reflects magmatism at ca. 253 Ma (Sanchez et al., 2014), and in the southern Inyo Mountains in east-central California, where our data from the Lone Pine and Conglomerate Mesa Formations include prominent detrital zircon peaks at 263 and 257 Ma (Stevens et al., 2015; Riggs et al., 2015) (Fig. 7).

The date of 227.604 ± 0.082 Ma for the Mesa Redondo Member of the Chinle Formation, from a sample only a few meters above the contact with the Moenkopi Formation, supports initial deposition of the Chinle Formation at ca. 230 Ma, as suggested by Dickinson and Gehrels (2008), or 1-2 m.y. later. Between Early and Late Triassic time, arc magmatism in California transitioned to include volcanism. By this time, two major changes had occurred. First, a subaerial connection between arc and retro-arc was established that allowed fluvial transport of arc material to the Chinle basin (Fig. 7), perhaps by ca. 235 Ma. Second, because the record of volcanism is prominent as 230-225 Ma clasts, especially in younger conglomerates in the Chinle Formation, we infer that volcanic activity became common at this time, with eruption of intermediate to felsic lava and ignimbrite. Related Plinian ash clouds could have been a major source of fine-grained volcanic detritus. The observation that volcanic clasts are <5% of types in Shinarump conglomerate exposures suggests that the terrestrial connection between the marine arc and the continental landmass was limited in the earliest stages of Chinle deposition. Volcanic clasts are more common in the younger Sonsela Member, indicating that over time a subaerial fluvial connection became far more stable.

The Tr-3 unconformity separates Upper Triassic from Lower-Middle Triassic and older strata in western Laurentia (Stewart et al., 1972a; Pipiringos and O'Sullivan, 1978). Howell and Blakey (2013) postulated that this surface represents response to dynamic subsidence of the Cordilleran arc, citing the similarity in trend between the erosional surface and the arc, and that development of the unconformity was driven by migration of the arc onto the continental margin. The youngest three-grain cluster in the Holbrook Sandstone Member of the Moenkopi Formation (Dickinson and Gehrels, 2008) yields an Isoplot average age of 241 ± 2 Ma, which may provide an older age constraint on this event, and initiation of Shinarump Member sedimentation at ca. 230 Ma marks the latest time at which the arc would have become wholly subaerial. Howell and Blakey (2013) suggested that the on-shore migration of the arc occurred at ca. 235 Ma based on oldest Triassic detrital zircons in the Sonsela Member of the Chinle Formation; although our results show a much broader range of Permian-Triassic detrital grains in the older Shinarump Member, the ca. 235 Ma age is reasonable. In this case, erosion of underlying strata and development of the Tr-3 surface may have been a dramatic but relatively shortlived (i.e., 5-7 m.y.) event.

Processes that may have created a land connection between the arc and retro-arc region include crustal inflation due to emplacement of plutons, intraarc tectonism and resultant uplift, and sea-level drop. Eustatic sea-level change in Triassic time, however, is documented as predominantly transgressive (e.g., Hardenbol et al., 1998; Kelley et al., 2014), suggesting that isostatic forces (i.e., crustal inflation or uplift) dominated. Permo-Triassic intra-arc deformation is documented in the southwestern Mojave Desert and adjacent San Bernardino Mountains (Miller, 1981; Cameron, 1981; Miller and Cameron, 1982; Matti et al., 1993), as well as in the Red Cloud thrust system (Powell, 1981; Postlethwaite, 1988) and the Sierra Nevada–Death Valley thrust system (Snow, 1992; Stevens and Stone, 2005). Deformation is poorly dated in all of these systems, but evidence from cross-cutting plutons indicates at least some Permian-Triassic movement (Tosdal, 1988; Barth and Wooden, 2006; Stevens et al., 2015). These data indicate that regional intra-arc and proximal retro-arc uplift and exhumation were likely occurring by earliest Triassic time and that arc basement exhumation probably continued until earliest Jurassic time (Fig. 7). Crustal inflation may occur in and beneath volcanic arcs due to several mechanisms (see Chin et al. [2012] for a review); Chin et al. (2012) used xenolith compositional evolution to interpret crustal thickening below the Cretaceous Cordilleran arc, but similar data are not available for the earlier manifestations of the arc, and it is unlikely that the volume of magma input was sufficient to drive substantial thickening. Thus, although we would not discount crustal thickening as a process to bring the arc and nearby land above sea level, intra-arc deformation may have held the more important role.

CONCLUSIONS

New zircon data from sedimentary rocks and enclosed volcanic clasts from the Shinarump conglomerate in Arizona, southern Utah, and southeast Nevada provide insight into paleotopography of the growing Cordilleran arc and the nature of arc volcanism. The Shinarump conglomerate is the oldest retroarc unit to contain volcanic clasts as well as fine-grained detritus, and thus yields the most complete data set regarding retro-arc sedimentation and the erosion of the arc. Volcanic clasts are ignimbrite and silicic lava, indicating that the arc erupted material from differentiated magmas and likely included stratovolcanoes and calderas. The 232–223 Ma ages of theses clasts suggest derivation from a relatively confined area of the arc, in contrast to detrital grains, which have ages that span the known timing of arc plutonism (e.g., Miller et al., 1995; Barth and Wooden, 2006).

Analysis of Th/U values highlights the similarities and differences between inter- and intra-sample detrital grains and between detrital grains and clasts. Many of the detrital grains have Th/U values similar to those for Triassic Cordilleran arc plutons, and the combination of age and Th/U similarities strongly suggests derivation from those areas. Other grains, together with all of the clasts, have ages between ca. 230 and 225 Ma and Th/U values >1 that do not correspond to known Triassic Cordilleran plutonic rocks. These ages and Th/U values are similar to those in clasts and grain zircons from the Sonsela Member, higher in the Chinle Formation described by Riggs et al. (2012), and supports the speculation of those authors that material was derived from an undocumented source in the Colorado River trough where continental crust was thicker and provided a higher Th signature.

Arc activity along western Laurentia began at ca. 275 Ma (Arvizu et al., 2009; Riggs et al., 2010; Lindner et al., 2012), but the oldest detrital zircon record of this arc is in sedimentary strata some 40 m.y. younger, suggesting that the arc developed offshore. Early Permian plutonism and volcanism in Sonora, Mexico, was dominantly or entirely subaqueous. Magmatism became more widespread during Late Permian and Early Triassic time, and eruptions may have breached the air-water interface. Ultimately, volcanic edifices became common in Late Triassic time, potentially synchronous with intra-arc deformation, which had the effect of bringing the arc above water and establishing a land bridge between arc and continent at ca. 230 Ma. At this point, erosion of the growing arc began to be seen in retro-arc fluvial strata of the Chinle Formation, ushering in continental sedimentation that has dominantly characterized the region since that time.

ACKNOWLEDGMENTS

Funding for this study was provided by the National Science Foundation through grant EAR-0711541 to Riggs. We are indebted to many colleagues whose discussions and studies have strongly informed our interpretations: R. Blakey, W. Dickinson, T. Lawton, S. Nesbitt, S. Reynolds, and S. Richard. Great thanks to C. Brailo for mineral-separation work, A. Kylander-Clark at UCSB for help in the LASS lab, the Tiffney-Gowan family for their hospitality, and E. Cullen for advice in drafting. Riggs also thanks Q. Crowley and B. Kamber at Trinity College Dublin (Ireland) for support during the sabbatical year. Reviews by Lynn Soreghan and Paul Stone were very helpful in identifying and clarifying murky ideas and writing, and are much appreciated.

REFERENCES CITED

- Akers, J.P., 1964, Geology and ground water in the central part of Apache County, Arizona: U.S. Geological Survey Water-Supply Paper 1771, 107 p.
- Arvizu, H.E., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G.D., Solís-Pichardo, G., Foster, D.A., and Lozano-Santa Cruz, R., 2009, Rocas graníticas pérmicas en la Sierra Pinta, NW de Sonora, México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norteamérica: Revista Mexicana de Ciencias Geológicas, v. 26, p. 709–728.
- Atchley, S.C., Nordt, L.C., Sworkin, S.I., Ramezani, J., Parker, W.G., Ash, S.R., and Bowring, S.A., 2013, A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: The record from the Chinle Formation, southwestern United States: Journal of Sedimentary Research, v. 83, p. 1147–1161, doi:10.2110/jsr.2013.89.
- Barth, A.P., and Wooden, J.L., 2006, Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources: The Journal of Geology, v. 114, p. 231–245, doi:10.1086/499573.
- Barth, A.P., Walker, J.D., Wooden, J.L., Riggs, N.R., and Schweickert, R.A., 2011, Birth of the Sierra Nevada magmatic arc: Early Mesozoic plutonism and volcanism in the east-central Sierra Nevada of California: Geosphere, v. 7, p. 877–897, doi:10.1130/GES00661.1.
- Barth, A.P., Wooden, J.L., Jacobson, C.E., and Economos, R.C., 2013, Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example: Geology, v. 41, p. 223–226, doi:10.1130/G33619.1.
- Basdekas, P., 1993, Provenance and diagenesis of the Shinarump Member, Triassic Chinle Formation, southern Nevada to southern Utah [M.S. thesis]: Flagstaff, Northern Arizona University, 142 p.
- Bateman, P.C., 1992, Plutonism in the central part of the Sierra Nevada batholith, California: U.S. Geological Survey Professional Paper 1483, 186 p.
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., and Foudoulis, C., 2004, Improved ²⁰⁶Pb/²³⁸U micro-

probe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards: Chemical Geology, v. 205, p. 115–140, doi:10.1016/j.chemgeo.2004.01.003.

- Blakey, R.C., and Gubitosa, R., 1983, Late Triassic paleogeography and depositional history of the Chinle Formation, southern Utah and northern Arizona, *in* Reynolds, M.W., and Dolly, E.D., eds., Mesozoic Paleogeography of the West-Central United States: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, Rocky Mountain Paleogeography Symposium 2, p. 57–76.
- Cameron, C.S., 1981, Geology of the Sugarloaf and Delamar Mountain areas, San Bernardino Mountains, California [Ph.D. thesis]: Cambridge, Massachusetts Institute of Technology, 399 p.
- Camp, C.L., 1930, A study of the phytosaurs, with description of new material from western North America: Memoirs of the University of California 10, 174 p.
- Carr, M.D., Christiansen, R.L., Poole, F.G., and Goodge, J.W., 1997, Bedrock geologic map of the El Paso Mountains in the Garlock and El Paso Peaks 7–1/2' quadrangles, Kern County, California: U.S. Geological Survey Miscellaneous Investigations Series Map I-2389, 9 p., scale 1:24,000.
- Chin, E.J., Lee, C.A., Luffi, P., and Tice, M., 2012, Deep lithospheric thickening and refertilization beneath continental arcs: Case study of the *P*, *T* and compositional evolution of peridotite xenoliths from the Sierra Nevada, California: Journal of Petrology, v. 53, p. 477–511, doi:10 .1093/petrology/egr069.
- Colbert, E.H., and Gregory, J.T., 1957, Correlation of continental Triassic sediments by vertebrate fossils: Geological Society of America Bulletin, v. 68, p. 1456–1467.
- Cooley, M.E., 1958, The Mesa Redondo Member of the Chinle Formation, Apache and Navajo Counties, Arizona: Plateau, v. 31, no. 1, p. 7–15.
- Dickinson, W.R., and Gehrels, G.E., 2008, U-Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia: Journal of Sedimentary Research, v. 78, p. 745–764, doi:10.2110/jsr.2008.088.
- Dickinson, W.R., and Lawton, T.F., 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico: Geological Society of America Bulletin, v. 113, p. 1142–1160, doi:10.1130/0016 -7606(2001)113<1142:CTCAAF>2.0.CO;2.
- Dodge, C.N., 1973, Pebbles from the Chinle and Morrison Formations, *in* James, H.L., ed., Monument Valley and Vicinity, Arizona and Utah: New Mexico Geological Society Fall Field Conference Guidebook 24, p. 114–121.
- Dubiel, R.F., 1987. Sedimentology of the Upper Triassic Chinle Formation, southeastern Utah [Ph.D. thesis]: Boulder, University of Colorado, 217 p.
- Dubiel, R.F., 1991, Architectural-facies analysis of nonmarine depositional systems in the Upper Triassic Chinle Formation, southeastern Utah, *in* Miall, A.D., and Tyler, N., eds., The Three-Dimensional Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Discovery and Recovery: SEPM (Society for Sedimentary Geology) Concepts in Sedimentology and Paleontology 3, p. 103–110.
- Dubiel, R.F., and Hasiotis, S.T., 2011, Deposystems, paleosols, and climatic variability in a continental system: The Upper Triassic Chinle Formation, Colorado Plateau, U.S.A., *in* Davidson, S.K., Leleu, S., and North, C.P., eds., From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation: SEPM (Society for Sedimentary Geology) Special Publication 97, p. 393–421.
- Fisher, M.J., and Dunay, R.E., 1984, Palynology of the Petrified Forest Member of the Chinle Formation (Upper Triassic), Arizona, USA: Pollen et Spores, v. 26, p. 241–284.
- Fracasso, M.A., and Kolker, A., 1985, Late Permian volcanic ash beds in the Quartermaster– Dewey Lake formations, Texas Panhandle: West Texas Geological Society Bulletin, v. 24, no. 6, p. 5–10.
- Gehrels, G.E., 2000, Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, *in* Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California: Geological Society of America Special Paper 347, p. 1–17, doi:10.1130/0-8137-2347-71.
- Geissman, J.W., Renne, P.R., Tabor, N.J., Mundil, R., Mitchell, W.S., III, Chang, Su-Chin, and Mack, G.H., 2011, "Ochoan" Quartermaster Formation of north Texas, USA, Part II: Magnetostratigraphy and geochronology: Geological Society of America Abstracts with Programs, v. 43, no. 5, p. 383.
- González-León, C., 1997, Sequence stratigraphy and paleogeographic setting of the Antimonio Formation (Late Permian–Early Jurassic), Sonora, Mexico: Revista Mexicana de Ciencias Geológicas, v. 14, p. 136–148.

- González-León, C.M., Stanley, G.D., Jr., Gehrels, G.E., and Centeno-García, E., 2005, New data on the lithostratigraphy, detrital zircon and Nd isotope provenance, and paleogeographic setting of the El Antimonio Group, Sonora, Mexico, *in* Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, p. 259–282, doi:10.1130/0-8137-2393-0.259.
- Gurnis, M., Hall, C., and Lavier, L., 2004, Evolving force balance during incipient subduction: Geochemistry Geophysics Geosystems, v. 5, Q07001, doi:10.1029/2003GC000681.
- Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.-C., and Vail, P.R., 1998, Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, *in* de Graciansky, P.-C., Hardenbol, J., Jacquin, T., and Vail, P.R., eds., Mesozoic and Cenozoic Sequence Stratigraphy of European Basins: SEPM (Society for Sedimentary Geology) Special Publication 60, p. 3–14, doi:10.2110/pec.98.02.0003.
- Harshbarger, J.W., Repenning, C.A., and Irwin, J.H., 1957, Stratigraphy of the uppermost Triassic and Jurassic rocks of the Navajo country (Colorado Plateau): U.S. Geological Survey Professional Paper 291, 74 p.
- Howell, E.R., 2010, Depositional history of the Sonsela Member, Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona [M.S. thesis]: Flagstaff, Northern Arizona University, 233 p.
- Howell, E.R., and Blakey, R.C., 2013, Sedimentological constraints on the evolution of the Cordilleran arc: New insights from the Sonsela Member, Upper Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Geological Society of America Bulletin, v. 125, p. 1349–1368, doi:10.1130/B30714.1.
- Irmis, R.B., Mundil, R., Martz, J.W., and Parker, W.G., 2011, High-resolution U-Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs: Earth and Planetary Science Letters, v. 309, p. 258–267, doi:10.1016/j.epsl.2011.07.015.
- Jaffey, A.H., Flynn, K.F., Glenenin, L.E., Bently, W.C., and Essling, A.M., 1971, Precision measurement of the half-lives and specific activities ²³⁵U and ²³⁸U: Phys. Rev., Ser. C 4, p. 1889–1906.
- Kelley, N.P., Motani, R., Jiang, D., Rieppel, O., and Schmitz, L., 2014, Selective extinction of Triassic marine reptiles during long-term sea-level changes illuminated by seawater strontium isotopes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 400, p. 9–16, doi:10.1016/j .palaeo.2012.07.026.
- Keppie, J.D., Nance, R.D., Dostal, J., Ortega-Rivera, A., Brent, V.M., Fox, D., Muise, J., Powell, J.T., Mumma, S.A., and Lee, J.W.K., 2004, Mid-Jurassic tectonothermal event superposed on a Paleozoic geological record in the Acatlán Complex of southern Mexico: Hotspot activity during the breakup of Pangea: Gondwana Research, v. 7, p. 238–260, doi:10.1016/S1342-937X (05)70323-3.
- Kylander-Clark, A.R.C., Hacker, B.R., and Cottle, J.M., 2013, Laser-ablation split-stream ICP petrochronology: Chemical Geology, v. 345, p. 99–112, doi:10.1016/j.chemgeo.2013.02.019.
- Lawton, T.F., 1994, Tectonic setting of Mesozoic sedimentary basins, Rocky Mountain region, United States, *in* Caputo, M.V., et al., eds., Mesozoic Systems of the Rocky Mountain Region, USA: Denver, Colorado, Rocky Mountain Section, SEPM (Society for Sedimentary Geology), p. 1–25.
- Lindner, P.J., Riggs, N.R., and González-León, C., 2012, Provenance study of latest Paleozoic to Mesozoic El Antimonio Group, Sonora, Mexico, and implications for tectonic evolution of southwest Laurentia: Geological Society of America Abstracts with Programs, v. 44, no. 3, p. 11. Lucas, S.G., and Hunt, A.P. 1993. Tetrapod biochronology of the Chinle Group (Upper Triassic).
- Lucas, S.G., and num, A.F., 1993, letrapod biochronology of the Chine Group (Opper massic), western United States: New Mexico Museum of Natural History and Science Bulletin, v. 3, p. 327–329.
- Lupe, R., and Silberling, N.J., 1985, Genetic relationships between lower Mesozoic continental strata of the Colorado Plateau and marine strata of the western Great Basin: Significance for accretionary history of Cordilleran lithotectonic terranes, *in* Howell, D.G., ed., Tectonostratigraphic Terranes of the Circum-Pacific Region: Circum-Pacific Council for Energy and Mineral Resources Earth Science Series 1, p. 263-271.
- Martin, M.W., and Walker, J.D., 1995, Stratigraphy and paleogeographic significance of metamorphic rocks in the Shadow Mountains, western Mojave Desert, California: Geological Society of America Bulletin, v. 107, p. 354–366, doi:10.1130/0016-7606(1995)107<0354:SAPSOM>2.3.CO;2.
- Matti, J.C., Brown, H.J., Miller, F.K., Wrucke, C.T., Calzia, J.P., and Conway, C.M., 1993, Preliminary geologic map of the north-central San Bernardino Mountains, California: U.S. Geological Survey Open File Report 93-544, 9 p.
- Mattinson, J.M., 2005, Zircon U–Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages: Chemical Geology, v. 220, p. 47–66, doi:10.1016/j.chemgeo.2005.03.011.

- Miller, E.L., 1981, Geology of the Victorville region, California: Geological Society of America Bulletin, v. 92, part II, p. 554–608, doi:10.1130/GSAB-P2-92-554.
- Miller, E.L., and Cameron, C.S., 1982, Late Precambrian to Late Cretaceous evolution of the southwestern Mojave Desert, California, *in* Cooper, J.D., compiler, Geology of Selected Areas in the San Bernardino Mountains, Western Mojave Desert, and Southern Great Basin, California: Shoshone, California, Death Valley Publishing, p. 21–34.
- Miller, E.L., Miller, M.M., Stevens, C.H., Wright, J.E., and Madrid, R., 1992, Late Paleozoic paleogeographic and tectonic evolution of the western U.S. Cordillera, in Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-3, p. 57–106.
- Miller, J.S., Glazner, A.F., Walker, J.D., and Martin, M.W., 1995, Geochronologic and isotopic evidence for Triassic–Jurassic emplacement of the eugeoclinal allochthon in the Mojave Desert region, California: Geological Society of America Bulletin, v. 107, p. 1441–1457, doi:10.1130 /0016-7606(1995)107<1441:GAIEFT>2.3.CO;2.
- Oberling, Z.A., 2015, Petrogenesis and provenance of volcanic clasts in the Upper Triassic Shinarump Member, Chinle Formation, and equivalents: Implications for Early Triassic Cordilleran arc magmatism [M.S. thesis]: Flagstaff, Northern Arizona University, 262 p.
- Oberling, Z.A., Riggs, N.R., Barth, A.P., and Walker, J.D., 2010, Major and trace element geochemistry and ⁸⁷Sr/⁸⁶Sr and ɛNd isotopic compositions of volcanic clasts from the Shinarump Member, Upper Triassic Chinle Formation: Geological Society of America Abstracts with Programs, v. 42, no. 5, p. 646.
- Pipiringos, G.N., and O'Sullivan, R.B., 1978, Principal unconformities in Triassic and Jurassic rocks, western interior United States: A preliminary survey: U.S. Geological Survey Professional Paper 1035-A, 29 p.
- Postlethwaite, C.E., 1988, The structural geology of the Red Cloud thrust system, southern Eastern Transverse Ranges, California [Ph.D. thesis]: Ames, Iowa State University, 135 p.
- Powell, R.E., 1981, Geology of the crystalline basement complex, Eastern Transverse Ranges, southern California [Ph.D. thesis]: Pasadena, California Institute of Technology, 441 p.
- Rains, J.R., Marsaglia, K.M., and Dunne, G.C., 2012, Stratigraphic record of subduction initiation in the Permian metasedimentary succession of the El Paso Mountains, California: Lithosphere, v. 4, p. 533–552, doi:10.1130/L165.1.
- Ramezani, J., Hoke, G.D., Fastovsky, D.E., Bowring, S.A., Therrien, F., Dworkin, S.I., Atchley, S.C., and Nordt, L.C., 2011, High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Temporal constraints on the early evolution of dinosaurs: Geological Society of America Bulletin, v. 123, p. 2142–2159, doi:10 .1130/B30433.1.
- Ramezani, J., Fastovsky, D.E., and Bowring, S.A., 2014, Revised chronostratigraphy of the lower Chinle Formation strata in Arizona and New Mexico (USA): High-precision U-Pb geochronological constraints on the Late Triassic evolution of dinosaurs: American Journal of Science, v. 314, p. 981–1008, doi:10.2475/06.2014.01.
- Reif, D.S., and Slatt, R.M., 1979, Red bed members of the Lower Triassic Moenkopi Formation, southern Nevada: Sedimentology and paleogeography of a muddy tidal flat deposit: Journal of Sedimentary Petrology, v. 49, p. 869–890.
- Reynolds, S.J., and Spencer, J.E., 1989, Pre-Tertiary rocks and structures in the upper plate of the Buckskin detachment fault, west-central Arizona, *in* Spencer, J.E., and Reynolds, S.J., eds, Geology and Mineral Resources of the Buckskin and Rawhide Mountains, West-Central Arizona: Arizona Geological Survey Bulletin 198.
- Reynolds, S.J., Spencer, J.E., Asmerom, Y., DeWitt, E., and Laubach, S.E., 1989, Early Mesozoic uplift in west-central Arizona and eastern California: Geology, v. 17, p. 207–211, doi:10.1130 /0091-7613(1989)017<0207:EMUIWC>2.3.CO;2.
- Riggs, N.R., Ash, S.R., Barth, A.P., Gehrels, G.E., and Wooden, J.L., 2003, Isotopic age of the Black Forest Bed, Petrified Forest Member, Chinle Formation, Arizona: An example of dating a continental sandstone: Geological Society of America Bulletin, v. 115, p. 1315–1323, doi: 10.1130/B25254.1.
- Riggs, N.R., Barth, A.P., Wooden, J.L., and Walker, J.D., 2010, Use of zircon geochemistry to tie volcanic detritus to source plutonic rocks: An example from Permian northwestern Sonora, Mexico: Geological Society of America Abstracts with Programs, v. 42, no. 5, p. 267.
- Riggs, N.R., Barth, A.P., González-León, C., Jacobson, C.E., Howell, E., Wooden, J.E., and Walker, J.D., 2012, Provenance of Upper Triassic strata in southwestern North America as suggested by isotopic analysis and chemistry of zircon crystals, *in* Rasbury, E.T., Hemming, S., and Riggs, N., eds., Mineralogical and Geochemical Approaches to Provenance: Geological Society of America Special Paper 487, p. 13–36, doi:10.1130/2012.2487(02).

- Riggs, N.R., Reynolds, S.J., Lindner, P.J., Howell, E.R., Barth, A.P., Parker, W.G., and Walker, J.D., 2013, The Early Mesozoic Cordilleran arc and Late Triassic paleotopography: The detrital record in upper Triassic sedimentary successions on and off the Colorado Plateau: Geosphere, v. 9, p. 602–646, doi:10.1130/GES00860.1.
- Riggs, N.R., González-León, C.M., Cecil, M.R, Marsaglia, K., and Navas-Parejo, P. 2014, Age of the Permian Monos Formation, northern Sonora, Mexico, and implications for initiation of the Cordilleran magmatic arc: Geological Society of America Abstracts with Programs, v. 46, no. 6, p. 377.
- Riggs, N.R., Cecil, M.R., Stone, P.A., Stevens, C.H., and Sanchez, T.B., 2015, Permian arc magmatism and its detrital record in southwest Laurentia: Geological Society of America Abstracts with Programs, v. 47, no. 7, p. 262.
- Rosales-Lagarde, L., Centeno-García, E., Dostal, J., Sour-Tovar, F., Ochoa-Camarillo, H., and Quiroz-Barroso, S., 2005, The Tuzancoa Formation: Evidence of an Early Permian submarine continental arc in east-central Mexico: International Geology Review, v. 47, p. 901–919, doi: 10.2747/0020-6814.479.901.
- Saleeby, J., 2011, Geochemical mapping of the Kings-Kaweah ophiolite belt, California: Evidence for progressive mélange formation in a large offset transform-subduction initiation environment, in Wakabayashi, J. and Dilek, Y., eds., Mélanges: Processes of Formation and Societal Significance: Geological Society of America Special Paper 480, p. 31–73, doi:10.1130/2011 .2480(02).
- Saleeby, J.B., Busby-Spera, C., Oldow, J.S., Dunne, G.C., Wright, J.E., Cowan, D.S., Walker, N.W., and Allmendinger, R.W., 1992, Early Mesozoic tectonic evolution of the western U.S. Cordillera, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-3, p. 107–168.
- Sanchez, T.B., Riggs, N.R., Reynolds, S.J., and Barth, A.P., 2014, Early Mesozoic Cordilleran arc magmatism: The detrital zircon record of the Buckskin Formation, west-central Arizona and southeastern California: Geological Society of America Abstracts with Programs, v. 46, no. 6, p. 441.
- Snow, J.K., 1992, Large-magnitude Permian shortening and continental-margin tectonics in the southern Cordillera: Geological Society of America Bulletin, v. 104, p. 80–105, doi:10.1130 /0016-7606(1992)104<0080:LMPSAC>2.3.CO;2.
- Soreghan, G.S., Moses, A.M., Soreghan, M.J., Hamilton, M., Fanning, C.M., and Link, P.K., 2007, Palaeoclimatic inferences from upper Palaeozoic siltstone of the Earp Formation and equivalents, Arizona–New Mexico (USA): Sedimentology, v. 54, p. 701–719, doi:10.1111/j.1365-3091 .2007.00857.x.
- Soreghan, M.J., Soreghan, G.S., and Hamilton, M.A., 2002, Paleowinds inferred from detritalzircon geochronology of upper Paleozoic loessite, western equatorial Pangea: Geology, v. 30, p. 695–698, doi:10.1130/0091-7613(2002)030<0695:PIFDZG>2.0.CO;2.
- Stern, R.J., 2004, Subduction initiation: Spontaneous and induced: Earth and Planetary Science Letters, v. 226, p. 275–292, doi:10.1016/S0012-821X(04)00498-4.
- Stevens, C.H., and Stone, P. 2005, Structure and regional significance of the Late Permian(?) Sierra Nevada–Death Valley thrust system, east-central California: Earth-Science Reviews, v. 73, p. 103–113.
- Stevens, C.H., Stone, P., and Miller, J.S., 2005, A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continen-

tal truncation and the possible role of the Mojave-Sonora megashear, *in* Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, p. 597–618, doi:10.1130/0-8137-2393-0.597.

- Stevens, C.H., Stone, P., Schmitz, M.D., and Paterson, S.R., 2015, Dating of Late Permian deformation in eastern California, *in* Proceedings, 2015 Pacific Section American Association of Petroleum Geologists Joint Annual Meeting, Oxnard, California, 3–5 May, p. 60–61.
- Stewart, J.H., Poole, F.G., and Wilson, R.F., 1972a, Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the Colorado Plateau region with a section on sedimentary petrology by R.A. Cadigan and on conglomerate studies by William Thordarson, H.F. Albee, and J.H. Stewart: U.S. Geological Survey Professional Paper 690, 336 p.
- Stewart, J.H., Poole, F.G., Wilson, R.F., and Cadigan, R.A., 1972b, Stratigraphy and origin of the Triassic Moenkopi Formation and related strata in the Colorado Plateau region: U.S. Geological Survey Professional Paper 691, 195 p.
- Stewart, J.H., Anderson, T.H., Haxel, G.B., Silver, L.T., and Wright, J.E., 1986, Late Triassic paleogeography of the southern Cordillera: The problem of a source for voluminous volcanic detritus in the Chinle Formation of the Colorado Plateau region: Geology, v. 14, p. 567–570, doi:10.1130/0091-7613(1986)14<567:LTPOTS>2.0.CO;2.
- Stone, P., and Stevens, C.H., 1988, Pennsylvanian and Early Permian paleogeography of eastcentral California: Implications for the shape of the continental margin and the timing of continental truncation: Geology, v. 16, p. 330–333, doi:10.1130/0091-7613(1988)016 <0330: PAEPPO>2.3.CO;2.
- Therrien, F., Jones, M.M., Fastovsky, D.E., Herrick, A.S., and Hoke, G.D., 1999, The oldest Triassic strata exposed in Petrified Forest National Park revisited, *in* Santucci, V.L., and McClelland, L., eds., National Park Service Paleontological Research, Volume 4: National Park Service Technical Report NPS/NRGRD/GRDTR-99/3, p. 101–108.
- Torres, R., Ruiz, J., Patchett, P.J., and Grajales, J.M., 1999, Permo-Triassic continental arc in eastern Mexico: Tectonic implications for reconstruction of southern North America, *in* Bartolini, C., Wilson, J.L., and Lawton, T.F., eds., Mesozoic Sedimentary and Tectonic History of North-Central Mexico: Geological Society of America Special Paper 340, p. 191–196, doi:10 .1130/0-8137-2340-X.191.
- Tosdal, R.M., 1988, Mesozoic rock units along the Mule Mountains thrust system, southeastern California and southwestern Arizona [Ph.D. thesis]: Santa Barbara, University of California, 365 p.
- Walker, J.D., 1988, Permian and Triassic rocks of the Mojave Desert and their implications for timing and mechanisms of continental truncation: Tectonics, v. 7, p. 685–709, doi:10.1029 /TC007i003p00685.
- Whitmeyer, S.J., and Karlstrom, K.E., 2007, Tectonic model for the Proterozoic growth of Laurentia: Geosphere, v. 3, p. 220–259, doi:10.1130/GES00055.1.
- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses: Geostandards Newsletter, v. 19, p. 1–23, doi:10.1111/j.1751-908X .1995.tb00147.x.
- Wooden, J.L., Barth, A.P., and Mueller, P.A., 2012, Crustal growth and tectonic evolution of the Mojave crustal province: Insights from hafnium isotope systematics in zircons: Lithosphere, v. 5, p. 17–28, doi:10.1130/L218.1.