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Southern Ocean warming and Wilkes Land ice
sheet retreat during the mid-Miocene
Francesca Sangiorgi 1, Peter K. Bijl1, Sandra Passchier2, Ulrich Salzmann3, Stefan Schouten4,5, Robert McKay6,

Rosemary D. Cody6, Jörg Pross7, Tina van de Flierdt 8, Steven M. Bohaty9, Richard Levy 10,

Trevor Williams11, Carlota Escutia 12 & Henk Brinkhuis1,4

Observations and model experiments highlight the importance of ocean heat in forcing ice

sheet retreat during the present and geological past, but past ocean temperature data are

virtually missing in ice sheet proximal locations. Here we document paleoceanographic

conditions and the (in)stability of the Wilkes Land subglacial basin (East Antarctica) during

the mid-Miocene (~17–13.4 million years ago) by studying sediment cores from offshore

Adélie Coast. Inland retreat of the ice sheet, temperate vegetation, and warm oligotrophic

waters characterise the mid-Miocene Climatic Optimum (MCO; 17–14.8Ma). After the MCO,

expansion of a marine-based ice sheet occurs, but remains sensitive to melting upon episodic

warm water incursions. Our results suggest that the mid-Miocene latitudinal temperature

gradient across the Southern Ocean never resembled that of the present day. We demon-

strate that a strong coupling of oceanic climate and Antarctic continental conditions existed

and that the East Antarctic subglacial basins were highly sensitive to ocean warming.
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A
ssessment of the stability and dynamics of the Antarctic
ice sheet in a changing climate is fundamental given its
role in the climate system including global sea-level

change. Observational data and modelling studies suggest con-
sistently that influx of warm waters onto the Antarctic con-
tinental shelf invigorates ice retreat1–3. Satellite monitoring
demonstrates that the rate of basal melting (warm ocean melting
the marine-terminated ice sheet margins from below) has
exceeded that of surface melting (due to radiative forcing on the
ice sheet surface)1,2. About 74% of the glaciers covering the
Wilkes Land sector of East Antarctica have progressively retreated
since 2000 AD due to ingression of warm waters, likely as a
consequence of a reduction in sea–ice production and changes in
ocean stratification4. East Antarctica marine-based subglacial
basins have the potential of ~14 m sea level rise and are vulner-
able to marine ice sheet instability5. Cryosphere–-ocean interac-
tions, therefore, play a critical role in the current ice sheet mass
imbalance. Observational data6,7 rarely cover a period of time
longer than few decades6, and are therefore insufficient to provide
a record of cryosphere (in)stability at adequately varying CO2

concentrations and temperatures as those predicted for the near
future. Studying ice sheet instability and ice–ocean interactions
during past warm geologic episodes, when atmospheric CO2 was
analogous to present day or higher, can shed light on the long-
term stability of continental cryosphere for our future.

For the mid-Miocene epoch, geological records show major
variations in Antarctic ice sheet volume, global sea level, ocean
temperatures, and marine fauna and flora8–11. The Miocene
Climatic Optimum (MCO, ~17–15Ma) represents one of the
warmest intervals since the inception of Antarctic glaciation12,
with atmospheric CO2 concentrations as high as 500–600 parts
per million by volume (ppmv)13–17, analogous to those expected
for the end of the century given unabated carbon emissions.
Global surface-ocean and deep-sea temperatures were ~3–6 °C
and 5–6 °C above present-day values, respectively9,18. The ter-
mination of the MCO, widely referred to as mid-Miocene Cli-
matic Transition (MCT; ~14.2–13.8 Ma), was characterised by
progressive cooling and an expansion of global ice volume9,10; it
coincided with a CO2 decline to close to pre-industrial values
(200–300 ppmv13–17). To date, the variability in Antarctic ice
sheet volume during the Miocene has mostly been inferred from
far-field deep-sea oxygen isotope data11 and numerical model-
ling18, and attributed to the combined forcing of atmospheric
greenhouse-gas concentrations and orbital variations. However,
far-field sedimentary records leave ambiguity as to how much ice
volume change is involved in deep-sea oxygen isotope variability,
while numerical modelling have difficulties replicating the warm
polar climates as derived from proxy data. The few available ice-
proximal records, such as from the Ross Sea Antarctic Geological
Drilling project (ANDRILL)19–21, have provided first evidence for
a dynamic ice sheet during the Miocene and suggest extensive
melting during peak MCO warmth21. Modelling experiments22

infer substantial ice-mass loss at boundary conditions of atmo-
spheric ~500 CO2 ppmv, astronomical configuration favourable
for deglaciation and 2 °C of surface-ocean warming. Ice sheet
advances onto the continental shelves, with grounded ice
extending into the Ross Sea, are simulated at 280 CO2 ppmv and a
cold orbit. Hence, both the available field data and modelling
efforts indicate that the mid-Miocene Antarctic ice sheets were
highly sensitive to relatively small changes in atmospheric CO2

concentrations21,22. Such sensitivity can be triggered by changes
in the ocean dynamics, which are complex, include several
feedbacks, and have not yet been considered in most model
simulations23.

Integrated Ocean Drilling Program (IODP) retrieved sedi-
ments from Site U1356 (63°18.6138’S, 135°59.9376’E) at the

continental rise/abyssal plain boundary, at ~4000 m water depth,
~350 km offshore the Adélie Coast along the Wilkes Land mar-
gin, East Antarctica24 (Fig. 1). Today, Site U1356 is situated below
the Antarctic Divergence, a region of intense upwelling south of
the Antarctic Polar Front that is seasonally (~2–3 months per
year) sea ice free and characterised by a mean annual sea-surface
temperature of ~0 °C (~1–2 °C summer temperature)25 (Fig. 1).
The Adélie Coast continental shelf is one of the locations where
the Antarctic Bottom Waters, the densest water masses of the
world ocean, are produced by sea ice formation and the heat loss
to the atmosphere26. Moving away from the Antarctic margin, the
Southern Ocean is characterised by a strong latitudinal surface-
temperature gradient and very pronounced oceanographic fronts,
the Antarctic (AAPF), subantarctic (SAF) and subtropical (STF)
Fronts25 (Fig. 1).

The ANDRILL AND-2A record (Ross Sea, 77°45.49’S, 165°
16.61’E)27, the Wilkes Land Site U1356, and the Ocean Drilling
Program (ODP) Site 1171 south of Tasmania (48°30′S, 149°06.69′
E)9 contain mid-Miocene sediments and are ideally situated along
a north–south latitudinal gradient (Fig. 1) to allow investigating
the Southern Ocean paleoceanographic condition at times of
apparent high continental cryosphere variability12. In addition,
AND-2A, Site U1356, and Palaeolake Manuherikia (New Zeal-
and)28 records (Fig. 1) provide records of continental climate
during the mid-Miocene across a latitudinal transect.

Here we document the environmental dynamics characterising
both the circum-Antarctic ocean and the Antarctic continent
during the early to mid-Miocene based on new palynological
(dinoflagellate cysts, pollen, and spores), organic geochemical,
and sedimentological data from Wilkes Land Site U135624 in the
context of available Miocene data from the Ross Sea AND-2A
record21 and ODP Site 11719. We demonstrate that marine-based
ice sheets are absent or extremely reduced compared to present
day during the MCO at the Wilkes Land. Surface waters similar to
those found today close to the subtropical front bath this area and
sustain ice sheet melting. A much greater ocean temperature
gradient between the Ross Sea and the Wilkes Land sites exists
compared to the present day, suggesting a different oceano-
graphic structure. Continental conditions at the margin sustain
growth of temperate vegetation and soil formation. After the
MCO, sea ice occurs and ocean temperatures generally cool at the
margin. However, episodic reoccurrence of warm waters desta-
bilises the marine-based ice sheet and the continental cryosphere
along the margin is substantially reduced compared to the present
day even at pre-industrial atmospheric CO2 values. A larger-than-
today ocean temperature gradient between the Ross Sea and the
Wilkes Land site still exists.

Results
Sediment age and sedimentology of Site U1356. Site U1356 was
drilled into distal channel levees24. The analysed sediment cores
are well dated29. We herein use novel techniques of constrained
optimisation (CONOP)30 to further improve the age model (see
Methods, Supplementary Figure 1, Supplementary Data 1 and 2).
The record spans the time interval from 17 to 10.8 Ma, with a
hiatus between 13.4 and 11Ma, thus comprising the critical
intervals of both the MCO and the MCT.

Sediment cores from Site U1356 were described shipboard and
post cruise20 (Supplementary Figure 2, Supplementary Figure 3,
Supplementary Data 3). The MCO interval between 17 and 14.8
Ma (404–275 m below seafloor (mbsf)) is characterised by
diatomaceous and cherty mudstones lacking outsized clasts.
Metre-scale bioburbated and pinstripe-laminated mudstones with
isolated ripple cross-laminated sand interbeds are present.
Sporadic distal turbidite beds are indicative of sediment delivery
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by overbank deposition from active nearby deep-sea channels,
which is supported by the seismic stratigraphy indicating a levee
depositional setting24. Thus, the depositional environment for
this interval is interpreted as a distal channel levee setting with
subsequent minor reworking by bottom currents of variable
strength and bioturbation that do not compromise our
paleoenvironmental reconstructions. Ice rafting over the drillsite
was probably limited during this time given the paucity of
outsized clasts (clasts over 2 mm, see Methods) found in the
recovered part of the record (Fig. 2).

In contrast to the MCO interval, sediments between 14.8 and
13.4 Ma (275–133.8 mbsf) are dominated by comparatively higher
concentrations of clay and dispersed gravel. Clast-poor diatom-
rich beds locally preserve an interlaminated structure of clay-rich
diatom ooze and diatom-rich silty clay. Clast-rich mudstones are
interbedded with laminated silty claystones. Laminae are
predominately sub-mm in thickness, and have sharp upper and
lower contacts, suggesting localised reworking of the turbidite
levee deposits by bottom currents31. Structureless clast-rich
mudstones and diamictites are suggestive of iceberg rafted debris
delivery and mass transport processes. Abundant clasts occur in
three pulses centred at around 14.6, 14.0–13.8, and ~10.8 Ma
(260, 180, and 110mbsf, respectively, Fig. 2). In summary, the
depositional environment of Site U1356 is characterised by
sediment delivery through hemipelagic settling and overbank
turbidity current sedimentation with episodes of bottom current
activity and extensive ice rafting. Sediments younger than 11Ma
(above 133.8 mbsf), are separated from underlying units by a
hiatus between ~13.4 and 11Ma and are characterised by
preservation of primary turbidite structures including graded silt
beds with sharp bases, interbedded with bioturbated muds.
Seismic profiles suggest these structures are the result of a
migration of the channel levee systems depocentres in the region,
which is inferred to be the consequence of ice sheet expansion on
the continental shelf after 13.4 Ma24.

Dinoflagellate cysts. To reconstruct relative changes in Miocene
seawater temperature, sea ice occurrence, and nutrient availability
at Wilkes Land Site U1356, we consider modern ecological

affinities of dinoflagellate cysts (dinocysts) in the Pacific sector of
the Southern Ocean32 (Fig. 1; Supplementary Table 1).

The dinocyst assemblages in the interval between 17 and 14.8
Ma are highly diverse, with temperate phototrophic gonyaulacoid
taxa being abundant to dominant (40–98% of the assemblages,
Fig. 2, Supplementary Data 4). The taxa found are today mostly
abundant in sediments from oceanic marine waters25, a setting
consistent with the available tectonic reconstructions and core
lithology24 for the site during the Miocene. A common to
abundant component of the assemblages is the genus Operculo-
dinium, which today rarely occurs in assemblages south of the
Subantarctic Front33 (Fig. 1). One Operculodinium morphotype
(O. cf. centrocarpum), which occurs in the Ross Sea AND-2A
record exclusively in the two warmest pulses of the MCO19,21, is
here present throughout the record (Supplementary Data 4).
Among the Impagidinium spp., extant species typical of
temperate to tropical (oligotrophic) oceanic environments occur.
I. pallidum is the only species presently found in Antarctic
environments in the vicinity of the polar front, where sea ice
occurs, salinity can be seasonally reduced due to ice melting, and
seasonality is high33. However, this is a species for which a clear
tolerance to high temperatures has been demonstrated33–35, and
its value as sea ice indicator can hence be questioned.
Protoperidinioid heterotrophic dinocysts are present, but never
abundant except at 15.5 Ma when a single peak (13.5%) of
Selenopemphix antarctica (Fig. 2) coeval with the sudden
appearance of diatom species Eucampia antarctica, Fragilariopsis
truncata, and Synedropsis cheethamii 24, indicative of colder polar
conditions, may point to the occurrence of (seasonal) sea ice.
Moreover, the absence or low percentages of reworked dinocysts
encountered in this interval (Supplementary Data 4) suggests that
deposition occurred in open marine waters.

After ~14.8 Ma, protoperidinioid dinocysts dominate (Fig. 2),
indicating high productivity33. The encountered taxa include the
cosmopolitan Brigantedinium spp., Selenopemphix spp., and
Lejeunecysta spp. (Supplementary Data 4). The Brigantedinium
and Lejeunecysta species found at Site U1356 are the same
previously reported from other circum-Antarctic Miocene
records36–38. Selenopemphix antarctica first occurred during the
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early Oligocene at this site39, is almost absent during the MCO,
and is commonly present after. This taxon is exclusively known
from the present-day Southern Ocean as a dominant component
of assemblages from the seasonal sea ice zone south of the
Antarctic Polar Front32; abundances >20% occur where sea-
surface temperatures are <0 °C in winter and spring and up to 10
°C in summer32,33 (Fig. 1). Finally, a conspicuous episodic
reoccurrence of autotrophic temperate dinocyst species, particu-
larly Nematosphaeropsis labyrinthus, is recorded at ~13.8 and
~10.8 Ma (Fig. 2). This species is at present strongly associated
with the Subantarctic and Subtropical fronts32.

Pollen and spores. The terrestrial palynomorph record from Site
U1356 represents the vegetation in the near-coastal lowlands and
(to a lesser extent the hinterland) of the Wilkes Land sector of
East Antarctica40. The mid-Miocene record is dominated by
pollen of the southern beech (Nothofagidites spp.) and conifers
(Podocarpidites spp.), both of which indicate woody subantarctic
or sub-alpine vegetation (Fig. 2). Elements of shrub-tundra and
peat-lands such as heather (Ericipites sp.), shrubs of the family
Haloragaceae (Haloragacidites sp.), grasses (Graminidites spp.),
Caryophyllaceae (Colobanthus-type), and Sphagnum-moss

(Stereisporites sp.) are abundant, particularly after the MCO
(Supplementary Data 5). High percentages of Podocarpaceae
conifer pollen along with Myricipites (nearest living relative
(NLR): Casuarinaceae) as well as regularly occurring tree ferns
(NLR: Cyathea) suggest that even after the MCT a cold-temperate
woody vegetation with shrubs and trees still existed in sheltered
areas of the coastal lowlands. Temperature reconstructions
derived from the fossil pollen assemblages suggest mean annual
temperatures (MATs) between 5.8 and 13 °C, and summer tem-
peratures >10 °C (Supplementary Table 2). At ~10.8 Ma, above
the hiatus, a distinctively high abundances of Nothofagus and
bryophytes accompanied by a general decrease in taxon diversity
indicate cooling.

Comparison of Miocene pollen assemblages with Eocene
and Oligocene species from the same Site U1356 reveals a
different taxonomic composition in all samples. We therefore
exclude the possibility of reworked Palaeogene pollen being
re-deposited into these sediments41. We are also confident that
most of the pollen, as well as any terrestrial organic matter
(including soil), must have originated from close to the
depositional site, as most pollen grains are well preserved and
Antarctica was already isolated from surrounding landmasses at
the Miocene time.
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Organic geochemical biomarkers. Between 17 and 16.6 Ma,
surface-water temperature reconstructions based onTEXL

86 (tet-
raether index of lipids consisting of 86 carbon atoms, polar
calibration, 0–200 m water depth42) suggest temperatures of
11.2–16.7 °C (±2.8 °C calibration error) (Fig. 3, Supplementary
Table 3, see Methods). The Branched vs. Isoprenoid Tetraether
(BIT) index43 is widely used to estimate the soil organic matter
input to the ocean. BIT indices of 0.4–0.8 are obtained for the
samples between 16.4 and 14.8 Ma (Fig. 2, Supplementary
Table 3). Values as high as 0.6–0.8 are at present found in coastal
marine environments under substantial riverine influence43.
While high BIT values prevented us from interpreting theTEXL

86
results44 during most of the MCO, they suggest high soil input
and allow us calculating continental temperatures based on dis-
tribution of branched tetraether lipids45. Land temperatures are
~11.5 °C (±4.6 °C calibration error; Fig. 3, Supplementary
Table 4).TEXL

86-derived temperatures are generally lower after
14.8 Ma, being on average 6 °C lower than during the MCO and
highly variable, although some warm episodes are recorded. The
BIT index is generally lower than 0.3 in this interval and con-
tinental temperatures derived from branched tetraether lipids
could only be calculated for two samples at 14.2 Ma and 13.8 Ma,

when temperatures are comparable (11 °C) or lower (9 °C),
respectively, than those reconstructed for the interval >14.8 Ma.

Discussion
The sedimentological, geochemical, and palynological results
indicate that both the marine and terrestrial environments off-
shore Wilkes Land during the MCO (~17–14.8 Ma) were fun-
damentally different from that of today. Deposition occurred in
an open-water environment where only occasional erosion or
reworking of older marine sediments and transport to the core
location took place. Open-marine surface waters were warm
temperate, lacked a strong sea ice component, and were relatively
low in nutrients compared to today. Specifically, dinocyst
assemblages resemble those found today in the Pacific sector of
the Southern Ocean at around or north of the Subtropical Fronts,
where sea-surface temperatures vary between 8 °C and 17 °C32

(Fig. 1). The temperatures reconstructed withTEXL
86 (11.2–16.6 °

C± 2.8°C calibration error), albeit in a short interval between 17
and 16.6 Ma, fall within this range (Fig. 3).

Site U1356 was located at about 59°S46 during the MCO, i.e., 4°
more to the north than today (Fig. 4). This more northward
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position potentially facilitated the influence of warm, low-
latitude-derived waters to Site U1356. Based on the present-day
bedrock topography47 and reconstructions available for the
Eocene–Oligocene48, Gasson et al.22 interpolated an approximate
mid-Miocene Antarctic palaeotopography. This shows that a
higher-than-present bedrock elevation of the now low-lying
Wilkes Subglacial Basin would be able to accommodate a smaller
Miocene marine-based ice sheet compared to today, and more
bedrock exposure. Noteworthy, between 16.4 and 14.8 Ma, the
high contribution of soil erosion material to Site U1356 (BIT
index values up to 0.8, Fig. 2) implies that soil must have formed
on extensive ice-free regions along the near-coastal lowlands of
the margin and was eroded and transported to the drillsite.
Possibly, the ice sheet was already dynamic and retreated to its
terrestrial margin since (at least) the onset of the MCO, but
additional warming from 16.4 Ma onwards would have enabled
farther melting of continental ice and expansion of soil formation
on the ice-free parts of the continent. Data on ocean temperature
are missing, and ice extent is difficult to establish, but the ice-
proximal AND-2A record shows no evidence of ice advance over
the drillsite between 17 and 15.8 Ma and possibly until 14.6
Ma20,21. In the Wilkes Land record, three different proxies in the
marine sediments indicate mild continental temperatures. Ter-
restrial palynomorphs suggests a temperate (MATs 5.8 and 13 °C,
mean summer temperatures >10 °C), humid, locally ice-free
coastal zone along the Wilkes Land margin covered by woody
vegetation dominated by southern beech and Podocarpaceae
conifers. Plant communities similar to that reconstructed from
the Wilkes Land record have also been derived from Miocene
pollen records near McMurdo Sound/Ross Sea19,49, McMurdo
Dry Valleys50, and the Antarctic Peninsula51. However, in con-
trast to previously published records, the pollen assemblages here
contain exceptionally high percentages of Podocarpaceae conifers
and a greater diversity of woody taxa, suggesting warmer con-
ditions at the Adélie Coast than at other Antarctic locations, with
maximum temperatures around the MCO. Temperature based on
branched tetraether lipids, likely reflecting mean annual tem-
perature or mean temperature of growing degree days above
freezing52, are 10–12 °C (±5 °C calibration error). An additional
palaeotemperature proxy based on inorganic chemical weathering
indices53 indicates comparable, albeit lower mean annual tem-
peratures of 6–8 °C (±4 °C, Fig. 3).

Our data for the MCO interval suggest a seemingly persistent
absence of a marine-based ice sheet at the Wilkes Land basin, a
dynamic continental ice sheet profoundly retreated (on)to its
terrestrial margin at peak warmth and ocean conditions warmer
than those of today.

Our reconstructions for the post-MCO interval show a
dynamic ice sheet and a fundamentally different environment
compared to that of MCO. Wilkes Land Site U1356 (palaeolati-
tude ~60°S at 13Ma46, Fig. 4) data indicate overall colder con-
ditions than during the MCO, with high-nutrient surface waters,
high productivity (dominance of protoperidinioid cysts), and sea
ice presence, with common Selenopemphix antarctica (Fig. 2).
Surface water temperatures are on average 6 °C lower than during
the MCO, yet episodically reach peak values (Figs. 3 and 4).
Noteworthy, coinciding with these peak temperature values, rapid
increases in warm-water dinocyst taxa at 13.8 and 10.8 Ma with
high percentages of Nematosphaeropsis labyrinthus (Fig. 2) sug-
gest the presence of surface waters akin to those found today
around the oceanic fronts north of the polar front32. The modern
temperature preferences of N. labyrinthus 6–13 °C in winter and
8–17 °C in summer32 agree well with those reconstructed with
TEXL

86. Interestingly, synchronous to the increases in N. labyr-
inthus, two pulses of outsized clasts (interpreted as ice-rafted
debris (IRD)) at 14–13.8 and 10.8 Ma suggest that nearby glaciers

were terminating into the marine system, much in contrast to the
MCO for which such evidence is entirely lacking. Few icebergs
reach the latitude of Site U1356 today, despite abundant marine-
based ice sheets nearby due to deflection by the strong Polar
Current. The episodic presence of extensive IRD at Site U1356
after the MCO thus requires the presence of marine-based ice
sheets and an ocean circulation different from present. The
location of Site U1356 at ~13Ma was at 60°S, close to the present-
day position of the Antarctic Divergence. If the ocean structure
were similar to today, high surface water productivity would be
expected, and heterotrophic protoperidinioid dinocysts would
dominate the assemblages. However, episodic high abundance of
gonyaulacoids temperature cysts and N. labyrinthus, which is at
present associated to northern oceanic fronts, suggest a different
oceanographic structure. A weakened circulation compared to
that of present day is indicated allowing episodic southward
transport of warm waters at Wilkes Land Site and icebergs to
escape northward out of the Polar Current.

In this <14.8 Ma interval, both our marine palynological (via
the high percentage of reworked dinocysts) and sedimentological
proxy data indicate erosion of older sediments from the shelf,
likely during ice advance and stronger current activity. A hiatus
between 13.4 and 11Ma and seismic profiles suggesting the
migration of the channel levee systems depocentres in the region
point to ice sheet expansion on the continental shelf24. The
relative abundance of soil organic matter (BIT usually <0.3) in
these sediments is generally low compared to those of the MCO,
which is consistent with a colder, more productive ocean and less
soil formation due to continental ice cover compared to the
MCO. However, the pollen flora remains broadly unchanged,
although higher abundance of the southern beech (Nothofagus
spp.) and mosses (Stereisporites/Coptospora, Fig. 2) suggests lower
continental temperatures than during the MCO, especially at
10.8 Ma. Geochemical proxies indicate MATs still reaching 6–8 °
C (Fig. 3). Although relating cryosphere dynamics at the Wilkes
Land subglacial basin with an offshore record inevitably requires
assumptions that can only be tested through new drilling efforts
even closer to the Antarctic continent, our data suggest that after
the MCO, calving and retreat of the marine-grounded continental
ice sheets occurred during episodic reoccurrence of warm waters
close to the margin, while some refugia for vegetation persisted.

To further investigate the importance of the Southern Pacific
Ocean surface oceanographic structure and temperature patterns
in relation to the continental cryosphere dynamics during and
after the MCO, we integrated our Wilkes Land record (MCO
palaeolatitude ~59°S46) with existing Miocene reconstructions
from the Ross Sea AND-2A record21 (MCO palaeolatitude: ~73°
S46, Supplementary Table 5) and ODP Site 11719 (MCO
palaeolatitude: ~54°S46) south of Tasmania (Figs. 3 and 4). The
AND-2A record indicates environmental conditions very differ-
ent from today, particularly in two short exceptionally warm
intervals at ~16.4 and ~15.9 Ma. The phototrophic temperate
dinocyst Operculodinium cf. centrocarpum along with high
freshwater algae and high pollen concentrations19, stable deu-
terium isotope data54, and surface seawater temperatures of ~7 °
C21 (Fig. 3, Supplementary Table 6) are interpreted as episodes of
reduced sea and continental ice20, increased hydrological
cycling54, and mean air summer temperatures of at least 10 °C
that sustained a tundra vegetation in the hinterlands19. In com-
parison to the Ross Sea, the Wilkes Land record provides evi-
dence for a much warmer ocean throughout the MCO (Figs. 3
and 4) and absence of sea ice. Terrestrial palynomorphs also
suggest continental conditions generally warmer than those
reconstructed from the Ross Sea. Such a temperature gradient
between the Wilkes Land and the Ross Sea records is well com-
patible with the fact that the Ross Sea is located further south in
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an ice-proximal location compared to Wilkes Land ice distal
conditions already during the Miocene46. Possible mechanisms
facilitating the occurrence of warm surface waters close to the
Antarctic continent are the upwelling of (proto-) Circumpolar
Deep Waters55 (CDW), if circulation was similar to that of today,
or south displacement of warm surface waters. A weak (proto-)

Antarctic polar front could possibly explain the movement of
warmer waters from the north. The Southern Ocean circulation,
the Antarctic Circumpolar Current (ACC), the front develop-
ments, and the upwelling of warm CDW depend on the wind
patterns and topography, conditions for which there are poor
constraints for the Miocene.

A comparison between the Wilkes Land and the Southern
Tasmanian ODP Site 1171 records shows comparable surface
seawater temperatures (within the calibration errors of both
methods) during the MCO (Fig. 3) that are several degrees higher
than those in the Ross Sea. Even when considering the closer
distance between the Tasmanian and Wilkes Land sites compared
to today (5° during the MCO46 as opposed to 15° today), the
latitudinal temperature gradient between both sites appears
strongly reduced, with the Wilkes Land site recording excep-
tionally warm surface seawater. A much-reduced temperature
gradient between the two sites could exist if the ACC and its
oceanic fronts were weaker compared to today and/or the ACC
was displaced southwards.

The exact timing of a modern-strength fully developed ACC is
still uncertain, but usually indicated between 41 and <23Ma56–59,
although younger ages have been proposed60. As the modern
Southern Ocean circulation was possibly developed during the
MCO, oceanic fronts were in place. The ACC and associated
fronts are very sensitive to seafloor topography61, and a different
topography may have had consequences for latitudinal heat
transport. During the MCO the Tasmanian Gateway was nar-
rower than at present (Fig. 4). A shift of the subtropical front
equatorwards and subantarctic front poleward was reconstructed
for the warm Pliocene of the Southern Ocean62. A comparable
shift during the MCO would indeed make ODP Site 1171 and the
Wilkes Land site been bathed by water masses with similar
temperatures. A reduced surface-temperature gradient between
offshore Adélie Coast and the South Tasman Rise could have
been caused by weakened oceanographic fronts. Our data docu-
ment the absence of substantial sea ice at the Wilkes Land site
during the MCO, which, together with melting of the continental
cryosphere, may have created surface water stratification. Hence,
bottom-water formation at that time must have been limited to
the coldest parts of the Antarctic shelves (e.g., the Ross Sea). In
conclusion, our data infer a fundamentally different oceano-
graphic and environmental setting across the Pacific sector of the
Southern Ocean during the MCO compared to the modern day.

As Southern Ocean circulation is driven by winds and hence
highly depends on patterns of atmospheric circulation, we com-
pared the available information on continental climate and
temperature gradients across the Pacific sector of the Southern
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Ocean. Continental temperatures reconstructed using leaf phy-
siognomy at Palaeolake Manuherikia (mid-latitude New Zeal-
and28) show mean annual values of 16.5–20 °C (Figs. 3 and 4),
with amplified seasonal contrast in both temperature and pre-
cipitation during the MCO compared to present day. Such a
seasonal gradient can be achieved in an ocean-moderated climate
and can be caused by shifts in the position of the subtropical
pressure cells with a westerly wind belt receding to the south
compared to today during the summers. Continental mean
annual temperatures obtained at Wilkes Land of ~10 °C and
summer temperature estimates of 10 °C for the Ross Sea indicate
that a clear latitudinal continental temperature gradient existed
between the Antarctic continent and mid-latitude New Zealand,
but yet much reduced compared to today.

After the MCO, maximum ice sheet extension is recorded at
the AND-2A location in the Ross Sea21. The latitudinal ocean
temperature gradient between the Wilkes Land and Site 1171
increased compared to MCO, but never reached that of present
day. The cooling offshore Adélie Coast and the formation of sea
ice after the MCO is broadly synchronous with decreasing
atmospheric CO2 concentrations (Fig. 3). However, our recon-
structions support a scenario with cold-temperate conditions
marked by a periodic reoccurrence of warmer, sea ice-free con-
ditions. Our data indicate a substantial increase in ice sheet dis-
charge during contact with warmer waters, most likely associated
with a collapse of the marine-based ice sheet, likely sensitive to
ocean temperatures.

In conclusion, profound ice sheet retreat at the Wilkes Land
subglacial basin further than its land-terminating margin occur-
red during the MCO, in association with a warm surface ocean,
an oceanographic regime fundamentally different from that of
today and with CO2 concentrations generally similar to those
expected for the near future in a “business as usual scenario”63.
After the MCO, the Wilkes Land margin cooled, sea ice formed,
but ocean waters and continental conditions remained relatively
mild. The continental cryosphere, which extended into a marine-
based ice sheet, was still substantially reduced compared to the
present day even at pre-industrial atmospheric CO2 values. Epi-
sodic reoccurrence of warm waters, within an oceanographic
configuration still different from that of present day, destabilised
the marine-based ice sheet, leading to melting and iceberg dis-
charge. This demonstrates a strong coupling of oceanic climate
and Antarctic continental conditions, and highlights the impor-
tant role of the ocean for the stability of the cryosphere.

Our results further confirm and may be taken to extrapolate
recent monitoring observations of the East Antarctic ice sheet,
which indicate the high sensitivity of the Wilkes subglacial basin
to ocean warming.

Methods
Particle size/IRD. Particle-size analyses were performed at the Department of
Earth and Environmental Studies, Montclair State University. Samples were pre-
pared using standard operation procedures outlined in ref. 64. Samples were
mechanically and chemically disaggregated through ultrasonic treatment and
heating with 30% hydrogen peroxide and 10% HCl. Samples were dispersed
through addition of sodium pyrophosphate and the solutions were heated to allow
all dispersant to dissolve. A Malvern Mastersizer 2000 laser particle sizer was used
to measure the grain-size distributions of the samples. Instrument settings were
based on the recommendations of ref. 65. Industrial and natural standards were
monitored for quality control. IRD counts were carried out shipboard; counts were
normalised per metre of recovered section length at the Department of Earth and
Environmental Studies, Montclair State University.

Age model. We developed the age model to U1356, using an integrated bios-
tratigraphic and magnetostratigraphic methodology similar to that presented in
Tauxe et al.29. Radiolarian and diatom first and last appearance datums (FADs and
LADs) were derived using Constrained Optimisation methodology as presented in
Crampton et al.30 for diatom turnover events in the Southern Ocean. We apply the
same methodology but use both radiolarian and diatom data. CONOP generates a

parsimonious, best-fit composite sequence of biostratigraphic events of radiolarian
and diatom derived from 36 cores in the Southern Ocean, to which observed
biostratigraphic events in U1356 could be placed. This paper uses the “hybrid
range” model, which was shown by Cody et al.66 to be most suitable for sites close
to the Antarctic continental margin. We use two versions of this model, a “strict”
and “relaxed” version, which prohibits or allows for FAD and LAD contraction to
move out of its observed range as a correlation is made between U1356 observa-
tions and the composite sequence. Full details on this methodology are discussed in
Cody et al.66 and Crampton et al.30. To represent uncertainties, we apply the spread
of the ages from all CONOP-placed FAD and LAD data in these two models at
every depth where there is an observed biostratigraphic event. This is in contrast to
the approach used by Tauxe et al.29, which assigned absolute values for FADs and
LADs as were presented in the CONOP Average age range model of Cody et al.67.
However, Cody et al.66 showed that the Hybrid age model converged upon a robust
age model earlier than the Average age range model and thus is more appropriate
to use. The magnetostratigraphy presented in Tauxe et al.29 is revised on the basis
of these new CONOP constraints. We also include palynology-based FADs pre-
sented in Tauxe et al.29, and note there is now an improved fit between the various
chronological datasets.

Palynology. Sample processing was performed at Utrecht University, following
standard techniques of the Laboratory of Palaeobotany and Palynology. Samples
were oven-dried and weighed (~15 g dry weight sediment each), and one Lyco-
podium clavatum tablet with a known amount of marker spores (Batch #: 483216;
18,583± 4.1% spores per tablet) was added for quantification of palynomorph
abundances68.

Samples were treated with 10% HCl (Hydrochloric acid) and cold 38%
HF (Hydrofluoric acid), and sieved over a 10 µm mesh with occasional mild
ultrasonic treatment. To avoid any potential processing-related preservation bias,
no oxidation was carried out. The processed residue was transferred to microscope
slides using glycerine jelly as a mounting medium, and 2–3 slides were analysed per
sample at 400× magnification. Slides were used for both marine (dinocysts,
acritarchs, other aquatic palynomorphs) and terrestrial (pollen and spores)
palynological analyses. Dinocysts were identified based on a taxonomical index69

and informally and formally described species in the literature36–38,70. Of the 31
palynological samples analysed for dinocysts, 11 were either totally or almost
barren (yielding only 15–25 dinocysts). These samples are still considered in our
dataset; however, because of the low dinocyst yield, careful interpretation is
required for these samples. Dinocyst percentages were calculated based on the total
in situ dinocysts counted, excluding reworked specimens (Supplementary Data 4).
Protoperidinioid (P) dinocysts are mostly represented by the genera
Brigantedinium, Lejeunecysta, and Selenopemphix. Gonyaulacoid (G) dinocysts
mostly include Impagidinium spp., Operculodinium spp., Batiacasphaera spp.,
Nematosphaeropsis labyrinthus, and Spiniferites/Achomosphaera spp.
Protoperidinioid cyst percentages were calculated to identify productivity trends, as
P dinocysts are likely produced by heterotrophic dinoflagellates71, while G are
generally produced by phototrophic dinoflagellates. Reworked dinocysts include
Eocene and Oligocene taxa (such as Deflandrea spp., Enneadocysta diktyostila, and
Vozzhennikovia spp.). Reworked dinocyst percentages, calculated based on a sum
comprising both in situ and reworked dinocysts, vary between 0% and 34%. In situ
dinocyst absolute abundance (dinocysts/g dry weight, Supplementary Data 4) was
calculated by counting the amount of Lycopodium clavatum spores encountered
and following the equation of Benninghoff72.

Of the 31 samples analysed for pollen and spores, 15 were productive, and total
counts range between 80 and 210 pollen and spores (Supplementary Data 5). Also,
33 in situ and 12 reworked pollen and spore taxa were identified from the
literature49,73. Percentages of reworked pollen and spores were calculated based on
the sum of total pollen and spores. For calculation of in situ palynomorph
percentages, reworked pollen and spore counts were excluded from the total sum.
Reworked pollen and spores have been identified using visual colour and
fluorescence microscopy41. Permian to Palaeogene reworked pollen and spores
have a dark, yellowish colour indicating geothermal maturity, and were clearly
distinguishable from well-preserved in situ palynomorphs.

We reconstructed terrestrial MAT and mean summer temperature using the
coexistence approach (CA)74 (Supplementary Table 2). The CA uses the climatic
requirements of the NLR of fossil taxa to reconstruct the past climatic range, and is
based on the assumption that the climatic requirements of the fossil taxa are similar
to those of their NLRs. The CA produces a temperature range that comprises the
climate interval in which all taxa of the reconstructed palaeo-vegetation can co-
exist.

Present-day dinoflagellate cyst assemblages and ecology. Present-day ecolo-
gical preference of dinocysts is based on the analyses of more than 2400 globally
distributed surface sediment samples33. Prebble et al.32 augmented the information
available from the Southern Ocean by increasing the number of samples analysed
to 311. We use their data to derive present-day dinocyst assemblages across the
Southwest Pacific fronts and produced the data presented in Fig. 1. Prebble et al.32

analysed the relationships between assemblages and sea-surface temperature, water
column depth, and productivity by means of ordination techniques and identified
seven clusters. One of these clusters (Cluster 7) groups the South Atlantic samples
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only, north of the STF and is not considered here. Data from the other six clusters
are presented in Supplementary 1. All the species identified in the surface samples
have been placed in this study into 6 groups: Selenopemphix antarctica (SA), other
protoperidinioids (oP), Impagidinium spp. (I), Nematosphaeropsis labyrinthus (Nl),
Operculodinium spp. (O), and other Gonyaulacoids (oG) and are presented in
percent relative to the total assemblage. These six groups are chosen either based on
specific ecological preferences or because of their cosmopolitan occurrence33.
Importantly, dinocysts in our Miocene record can also be categorised in the same
six groups. In this way, we aimed to minimise the uncertainties in the environ-
mental reconstructions potentially caused by extinct Miocene species, although we
cannot discard the possibility that some taxa may have partly changed their pre-
ferred ecological niche through time35. However, we defer from quantitatively
interpreting the changes observed and use the modern dinocyst distribution only as
a qualitative tool. The percentages presented in Fig. 1 represent the median per-
centage of the taxa found (Supplementary Table 1). In this modern dataset, sea-
surface temperature accounts for 38–56% of the variation. However, modern
assemblages are also sensitive to other water-column parameters such as pro-
ductivity and distance from shore. Notably, Cluster #2 contains almost exclusively
protoperidinioid cysts; and all samples in this cluster come from South Atlantic
and East Pacific locations around the STF and SAF and slightly south of the
Chilean upwelling, which are all areas of high productivity. Only three samples
from Cluster #2 are from within the STF region east of New Zealand.

Organic geochemical biomarkers. Twenty-nine powdered and freeze-dried
sediments (~15 g dry weight) were extracted with dichloromethane (DCM)/
methanol (9:1) using the Dionex accelerated solvent extraction (ASE) technique.
The extracts were separated by Al2O3 column chromatography using hexane/DCM
(9:1), 100% DCM, and DCM/methanol (1:1) to yield the apolar, ketone, and polar
fractions, respectively. The ketone fractions were checked for alkenones, but none
of the samples were found to contain them. The polar fractions were analysed for
tetraether lipids and were used to calculate the TEXL

86
42,75 the branched vs. iso-

prenoid tetraether BIT43, and the relative distribution of branched tetraether lipids
used to estimate mean annual temperature45. The TEX86 ratio is based on
isoprenoidal–glycerol dialkyl glycerol tetraether (GDGTs)76, which are assumed to
derive mainly from Thaumarchaeota, formerly known as Crenarchaeota group 177,
which is an abundant group of marine Archaea. The polar fractions were dissolved
in a 99:1 hexane/propanol solvent, and were filtered using a 0.45 μm, 4mm dia-
meter polytetrafluoroethylene filter, before being analysed using a high-
performance liquid chromatography/atmospheric pressure positive ion chemical
ionisation mass spectrometry (HPLC/APCI-MS) as described by Schouten et al.78.
Extractions were performed at Utrecht University, and HPLC/MS analyses were
carried out at the NIOZ (Royal Netherlands Institute for Sea Research).

For conversion to temperature we use following equation:

SeaWater Temperature SWTð Þ ¼ 50:8 � TEXL
86 þ 36:1 r2 ¼ 0:87; n ¼ 396

� �

ð1Þ

which is best suited for polar oceans, and used the calibration of Kim et al.42 for
water depth of 0–200 m. The analytical error is 0.3 °C, while the uncertainty
introduced by the calibration error for TEXL

86 in the subsurface (0–200 m)
calibration is estimated at ±2.8 °C42 (error propagation used in Fig. 4 is ±3 °C).
This calibration was chosen for three main reasons: Thaumarchaeota in Antarctic
waters are especially abundant in the winter cold and salty waters at depths of ~
45–100 m79; Application of the 0–200 m calibration to a Holocene sediment record
close to the studied Wilkes Land location revealed known climate variations and
reasonable absolute temperature estimates42; Seawater temperatures are compared
in this study with those obtained from Mg/Ca analyses of the foraminifer
Globigerina bulloides from ODP Site 1171 in the Southwest Pacific offshore
Tasmania. Analytical error for Mg/Ca in Globigerina bulloides is ±~ 1 °C, while the
error, which considers other processes such as uptake of Mg/Ca and composition
of seawater, is ~±3 °C9 (error propagation in Fig. 4 is ±3 °C). Recent core-top
sediments studies carried out in the Southwest Pacific Ocean (33–54°S) have shown
that temperature reconstructions obtained with Mg/Ca on G. bulloides correlates
best with water temperatures at 200 m depth80.

Although the seasonal abundance of Thaumarchaeota may be higher in winter,
TEXL

86 temperature reconstruction may possibly still be skewed towards the
summer season particularly in polar areas because of the more efficient food web-
based scavenging of thaumarchaeotal cells due to the higher summer productivity.

For comparison SST (0 m depth) values based TEXL
86 are also reported

following the equation of ref. 75

SST ¼ 67:5 � TEXL
86 þ 46:9:6 r2 ¼ 0:87; n ¼ 255

� �

; ð2Þ

The uncertainty introduced by the calibration error is in this case ±4 °C. We
calculated the SST based on the TEXH

86 0–200 m calibration of Kim et al.42 and for
the Bayesian calibration of TEX86

81. These two calibrations produce similar values
compared to each other, but are up to 8.5 °C degrees higher than the TEXL

86

calibrations, although the down-core trend remains approximately the same (data
not shown). TEXL

86 has a strong depth dependence82 due to changes in the GDGT
2/3 ratio. However, similar trends between TEXH

86 and TEXL
86 suggest that this has

not been a major issue in our Miocene sediment record. In view of these

uncertainties, absolute values obtained with TEXL
86 should be interpreted with care

and in concert with other data obtained from dinoflagellate cysts.
BIT index43 is used as indicator for continental organic matter input. A large

input of organic matter from the continent also carries isoprenoid GDGTs, which
can mask the autochthonous TEX86 signal

83. We discarded TEXL
86-temperature

estimates in our samples with BIT >0.344.
Consequently, 10 of the 29 samples measured in the Wilkes Land record were

excluded from the TEXL
86 data points (Supplementary Table 3), and only the

remaining temperature values are plotted in Figs. 2 and 3. BIT index values in the
AND-2A record (Supplementary Table 6) are mostly <0.3.

TEX86 can be further biased by an input of GDGTs derived from methane-
utilising Archaea84,85. Furthermore, methane-generating Archaea, which mainly
produce GDGT-0 but also minor amounts of GDGTs 1–3, can alter the TEX86

signal. The “Methane Index” can be calculated86, which evaluates the contribution
of methanotrophic archaea to the total GDGT pool:

MI¼ ½GDGT� 1� þ ½GDGT� 2�

þ½GDGT� 3�= GDGT� 1½ �

þ½GDGT� 2� þ ½GDGT� 3� þ Crenarchaeol½ � þ ½Cren isomer�

: ð3Þ

Values of 0.3–0.5 of MI mark the boundary between “normal marine sediments”
and methane-impacted sediments. Calculations of this MI index for the studied
Wilkes Land record vary between 0.05 and 0.23, in the samples for which
temperatures are calculated and used, and between 0.03 and 0.06 for the AND-2A
record (Supplementary Table 3 and 6, respectively). The values indicate that there
is no temperature bias due to an input of methanogenic or methanotrophic
archaea.

Finally, we calculated the Ring Index87

Ring Index ¼ 0 � GDGT� 0½ � þ 1 � GDGT� 1½ � þ 2 � GDGT� 2½ �

þ3 � GDGT� 3½ � þ 4 � Crenarchaeol½ �

: ð4Þ

We compared this with the theoretical prediction of the Ring Index based on
the global correlation of this index with the TEX86 and found that the remaining
TEXL

86 values used in this study were all within 0.6 (ΔRI) and thus fitting the
observed trend of increasing Ring Index with TEX86.

Based on the distribution of branched GDGTs (brGDGTs), annual MAT can be
estimated in samples where high BIT index values (>0.3). For this, the calibration
of Peterse et al.88 can be used (Supplementary Table 4):

MAT ¼ 0:81� 5:67 � CBTþ 31:0 �MBT′ r2 ¼ 0:59; n ¼ 176
� �

ð5Þ

where MBT’ is the methylation index based on the seven most abundant GDGTs
and CBT. The uncertainty introduced by the calibration error is estimated to be
±5.0 °C.

However, newer methods and calibrations have recently become available45,52.
For this, samples with high BIT indices were rerun using improved
chromatography of brGDGTs89. Temperature were estimated using the calibration
of De Jonge et al.45:

MATmrs ¼ 7:17þ 17:1 � Ia½ � þ 25:9 � Ib½ �

þ34:4 � Ic½ � � 28:6 � IIa½ � r2 ¼ 0:68; n ¼ 222ð Þ

: ð6Þ

The uncertainty introduced by the calibration error is ±4.6 °C (indicated as
±5.0 °C in Fig. 4).

Of the 10 samples rerun, 2 had brGDGT concentrations below detection limit
and were discarded. Finally, we also report values from the newest calibration by
Naafs et al.52 (Supplementary Table 4). These MATs show the same trend but a
much higher variability due to the high variability in 5 methyl brGDGTs vs. 6
methyl brGDGTs in our samples. Since this large temperature variability contrasts
with reconstructions obtained from vegetation, we here used temperature obtained
with the calibration of De Jonge et al.45.

Data availability. All data generated for this study are included in this article (and
its Supplementary Information files). Original raw data (palynology counts and
(br)GDGTs concentrations and chromatograms) are available from the corre-
sponding author upon request.
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