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ABSTRACT: The South Georgia region is characterised by high biomass and productivity of phyto-

plankton, zooplankton and vertebrate predators. Important commercial fisheries have been based at the

island since the late 1700s, initially exploiting seals and whales, and currently taking krill Euphausia

superba and finfish. Despite studies dating from the beginning of the last century, the causes of the high

productivity remain unclear. The island lies within the Antarctic Zone of the Antarctic Circumpolar

Current, to the south of the Polar Front. The offshore waters to its north and east are affected by a north-

wards deflection of the Southern Antarctic Circumpolar Current Front, together with waters from the

Weddell-Scotia Confluence. Despite a retentive circulation over the shelf, the high productivity of phyto-

plankton and copepods is widespread, occurring far downstream and possibly extending to the Polar

Front. High phytoplankton concentrations (>20 mg chlorophyll a m–3) may be linked to enhanced supply

of iron or reduced forms of nitrogen (up to ~3 mmol ammonium m–3). Although macronutrients are gen-

erally not limiting in the Antarctic Zone, silicate concentrations of <1 mmol m–3 are growth-limiting at

South Georgia in some summers. The growth season is long and blooms of >2 mg chl a m–3 occur for

4 to 5 mo. Biomass of krill plus net-caught zooplankton in summer is around 15 to 20 g dry mass m–2,

equally dominated by krill and copepods. This greatly exceeds typical values for Antarctica, and is high

compared to productive northern shelves. Zooplankton, and in particular krill, appear to have a pivotal

role in regulating energy flow in this food web, through selective grazing and possibly also through

nutrient regeneration. Abundances of krill and copepods are negatively related across a wide range of

scales, suggesting direct interaction through competition or predation. Evidence suggests that when

phytoplankton stocks are low, energy flow through krill is maintained by their feeding on the large pop-

ulations of small copepods. Metazoans and higher predators at South Georgia can feed across several

trophic levels according to prey abundance, and they regenerate substantial quantities of reduced

nitrogen. Therefore we suggest that these groups have a controlling influence on lower trophic levels,

both stabilising population sizes and maintaining high rates of energy flow. Hydrography, nutrient con-

centrations, phytoplankton, copepod, and krill biomasses fluctuate between years. Periodically (once or

twice a decade), shortages of krill in summer result in breeding failures among many of their predators.

This appears to be a downstream effect from wider scale, Scotia Sea phenomena, although the processes

involved are unclear. The elevated biomass and energy flows at South Georgia appear to be caused by

locally enhanced growth rates; there is no evidence so far for any physical concentration mechanism.

Even for krill, which do not breed there, local growth rates are probably of a similar order to the biomass

removed by their main land-based predators in summer. Thus the transfer of energy to higher predators

depends on local enhancement of fluxes through the food web as well as the supply of plankton to the

island by the Antarctic Circumpolar Current.
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1. INTRODUCTION

1.1. The South Georgia ecosystem

South Georgia is a narrow, mountainous island with

a broad continental shelf, lying within the open ocean

of the Antarctic Zone (AAZ) to the south of the Polar

Front (PF) in the Atlantic sector of the Southern Ocean

(Fig. 1a). The open ocean of the AAZ is characterised

by low productivity compared with marginal ice zones,

continental shelves, and frontal systems. However, the

ocean around South Georgia does not typify the High

Nutrient Low Chlorophyll (HNLC) conditions of the

AAZ — phytoplankton blooms are prevalent over both

the shelf and in a large area downstream. Zooplankton

biomass is also high around the island and down-

stream, with values roughly 4 to 5 times higher than

those more typical of the Southern Ocean. Large

colonies of seals and seabirds breed at South Georgia,

and the region supports important commercial fish-

eries for krill and fish. The fisheries interests here

underlie the 80 yr history of scientific investigation,

making it one of the most intensively studied parts of

the Southern Ocean. South Georgia thus provides a

case example of a productive, cold water ecosystem.

1.2. Historical perspective

South Georgia has experienced a long history of

exploitation, and catches of the various species reflect

successive cycles of overfishing and switching to the

next most economically viable species. Antarctic fur

seals Arctocephalus gazella were hunted almost to

extinction in the late 1700s and early 1800s (Bonner

1984, Headland 1984) and from 1904 a whaling indus-

try operated from the north coast (Harmer 1931, Kemp

& Bennett 1932). With a sharp decline in whale num-

bers and the advent of pelagic factory whaling, South

Georgia-based operations stopped in 1965 (Moore et

al. 1999). In the 1970s, fisheries for icefish and

nototheniid fish developed. Again these were over-

fished, causing population crashes (Kock 1985, Ever-

son 1992). The shelf break north of South Georgia is

presently a major site for the winter krill fishery in the

Southern Ocean (Everson & Goss 1991, Trathan et al.

1998a). Present catches of krill in Antarctica are not a

threat to their stocks, but at South Georgia the fishery

is localised (Murphy et al. 1997) and may be in compe-

tition with large colonies of krill-dependent predators.

This over-exploitation has continued alongside dedi-

cated research programmes during the last 80 yr. The

Discovery Investigations were started in the 1920s in

order to provide a scientific basis for the management

of whaling. These were financed partly from whaling

and sealing revenues, and their repeated multi-ship

surveys were intensive even by today’s standards. The

Discovery Investigations took an ecosystem approach,

aiming to understand the causes of the high primary

productivity and how it was linked to fisheries. The

Discovery Reports covered many topics, from oceano-

graphy to whales, and the report on the plankton by

Hardy & Gunther (1935) linked the environment and

higher trophic levels using some very modern concepts.

For example, they suggested that micronutrients

contributed to productivity, that diatoms could be de-

trimental to zooplankton, and that diel vertical mi-

gration could influence horizontal transport (see also

Hardy 1967). Later Discovery Investigations broadened

their coverage to include South Georgia as part of the

Scotia Sea-Antarctic Circumpolar Current system (e.g.

Foxton 1956, Marr 1962, Mackintosh 1973).

Between 1940 and 1970 less scientific work was done

at South Georgia, except for mainly Russian investiga-
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Fig. 1. (a) Atlantic sector of Southern Ocean showing 500 m isobath, major fronts, watermass zones and mean winter northern

extent of sea ice. SAF: Subantarctic Front, PFZ: Polar Frontal Zone, PF: Polar Front, AAZ: Antarctic Zone, SACCF: Southern

Antarctic Circumpolar Current Front. (b) South Georgia region showing the position of Willis Island (WI), Bird Island (BI),

Cumberland Bay (CB) and Eastern and Western Core Box—the focus of a monitoring study by the British Antarctic Survey
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tions during the development of the krill fishery

(Maslennikov 1972, Vladimirskaya 1978, Maslennikov

et al. 1983, Grelowski & Pastuszak 1983, Makarov et

al. 1984). In the last 20 to 30 yr attention has been

renewed. Several nations have participated, but most

work has been done by the British Antarctic Survey

(BAS) who started a programme of research there in

the 1970s (e.g. Croxall et al. 1988). Thus our detailed

knowledge of the South Georgia ecosystem spans the

last 80 yr, although it is discontinuous in time.

1.3. Aim of this review

Much data have been published about the South

Georgia pelagic region, on topics ranging from

hydrography and nutrient chemistry to higher preda-

tors and fisheries. This review focusses on interactions

mainly within the lower trophic levels. This is because:

(1) most of the energy flow is within these levels;

(2) despite many studies of certain higher predator

species, insufficient data exist for an appraisal of the

overall flow of energy into and between the top trophic

levels; and (3) the extensive literature on South Geor-

gia seals and seabirds precludes an authoritative sum-

mary within the limits of this review. Food consump-

tion by seabirds in the South Georgia system was

reviewed by Croxall et al. (1984)—a new synthesis

including seals is in preparation (Boyd & Croxall 1996,

I. L. Boyd pers. comm.) For recent studies of the higher

predators, with special reference to their foraging, we

refer the reader to papers by Rodhouse et al. (1996)

for squid, North & Ward (1989, 1990), Kock et al.

(1994), and Everson et al. (1997) for fish, Trathan et al.

(1998b), Rodhouse et al. (1998) and Croxall et al. (1999)

for penguins, Harrison et al. (1991), Croxall & Prince

(1996), Croxall et al. (1997), Reid et al. (1997a,b),

Prince et al. (1999), Berrow & Croxall (1999) for flying

seabirds, Reid (1995), North (1996), Reid & Arnauld

(1996), Reid et al. (1996), McCafferty et al. (1998) and

Brown et al. (1999) for seals, and Moore et al. (1999)

and Reid et al. (2000) for whales. Commercial fishing

activity in the South Georgia area is summarised by

Murphy et al. (1997), Trathan et al. (1998a), Everson et

al. (1999) and Moore & Jennings (2000).

In Section 2 we present an overview of the major

components of the planktonic system, namely oceano-

graphy, nutrients and primary production, microplank-

ton, zooplankton, and krill. Here the assemblages are

characterised and placed in a wider, Southern Ocean

context. Few studies of South Georgia have encom-

passed more than 2 trophic levels or functional groups

(but see Hardy & Gunther 1935, Everson 1984), and a

modern review is lacking. Our second aim is to com-

bine insights from all of the above disciplines to assess

how the system operates. Specifically in Section 3 we

examine a key problem in the study of island mass

effects, namely whether the high biomasses at every

trophic level reflect physical concentration mecha-

nisms or locally enhanced primary production and

fluxes within the food web. In Section 4 we summarise

our current understanding of interannual variability, a

particularly well-studied timescale of change. The con-

cluding discussion in Section 5 is a synthesis of the pre-

ceding sections, which identifies features that may be

key to understanding the South Georgia food web.

2. MAJOR COMPONENTS OF THE PELAGIC

ECOSYSTEM

2.1. Hydrography

2.1.1. Scotia Sea

South Georgia is part of the Scotia Ridge, a mainly

submarine arc extending from South America to the

Antarctic Peninsula, with surface extensions at Shag

Rocks, South Georgia and the South Sandwich, South

Orkney and South Shetland Islands (Fig. 1a). This arc

forms the northern, eastern and southern boundary of

the Scotia Sea, which is bounded to the west by the

Drake Passage between South America and the

Antarctic Peninsula.

South Georgia lies in the eastward flowing Antarctic

Circumpolar Current (ACC), (Nowlin & Klinck 1986,

Orsi et al. 1995). The ACC comprises a series of

narrow, high speed frontal jets embedded in broader,

slower moving zones (Nowlin & Clifford 1982). South

of the Southern Antarctic Circumpolar Current Front

(SACCF) the hydrography is complicated by regionally

specific conditions. Orsi et al. (1995) defined a circum-

polar southern boundary to the ACC which, in the

Scotia Sea area, corresponds approximately to the

junction between the ACC and the Weddell Gyre. A

further complication is the Weddell-Scotia Confluence,

as it has unique watermass characteristics and com-

prises water from the ACC, the Weddell Sea, and the

western Weddell Sea shelf (Gordon 1967, Deacon &

Moorey 1975, Whitworth et al. 1994). It is most clearly

defined near the Antarctic Peninsula and broadens

to the east, where, in the region of the Scotia Ridge, it

comprises a complex mixing zone of eddies (Patterson

& Sievers 1980, Foster & Middleton 1984).

Throughout much of the Southern Ocean the sea ice

edge and the ACC’s zones and fronts lie roughly paral-

lel, following the lines of latitude. However, to the west

of South Georgia, the Scotia Ridge deflects the ACC

sharply northwards, after which it resumes its east-

erly course (Mackintosh 1946, Nowlin & Klinck 1986).
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Therefore, despite the cold waters that flow around

South Georgia, the island tends to remain to the north

of the pack ice. Only in exceptionally cold winters does

sea ice extend as far north as South Georgia (Mackin-

tosh & Herdman 1940, Gloerson et al. 1992).

2.1.2. South Georgia in the

Antarctic Circumpolar Current

In addition to the general northwards deflection of the

ACC near South Georgia, the SACCF as well as the

Weddell-Scotia Confluence waters are inflected around

the eastern and northern flanks of the island (Fig. 1a).

The average positions of the fronts plotted in Fig. 1a

mask the degree of large- and meso-scale variability;

meandering and eddy-shedding have been described for

ACC fronts (e.g. Lutjeharms & Baker 1980, Bryden

1983). In areas of irregular bottom topography such as

the northeastern Scotia Sea, the positions of fronts are

particularly variable (Gordon et al. 1977, Peterson &

Whitworth 1989). Despite this, 90% of transects in the

Atlantic sector have located the PF within 100 km of

its mean position (Mackintosh 1946). The positions of

fronts and eddies relative to South Georgia thus dictate

its watermasses and plankton communities.

The earliest interpretations of South Georgia hydro-

graphy (Deacon 1933, Hardy & Gunther 1935) suggested

that the island was influenced by 2 watermasses: ACC

water of Bellingshausen Sea origin which came from the

west, and colder, silicate-rich water of Weddell Sea

origin from the south and east. Thus South Georgia

appeared to be in a mixing zone of 2 watermasses dif-

fering in origin and physical properties. The Discovery

Investigations documented a pronounced year-to-year

variability at South Georgia (Harmer 1931, Kemp 

& Bennett 1932, Clowes 1938, Deacon 1977). These

oscillations are superimposed on climatic changes

during the last century in the Scotia Sea region (e.g.

Maslennikov & Solyankin 1988, King 1994, de la Mare

1997). Deacon (1977) showed that water temperatures at

South Georgia rose during the 1930s, that air and water

temperatures were closely linked, and that air tem-

peratures rose ~1°C from the 1930s to the 1970s.

Although this trend has been documented, it is

unclear whether changes in temperature and sea ice

also affect the positions of the fronts. Bogdanov et al.

(1969) found that the frontal zone between the Weddell

Gyre and ACC water lay further south of South Geor-

gia than found by Hardy & Gunther (1935). Recent

publications have lent further support to the notion of

frontal shifts. For example Priddle et al. (1986) sug-

gested that Weddell Water was absent from the region

during 1981/1982, and Heywood et al. (1985) and Pak-

homov et al. (1997b) proposed that Subantarctic water

influenced the island in 1983 and 1994. These inter-

pretations are not supported by recent findings, which

suggest that the PF is consistently >250 km to the north

of South Georgia (Orsi et al. 1995, Trathan et al. 1997,

2000). However, there is some evidence that warm

water eddies of PFZ origin may influence the South

Georgia region from the west (Atkinson et al. 1990,

Whitehouse et al. 1996b).

2.1.3. Local effects at South Georgia

The general circulation patterns around South Geor-

gia are illustrated by the Fine Resolution Antarctic
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Fig. 2. (a) Current vectors derived from FRAM model (FRAM

Group 1991) for South Georgia region and downstream (from

Trathan et al. 1997 with permission from author). Note scale

bar for velocity vectors. (b) Drift of large iceberg, 31 August

to 9 November 1987. Points record position for 45 d during

its 71 d transit through study area (from Trathan et al. 1997).

MEB: Maurice Ewing Bank, NGR: North Georgia Rise, 

NEGR: Northeast Georgia Rise
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Model (FRAM Group 1991: Fig. 2a). The current vec-

tors it generates fit Eulerian and Lagrangian obser-

vations very well (Fig. 2b, Hardy & Gunther 1935,

Priddle et al. 1986, Trathan et al. 1997, Brandon et

al. 1999, 2000). These confirm a northwesterly flow

approximately parallel to the island’s northern shelf

edge (see also Maslennikov 1979, Latogursky et al.

1990). Two monitoring areas termed the Eastern Core

Box (ECB) and the Western Core Box (WCB) have

been studied intensively in recent years (Fig. 1b). In

the ECB the shelf break is a shear zone between fast

oceanic currents and slower shelf currents, with a

shelf-break front between them (Brandon et al. 1999).

No pronounced shelf-break front was found in the

WCB (Brandon et al. 2000), so transfer across the shelf

break is probably variable, both regionally and tempo-

rally (Murphy et al. 1998, Brandon et al. 1999). To the

west of South Georgia the FRAM also concurs with

field observations. The consensus (Hardy & Gunther

1935, Trathan et al. 1997, Brandon et al. 2000) is that

this area is a variable mixing zone between the ACC

waters approaching from the west and a colder, more

saline current approaching from the east, along the

north side of the island.

As well as deflecting the ACC, the broad shelf

around South Georgia further influences the water

masses. The shelf water in summer is often slightly

warmer and is locally fresher than its surroundings

(Priddle et al. 1986, Brandon et al. 2000). The lower

salinity is due to local runoff and the higher tempera-

ture is possibly due to greater solar heating of the resi-

dent waters compared with the surrounding ocean

water recently advected from colder latitudes.

2.2. Nutrients and primary production

2.2.1. Nutrient availability and phytoplankton biomass

The Discovery Investigations laid the foundations for

our understanding of phytoplankton growth and nutri-

ent use at South Georgia. Hardy & Gunther (1935) and

Hardy (1967) correlated locally reduced phosphate

concentrations with elevated phytoplankton biomass,

suggesting that phosphate depletion provided a time-

integrated ‘memory’ of primary production. Clowes

(1938) showed summer silicate and phosphate reduc-

tions, possible year to year variation in phytoplankton

utilisation, and suggested that silicate concentrations

may, in some years, limit phytoplankton growth. The

latter has since been supported for ACC waters,

although Weddell Sea waters in the vicinity of the

island are always replete in silicate (Whitehouse et al.

1996a). A wider scale context was provided by Hart

(1934, 1942), who noted the general failure of Antarc-

tic marine phytoplankton to deplete fully the abundant

pools of macronutrients in the surface waters: now

known as the HNLC paradox.

This inability of phytoplankton to utilise fully the

available nutrients has subsequently been attributed to

a variety of factors: low temperature and physiological

inefficiency of nutrient uptake, deep vertical mixing,

lack of trace elements, and zooplankton grazing pres-

sure (see Chisholm & Morel 1991, Smith et al. 1996,

Priddle et al. 1998b). However, within the Southern

Ocean there are several areas where high primary pro-

duction rates do occur. These are certain marginal ice

zones (e.g. Smith & Nelson 1985, Nelson et al. 1989),

fronts (e.g. Lutjeharms et al. 1985, Jacques & Panouse

1991) and neritic regions (e.g. Boden 1988, Holm-

Hansen & Mitchell 1991, Perissinotto et al. 1992). South

Georgia lies in the ice-free AAZ which epitomises

HNLC conditions. Productivity is generally very low in

this zone (maximum chl a ~1 mg m–3), and although it

may be greater in the Scotia Sea, even here it is usually

<2.5 mg chl a m–3 (Rönner et al. 1983, Jacques 1989,

Tréguer & Jacques 1992). Thus the >20 mg chl a m–3

blooms at South Georgia are exceptional (Whitehouse

et al. 1996a, 1999). These blooms are not confined to

neritic areas, but occur regularly in deep oceanic water

to the north of the island (>12 mg chl a m–3), as well as

at the PF (>8 mg chl a m–3; Fryxell et al. 1979, El-Sayed

& Weber 1982, Whitehouse et al. 1996b, 2000).

The Discovery scientists were aware that macro-

nutrients were not usually the key factors limiting

phytoplankton growth. Hardy (1967) suggested that

the krill-rich ‘area of dead water’ on the northern (lee)

side of the island was productive because it was a mix-

ing zone of 2 currents of different origin, each supply-

ing a micronutrient which was deficient in the other.

Since then, several of the potentially limiting nutrients

in this region have been identified, namely iron (de

Baar et al. 1995) and ammonium (Owens et al. 1991,

Priddle et al. 1997, Whitehouse et al. 1999). However

we are still some way from elucidating how nutrients

modulate primary production rates at South Georgia.

This topic is revisited in Section 3.1.

2.2.2. Primary production

There are few measurements of primary production

from South Georgia (Table 1), and the variety of

methods used makes comparison difficult. However,

the rates seem to be genuinely variable, both tempo-

rally and spatially. The values, particularly in the WCB,

appear to be high compared to the rest of the AAZ,

although they are typical of inshore regions (Table 1).

Annual rates of primary production at South Georgia

have been estimated from seasonal nutrient deficits

283



Mar Ecol Prog Ser 216: 279–308, 2001

(Whitehouse et al. 1996a). Estimates based on several

seasons of phosphate and silicate data suggest a value

of 30 to 40 g C m–2 yr–1. This value, albeit based heavily

on a season of unusually low productivity and in-

cluding an unproductive area south of the island, is

no higher than overall Southern Ocean estimates

(Savidge et al. 1996, Priddle et al. 1998a). However, we

stress that errors inherent in the nutrient budget tech-

nique (e.g. non-stochiometric uptake, vertical mixing

and diffusion, recycling of nutrients) all tend to under-

estimate annual primary production.

2.2.3. Seasonal succession

Seasonal sampling is limited by logistics, but remote

sensing offers an alternative view. Heavy cloud cover

in this area restricts satellite imagery, but SeaWiFS

chl a maps, averaged on a monthly basis to reduce the

problem of cloud cover, are instructive (Fig. 3a,b). The

high chl a values to the north of South Georgia, and

sometimes also far downstream, contrast with the low

biomass in the Scotia Sea. The other clear feature is

the long growing season. The SeaWiFS images and
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Table 1. Primary production values for the Eastern Core Box (ECB) and the Western Core Box (WCB) at South Georgia, compared 

with some other Southern Ocean zones

Region Time of year Primary production Primary production Source
(g C m–2 d–1) (g C m–2 d–1)

mean (range)

South Georgia Dec–Feb 1.2 0.57 Owens et al. (1991)
(ECB) 1.2 (0.069–1.2)

Feb–Mar 0.15 Pakhomov et al. (1997a,b)
0.069

Jan 0.45 British Antarctic Survey
0.7 (unpubl. data)
0.25

South Georgia Dec–Feb 2.12 1.72 (0.323–8.9) Owens et al. (1991)
(WCB) 0.742

0.536
0.464

Jan 8.9a Atkinson et al. (1996)

Feb–Mar 0.37 Pakhomov et al. (1997a,b)
0.323
1.66
0.444

Jan 1.9 British Antarctic Survey
1.45 (unpubl. data)
2.75
1.0
1.4

Neritic regions Summer 2.8 Horne et al. (1969)

Summer 3.2 El-Sayed (1967)

Jan–Mar 0.374 Helbling et al. (1995)

Spring-summer (1.08–6.58) Moline & Prézelin (1996)

Antarctic open ocean zone Nov–Jan 0.55 (0.29–1.33) Mathot et al. (1992)

Jan–Feb 0.256 (0.162–1.12) Rönner et al. (1983)

Seasonal ice zone Spring 1.13 (0.61–1.4)0 Mathot et al. (1992)

Spring 0.49 (0.17–0.98) Smith & Nelson (1990)

Nov–Dec 0.8 Boyd et al. (1995)

Summer 2.1 Park et al. (1999)

Jan (0.179–1.61) Alcaraz et al. (1998)

aGross microbial production based on oxygen flux measurements

Fig. 3 (a) SeaWiFS monthly composite images of Atlantic sector of Southern Ocean from successive months during 1998/1999.

Provided by SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE. Black areas where cloud-cover/sea-ice

have obscured image. Central outlined box encloses South Georgia region. (b) Closeup of monthly SeaWiFS images from the 

central outlined box in (a)



Atkinson et al.: The pelagic ecosystem of South Georgia, Antarctica 285

September 1998 October 1998 November 1998

December 1998 January 1999 February 1999

March 1999 April 1999

0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20 50

chlorophyll a concentation (mg m–3)

September 1998 October 1998 November 1998

December 1998 January 1999 February 1999

March 1999 April 1999

0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20 50

chlorophyll a concentation (mg m–3)

a

b



Mar Ecol Prog Ser 216: 279–308, 2001

ground observations for various years both show that

blooms around South Georgia can occur for 4 to 5 mo,

and regularly exceed 10 mg chl a m–3 (Table 2). Blooms

may be seeded close inshore (Hart 1934, Whitehouse

et al. 1999), with elevated chl a concentrations found in

fjords as early as September (BAS unpubl.). SeaWiFS

data (Fig. 3b) also suggest this, although the low

spatial resolution of the data prevents firm conclusions

around the convoluted coastline.

2.2.4. Microplankton composition

Phytoplankton blooms around South Georgia invari-

ably comprise large colonial diatoms, mainly centric

forms such as Eucampia antarctica, Odontella weis-

floggii, Chaetoceros socialis and Thalassiosira spp.

(especially T. scotia and T. tumida). Several of these

have been found in late winter blooms inshore, sug-

gesting that they formed a seed population for growth

later on. Many of the colonies are clearly visible to the

naked eye, and about half of the chl a may be retained

on a 200 µm sieve (Priddle et al. 1995, Atkinson et al.

1996) and around 80 to 90% retained on a 20 µm sieve

(von Bröckel 1981, Priddle et al. 1995).

Although phytoplankton biomass at South Georgia is

patchy over scales of 10 to 20 km, spatial coherence in

community structure appears to be a recurring feature

(Hardy & Gunther 1935, Priddle et al. 1986, Froneman

et al. 1997). The summer pattern shows a distinct
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Table 2. Seasonal changes in the South Georgia area. SeaWiFS satellite imagery and conventional near-surface (≤30 m) mea-

surements of chl a, nutrients and temperature. South Georgia zone survey (SGZS) for entire island, other measurements to the

north. SGZS silicate presented separately for Antarctic Circumpolar Current (ACC) and waters of Weddell-Scotia Confluence 

origin (WSC). No data for May/June

Month Phytoplankton biomass (mg chl a m–3) Nutrients (mmol m–3), temperature (°C)
SeaWiFS 1998/1999 Field data 1980–1999 Field data 1980–1999

Jul/Aug No data SGZS2,10 0.23 (0.11–0.38) SGZS2,10 phosphate 2.0 (1.6–2.5), silicate
Values of ~0.35, similar to Scotia Sea4 ACC 26 (18–36) WSC 48 (35–76), nitrate

23 (17–27), temp 0.5 (–0.8 to 1.8)

Sep/Oct Low around South Georgia, SGZS2,10 0.70 (0.20–2.78) SGZS2,10 phosphate 2.0 (1.3–2.5), silicate
possibly higher close inshore ACC 29 (11–40) WSC 52 (43–65), temp

Higher concentrations to the 0.4 (–1.0 to 1.8)

southwest possibly related to NW island2 1.6 (0–6.9) NW island2 phosphate 1.9 (1.5–2.3),
the seasonally retreating ice- silicate 32 (23–42), nitrate 27 (24–29),
edge or the SACCF High biomass recorded in fjords2, 3 nitrite 0.25 (0.2–0.3), ammonium 0.34

(0.1–0.8), temp 0.5 (0.3 to 0.8)
Offshelf NW island Oct9 ≤3

Nov/Dec Bloom develops at the PF SGZS2, 6,10 0.8 (0.13–4.54) SGZS2,10 phosphate 1.5 (0.5–2.2), silicate
and around South Georgia, ACC 19 (2–45) WSC 37 (22–55), nitrate
with high values inshore and 22 (16–29), temp 1.1 (–1.0 to 3.0)
to the north downstream of
the island, and between it N island end Dec2,10 5.3 (0.5–30) N island end Dec 2,10 phosphate 1.6
and the PF (1.1–2.0), silicate 14 (<1–31), nitrate 21

Blooms recorded N&W island3, 9,12 (13–29), nitrite 0.3 (0.2–0.4), ammonium
(0.1– 2.7), temp 2.6 (1.4 to 3.5)

Jan/Feb Dense blooms (>10) inshore Jan 1999 N&W island2 5.1 (0.4–17.3) Jan 1999 N&W island2 phosphate 1.2
to the north of South Georgia, (0.6–2.2), silicate 12 (2.2–50), nitrate 20
with large patches >2 (16–30), nitrite 0.3 (0.2–0.5), ammonium
downstream of island 0.7 (0–1.9), temp 2.7 (2.1 to 4.0)

SGZS 2,10 2.26 (0.14–29.0) SGZS2,10 phosphate 1.4 (0.5–2.2), silicate
ACC 13 (<1–37) WSC 27 (1–52), nitrate
21 (13–31), temp 2.7 (0.8 to 4.5)

N island2 3.3 (0.2–22.3) N island 2 phosphate 1.3 (0.3–2.3), silicate
15 (1–50), nitrate 19 (10–30), nitrite 0.3

Dense blooms frequently recorded (0.2–0.5), ammonium 0.8 (0–1.9), temp
NW of island1, 7, 8,11,12,13 2.8 (1.2 to 4.5)

Mar/Apr Large patches >1 remain near SGZS2,10 0.35 (0.03–1.0) SGZS2,10 phosphate 1.4 (0.9–1.7), silicate
the island and downstream of it ACC 8 (2–25) WSC 24 (10–36), nitrate 22

(21–23), temp 3.0 (1.9 to 4.2)

1   Atkinson et al. (1996), 2British Antarctic Survey (unpubl. data), 3Hart (1934), 4Heywood et al. (1985), 5Morris & Priddle
(1984), 6 Priddle et al. (1986), 7Priddle et al. (1995), 8Shreeve & Ward (1998), 9Ward & Shreeve (1999), 10Whitehouse et al.
(1996a), 11Whitehouse et al. (1999), 12Whitehouse et al. (1993), 13Whitehouse et al. (1996b)
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group of species on the shelf and in the northwest area,

which contrasts with a colder water group to the south

and east (Fig. 4). This general pattern appears to per-

vade, despite more subtle differences within these

regions (Froneman et al. 1997).

The patchy diatom blooms appear to be super-

imposed on a more constant background of smaller

autotrophs and heterotrophs, dominated by small

diatoms, with prymnesiophytes and dinoflagellates

also contributing. The fact that bacterial numbers were

unrelated to phytoplankton biomass (B. W. Mullins &

J. Priddle unpubl.) suggests that the microbial food

web is at least partly isolated from that involving large

diatoms (see also Karl et al. 1996). The limited data

for South Georgia (von Bröckel 1981, Dodge & Priddle

1986, Priddle et al. 1995) suggest a rich and substantial

community of microheterotrophs, comparable to the

highest values in other regions of Antarctica (see

Garrison & Mathot 1996). Priddle et al. (1995) provided

a breakdown of microbial composition at 3 sites during

a declining January bloom (2 to 3 mg chl a m–3). Of the

total microbial biomass of 2.3 to 4.5 g C m–2 in the

upper mixed layer, heterotrophic nanoplankton and

microplankton comprised about 20% of total microbial

biomass at shelf and shelf-break stations, but >50%

at the oceanic station. Of the heterotrophic fraction,

between 15 and 60% were bacteria, the remainder

being mainly dinoflagellates. Although the data are

limited, the biomass of protozoans are at the upper

end of the range of Antarctic summer values (e.g. von

Bröckel 1981, Garrison 1991, Garrison & Mathot 1996,

Edwards et al. 1998), underlining their importance in

microbial community functioning. Likewise, the bac-

terial biomass in this study (~10% of total microbial

biomass) is within the upper range of Antarctic values

(Hodson et al. 1981, Hanson et al. 1983, Karl et al. 1991).

There are too few data to support firm conclusions

regarding seasonal succession of the microbial com-

munity, but in Jan/Feb silicate concentrations fall to

values which could stress some of the large diatoms.

Small colonies of Phaeocystis spp. may occur late in the

season, but unlike other regions of Antarctica, blooms

of this species, or of dinoflagellates, have never been

recorded at South Georgia.

2.3. Metazooplankton

2.3.1. Biomass

Regional comparisons of zooplankton biomass require

care, due to the differences in methods and times of

year of sampling. Nevertheless, when comparisons are

made from equivalent depths, nets and times of year

(Table 3), mesozooplankton biomass is clearly much

greater at South Georgia than elsewhere in the South-

ern Ocean. Indeed, it is at the high end of the range

for productive northern shelves such as the North

Sea (Hay 1995), Bering Sea (Vidal & Smith 1986) and

Georges Bank (Wiebe et al. 1996). The South Georgia

values are mainly from catches with 200 µm ring nets,

which do not retain the important small fraction

(Hopkins 1985, Fransz & Gonzalez 1997). Macroplank-

ters such as krill, which avoid such nets, are also not

included. Eight years of acoustic surveys north of the

island gave a mean krill biomass of ~59 g wet mass m–2

(Brierley et al. 1999b), or ~14 g dry mass m–2, which is

a similar value to that for mesozooplankton (Table 3).

South Georgia is in the northern part of the AAZ, a

zone where mesozooplankton reach a maximum near

the PF (Foxton 1956, Pakhomov & McQuaid 1996,

Atkinson & Sinclair 2000), but where krill are near

their northern limit (Marr 1962). The abundance of

krill at South Georgia means that the combined bio-

mass of krill and mesozooplankton far exceeds that

elsewhere in Antarctica.

Furthermore this area of high biomass is extensive,

and covers a much wider area than just the island shelf.

The values in Table 3 are from oceanic as well as shelf

stations and transects from here to the PF show high

copepod numbers well downstream of the island (Ward

et al. 1996, Atkinson et al. 1999). Mackintosh (1934) de-

picted the whole of the Scotia Arc region as having a

higher biomass than the Scotia Sea, Antarctic Peninsula

area or the Weddell Sea. Thus at South Georgia, and

possibly downstream, there may be regional enhance-

ment associated with parts of the Scotia Ridge.

287

Fig. 4. South Georgia region showing 500 m isobath and 5

assemblages of net (>20 µm) diatoms from a survey in No-

vember/December 1981 (redrawn from Theriot & Fryxell

1985). Symbols represent assemblages of diatoms identified

by Principal Components Analysis (Theriot & Fryxell 1985),

most distinct separation is between northern assemblage (■ ) 

and remaining stations
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2.3.2. Composition

Krill comprise about half of the overall zooplankton

biomass at South Georgia, so they are described sepa-

rately and in more detail in Section 2.3.3. Here we

describe the remaining zooplankton. Copepods com-

prise >60% of the biomass caught with ring nets at

South Georgia, in common with other Antarctic zones

(Table 3). Also in common, the rest is mainly small

euphausiids, pteropods, amphipods (mainly Themisto

gaudichaudii ) and chaetognaths (Atkinson & Peck 1988,

Ward et al. 1995, Pakhomov et al. 1997b). However,

salps are not so prominent as in higher latitudes (e.g.

Hosie 1994, Ross et al. 1996, Perissinotto & Pakhomov

1998). Foxton (1966) described the AAZ zone as the

main habitat of Salpa thompsoni, the most abundant

salp in Antarctica. ‘Salp years’ are being reported with

increasing frequency in the Southern Ocean (Loeb et

al. 1997, Perissinotto & Pakhomov 1998), but at South

Georgia they have only been prominent in 3 of the last

15 summers (BAS unpubl.), and even during these they

are not so pervasive as during ‘salp years’ further south

(e.g. Ross et al. 1996, Loeb et al. 1997). Salps appear to

be most successful in offshelf regions (Hosie 1994) and

at intermediate chl a concentrations (~1 mg m–3; Peris-

sinotto & Pakhomov 1998). This may explain the com-

parative rarity of salps at South Georgia.

Copepod biomass is dominated by the large Antarc-

tic and Subantarctic species, Calanoides acutus, Rhin-

calanus gigas and Calanus simillimus, reflecting the

mixture of cold and warmer water species typical of

the northern part of the AAZ. Their relative abundance

reflects the origin of the watermasses—for example,

warm water areas, possibly eddies from the APF, were

inhabited by predominantly Subantarctic assemblages

(Atkinson et al. 1990). Small species, particularly of

the genera Oithona and Ctenocalanus, are moderately

abundant around the island, but their numbers are

much lower than those near the PF (Atkinson et al.

1999). However the small neritic species Drepanopus

forcipatus is very numerous, particularly close to the

island. This clausocalaniid has a patchy distribution

(Hardy & Gunther 1935, Fig. 5) and can comprise 70%

of the net-caught biomass (Ward & Shreeve 1999).

The neritic community is more prominent at South

Georgia than at most other isolated islands in the

Southern Ocean (cf. Perissinotto 1989, Pakhomov &

Froneman 1999 for Marion Island). This is probably

289

Fig. 5. Distribution of krill and copepod Drepanopus forcipatus.

Abundances (see scale), numbers per 1000 m3. In 1926/1927 sur-

vey (Hardy & Gunther 1935) krill abundance from 3 horizontal

tows of ~1.8 km with 1 m diameter ringnet at depths ~5, 60 and

120 m. D. forcipatus caught by vertical hauls with 70 cm diameter

Nansen closing net in top 250 m, where depth allowed. During

1981 and 1983 surveys, krill and D. forcipatus were sampled

with an RMT (1+8) net within top 250 m (Atkinson & Peck 1988)
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because of the broader shelf, with a more retentive

circulation pattern (Atkinson & Peck 1990, Brandon et

al. 2000). Drepanopus forcipatus is the major neritic

species, but the coasts and fjords are also spawning

and nursery grounds for commercially exploited fish,

in particular the mackerel icefish Champoscephalus

gunnari (North & Murray 1992), which is reliant on

D. forcipatus for food (North & Ward 1989, 1990).

2.3.3. Krill (Euphausia superba)

Krill are a species of the seasonal sea ice zone, so

South Georgia is an atypical habitat, being near the

northern limit of their distribution and almost always

free of pack ice. The lack of early larvae at South Geor-

gia led Marr (1962) to suggest that they do not breed

successfully here, a finding since supported by Ward et

al. (1990). Although it has long been known that South

Georgia krill come from upstream (Marr 1962), the

source regions, and how and when they arrive at the

island, are of continued debate.

The most reliable place to find krill at South Georgia

is the shelf break to the north of the central region of

the island (e.g. Hardy & Gunther 1935, Elizarov 1971,

Mackintosh 1973, Pakhomov et al. 1997a, Murphy et

al. 1997). However, they are much more widely distrib-

uted; schools are found throughout the region, often

with no clear link to bathymetry or hydrography (Mur-

phy et al. 1991, Goss & Everson 1996; see Fig. 5). The

central northern shelf break was the site of the largest

catches of baleen whales (Kemp & Bennett 1932,

Everson 1984) and is now one of the major sites for

the winter krill fishery (Trathan et al. 1998a). Marr

(1962) attributed this distribution directly to hydrogra-

phy. The coldest water, described by Deacon (1933)

and Hardy & Gunther (1935) as being of Weddell

origin, was to the north and east of the island and

was invoked as the main source of krill (Marr 1962,

Maslennikov & Solyankin 1988).

Recently, Marr’s (1962) suggestion that waters of

mainly Weddell Sea origin supply krill to South Geor-

gia has not been supported by Hofmann et al. (1998).

Their model of larval transport across the Scotia Sea

suggested that populations west of the Antarctic Penin-

sula provide the source. Perhaps this conflict can be

reconciled if we consider that mesoscale transport is

pronounced in the Southern Ocean (Huntley & Niiler

1995). Iceberg drift directions certainly show that

Weddell water can arrive at South Georgia (Trathan et

al. 1997, Murphy et al. 1998: Fig. 2b). Watkins et al.

(1999) found that the smallest krill tended to occur

towards the east end of the island, in water which they

identified as ‘Weddell’ in origin, whereas at the west-

ern end, with greater influence of ‘Bellingshausen’

water, an additional, larger, year class sometimes oc-

curred. They suggested that this reflected the differing

age structures from 2 distinct source regions, as well as

possibly different conditions during their transit to, and

while at, each end of South Georgia. Thus the trans-

port of krill to South Georgia is probably discontinuous

and from several distinct sources.

The origin and fluctuations in krill stocks at South

Georgia are currently areas of active research interest.

Since the SACCF lies adjacent to the krill-rich area

north of the island (Fig. 1a), its role as a transport path-

way to the island is being addressed. A degree of con-

nection between the southern Scotia Sea and South

Georgia krill populations was suggested by Brierley et

al. (1999a). They linked interannual fluctuations in krill

biomass at South Georgia with same-season fluctua-

tions in the Elephant Island area. This compares with a

~5 mo transit time from the Antarctic Peninsula to

South Georgia estimated by Hofmann et al. (1998).

Interannual fluctuations in South Georgia krill stocks,

and how they relate to those in the source regions, is a

topic revisited in Section 4.1.3.

3. INTERACTIONS

The previous sections describe substantial biomasses

of phytoplankton, microheterotrophs, mesozooplank-

ton and krill at South Georgia. The island also supports

valuable commercial fisheries and large numbers of

higher predators. Here we examine the interactions

leading to the high biomasses: do they reflect physical

concentration mechanisms or high local productivity?

The biomass of an organism in a defined area, for

example over the South Georgia shelf, is a function of

the additive processes, i.e. the rate of advection into

the area, the local rate of growth and reproduction,

minus the losses; local mortality and advection from

the area. These are considered in turn for phytoplank-

ton, copepods and krill.

3.1. Controls on phytoplankton

3.1.1. Factors enhancing primary production

The blooms at South Georgia do not typify the HNLC

waters of the AAZ. So which controls have been lifted

to allow algal growth? Potential controls on primary

production in the Southern Ocean include limitation

by nutrients, low temperatures, light and vertical mix-

ing (Chisholm & Morel 1991, Tréguer & Jacques 1992,

Smith et al. 1996). These are considered in turn.

Nutrients. The South Georgia data set for the major

macronutrients, nitrogen, silicon and phosphorus, sug-
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gests that these are only rarely limiting to phytoplank-

ton growth (Whitehouse et al. 1996a, Section 2.2.1). Of

the other nutrients which restrict phytoplankton growth

in the Southern Ocean, iron has received much atten-

tion recently (de Baar & Boyd 2000). Although required

only in trace quantities, iron is a key constituent in

many systems in algal cells, including components of

the photosynthetic electron transport system (Geider &

La Roche 1994). Low iron availability appears to be

characteristic of much of the Southern Ocean (de Baar

et al. 1995). While iron availability near South Georgia

is unknown, it was suggested to promote phytoplank-

ton growth downstream of the island (de Baar et al.

1995). These authors found low phytoplankton bio-

mass in the AAZ coincident with iron/phosphate ratios

well below those critical for growth, while the more

productive adjacent PF waters had more iron, the

source for which was suggested to be the Northeast

Georgia Rise (see Fig. 2b). Given the extent of glacia-

tion and island run-off at South Georgia, and the com-

munication between shelf and offshore waters (Bran-

don et al. 1999, 2000), it is likely that much of the

island’s shelf water, and that downstream, is iron-

replete. Further indirect evidence of South Georgia

waters being replete in iron is the abundance of large

diatoms which characterise its local and downstream

blooms—algae of a size probably under most iron

stress (Hudson & Morel 1990, Sunda & Huntsman 1997).

Iron availability will also impinge on the active trans-

port of nutrients into the cell. In the case of nitrate, low

iron availability will diminish the cell’s ability to syn-

thesise the enzymes needed to convert nitrate into

ammonium (Timmermans et al. 1994). In addition to

the effects of iron on nitrate utilisation, other factors

may determine f-ratio, i.e. the ratio: (nitrate assimila-

tion)/(nitrate + reduced nitrogen assimilation). High

concentrations of ammonium may reduce nitrate utili-

sation, possibly through inhibition of uptake (Flynn et

al. 1997). Armstrong (1999) has suggested that the

degree of ammonium inhibition of nitrate utilisation is

determined by iron availability. An inadequate iron

supply appears to decrease nitrate utilisation, and thus

decreases the ammonium concentrations at which very

low f-ratios occur. Studies in the Southern Ocean sug-

gest that the effect of ammonium inhibition on nitrate

utilisation varies spatially (Glibert et al. 1982, Owens

et al. 1991, Mengesha et al. 1998, R. Sanders pers.

comm.). Although Owens et al. (1991) noted the im-

portance of reduced forms of nitrogen around South

Georgia, they measured average f-ratios of ~0.5 (rang-

ing from 0.96 inshore at Cumberland Bay to 0.29 at the

shelf-break to the northeast). Recent studies suggest

that, although at least part of this system is probably

replete in iron, the observed under-utilisation of nitrate

is due to a preference by phytoplankton for reduced

nitrogen, and may be a consequence of low water tem-

peratures (R. Sanders pers. comm.). The nitrate affinity

of several algal species was found to be dependent on

temperature, while their affinity for ammonium ap-

peared unrelated to temperature (Priddle et al. 1998b,

Reay et al. 1999, in press).

Therefore despite typically high concentrations of

nitrate in the waters around South Georgia, the supply

rates of reduced nitrogen (e.g. ammonium) has an

important role in dictating phytoplankton growth rates

(Owens et al. 1991, Priddle et al. 1997, Whitehouse et

al. 1999). A tight coupling between the processes of

uptake and resupply is suggested by observations,

made during several seasons, of a diel cycle in ammo-

nium concentrations in the upper mixed layer (Priddle

et al. 1997). Although the major regenerators of nitro-

gen are generally microheterotrophs and bacteria

(Glibert et al. 1992, Miller & Glibert 1998), the high

concentrations of metazooplankton and higher preda-

tors at South Georgia also appear to have a role. Excre-

tion rates of copepods and krill measured at South

Georgia suggested that they could supply ~50 to 80%

of the ammonium required for phytoplankton growth

in the ECB (Atkinson & Whitehouse 2000, in press, see

Fig. 1b for the location of the ECB). We stress that these

are averages over a wide area: the patchy distribution

of krill would mean wide fluctuations about these val-

ues. However, in the WCB, where krill biomass is

generally lower and primary production higher, cope-

pods and krill were estimated to supply <20% of the

required ammonium.

At this western end of the island, land-breeding

predators, in particular macaroni penguins Eudyptes

chrysolophus and Antarctic fur seals, are abundant

(Boyd 1996, Prince & Poncet 1996). Their high meta-

bolic costs result in rapid recycling of dietary nitrogen.

When their foraging ranges are constrained during the

breeding season, their excretion effectively concen-

trates nitrogen near their breeding site. From models

of their biomass, foraging activity and physiology,

Whitehouse et al. (1999) suggested that these 2 species

were effective redistributors of nitrogen, and that run-

off of guano and excretion from the colony areas could

provide a ‘point source’ of ammonium to trigger in-

shore blooms. Such a scenario has been proposed for

the high productivity observed near other Southern

Ocean islands, such as the Prince Edward Island group

(Burger et al. 1978, Ismail 1990, Perissinotto & Dun-

combe Rae 1990).

Other nutrients also appear to modulate phytoplank-

ton growth in the waters to the north of South Georgia.

During some seasons, silicic acid concentrations in

waters of ACC origin fall to <1 mmol m–3, which is

likely to limit diatom growth (Clowes 1938, White-

house et al. 1996a, 2000). Silicon limitation may there-
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fore operate as a secondary control at certain times, or

in regions of high productivity. The demand for silicon

differs between diatom species, and it may dictate a

succession of progressively more tolerant algae as con-

centrations fall. Whitehouse et al. (2000) found ele-

vated chl a levels coincident with apparently large sili-

cic acid depletions in the off-shelf waters to the north

of the island. South Georgia is influenced by the

SACCF and silicic acid-replete waters from higher

latitudes—this may replenish locally depleted waters.

Temperature. On an interannual scale, there appears

to be a link between temperature and phytoplankton

growth at South Georgia. Anomalously cold seasons

(e.g. 1981/1982) were characterised by delayed and

probably low primary production, while warmer sea-

sons (e.g. 1985/1986) tended to be more productive

(Whitehouse et al. 1996b). Whether this is a direct or

indirect effect is unknown. Temperature affects physi-

ology directly and thus could lead to higher primary

production rates in warmer seasons or warmer parts of

a species’ range. Q10 values for microbial respiration

obtained from sites between the Falklands and South

Georgia lay in the range 1 to 3 (Robinson & Williams

1993), similar to literature values for photosynthesis. It

appears that in the Southern Ocean, temperature com-

pensation of algal photosynthesis is poor and rates are

below the maxima attainable for these species (see

Smith et al. 1996). The source regions of the phyto-

plankton at South Georgia are from higher latitudes

with less seasonal warming, so locally higher tempera-

tures (>4°C), for example over the shelf and northwest

of the island, could enhance primary production, al-

though temperature alone is unlikely to be the main

factor promoting phytoplankton blooms.

Temperature may have important indirect effects:

both on the environment, such as in promoting thermal

stratification (Smith et al. 1996, Priddle et al. 1998b)

and on algal physiology, such as their nutrient prefer-

ence (see previous section ‘Nutrients’). Although tem-

perature may thus modulate primary production rates,

the patchy nature of the blooms and high range of pri-

mary production rates across small temperature ranges

suggest that it is a secondary control factor at South

Georgia.

Light and vertical mixing. The high primary produc-

tivity in some regions of the marginal ice zone has

been attributed to high irradiance within shallow melt-

water lenses (e.g. Smith & Nelson 1990, Cota et al.

1992). Likewise at South Georgia the fjords and inlets

are surrounded by glaciers and high mountains, which

provide both shelter from the prevailing westerlies and

a source of meltwater to enable shallow stratification.

This combination has been suggested to promote

phytoplankton growth by seeding from fjords (Hart

1934), and indeed elevated chl a concentrations have

been recorded inshore as early as September (BAS

unpubl.). However, high primary production rates are

often found well offshore, in the prevailing westerlies

and in no more stratified conditions than in low pro-

ductivity parts of the AAZ. Although the release from

light limitation may be important in generating inshore

blooms, its effect seems too local to be more than a

contributing factor.

3.1.2. Mortality

Grazing. With the exception of salp blooms and krill

schools, Southern Ocean metazooplankton generally

have a minor grazing impact on phytoplankton stocks

(Schnack et al. 1985, Atkinson 1996, Dubischar & Bath-

mann 1997, Swadling et al. 1997, Razouls et al. 1998).

However, protozoans may at times be important graz-

ers (Garrison 1991, Burkill et al. 1995). At South Geor-

gia the high biomasses of metazooplankton and proto-

zoans would suggest high grazing losses. While there

are no estimates for protozoans, the assemblage

caught in 200 µm ring nets could alone exert a signifi-

cant grazing impact (Table 4).

Variability in the calculated grazing impact reflects

that of primary production more than that of zooplank-

ton biomass or grazing rate. Thus the impact found

during a bloom (Atkinson et al. 1996) was much lower

than that post-bloom in the same season (Pakhomov et

al. 1997a,b). In these post-bloom conditions of small

cells, Pakhomov et al. (1997a) found a higher impact on

the primary production of cells >20 µm. Small cells

are possibly not eaten so readily by metazooplankton

(Quetin & Ross 1985, Berggreen et al. 1988), and are

under control from protozoans (Garrison & Gowing

1993, Karl et al. 1996). However this still requires a

proper appraisal at South Georgia, as the ratios be-

tween grazer size and food size vary greatly, both

among copepods (e.g. Lampitt 1978) and among proto-

zoans (Jacobsen & Anderson 1993). For example, in the

South Georgia area the tiny Oithona spp. are fully

capable of eating the large, bloom forming diatoms

(Atkinson 1994, 1996).

Sedimentation. The rich benthos on the South Geor-

gia shelf suggests substantial export of organic mater-

ial from the epipelagic. Although there are no direct

estimates of sedimentation rate, the composition of

this material has been determined (Priddle et al. 1995,

G. C. Cripps unpubl.). Recognisable krill faecal strings

were a predominant item, and these formed roughly

half of the material (maximum 70%). This contained

useful dietary material, such as polyunsaturated fatty

acids, in contrast to the remainder which was highly

degraded and amorphous. However, generalisations

about the relative importance of mass sedimentation of
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blooms and krill grazing should be avoided—long

time-series of trap data in the Bransfield Strait (von

Bodungen et al. 1986, Wefer et al. 1988) suggest that

sedimentation can be highly pulsed, and vary annually

in both amount and composition.

Vertical distributions of nutrients, chl a and C and N

have been measured at South Georgia, and these give

some insights into vertical loss processes. Chl a profiles

suggest that phytoplankton biomass in summer is

distributed fairly uniformly through the upper mixed

layer, which is typically 50 to 70 m deep. Subsurface

chl a maxima are rare. Where phytoplankton biomass

is high (e.g. >5 mg chl a m–3), the biomass maximum is

shallow, although the mixed layer may extend beneath

this. This contrasts with ammonium maxima frequently

found at the base of the mixed layer, suggestive either

of remineralisation there or faster uptake above (Prid-

dle et al. 1995, Whitehouse et al. 1999). Furthermore,

Priddle et al. (1995) found that C:N ratios at their 3

South Georgia sites increased with depth, suggesting

that C and N are not exported stoichiometrically. In

other words, N was remineralised in the upper layers

but C was exported. C:N ratios are generally fairly

stable with depth elsewhere, which allows the use of

nitrate uptake to set an upper limit on C export (Dug-

dale & Goering 1967). However, both increases and

decreases in C:N ratios with depth have been found

before (Sambrotto et al. 1993, Karl et al. 1996). The fact

that they have been found to increase with depth at

South Georgia suggests that the C and N cycles are

partially decoupled, allowing the possibility for re-

generated N to fuel C export in this system.

3.1.3. Advection

Doubling times of algae are measured in days, so

compared to slower growing organisms such as krill,

local growth and mortality are likely to be more impor-

tant in dictating algal biomass around South Georgia.

From the FRAM vectors (Fig. 2a) we have estimated a

mean current speed of ~4 cm s–1 over the northern

shelf, based on the mean of all current vectors there. It

would therefore take ~2 mo for water to travel from

one end of the island to the other. FRAM vectors are

not ideal for estimating current velocity in shallow

water, but the slow currents suggested are supported

by direct observations using an Acoustic Doppler Cur-

rent Profiler (ADCP; Brandon et al. 2000). This sug-

gests that phytoplankton biomass over the shelf will be

determined by local production and losses rather than

critically dependent on advection. Even in the offshore

ocean currents, the rate of advection through the sys-

tem is ~2 to 3 wk (Fig. 2b), which is long relative to

phytoplankton doubling times.

Satellite data (Fig. 3 and Sullivan et al. 1993) suggest

that the South Georgia system generates phytoplank-

ton biomass which is then exported downstream.

However, advection from the shelf area is likely to be

by mesoscale processes and possibly intermittent, so it

will be hard to quantify. During the early summer of

1981 the phytoplankton community composition was

similar over the shelf and downstream (Fig. 4). This

suggests that, at least intermittently, these regions are

connected hydrographically and allow phytoplankton

from the shelf to be lost to the north. A site for such a

shelf/ocean exchange was found near the northern

shelf break (Brandon et al. 2000). Summer chl a values

are often high in the large region north (i.e. down-

stream), between the island and the PF (Fryxell et

al. 1979, El-Sayed & Weber 1982, Whitehouse et al.

1996b, 2000). These downstream blooms may be of

both gradually ageing populations (Fryxell et al. 1979)

and of actively growing cells (Whitehouse et al. 1996b,

2000). A fast frontal jet, the SACCF, flows westwards

near South Georgia’s northern shelf before turning

eastwards (Fig. 1a). The oceanic blooms just north of

the island, and a meandering stream of high chl a

water following the position of this front (Fig. 3), sug-

gest that the SACCF may advect blooms rapidly from

this system.

3.1.4. Conclusions

Interpretations of the HNLC paradox have moved

from the search for single limiting factors towards

understanding the interaction of complex multiple

controls (Tréguer & Jacques 1992, Marchant & Murphy

1994, Priddle et al. 1998b). At South Georgia, all the

major controls on primary production, except for graz-

ing, are reduced, so a combination of factors would

appear to enhance phytoplankton growth. These in-

clude: (1) possibly enhanced supplies of iron; (2) rapid

recycling of N; (3) temperatures that can be elevated

over the shelf due to seasonal warming; and, (4) local

inshore conditions providing shallow stable stratifica-

tion for bloom formation. All of these conditions are

most favourable either close inshore or downstream,

where chl a values are highest. Phytoplankton dou-

bling times are probably fast enough for biomass to be

built up within the system, despite fairly fast currents

off the shelf. Nevertheless, fast frontal jets and exten-

sive blooms downcurrent suggest that South Georgia

influences a very large area. Despite the frequent

blooms, the mesozooplankton and krill exert some con-

trol on phytoplankton biomass. This suggests a large

flux to these grazers, so that within the same system,

enhanced plant growth can be translated into en-

hanced animal growth.
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3.2. Controls on copepods

3.2.1. Growth and reproduction

The accumulation of copepod biomass in a retentive

system lasting possibly from weeks (offshore) to

months (onshore) should reflect the rates of both repro-

duction and growth. These are related to food avail-

ability and temperature, both of which are locally high

at South Georgia compared with other parts of the

AAZ. Given that food needs to be above a threshold

value for positive growth to take place, the prolonged

bloom season here would benefit copepods for a large

part of their life cycle.

However, regional comparisons of chl a concentra-

tion and the rates of copepod egg production and

growth do not show quite such a clear picture. While

growth rates of Calanoides acutus were strongly re-

lated to chl a concentrations, those of Rhincalanus

gigas were not (Shreeve & Ward 1998), and their egg

production rates were only weakly correlated (Ward &

Shreeve 1995). As well as the problem of time/space

effects in this analysis, chl a can be a poor proxy for

food (e.g. White & Roman 1992, Pond et al. 1996, Ross

et al. 2000). A ‘balanced diet’ including protozoans

seems to help zooplankton growth and development

(see Stoecker & Capuzzo 1990, Kleppel 1993). The pro-

tozoan community appears to be both diverse and sub-

stantial at South Georgia, but studies of food quality

are still at an early stage here (Pond et al. 1993, Cripps

et al. 1999). Experiments have suggested that, even

during blooms, some copepods (Calanus simillimus, C.

propinquus, Metridia gerlachei ) cleared protozoans

faster than diatoms of similar size, whereas C. acutus

and R. gigas cleared them at similar rates (Atkinson

1994, 1995, Atkinson et al. 1996). As in other regions

(e.g. Gifford 1993, Ohman & Runge 1994) there is a

significant flow of energy from the microbial network

to zooplankton at South Georgia.

Calanoides acutus is a dominant copepod at South

Georgia, and work on it illustrates a copepod’s re-

sponse to blooms. This mainly herbivorous species is

fully capable of ingesting bloom-forming diatoms, even

though they are often dominated by cells and colonies

>500 µm long (Atkinson 1994, 1995, Atkinson et al.

1996). The rates of feeding, growth and egg production

at high chl a concentrations fit into a plausible energy

budget. The daily ration of copepodite stage V (CV)

and adults during South Georgia blooms ranged from

10 to 27% of body C d–1 (Atkinson et al. 1992, 1996),

which fits with a respiration rate of 3.8% (Schnack et al.

1985) and egg production rates of 1.2 to 4.5% (Lopez et

al. 1993, Ward & Shreeve 1995), measured at high chl a

concentrations. Somatic growth rates are not available

for these late copepodites, but those of early cope-

podites were fast—a mean of 14% of body C d–1 for

stages CI to CIV (Shreeve & Ward 1998).

Thus copepods can respond rapidly to enhanced

microplankton biomass at South Georgia. On the time-

scale of water circulation around the island, growth

rates measured for C. acutus would have time to pro-

duce a significant increase in biomass.

3.2.2. Mortality

Copepod mortality is probably high due to the large

populations of a wide array of predator. These include

vertebrates, such as prions and diving petrels (Goss et

al. 1997, Reid et al. 1997a,b), as well as fish larvae

(North & Ward 1989,1990) and a wide range of inver-

tebrates. The latter include euchaetiid copepods (Øres-

land & Ward 1993), the amphipod Themisto gaudi-

chaudii (Pakhomov & Perissinotto 1996), and also krill.

Krill are known to be omnivorous (Price et al. 1988,

Hopkins et al. 1993a,b) but are considered to be mainly

herbivorous in summer (see Miller & Hampton 1989,

Quetin et al. 1994). However, evidence is accumulat-

ing that South Georgia krill eat other zooplankton dur-

ing non-bloom conditions. This has been indicated by

a variety of methods, including: gut content analysis

(Nishino & Kawamura 1994, Pakhomov et al. 1997a),

feeding experiments (Atkinson & Snÿder 1997) and lipid

biomarker analysis (Cripps et al. 1999, Cripps & Atkin-

son 2000). Indeed the feeding rates on 1 to 3 mm cope-

pods found in large volume incubations suggest that

when krill do feed on copepods, they could have a

major predatory impact (Atkinson & Snÿder 1997).

The biomass of krill at South Georgia far exceeds

that of any of the better known copepod predators.

Furthermore, distribution studies suggested that cope-

pod abundance was severely affected by the presence

of krill (Atkinson et al. 1999). In this respect, krill

would appear to be the most important single ‘top-

down’ control on copepod abundance. At a fine scale,

krill schools coincided with very low copepod numbers

but dispersed krill were associated with elevated con-

centrations of copepods. At the mesoscale, areas of

high krill abundance were not clearly related to hydro-

graphic features. This disassociation provided the

opportunity to separate the affects of krill and environ-

mental parameters as predictors of copepod abun-

dance (Atkinson et al. 1999). Copepod abundance was

found to be linked more closely to that of krill than to

any environmental variable measured.

Such analyses require care when interpreting cause

and effect. For example krill sometimes concentrate at

shelf breaks (Agnew & Nicol 1996, Quetin et al. 1996)

and in such cases, negative relationships with other

zooplankton could be explained by their different
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habitat preferences (see Hosie 1994). This cannot

explain the South Georgia results, as krill swarms are

found throughout the region, and the krill-copepod

interaction was more widespread than a shelf break

effect (Atkinson et al. 1999). Instead there appears to

be a direct interaction between the 2 taxa, but whether

this is through competition or predation is unclear.

Whatever the nature of this interaction, the notion

that copepod abundance is influenced so strongly by

another species is unusual. Until recently (e.g. Huntley

et al. 1989, Loeb et al. 1997) most Southern Ocean

studies have examined zooplankton from the perspec-

tive of environmental (i.e. bottom-up) factors, rather

than from top-down controls. Clearly a direct interac-

tion between krill and copepods would have profound

implications for the South Georgia food web.

3.2.3. Advection

Compared to the short doubling times of phyto-

plankton, generation times of Southern Ocean cope-

pods are typically 0.5 to 2 yr (Marin 1988, Schnack-

Schiel & Mizdalski 1994, Metz 1996), so advection will

be relatively more important in dictating their local

biomass. We cannot yet quantify advection rates of

zooplankton into the South Georgia area, or whether

there may be physical mechanisms such as convergent

fronts around the island that might concentrate bio-

mass (e.g. Franks 1992). A shelf break front was found

in the ECB (Brandon et al. 1999), but whether it acts as

a local concentration mechanism is unknown. How-

ever, the distribution, age structure and abundance of

copepods give some insights into the circulation and

residence times of water.

The neritic copepod Drepanopus forcipatus is abun-

dant not just inshore but over a large extent of the shelf

(Fig. 5). Shelf/oceanic contrasts in abundance also

occur for seasonal vertical migrants and mesopelagic

species (Fig. 6). Atkinson & Peck (1990) suggested that

this combination of patterns could be explained by a

restricted exchange of water between the shelf and the

surrounding ocean. This is supported by ADCP data

(Brandon et al. 1998, 2000) and FRAM vectors (Fig. 2a).

Brandon et al. (2000) found a distinct water mass over

the shelf, which infers that, in this region at least, local

processes have time to influence copepod growth and

reproduction.

Advection could remove copepods from this local

South Georgia region. Occurrences of the neritic cope-

pod Drepanopus forcipatus off the shelf edge (Fig. 5)

provide evidence for advection, particularly down-

stream to the north. Mackintosh (1934) found high zoo-

plankton biomass in a broad region along the Scotia

Arc, and high copepod numbers have been found

downstream of South Georgia to the north (Ward et al.

1996, Atkinson et al. 1999). Thus the enhancement,

like that of algae, may be over a large area, although

whether this represents advection or continued high

production in downstream blooms is unclear.

3.2.4. Conclusions

Zooplankton grazing can account for a significant

fraction of primary production (Table 4), which implies

efficient energy transfer between trophic levels. There

are not enough data to quantify energy flows through

the microbial food web, but the importance of proto-

zoans as dietary items for both copepods and krill in this

area suggests a significant flow of energy out of the

microbial network. Thus the retention time of water

within this system is likely to allow the enhanced pri-

mary production to be channelled up the food web and

to enhance zooplankton production. Given that krill

and copepods have roughly similar overall biomass at

South Georgia, secondary production by copepods will

far exceed that of krill for allometric reasons. However,

little is known about how copepods are incorporated

into the food web. Krill appear to be the major single

factor influencing their abundance, and the numerous

small copepods may provide an alternative food source

for krill during non-bloom periods. This may be an im-

portant trophic link given the large biomasses involved,

and warrants further investigation.
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3.3. Controls on krill

Several studies have suggested that the rates of krill

removal by land-based predators are high relative to

the krill stocks at South Georgia (Croxall et al. 1984,

1985, Trathan et al. 1995, Boyd & Croxall 1996). Recent

interpretations (Murphy 1995, Murphy et al. 1998)

have emphasised the importance of the ACC in sup-

plying krill to within the foraging ranges of these

predators. Boyd & Croxall (1996) calculated that there

must be a replenishment of the entire krill population

every month to support the land-based predators,

which were suggested as the major cause of mortality

of older krill (>40 mm length) at South Georgia. Their

calculations do not include the krill removed by

pelagic predators such as fish, squid and whales, im-

plying that the water turnover rate needs to be even

faster than 1 mo. A large part of the foraging of these

predators is over the shelf, so the suggested fast

turnover of water and krill conflicts with the evidence

for a long residence time of shelf water presented in

Section 3. The previous krill budgets have emphasised

the preliminary nature of the calculations, particularly

with regard to krill standing stock estimates. We have

also constructed a simple krill budget with current best

estimates. Unlike the other sections, the loss processes

are the best known so we start with those.

3.3.1 Factors reducing krill biomass

Although loss rates of krill due to advection or migra-

tion are unknown, we do have estimates for losses to

higher predators breeding on South Georgia. These

are from the western end of South Georgia (Fig. 1b)

where colonies of krill-eating predators are most

numerous (Boyd 1996, Prince & Poncet 1996). This end

of the island is thus the best place for a krill budget,

although we stress that it will overemphasise the

impact from land-breeding predators compared to the

rest of the system. Our estimate is for Antarctic fur

seals and macaroni penguins, which together consume

>75% of the total for land-based predators (Croxall et

al. 1985). Based on Boyd’s (1993) survey, 95% of South

Georgia’s fur seal breeding population is based on its

westernmost 60 km. Trathan et al. (1998b) show that

91% of the breeding population of macaroni penguins

are based on the Willis Islands at South Georgia’s

westernmost tip. Our budget is an average for January

when there is most information, being when BAS krill

monitoring surveys most often take place and predator

breeding studies are underway. Boyd & Croxall (1996)

assessed the demand for krill of fur seals and macaroni

penguins from a combination of physiological data and

sampling from Bird Island. From their model for Janu-

ary, the average demand for krill by the South Georgia

populations of both species was 32 000 tonnes fresh

mass d–1.

Estimates of foraging range of Antarctic fur seals and

macaroni penguins are constrained by lack of informa-

tion on the non-breeding individuals. These comprise

>50% of their populations and are not tied to feeding

around the island. So instead we have defined 2 areas,

the first described by a radius of 100 km from the Willis

Islands for the macaroni penguins and the second by a

radius of 100 km from the westernmost 60 km of the

island for the fur seals. These areas encompass most

of the foraging by the breeding adults of the 2 species,

which need to return regularly to the island to feed

young (Boyd 1998, Boyd et al. 1998, Trathan et al.

1998b). The 100 km radius from Willis Island, where

the foraging by both species overlaps, is the defined

area of our krill budget. For this area, we calculate a

total food removal by both species of 0.94 g fresh mass

m–2 d–1.

The estimated krill demand can be compared with a

mean krill biomass of 30 g fresh mass m–2. This is

derived from acoustic monitoring surveys in the area of

the krill budget, mainly in the 6400 km2 WCB (n = 5 yr,

range of annual means = 21 to 45 g fresh mass m–2;

Brierley et al. 1999b). The comparison suggests that in

this region the rate of removal of standing stock is, on

average, ~3% d–1.

This estimate is subject to several sources of varia-

tion or bias. Our defined area encompasses most, but

not all, of the feeding area for those fur seals and mac-

aroni penguins that are breeding and have to return

regularly to land. A large proportion of the foraging by

adult fur seals from Bird Island was found to occur well

outside this 100 km radius (Boyd et al. 1998), so their

impact would be less than that calculated. The fact

that >50% of the populations of both species are non-

breeders, which may not be so in the South Georgia

system, would also mean that their actual predation

pressure is substantially less than our calculated value.

Although these 2 species are responsible for >75% of

the krill eaten by land-based predators at South Geor-

gia, other species, mainly white-chinned petrels Pro-

cellaria aequinoctialis and prions Pachyptila spp., are

not tied to feeding within the area of our budget, and

so their additional impact is probably small. Also, we

have assumed that the mean krill biomass sampled

within a portion of the budget area is representative of

that of the whole. From limited data (Priddle et al.

1986), this does not appear to be an unreasonable or

biased assumption.

Our calculated predation impact is superficially sim-

ilar to that calculated by Boyd & Croxall (1996). How-

ever, our generous assumptions about the foraging

ranges of the 2 species (see above) means that their
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removal of krill from the budget area is probably less

than our estimate. Also, Boyd & Croxall’s (1996) budget

was for the whole South Georgia system, whereas ours

is just for the end of the island where most of the land-

based krill predators breed. Thus for the South Geor-

gia system as a whole, and also outside of the breeding

season, the land-based predators are likely to crop a

smaller krill biomass per km2 than our estimate sug-

gests. Future measurements will refine this simple

budget, but at this stage it appears that each day the

land-based predators remove a percentage of the krill

biomass which is in low single figures.

3.3.2. Factors enhancing krill biomass

The estimate of krill removal at the western end of

the island can be compared with rates of local growth

and physical flux through the area. The only local mea-

surements of krill growth are from Clarke & Morris

(1983). Their rates, equivalent to ~3.5% of body mass

d–1, were questioned by Quetin et al. (1994) for being

higher than other literature values, but they suggested

that growth rates in this food rich, warm water area

may indeed be higher than those further south.

Growth rates equivalent to ~2% of body mass d–1 were

found by Rosenberg et al. (1986) in the Scotia Sea-

South Georgia region. These are more representative

of the higher range of values from further south. Con-

sidering the phytoplankton blooms, and temperatures

reaching as much as 4°C, growth rates of ~2 to 4% d–1

are not unreasonable. They fit krill rations of ~13 to

25% of body C d–1 in high food concentrations (Clarke

et al. 1988, Perissinotto et al. 1997) and with growth

rates inferred from Antarctic fur seal diets (Reid 2001).

Whatever the exact values, a krill growth rate of a few

percent of biomass per day is probably of a similar

order to our best estimates of their removal by land-

based predators during their breeding period.

Since krill do not appear to breed at South Georgia,

advection has long been known to be important in sup-

plying them to the area (see Everson 1984, Murphy et

al. 1998 for reviews). The area of our krill budget covers

2 zones of contrasting hydrographic conditions. In the

inner, or shelf zone, advection is much slower than in

the outer, or oceanic zone. However, even the sluggish

currents over the shelf are likely to supply a substantial

amount of krill to the budget area, compared to their

rate of removal by land-based predators. Based on a

4.2 cm s–1 current speed (see Section 3.1) over a ~60 km

wide northern shelf, ~0.7% of the water in the budget

area would be replaced each day. Currents over the

southern shelf would also help to resupply krill to this

end of the island, as would exchanges between the fast

oceanic currents and the shelf. A site for such an ex-

change was noted in the vicinity of a Taylor column

over an area of shallow topography in the WCB (Bran-

don et al. 2000). Therefore we suggest that advection,

when combined with local growth, would easily meet

the demands of local land-based predators.

3.3.3. Conclusions

Our conclusions contrast with those from previous

studies (Croxall et al. 1984, 1985, Murphy 1995, Trathan

et al. 1995, Boyd & Croxall 1996). The budget suggests

that there does not need to be either a fast turnover of

krill or an efficent concentration mechanism to meet

the demand from predators based on South Georgia.

Their impact in summer probably accounts for no

more than a few percent of standing stocks, and this is

probably of a similar order to the growth rates of krill.

Our suggestion that krill growth counteracts biomass

removal would explain the discrepancy between the

previous suggestions of a long residence time of shelf

water and a <1 mo turnover time. If krill are growing at

a similar rate to their biomass removal, the ACC does

not need to supply a large biomass continually. It

needs to replace the individuals lost to predation, and

slower rates of exchange would appear to be sufficient

to do this. Therefore, local growth may be a significant

factor in the mass balance of krill in this region.

Our budget encompasses a time and place where de-

mand for krill by land-based predators is likely to be

maximal. The location and timing of such a budget will

dictate its outcome. For example, to the northeast of

South Georgia krill biomass is substantially higher than

in our region to the west (Brierley et al. 1999b), yet the

impact from land-based higher predators would be re-

duced. Conversely, at smaller scales, such as near Bird

Island or over the northwestern shelf break, where mac-

aroni penguins often forage, localised predation pres-

sure may at times be intense, especially on the larger

krill which are preferentially selected (Reid et al. 1996).

With both advection and growth counteracting krill

removal by land-based predators, there could be im-

portant but unmeasured loss terms in the krill budget.

Our estimates are restricted to land-based predators,

and these have been well assessed. However, we need

better assessments both of transport processes and of

removal rates by fish, squid and whales.

4. INTERANNUAL VARIABILITY

4.1. Introduction

Change, on a variety of temporal scales, must be

characterised in order to develop an appreciation of
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ecosystem functioning. The seasonal timescale is domi-

nant in the Antarctic (Smetacek et al. 1990, Clarke &

Leakey 1996). However, the longer time scales—inter-

annual and longer—have been thrown into focus by

current emphasis on climate change. It is ironic that at

South Georgia, due to the logistical difficulty of winter

surveys, we know more about interannual variability

than of the much more profound differences between

summer and winter. Seasonal changes have been dis-

cussed in Sections 2 and 3, while here we synthesise

the available information on change over longer scales.

Since the Discovery Investigations, interannual vari-

ability has been known to characterise South Georgia

(Harmer 1931, Kemp & Bennet 1932, Deacon 1977). A

striking manifestation of this is the condition, diet and

breeding success of krill-reliant predators (Croxall et

al. 1988, Kock et al. 1994, Everson et al. 1997). These

have been linked clearly to periodic (once or twice a

decade) shortages of krill around the island (Murphy et

al. 1998, Brierley et al. 1999b). Interannual variability

also occurs in water temperatures, seasonal nutrient

deficits, phytoplankton biomass and copepod biomass

(Deacon 1977, Whitehouse et al. 1996a, Atkinson et al.

1999). Understanding the causes, effects and implica-

tions of this is now an active area of Antarctic marine

research (e.g. Palmer LTER Group 1996). The state

of knowledge at South Georgia has been covered

recently (Whitehouse et al. 1996a for oceanography,

nutrients and chl a; Murphy et al. 1998 for krill) so we

provide only a brief resumé here.

4.2. The environment and lower trophic levels

The earliest observations of interannual variability at

South Georgia are from the whaling records. Harmer

(1931) and Kemp & Bennett (1932) documented ‘fin

whale years’ and ‘blue whale years’ associated with

oscillations in the catches of these 2 species. These

appeared to be related to warm and cold air tempera-

tures respectively, and were suggested to reflect inter-

annual fluctuations in the environment. Deacon (1977)

found a direct link between anomalously warm and

cold seawater temperatures and coincident air temper-

atures measured at one of the whaling stations. White-

house et al. (1996a) examined interannual variability

of temperature, salinity, nutrients and chl a using all

available data for the period 1926–1990. They found a

link between abnormally warm or cold water tempera-

tures around the island and the duration of sea ice in

the Southern Scotia Arc in the previous winter. This

analysis, together with that of Deacon (1977), suggests

that water temperatures around the island reflect

wider scale (Scotia Sea or larger) climatic processes

rather than local changes (Whitehouse et al. 1996a).

Comparisons of nutrients, chl a and the physical

environment provide insights into interannual vari-

ability in the lower trophic levels (Whitehouse et al.

1996a). Silicate concentrations fell to potentially limit-

ing levels (<5 mmol m–3) during 3 of the 11 summers

where data were available. Using the winter to sum-

mer decrease in mixed layer nutrient concentrations as

a crude gauge of the summer’s total export primary

production, Whitehouse et al. (1996a) found that sea-

sons of anomalously low water temperatures (e.g.

1981/1982) tended to have low total export primary

production, whereas warmer seasons such as 1985/1986

had higher total export production. The next step

would be to examine whether this interannual variabil-

ity is translated into signals in biogeochemical cycling

and higher trophic levels. Although krill have now

been monitored for several years (Brierley et al. 1999b),

mesozooplankton have only recently been monitored

consistently. Early indications are that the large fluctu-

ations in biomass that occur for krill at South Georgia

also occur for the copepods. In the first 3 yr of monitor-

ing, copepod biomass varied by nearly an order of

magnitude, with the highest biomass in a season of

abnormally low krill biomass (Atkinson et al. 1999).

4.3. Krill

During the last few decades there have been sum-

mer seasons (1977/1978, 1983/1984, 1990/1991, 1993/

1994, 1998/1999) when krill biomass was only ~5 to

10% of the mean values in other years (Fedoulov et al.

1996, Murphy et al. 1998, Brierley & Goss 1999, Brier-

ley et al. 1999b). We stress, however, that krill biomass

varies widely between years, and one cannot easily

designate ‘normal’ or ‘poor’ krill years. It is uncertain

how long these periods of low biomass last, although

poor krill years do not appear to be concurrent; several

months of low biomass seems more likely. In the poor

krill year of 1993/94, surveys in January found low

biomass (Brierley et al. 1997) but by March, krill

had returned, and by April they supported a fishery

(Pakhomov et al. 1997a). However, if the timing of the

low krill abundance coincides with the breeding cycle

of land-based higher predators, the effects are dra-

matic, with widespread breeding failures, particularly

of gentoo penguins Pygoscelis papua and Antarctic fur

seals (Croxall et al. 1985, 1999). Icefish condition and

possibly their survival and breeding success also appear

to be impaired in poor krill years (Kock et al. 1994,

Everson et al. 1997, 1999). Other krill predators such

as macaroni penguins, however, appear to be able to

switch to alternative prey such as the amphipod,

Themisto gaudichaudii, and do not suffer such a

breeding failure (Croxall et al. 1999).
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Although these effects are well documented, their

causes are still unclear. Cyclical variations in the envi-

ronment of approximately the correct period have

been found in Antarctica, e.g. the 7–9 yearly circum-

polar precession of sea ice (Murphy et al. 1995, White

& Peterson 1996), and El-Niño Southern Oscillation

events. However, after summarising the observations

to date, Murphy et al. (1998) concluded that none of

the environmental factors that have been measured so

far show any clear or direct link to the ‘poor’ krill years.

Several explanations have been forwarded. All, how-

ever, invoke large-scale (Scotia Sea or larger) pro-

cesses rather than local changes at South Georgia. An

early suggestion was of large-scale southwards move-

ments of the PF (Heywood et al. 1985, Atkinson & Peck

1988), but recent oceanographic findings make this

unlikely (see Section 2.1.2). Later ideas have impli-

cated the position of the Weddell-Scotia Confluence

relative to the island (Maslennikov & Solyankin 1988)

or periods of anomalous southerly airflow, which broke

down the retention mechanisms of krill in the Scotia

Sea, causing large scale demographic changes (Prid-

dle et al. 1988). The latter authors ruled out the possi-

bility that the failure of a single year class in the region

supplying South Georgia’s krill could result in bio-

masses ~5 to 10% of more typical values. However,

this explanation has been revisited recently (Murphy

et al. 1998, Reid et al. 1999). Based on data from krill

predators, net catches and population models, these

authors invoked the interaction of both biological and

physical factors for the irregularly occurring low krill

biomass, and suggested how failure of a year class in

the source region would be seen at South Georgia.

However, Murphy et al. (1998) pointed out that there is

no direct link; not all recruitment failures upstream, in

the Antarctic Peninsula area, precede low krill biomass

years at South Georgia.

For an animal which can live for 5 to 7 yr (Siegel

1987), the idea that the failure of a single year class

could cause such a reduction would seem implausible.

However, the scarcity of very large krill around South

Georgia (Reid et al. 1999, Watkins et al. 1999), would

make the scenario possible if mortality rates, particu-

larly of the larger krill, are high (Murphy et al. 1998).

This may be the case close to Bird Island, but in the

wider South Georgia system we do not know the mor-

tality of krill relative to that at the Antarctic Peninsula

for instance.

Indeed, if South Georgia is an area of expatriation

from more than one source region, gaining a full

understanding of krill population dynamics here will

be challenging. Population dynamics in the Weddell

Sea and Antarctic Peninsula area may differ (e.g.

Siegel et al. 1990, Quetin et al. 1994, Siegel & Loeb

1995), so mixing from these potential sources would

complicate the patterns observed. Watkins et al. (1999)

suggested that variations in age structure of krill seen

at South Georgia could also reflect variable growth

and mortality, both during their transit to the island

and their residence there.

Clearly then, there is much to be learnt before we can

understand, and successfully predict, the variation in

stock sizes of krill at South Georgia. A broadening of

approach is now required, although continued monitor-

ing of biomass and population structure is still needed,

combining data from predators (Reid et al. 1996, 1999),

acoustics (Brierley et al. 1997) and nets (Watkins et al.

1999). It would, for example, be advantageous to study

krill growth and mortality rates. South Georgia is an

atypical habitat for this adaptable species; there is no

reason to suppose that the processes governing local

population structure are the same as those elsewhere.

5. CONCLUDING DISCUSSION: ENERGY FLOW

IN THE SOUTH GEORGIA FOOD WEB

The seas around South Georgia are characterised

not only by high biomass at every trophic level, but

also by high rates of growth and transfer between

trophic levels. Recent interpretations of its food web

have stressed the role of advection. This transports

energy, in the form of krill biomass, from higher lati-

tudes to South Georgia, where it is made available to

land-breeding predators (Croxall et al. 1984, 1985,

Priddle et al. 1988, Murphy 1995, Trathan et al. 1995,

Boyd & Croxall 1996, Murphy et al. 1998). Our review

has emphasised that enhanced fluxes within the food

web also generate high biomass. This is available

either for consumption by higher predators, transfer

downstream, or sedimentation.

However, if continued high rates of energy flow are

needed to support the large stocks of grazers, it would

be latently unstable without some kind of feedback

preventing overgrazing. High energy flow from the

base of the food web requires substantial plant bio-

mass, as well as high individual growth rates (Banse

1985). Continued herbivory and overgrazing, for ex-

ample by a krill aggregation, would mean diminishing

returns for the krill, as the phytoplankton would take

weeks to recover from such a low biomass. A simple

comparison of zooplankton plus krill biomass (~10 g C

m–2) and a representative primary production rate of

~1 g C m–2 d–1 (Table 1) would imply that grazing

impact should be great. However, actual measure-

ments of mean grazing impact do not exceed 50% of

daily primary production (Table 4). This, plus the fact

that summer chl a concentrations rarely fall below

1 mg m–3, suggest that some kind of a feedback pre-

vents overgrazing and maintains the high energy flow.
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To examine this we return to krill, which appear to

have a pivotal role in this system, and try to look at

food shortage from the perspective of a school. Forag-

ing and search strategies within aggregated and dis-

persed krill schools are clearly important (Hamner et

al. 1983, and see Miller & Hampton 1989), but these

are poorly understood. Further to these, we speculate

that feedbacks operate at larger time and space scales,

reducing overgrazing and maintaining energy flow

(Fig. 7). One possible feedback is through excretion

and nitrogen regeneration (Section 3.1.1), but this

must remain speculative until we know more about

the dynamics of nitrogen preference in a cold water,

nitrate-replete system. The other possible feedback is

through direct and indirect grazing interactions. The

overall biomasses of krill and copepods at South Geor-

gia are roughly similar, and when feeding herbivo-

rously they would compete (Schnack 1985). There was

a negative relationship between krill and copepod

abundances at a fine scale, mesoscale and possibly at

an interannual scale. This appeared to be a direct

effect of the krill, but however it came about, it would

reduce the competition from copepods. Evidence that

copepods were displaced downwards by krill schools

(Atkinson et al. 1999) suggests competitive exclusion.

Krill swim faster than copepods, and could leave

locally overgrazed areas to feed elsewhere.

However, where krill are abundant, low algal bio-

mass, probably due to grazing, has been found (Hardy

& Gunther 1935, Antezana & Ray 1984). We speculate

that when this occurs at South Georgia, krill switch

to protozoans or copepods. This would alleviate their

impact on phytoplankton, and by removing other her-

bivores it would reduce their impact also. We probably

observed this during the summer of 1996, when krill

biomass was fairly high yet phytoplankton biomass

was not exceptionally low, averaging ~1 mg chl a m–3.

Analysis of gut fluorescence, biomarkers, and feeding

experiments suggested that the krill ingested few

algae and had little impact on stocks (Atkinson &

Snÿder 1997, Cripps et al. 1999). Instead their clear-

ance rates on protozoans and copepods were high, and

this may have been a significant cause of copepod

mortality. We suggest that food switching between

trophic levels according to availability could mean that

krill, and possibly copepods, have a stabilising effect

on population sizes within the lower trophic levels.

Moreover, this stabilising effect maintains high rates of

energy flow up the food chain, which at South Georgia

results in greater food availability for higher predators.

The identification of factors such as these is a pre-

requisite to a better understanding of the South Geor-

gia pelagic ecosystem.
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