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Southern Hemisphere forcing of South Asian
monsoon precipitation over the past ~1 million
years
D. Gebregiorgis1,2, E.C. Hathorne1, L. Giosan3, S. Clemens 4, D. Nürnberg1 & M. Frank1

The orbital-scale timing of South Asian monsoon (SAM) precipitation is poorly understood.

Here we present new SST and seawater δ18O (δ18Osw) records from the Bay of Bengal, the

core convective region of the South Asian monsoon, over the past 1 million years. Our records

reveal that SAM precipitation peaked in the precession band ~9 kyrs after Northern Hemi-

sphere summer insolation maxima, in phase with records of SAM winds in the Arabian Sea

and eastern Indian Ocean. Precession-band variance, however, accounts for ~30% of the total

variance of SAM precipitation while it was either absent or dominant in records of the East

Asian monsoon (EAM). This and the observation that SAM precipitation was phase locked

with obliquity minima and was sensitive to Southern Hemisphere warming provides clear

evidence that SAM and EAM precipitation responded differently to orbital forcing and

highlights the importance of internal processes forcing monsoon variability.
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B
y 2050 over 5 billion people will live in the region directly
influenced by the South Asian monsoon (SAM)1, for whom
a better understanding of the forcing mechanisms and

improved forecasts will be critical. The conventional view is that
the SAM is primarily driven by interhemispheric temperature/
pressure gradients between the Asian continent (particularly low
pressure zones over the Tibetan Plateau and India) and the
southern subtropical Indian Ocean2, although the role of Tibetan
plateau summer warming has recently been challenged3. Varia-
bility in SAM precipitation over the instrumental period has been
considered to be directly linked to ENSO in that monsoonal
precipitation over land tends to decrease during El Niño years4.
However, under the influence of global warming this relationship
has become markedly less clear5,6. It is thus not surprising that
simulating the basic aspects of the SAM remains difficult for even
the most advanced coupled ocean–atmosphere general circulation
models7. The same holds for our understanding of the link
between monsoon precipitation and Northern Hemisphere (NH)
summer insolation on orbital time scales, where insolation is
modulated by Earth’s precession, obliquity and eccentricity
cycles8.

Previous studies of SAM variability on orbital time scales have
mainly relied on wind-based proxies from the Arabian Sea9,10.
Interpretation of the biological proxies is based on modern
observations demonstrating that strong summer monsoon winds
promote upwelling-driven productivity and a distinct plankton
assemblage11. Lithogenic grain size proxies are directly linked to
the transport capacity of the summer monsoon winds12. In the
eastern Indian Ocean, Bolton et al.13 used δ18O gradients between
two planktic foraminiferal species to reconstruct wind-driven
upper ocean stratification changes which, unsurprisingly, exhibit
orbital frequencies similar to the wind-driven proxies from the
Arabian Sea. Several of these records indicate a consistent time

lag of ~8–9 kyrs between peak NH summer insolation and peak
wind intensity at the precession band9,10. This is in direct contrast
to the speleothem δ18O records from central China that reflect
the isotopic composition of East Asian monsoon (EAM) pre-
cipitation14 and lag NH insolation by only ~3 kyrs15–18 in the
precession band. The trans-regional complexity of the monsoon
response to orbital forcing is further demonstrated by a spe-
leothem δ18O record from Southwest China that is directly in-
phase with precession19. The fact that the δ18O signal of pre-
cipitation does not directly reflect rainfall amount14 implies that
records integrating the signal from large river catchments are
more likely to reflect monsoon rainfall. A new δ18Osw record
integrating the signal from the Yangtze river valley indicates that
precession and direct insolation forcing were not the dominant
drivers of the EAM20. This highlights a fundamental lack of
understanding of the internal climate processes regulating the
Asian monsoon response to insolation forcing. This situation is
perpetuated by the lack of proxy records of monsoon precipita-
tion variability rather than that of wind. The assumption that
monsoon rains and winds have been linearly related in the past
has yet to be tested and, given that it is the amount and intensity
of monsoon precipitation which are of direct societal relevance,
filling this knowledge gap is vitally important. The ideal location
for recovering such records is the core convective region of the
South Asian monsoon in the Bay of Bengal where the existing
short monsoon precipitation record21 can now be extended using
recently obtained drill cores.

The Bay of Bengal has a low-salinity surface “boundary layer”,
that is present year round, caused by river runoff and direct
precipitation over the ocean (Fig. 1). The net annual surface
freshwater budget (i.e. precipitation plus runoff minus evapora-
tion) is primarily driven by intense freshening of the surface
ocean during the summer monsoon season (see Supplementary
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Fig. 1 Summer net precipitation in the Asian monsoon domain and modern day salinity and δ18Osw measurements. a Precipitation minus evaporation

(mm/day) in the Asian monsoon domain for the period 1979–2015 (precipitation and evaporation data from ERA-Interim global reanalysis dataset).

Andaman Sea core sites NGHP 17 (ref. 27) and SSK 168 (refs. 28,29) are shown in yellow and dark green-filled circles. Filled circles show cave and core

locations from mainland China15,19, the Arabian Sea9,10 and the equatorial eastern Indian Ocean (ODP758)13. b Paired δ18Osw and salinity measurements

from surface water samples collected from the Andaman Islands in 2011 and 2013 (see Methods) and estimates of δ18Osw calculated based on planktic

foramifera late Holocene (0–2 kyrs) δ18O values and modern day mean annual SST50(see Methods for δ18O–temperature calibration equation) for six core

locations along the N-S transect shown in black circles with numbers (see legend). Measured δ18Osw values shown in red-filled circles are from Achyuthan

et al.51 and are collected close to the Andaman Islands in December 2008
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Note 1 for detailed description of the regional oceanography) as
confirmed by in situ observations of salinity in the Bay of Bengal
and the Andaman Sea22,23. Sea surface salinity (SSS) variability in
the Andaman Sea and Bay of Bengal is characterised by a semi-
annual cycle of mixed layer and thermocline depth variations
intrinsically linked to the seasonally reversing monsoonal circu-
lation24,25. Some of this is the result of wind-driven mixing but
the amount of freshwater in the boundary layer is ultimately
controlled by monsoon precipitation in preceding years.

Here, we combine Mg/Ca measurements (a proxy for the
temperature prevailing during calcification) and oxygen isotope
(δ18O) analyses of the calcite shells of mixed-layer dwelling
planktic foraminifera Globigerinoides sacculifer (present all year
round in the Bay of Bengal26) in core NGHP 17 (ref. 27) to
generate a unique orbital scale SAM precipitation record for the
last ~1 million years. Furthermore, we replicated these findings
with a deeper dwelling species Neogloboquadrina dutertrei known
to thrive under the summer monsoon conditions near the fresh
boundary layer in the Bay of Bengal26.

Our results reveal that SAM precipitation was weak during
glacial maxima and generally stronger during interglacials.
Superimposed on this, higher frequency variations of SAM pre-
cipitation peaked in the precession band ~9 kyrs after NH inso-
lation maxima, in-phase with wind-driven changes in the Arabian
Sea9,10 and upper ocean stratification in the Eastern Indian
Ocean13. In contrast to the precession-dominated wind-driven
records and the speleothem records from the EAM domain15–19,
the precession band only accounts for ~30% of the total variance
of SAM precipitation and thus cannot be considered the primary
driving force. At the same time, the fact that precession-driven
variability is missing in new δ18Osw records from the East China
Sea20 provides the clearest evidence that the East Asian and South
Asian monsoon systems have responded independently to orbital
insolation changes. Our SAM precipitation record demonstrates
that obliquity forcing has played a much larger role than pre-
viously considered and was triggered by Southern Hemisphere
warming and cross hemispheric moisture transport rather than
NH insolation.

Results
δ18O and salinity relationship. The δ18O signature of planktic
foraminifera is a function of calcification temperature and the
δ18O of ambient seawater (δ18Osw). The close relationship
between salinity and the oxygen isotope (δ18O) composition of
seawater in the region is verified by our new paired δ18Osw, and
salinity measurements of surface water samples collected from the
Andaman Islands in 2011 and 2013 (Fig. 1). The salinity and
δ18Osw gradient across the Bay of Bengal is replicated by the
δ18O composition of planktic foraminifera from core sites across
the Bay of Bengal confirming the fidelity of this proxy28,29

(Fig. 1). The Mg/Ca ratio of planktic foraminiferal calcite has the
unique advantage of being an independent temperature proxy
that is measured on the very same shells as δ18O. Paired Mg/Ca–
δ18O measurements therefore allow the accurate reconstruction
of temperature and δ18Osw signals. Given the regional nature of
salinity–δ18Osw relationships, we cannot extrapolate the modern
relationship to provide absolute SSS values for the past (especially
during drier intervals). However, the reconstructed changes in
δ18Osw are principally a function of the amount of fresh surface
water in the boundary layer and proportional to SSS changes in
the Andaman Sea. This provides a unique, continuous summer
monsoon precipitation intensity record from the heart of the
SAM core convective region.

SST and δ18Osw records. The reconstructed SST, δ18O and
δ18Osw show consistent patterns for the past ten
glacial–interglacial periods documenting generally weak monsoon
intensity during glacial maxima, in agreement with previous
reconstructions for the last glacial maximum28,29, and a strong
monsoon during the past ten interglacials (Fig. 2). Superimposed
on this pattern are higher frequency variations driven by pre-
cession and obliquity, indicating relatively strong intervals of
monsoon precipitation within glacial stages 4 and 6. Coldest SSTs
between 24 and 25 °C are observed consistently during all major
glacial stages (e.g. LGM, MIS 4, MIS 6 and MIS 10) while the
onsets of MIS 11, MIS 17 and MIS 21 were marked by sig-
nificantly warmer SSTs (~28 °C). This is also clearly reflected in
the spectral analysis with SST, δ18O, δ18Osw dominated by ~100
kyr eccentricity, 41 kyr obliquity (tilt) and ~23 kyr precession
(ETP)30 cycles (>90% CI) (Fig. 3). One key point to note is that
δ18Osw variability within the mixed layer and thermocline in the
Andaman Sea are remarkably consistent with each other (see
Fig. 3c and Supplementary Note 1). SST and δ18Osw variations
are highly coherent with precession (>95% CI) and to lesser
extent in the obliquity band (>80% CI). Precession-related var-
iance in the δ18Osw records, however, accounts for at most 30%
of the total variance.

Phasing of South Asian monsoon precipitation. To understand
the link between tropical SST in the Andaman Sea and monsoon
precipitation, we analysed phase (time lead/lag) relationships
between SST and δ18Osw records with respect to ETP30. In
addition, we compared the phasing with wind records (two
Arabian Sea monsoon stacks hereafter denoted AS19 and AS210,
and upper ocean stratification in the equatorial eastern Indian
Ocean13), and the recently published composite cave δ18O
records from Southwest19 and East China15 to understand the
variability of the Asian monsoon systems on orbital time scales.
Figure 4 summarizes coherence and phase relationships between
our new Andaman Sea records and ETP30 in the precession and
obliquity bands. Only precession and obliquity phase wheels are
presented as the very small eccentricity changes trigger only
negligible ~100 kyr power in seasonal or mean annual insolation
variations and cannot account for the dominant ~100 kyr cycli-
city. The SST record strictly follows peak insolation changes
without delays. In stark contrast, the δ18Osw derived from the
same samples significantly lags maximum NH insolation by ~9
kyrs in the precession band (Fig. 4). This is also consistent with
the ~4 kyrs phase lag of the δ18Osw record with respect to ice
volume minima inferred from the benthic δ18O record (see
methods). In the obliquity band, the Andaman Sea δ18Osw
records are nearly in-phase with obliquity minima. The δ18Osw
lag appears to be close to ice volume maxima and sensible heat
minima, which lead/lag obliquity maxima/minima by ~14 and 6
kyrs, respectively.

Discussion
Our new SAM precipitation record has the same precession-band
phasing as the SAM wind-strength/upwelling records; all are
offset by ~3 to ~5 kyrs with respect to minimum ice volume and
the Chinese cave δ18O records15. This ~9 kyr lag between
Andaman Sea SST and δ18Osw records demonstrates that direct
NH summer insolation forcing has not set the timing and
strength of SAM precipitation in the precession band. At the
same time, nearly identical phasing between the thermocline
δ18Osw and mixed layer δ18Osw (see Fig 4 and Supplementary
Figure 10) records substantiate that the strong monsoon
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precipitation signal has consistently been imprinted within the
relatively fresh layer extending down to the thermocline. The
strong coupling between basin-scale monsoon winds over the
Arabian Sea and eastern Indian Ocean and SAM precipitation,
and the significantly longer phasing offset with respect to mini-
mum ice volume supports the role of Southern Hemisphere
warming in triggering the cross-equatorial transport of latent heat
powering the SAM circulation10,12.

Our results indicate broad-scale precession-band coherence
within the SAM region, from the Arabian Sea through to the Bay
of Bengal, as derived from a wide variety of monsoon proxies.
These consistent results argue against the hypothesis that tropical
monsoon (EAM and SAM) variability is dominated by and
responds directly to NH summer solar radiation on orbital time
scales, a hypothesis strongly debated since it was promoted by
Wang et al.31The new δ18Osw records from the East China Sea
off the Yangtze river do not show the precession-related

variability that dominates the speleothem records from Yangtze
river valley caves, suggesting that EAM precipitation is more
sensitive to internal forcing such as greenhouse gas and high-
latitude ice sheet dynamics rather than directly responding to NH
summer insolation20. It is not surprising that a record of upper
ocean stratification from the equatorial eastern Indian Ocean13

exhibits orbital frequencies similar to the wind-based proxies
from the Arabian Sea given that the equatorial region is well
beyond the influence of monsoon freshwater (Fig. 1). The wind
forced records from the Arabian Sea and Eastern Indian Ocean13

are dominated by orbital precession, while our new δ18Osw record
of SAM precipitation is clearly distinct from both the SAM wind
proxies and the new EAM precipitation records20. This is indi-
cative of complex internal forcing and demonstrates the spatial
heterogeneity of monsoon precipitation response to orbital for-
cing over the vast Asian continent, as well as the decoupling of
SAM precipitation from wind intensity and stratification changes
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over the Arabian Sea and eastern Indian Ocean. In particular, the
prevalence of distinct spectral peaks in the new SAM δ18Osw
record at ~178 kyrs and ~30 kyrs, which represent heterodynes of
the primary orbital periods demonstrates that the response of
SAM precipitation to orbital forcing, similar to EAM precipita-
tion20, was strongly non-linear. SAM precipitation was clearly
sensitive to internal processes that combine precession, obliquity
and eccentricity band forcing documenting that precession for-
cing was not the sole driver of SAM precipitation.

In the obliquity band, the Andaman Sea δ18Osw records are
nearly in-phase with obliquity minima. This is opposite to obli-
quity timing estimates of summer monsoon wind maxima in the
Arabian Sea9,10, while records of upper ocean stratification from
the Eastern Indian Ocean13 only show weak coherence with
obliquity and negligible obliquity related variance. This demon-
strates that SAM precipitation is mainly driven by different
processes from those affecting SAM wind intensity, and is more
sensitive to obliquity driven warming in the Southern Hemi-
sphere high latitudes. The δ18Osw lag appears to be close to ice
volume maxima and sensible heat minima, which lead/lag obli-
quity maxima/minima by ~14 and 6 kyrs, respectively. This
nearly 180° out-of-phase relationship between monsoon pre-
cipitation and maximum obliquity indicates that neither
decreased ice volume nor increased latent heat export following
obliquity maxima set the phasing of SAM precipitation. We
instead propose that obliquity forcing has played a vital role in
local monsoon intensification through enhanced cross-
hemispheric atmospheric moisture fluxes given that the reduc-
tion in Earth’s obliquity forcing induce strong summer thermal
gradients between the two hemispheres32. The observed monsoon
intensification during periods of decreased obliquity forcing and
some glacial stages (e.g. Fig. 2. MIS 4 and 6) is thus likely due to
the net poleward moisture transport that was triggered by
enhanced heat transport following Southern Hemisphere warm-
ing. In addition, asymmetric heating of the tropics following
decreased obliquity may have led to a La Niña like state and a
strengthening of the Walker circulation, which would have
brought low pressure zones closer to the South Asian sub-
continent33. On the other hand, the presence of the ~100 kyr
cycle in these records (Fig. 3) indicates that sea-level changes may
have also influenced basin isolation and monsoon intensification.

Our new records provide compelling evidence that precession-
driven variability of SAM precipitation around the Andaman Sea
is consistent with that observed in SAM wind/upwelling and
upper ocean stratification proxies from the Arabian Sea and
eastern Indian Ocean, supporting a strong sensitivity to Southern
Hemisphere (SH) warming. However, in contrast to these records
we show that obliquity plays a vital role in the orbital pacing of
SAM precipitation via combined SH warming and asymmetric
heating of the tropics. In the course of global warming of the last
century, the wind speed over the Arabian Sea has increased while
precipitation over India exhibited no clear trend34. This decou-
pling is similar to that observed between maximum obliquity
forcing of past SAM winds and records of upper ocean stratifi-
cation in the Eastern Indian Ocean13. In view of these results, the
role of atmospheric moisture flux triggered by hemispheric
insolation gradients and the feedback processes between ENSO
and Southern Hemisphere climate need to be examined using
transient model simulations in the future. A better understanding
of these mechanisms will significantly improve the prediction of
SAM precipitation.

Methods
Age model and oxygen isotope stratigraphy of NGHP 17. In 2006, the Indian
National Gas Hydrate Program (NGHP) used the IODP vessel JOIDES Resolution

to core Site 17 (10° 45.19’ N, 93° 6.74’ E) in a water depth of 1356 m in the
Andaman Sea27. The upper 118 m of foraminifera-rich nannofossil ooze was APC
cored with excellent recovery, and we present data here for the upper ~50 m of the
core. The age model of site 17 was constructed by aligning unambiguous
glacial–interglacial ~100 kyr cycles of the benthic δ18O record with an amplitude of
1.75 ‰, with equivalent features in the LR04 global benthic δ18O stack35 using
Analyseries36 (Supplementary Figure 1). C. wuellerstorfi and C. mundulus are
epibenthic foraminiferal species, and δ18O values were adjusted to equilibrium by
adding 0.64 following Shackleton et al.37. For the upper section of the core, the age
model was further supported by five 14C dates converted to conventional ages and
the identification of the youngest Toba ash layer38. The AMS 14C ages were cor-
rected for marine reservoir ages that were determined locally39. Core scanning XRF
Ti/Ca ratios from this core and a recently drilled nearby core (U1448) were used to
determine the length of the inconsequential core gaps at Site NGHP 17 (Supple-
mentary Figure 2). The mean sedimentation rate remained relatively constant
throughout the studied period and is on average 5 cm/kyr (Fig. 1b). To investigate
whether this tuning approach is robust, we performed spectral and evolutionary
spectra wavelet analysis of the resulting NGHP 17 benthic record in both age and
depth domains (Supplementary Figure 3). Spectral analysis of the NGHP
17 benthic record in the depth domain reveals strong power spectra at 0.002, 0.005
and 0.007 m/cycle and to a lesser extent at 0.003 and 0.006 m/cycle. These peri-
odicities have nearly precise 1:1.5:4 frequency ratios, which demonstrate the pre-
sence of Milankovitch-related periodicities in the depth domain coherent with the
age domain. The absence of a strong shift in the depth domain wave bands also
confirms that sedimentation rates remained largely constant. The accuracy of the
age model depends on the accuracy of the assumption of synchronicity with the
LR04 benthic stack35. During the period with radiometric age constraints and the
Toba ash this assumption seems valid (Supplementary Figure 1). Consequently,
phasing offsets between NGHP 17 benthic record and the LR04 benthic stack35 are
used to quantify age model uncertainties. The phase error associated with our age
model excluding the uncertainty associated with the benthic stack35 is ± 3 kyrs for
the 100 kyrs-eccentricity cycle, ± 0.5 kyrs for the 41 kyrs-obliquity cycle and ± 1
kyrs for the 23 kyrs-precession cycle (Supplementary Figure 4). We have performed
a phase analysis entirely internal to NGHP 17– i.e. the phase of δ18Osw record with
respect to the benthic δ18O record (two parameters measured on the same sam-
ples). In this case, tuning was not performed and the results are summarized in
Supplementary Figure 5, where coherence and phase relationships between δ18Osw
and benthic δ18O records are presented for the precession and obliquity bands.
Consistent with our LR04-based age model, the δ18Osw record shows a significant
lag of ~4 kyrs with respect to ice volume minima inferred from the benthic δ18O
record (Supplementary Figure 5). This confirms that phasing offsets between the
δ18Osw record and ETP30 are not artefacts of the age model but rather robust
signals driven by internal processes of the climate system.

SST and δ18Osw reconstructions. More than 50 individual Globigerinoides sac-
culifer (without sack like final chamber) or Neogloboquadrina dutertrei shells
selected from the 315–400-μm size fraction were cracked before being split for
stable isotope and Mg/Ca analyses. Foraminiferal stable isotope analysis was per-
formed at GEOMAR using a MAT 253 mass spectrometer coupled with a Kiel IV
Carbonate device system (Thermo Scientific). Mg/Ca ratios were measured with an
Agilent 7500cs ICP-MS (for samples up to 22 m depth) and ICP OES (VARIAN
720–ES) (for samples below 22m depth). Precision estimates for Mg/Ca are based
on replicate measurements of ECRM 752-1 limestone reference material and are on
average ± 0.06 mmol/mol (1σ) for both instruments. The average Mg/Ca of ECRM
752-1 measured during the course of the study was 3.8 ± 0.06 mmol/mol, which
agrees well with the consensus value (ref. 40). For details of the Mg/Ca cleaning
followed, see ref. 28. To exclude biases due to possible contamination, we have
carefully monitored Al/Ca, Fe/Ca and Mn/Ca ratios41. For the dataset presented
here no systematic relationships exist between Al/Ca (or Fe/Ca) and Mg/Ca ratios
and we exclude the possibility of clay contamination. However, Al/Ca values in
16 samples were significantly higher and these data were excluded from further
interpretations. SSTs were calculated by using the multispecies equation of Anand
et al.42 Seawater δ18O (δ18Osw) was calculated using the δ18O–temperature cali-
bration of Bemis et al.43 The δ18Osw record was corrected for global ice volume
following Rohling et al.44 based on the chronology of the LR04 global benthic δ18O
stack35 and results are similar to ice volume correction following Waelbroeck
et al.45 (Supplementary Figure 6). δ18Osw values were converted to Vienna Stan-
dard Mean Ocean Water (VSMOW) by adding 0.27‰. Uncertainties in δ18Osw
and SST were estimated by propagating maximum possible analytical errors of the
δ18O and Mg/Ca measurements, calibration equations for both temperature and
the δ18Osw, and the global ice volume corrections ( ± 0.09‰) (see Supplementary
Note 2). The possible influence of salinity on Mg/Ca temperature estimates was
investigated and found to not influence the results significantly (see Supplementary
Figure 11). Spectral analyses were performed on unevenly distributed time series
using REDFIT46. Coherence and phase analysis were performed using the Arand
software package47.

Modern salinity measurements. Seawater samples were collected from a wooden
boat or while snorkelling around the Andaman Islands in 2011 and 2013 in acid
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pre-cleaned 1 litre PE bottles rinsed with 18.2 MΩ water. Samples were taken with
minimal air space and were filtered on the day of collection through 0.2 micron
cellulose nitrate membrane filters. Directly after filtering, 1.5 mL glass vials were
filled with sample, so no air bubbles were present, and the lid with septum was
sealed using parafilm. Samples were analysed for δ18O and δ2H by isotope ratio
infrared spectroscopy (L 1102-i WS-CRDS, Picarro Inc., Santa Clara, CA, USA) at
the Friedrich-Alexander University Erlangen-Nürnberg, Germany. All values are
reported in the standard δ-notation (‰) versus VSMOW and external reprodu-
cibility based on repeated analyses of a control sample was better than 0.1‰ and
0.5‰ ( ± 1 sigma) for δ18O and δ2H, respectively. A detailed description of the
analytical procedure used is given in van Geldern and Barth48. Following stable
isotope analyses, the chloride concentration of the samples was determined by
titration with silver nitrate using a METROHM auto-titrator. IAPSO standard
seawater (Cl= 19.376 g/kg or as specified on the bottle; the sum of chloride and
bromide is 559 mM) was used to calibrate the results and the precision is estimated
to be 0.3% based on repeated measurements of IAPSO seawater. Salinity was
calculated by assuming all chloride was associated with Na.

Uncertainty estimation. Uncertainties in δ18Osw and SST are estimated by pro-
pagating errors introduced by the δ18O and Mg/Ca measurements, and by the
calibration equations for both temperature and the δ18Osw. Uncertainties in SST
and δ18Osw are on average ~1 °C and ~0.3‰, respectively. For the SST and δ18Osw
estimates, the following equations from Mohtadi et al.49 were used to propagate the
errors.

SST calibration and error propagation. SSTs were calculated by using the mul-
tispecies equation of Anand et al.42

This is given as follows:
Mg
Ca

¼ beaT , where, b= 0.38 ± 0.02 mmol/mol; a= 0.090
± 0.003 °C−1

Errors associated with SST are estimated by propagating the errors in a, b and
Mg/Ca measurement errors and is given as:

σ
2
T ¼

∂T

∂a
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� �2

þ
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∂b
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b

� �

, ∂T
∂b

¼ �
1
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1
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1
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δ18Osw and error propagation. δ18Osw were calculated by using the δ18O-
paleotemperature equation of Bemis et al.43, which is given as follows:

T ¼ aþ b δ
18Ocalcite � δ

18Oseawater

� �

;
where a= 16.5 ± 0.2 °C; b=−4.80 ± 0.16 °C and T is estimated from Mg/Ca

measurements as shown above:
Errors associated with δ18Osw are estimated by propagating the errors in a, b, T

and δ18O measurement errors by assuming no covariance among the errors and is
given as:
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Data availability
Data underlying the findings of this study are available here: https://doi.org/
10.1594/PANGAEA.894886.
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