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Introduction

The intestinal epithelium is constantly and rapidly renewing 

throughout the lifespan of vertebrates, thereby representing a 

major target for tumorigenesis. This epithelium can be di-

vided into two functionally distinct compartments. The crypt of 

 Lieberkühn constitutes the proliferative compartment and con-

tains stem/progenitor cells, as well as, in the small intestine, ter-

minally differentiated Paneth cells. Multipotent stem cells, 

located near the bottom of crypts, generate new cells, which mi-

grate upwards while differentiating into enterocytes, goblet, and 

enteroendocrine cells. Proliferation stops at the crypt–villus 

junction, and terminally differentiated cells are located on the 

neighboring villus, which constitute the differentiated compart-

ment. In the small intestine, a fourth cell type, the Paneth cell, 

migrates downward and settles at the bottom of the crypts as 

postmitotic, differentiated cells. The balance among prolifera-

tion, differentiation, migration, and cell death must be tightly 

regulated to maintain homeostasis of this epithelium.

We reported the expression of Sox9, an HMG-box tran-

scription factor, speci� cally, in the rapidly proliferating stem/

progenitor cells found at the bottom third of Lieberkühn crypts 

throughout the length of the intestine and in the Paneth cells of 

the small intestine, as well as in human tumors of the intestinal 

epithelium (Blache et al., 2004). Sox9 was � rst identi� ed as a 

key regulator of cartilage and male gonad development. Hetero-

zygous Sox9 mutations are responsible for the campomelic 

 dysplasia syndrome, a skeletal dysmorphology syndrome char-

acterized by skeletal malformation of endochondral bones and 

by male-to-female sex reversal in the majority of genotypically 

XY individuals (Foster et al., 1994; Wagner et al., 1994). Sox9 

has also been implicated in the development of cranial neural 

crest derivatives (Spokony et al., 2002), in the neural stem cell 

switch from neurogenesis to gliogenesis (Stolt et al., 2003) and 

in heart (Akiyama et al., 2004a), hair (Vidal et al., 2005), and 

pancreas (Seymour et al., 2007) development. In each of these 

tissues, Sox9 expression is restricted to speci� c cell types, sug-

gesting a complex transcriptional regulation. In addition, the 

currently identi� ed Sox9 target genes, for instance, in the cartilage 

and in the gonad, display tissue-speci� c expression (Ng et al., 

1997; de Santa Barbara et al., 1998), indicating that Sox9 may 
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regulate distinct sets of genes in the different tissues in which it 

is expressed.

In the intestinal epithelium, the function of Sox9 remains 

unresolved, although in vitro studies suggested a role in the 

control of cell differentiation (Blache et al., 2004). In vitro and 

in vivo data indicate that Sox9 is a transcriptional target of Wnt 

signaling. For instance, Sox9 expression is abrogated in Tcf4-

null embryos, and it is strongly expressed in colorectal carci-

noma cell lines containing activating mutations in components 

of the Wnt pathway (Blache et al., 2004).

The Wnt pathway plays a central role among the extra-

cellular signals required to maintain the homeostasis of the intesti-

nal epithelium. In particular, deletion of the gene encoding Tcf4, 

another HMG-box transcription factor (Korinek et al., 1998), or 

overexpression of the inhibitor Dickkopf (Pinto et al., 2003; 

Kuhnert et al., 2004), resulted in a loss of the proliferative com-

partment and in impaired differentiation of secretory cell line-

ages. Conversely, mutation of the gene encoding Apc, a negative 

regulator of the pathway, resulted in crypt expansion, abrogation 

of cell migration, and ampli� cation of the Paneth cell popula-

tion (Sansom et al., 2004; Andreu et al., 2005). In addition, dele-

tion of the Wnt receptor Frizzled-5 revealed an essential role of 

the Wnt–Frizzled-5 pathway in the maturation of Paneth cells 

(van Es et al., 2005). The sorting process of epithelial cells along 

the crypt–villus axis also depends on the Wnt pathway, via a 

modulation of Ephrin–Eph receptor interactions (Batlle et al., 

2002). The Wnt signaling pathway can thus induce diverse cel-

lular responses in the intestinal epithelium. In addition to these 

physiological functions, the Wnt pathway is centrally implicated 

in cancer, as mutations in components of this pathway have been 

identi� ed in the majority of human colorectal carcinoma (Morin 

et al., 1997). Such mutations mimic activation of the pathway by 

Wnt ligands (i.e., stabilization of β-catenin) and result in consti-

tutive transcriptional activity of the β-catenin–Tcf4 complex and 

in aberrant expression of its target genes (Korinek et al., 1997). 

Despite the central importance of this pathway in the physio-

pathology of the intestinal epithelium, little is known about 

the molecular mechanisms involved in restricting this wide 

spectrum of potential functions to elicit a speci� c and adequate 

response from Wnt-stimulated cells.

The fact that Sox9 is transcriptionally regulated by the 

β-catenin–Tcf4 complex (Blache et al., 2004), together with the 

particular expression of Sox9 in the compartment of the intesti-

nal epithelium that contains Wnt-stimulated cells, suggests dis-

tinct functions in proliferating stem/progenitor cells and in the 

postmitotic Paneth cells (Fig. S1 A, available at http://www.jcb

.org/cgi/content/full/jcb.200704152/DC1). To address the dif-

ferent aspects of Sox9 function during the turnover of the intes-

tinal epithelium, including its possible role in specifying the 

cell response to Wnt signals, we speci� cally inactivated the cor-

responding gene in the intestinal epithelium.

Results

Generation of mice with a Sox9-defi cient 

intestinal epithelium

To analyze the function of Sox9 in the turnover of the adult 

intestinal epithelium, Villin-Cre (vil-Cre) mice, in which the Cre 

recombinase is expressed speci� cally in the intestinal epithe-

lium from 10.5 d postcoitum onward (el Marjou et al., 2004) 

were crossed with Sox9� ox/� ox (Kist et al., 2002) mice, which 

have both Sox9 alleles � anked by loxP sequences. This gener-

ated Sox9� ox/� ox-vil-Cre mice, with an intestinal epithelium 

lacking Sox9 protein, indicating effective vil-Cre–mediated 

 recombination of the Sox9� ox allele (Fig. 1). The control vil-Cre 

mice had no detectable phenotypic defect. Sox9� ox/� ox-vil-Cre 

mice developed as their control littermates (Sox9flox/flox or 

Sox9� ox/wt-vil-Cre) to become healthy and fertile adult mice. No 

evidence for intestinal bleeding was found.

Sox9 inactivation causes aberrant 

morphology and decreased goblet 

cell lineage in the colon

Histological analysis of the intestine from 2–6-mo-old adult 

Sox9� ox/� ox-vil-Cre mice revealed that, although the overall mor-

phology of the small intestine seemed, at � rst sight, unaffected 

(Fig. 2, a and b), that of the colon was aberrant. The most strik-

ing feature of the Sox9� ox/� ox-vil-Cre mice colon was the folding 

of the epithelium into villus-like structures, protruding into the 

colon lumen, reminiscent of the small intestine morphology 

(Fig. 2, c–f; and Fig. S1, B–D). Proliferation, however, was ad-

equately restricted to the bottom half of the crypts in Sox9� ox/� ox-

vil-Cre mice, as assessed by Ki67 staining (Fig. 2, g and h).

We then examined the differentiation pattern of the 

Sox9flox/flox-vil-Cre mice colon epithelium into the three main 

types of differentiated colon epithelial cells. Among these, 

Figure 1. Absence of Sox9 protein expression in the intestinal epithelium of 
Sox9-defi cient mice. In Sox9fl ox/fl ox mice, the Sox9 protein is expressed in the 
bottom of small intestinal (a) and colon (c) crypts. The absence of specifi c 
Sox9 staining in the small intestine (b) and colon (d) from Sox9fl ox/fl ox-vil-Cre 
mice demonstrate effi cient vil-Cre–mediated recombination. Arrows and 
arrowheads indicate Sox9-positive and -negative nuclei, respectively. Bars: 
(panels) 150 μm; (insets) 50 μm.
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mucus-producing goblet cells represent the largest population and 

are responsible for epithelium protection and lubrication (Velcich 

et al., 2002). Most of the other cells are enterocytes, with few 

interspersed enteroendocrine cells. Alcian blue and Muc2 

stainings showed that the goblet cell population was strongly 

decreased in the colon of Sox9-de� cient animals (Fig. 3, a–d). 

No differences were detected in the morphology or staining 

 intensity between individual alcian blue–positive goblet cells 

in Sox9� ox/� ox and Sox9� ox/� ox-vil-Cre mice, and no changes in 

cellular representation were found either for the scarce entero-

endocrine cell population (Fig. 3, e and f) or for the Cdx2-

 expressing enterocyte population (Fig. 3, g and h). Thus, Sox9 

is involved in de� ning the colon epithelium morphology and 

plays a speci� c role in the differentiation of the goblet cell lineage 

in the colon.

Figure 2. Morphological alterations in the colon of Sox9-defi cient mice. 
Histological analysis (hematoxylin staining) of the intestine of Sox9fl ox/fl ox 
(a, c, and e) and Sox9fl ox/fl ox-vil-Cre mice (b, d, and f). The gross morphol-
ogy of the small intestine of the Sox9fl ox/fl ox-vil-Cre mice is not affected 
(a and b), whereas that of the colon is strongly altered. The surface of the 
colon is normally fl at (c and e, arrows), but villus-like structures protrude 
into the lumen of the colon of Sox9fl ox/fl ox-vil-Cre mice (d and f, arrows). 
 Immunohistochemical staining with the Ki-67 proliferation in Sox9fl ox/fl ox mice 
(g) and Sox9fl ox/fl ox-vil-Cre mice (h) indicates appropriate crypt-restricted 
proliferation in the colon of Sox9-defi cient animals. Bars, 150 μm.

Figure 3. Altered goblet cell differentiation in the colon of Sox9-defi cient 
mice. Immunohistochemical analysis of Sox9fl ox/fl ox mice (a, c, e, and g) 
and Sox9fl ox/fl ox-vil-Cre mice (b, d, f, and h). Alcian blue staining (a and b) 
and Muc2 immunoreactivity (c and d) reveal a strong reduction of the 
 goblet cell population in the colon epithelium of Sox9fl ox/fl ox-vil-Cre mice. 
Sox9fl ox/fl ox and Sox9fl ox/fl ox-vil-Cre mice have comparable populations of 
chromogranin A–positive enteroendocrine cells (e and f) and Cdx-2–positive 
enterocytes (g and h). Bars, 150 μm.
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Sox9 is required for Paneth 

cell differentiation

When we examined the expression of markers representative of the 

four main cell lineages constituting the small intestinal epithelium, no 

major differences were found in enterocyte and enteroendocrine cell 

numbers, as shown by alkaline phosphatase and chromogranin A 

staining (Fig. 4, a–d). However, both the goblet and Paneth cell lin-

eages were considerably affected.  Alcian blue–positive goblet cells 

were found in the Sox9� ox/� ox-vil-Cre intestinal epithelium and ap-

propriately expressed Muc2, but their number was reduced by 40% 

compared with control mice (Fig. 4, e–h; and Fig. S2, A and B, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200704152/DC1).

Figure 4. Sox9 controls differentiation of the Paneth and goblet cell lineages. Sox9fl ox/fl ox (a, c, e, g, i, k, and m) and Sox9fl ox/fl ox-vil-Cre (b, d, f, h, j, l, and n) 
mice are compared. Differentiation along the enterocyte (a and b) and enteroendocrine (c and d) lineages is not affected. The goblet cell population, 
revealed by alcian blue staining for acidic mucins (e and f) and Muc2 immunostaining (g and h), is reduced in the small intestinal epithelium of Sox9-defi cient 
mice.  Paneth cells (arrows in control mice) are completely absent (arrows) in Sox9-defi cient crypts (i and j). Instead, the proliferative compartment (k–n, 
arrows)  expands to occupy the whole crypt bottom in mutant animals, where more Musashi-1–expressing putative stem cells are found (o and p, arrows). 
Ectopic  Paneth cell found in a human patient with Barrett’s esophagus (intestinal metaplasia in the esophagus) also express Sox9, as shown by staining of 
adjacent sections with lysozyme (q) and Sox9 (r) antibodies. Expression analysis of the Paneth cell markers lysozyme, MMP7, and Angiogenin-4, in the 
HT29Cl.16E-Sox9 cell line, before and after doxycycline induction of exogenous Sox9 expression (s). Bars: (a–l, q, and r) 120 μm; (m and n) 30 μm; 
(o and p) 40 μm.
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Paneth cells represent the fourth cell type found in the 

small intestine. They secrete a variety of products, including 

antimicrobial peptides, growth factors, phospholipase A2, and 

matrilysin. These cells are involved in regulating the inter-

actions between epithelial cells and the indigenous microorgan-

ism population, which, in turn, is essential to elaborate the 

microvasculature underlying the epithelium (Wilson et al., 

1999; Stappenbeck et al., 2002). Remarkably, morphological 

identi� cation coupled with staining of small intestinal sections 

from Sox9� ox/� ox-vil-Cre mice for lysozyme, an early marker of 

Paneth cell differentiation, revealed that almost all the crypts 

were completely devoid of Paneth cells (Fig. 4, i and j). In Pan-

eth cell–depleted crypts, the proliferative compartment ex-

panded to occupy the whole crypt base, including the normal 

Paneth cell compartment (Fig. 4, k–n). As Paneth cells are lo-

cated next to the putative stem cells, the replacement of Paneth 

cells by proliferating cells raises the possibility that the number 

of stem cells is altered in Sox9-de� cient mice. Indeed, the num-

ber of cells positively stained with Musashi-1, a putative marker 

of stem cells in the nervous system and the intestinal epithelium 

(Sakakibara et al., 1996; Potten et al., 2003), was increased in 

Sox9-de� cient mice (Fig. 4, o and p). Sox9 is thus required for 

differentiation of the Paneth cell lineage, is involved in differen-

tiation of the goblet cell lineage, and might be involved in the 

regulation of the stem cell number. The observed decrease in 

Paneth and goblet lineages in Sox9-de� cient mice was not due 

to increased apoptosis, as no differences were found in the 

apoptotic rates between Sox9� ox/� ox-vil-Cre and Sox9� ox/� ox mice 

(Fig. S2 C).

In the healthy human body, Paneth cells are also found 

uniquely in the small intestinal crypts of Lieberkühn. In some 

pathological situations, such as intestinal metaplasia, ectopic 

Paneth cells can also be found in the esophagus (Barrett’s 

esophagus) or in the stomach (Schreiber et al., 1978). Thus, if 

Sox9 is required for the differentiation of the Paneth cell lin-

eage, it should be expressed in Paneth cells found in such aber-

rant structures. To test this, we analyzed biopsy sections from a 

patient with Barrett’s esophagus. Paneth cells were detected us-

ing lysozyme expression, and Sox9 expression was analyzed on 

an adjacent section. Sox9 expression was found in most cells 

constituting crypt-like structures in the metaplasic area, includ-

ing Paneth cells (Fig. 4, q and r). Thus, Sox9 expression also 

seems to be associated with Paneth cells in the pathological 

context of human intestinal metaplasia.

To gain insight into the mechanism underlying the Sox9-

dependent differentiation of Paneth cells, we screened by real-

time PCR colon carcinoma cell lines for expression of Paneth 

cell markers. All the tested cell lines (SW480, HT29Cl.16E, 

HCT116, and DLD-1) had detectable expression of such mark-

ers, and this expression was highest in HT29Cl.16E cells 

 (unpublished data), which were chosen for further analyses. 

A moderate (� vefold) overexpression of Sox9 in these cells 

 resulted in an up-regulation of expression of several Paneth cell 

markers, which was most prominent for lysozyme, the matrix 

metalloproteinase MMP7, and Angiogenin-4 (ANG-4) mRNAs 

(Fig. 4 s). Thus, Sox9 may regulate the differentiation of Paneth 

cells, at least in part, through the transcriptional regulation of 

Figure 5. Generalized hyperplasia develops in the absence of Sox9. 
 Difference of crypt size in the small intestines of Sox9fl ox/fl ox (a and c) and 
Sox9fl ox/fl ox-vil-Cre (b and d) mice. (a and b) Crypt cross sections; (c and d) 
crypt longitudinal sections. Bars, 75 μm. (e) Histogram showing mean crypt 
diameters along the small intestines of three Sox9fl ox/fl ox and three Sox9fl ox/fl ox-
vil-Cre mice. Standard deviations are indicated. P < 0.001 (t test). (f) Histogram 
showing the BrdU incorporation rates (number of BrdU-positive cells/total 
number of cells) in crypts from three Sox9fl ox/fl ox and three Sox9fl ox/fl ox-vil-Cre 
mice. Standard deviations are indicated. P < 0.001 (t test).
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several markers of these cells. This regulation might be direct or 

indirect, but it likely contributes to the absence of identi� able 

Paneth cells in the intestinal epithelium of Sox9-de� cient mice.

Increased cell proliferation and hyperplasia 

throughout the intestinal epithelium 

of Sox9-defi cient mice

We then asked whether the homeostasis of the epithelium would 

be conserved despite the extension of the proliferative compart-

ment into the usual Paneth cell area and found that, in fact, the 

crypt size of Sox9� ox/� ox-vil-Cre mice seemed increased com-

pared with Sox9flox/flox control mice (Fig. 5, a–d). When crypt 

 diameters and BrdU incorporation rates were measured, an un-

ambiguous increase of crypt size was found in Sox9-de� cient 

mice (Fig. 5 e), and the ratio between BrdU-labeled cells and the 

total number of cells found in a crypt circumference was slightly, 

but reproducibly, increased in the Sox9-de� cient mice (Fig. 5 f). 

This was statistically signi� cant (P < 0.0001). The total number 

of cells in any crypt circumference increased according to the 

crypt size, indicating that the cell size was not affected (unpub-

lished data). This indicates that the absence of Sox9 resulted in 

increased cell proliferation, leading, in turn, to crypt hyperplasia 

throughout the small intestine. The epithelium from the proxi-

mal colon was also found to display hyperplastic features, but 

Figure 6. Sox9 defi ciency causes hyperplasia and dysplasia. In the colon epithelium of Sox9fl ox/fl ox-vil-Cre mice, hyperplastic lesions are found (hematoxy-
lin staining) with branched and enlarged crypts (a). Some crypts have a cystic appearance (b). Such structures proliferate (c and d, arrows). Tubulovillous 
microadenomas spontaneously developed in hyperplastic areas of Sox9fl ox/fl ox-vil-Cre mice (e). Typical example of the dysplastic-looking crypts (arrows) 
found in the distal half of the colon of Sox9-defi cient mice. Arrowheads point at mutiadenoid crypts (f). Compared with normal tissue (g, i, and k), hyper-
plastic and dysplastic crypts of Sox9-defi cient mice (h, j, and l) overexpress Wnt pathway target genes such as c-Myc (compare g and h) and cyclin D1 
(compare i and j) and, accordingly, have elevated staining for the Ki67 proliferation marker (compare k and l). Insets in panels g–l show enlarged pictures 
of the indicated area of the panel, and arrows point at typical staining pictures. Western blot analysis of c-Myc, cyclin D1, and PCNA in the small intestine 
and colon of Sox9fl ox/fl ox and Sox9fl ox/fl ox-vil-Cre mice. β-Actin expression is shown as a loading control (m). Stool hydration is increased in Sox9-defi cient 
mice (n). Bars: (panels) 150 μm; (insets) 50 μm.
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we were unable to perform accurate measurements because of 

its severely altered morphology in Sox9� ox/� ox-vil-Cre mice.

Focal dysplastic crypts spontaneously 

develop in the colon of Sox9fl ox/fl ox-vil-

Cre mice

In addition to the general mild hyperplasia found throughout the 

intestine of Sox9� ox/� ox-vil-Cre mice, extensive hyperplasia oc-

curred, with occasional glandulocystic features, in the distal half 

of Sox9� ox/� ox-vil-Cre mice colon. Numerous crypts were en-

larged and branched, and some were extensively dilated with a 

cystic appearance (Fig. 6, a and b). Proliferation was correctly 

restricted to the bottom of hyperplastic crypts (Fig. 6 c). Cells 

constituting cystic crypts also proliferated, albeit modestly (Fig. 

6 d), and were poorly differentiated (Fig. S2, D–F). In addition, 

tubulovillous microadenomas occasionally developed in hyper-

plastic areas of the epithelium with atypical tissue architecture 

(Fig. 6 e). Crypts with dysplastic features, including poor differ-

entiation, pseudostrati� ed nuclei, multiadenoid structures, and 

numerous mitosis, spontaneously developed in several locations 

along the colon of Sox9-de� cient mice (Fig. 6 f). Interestingly, 

slight crypt hyperplasia/dysplasia was also detectable in the 

 colon of 3-wk-old Sox9-de� cient mice, indicating that these 

 defects appear early but become more severe with time, likely as 

a consequence of increased cell proliferation (Fig. S2, G–J).

Some Sox9� ox/� ox-vil-Cre mice had no detectable lesions 

but also had a normal colon morphology and had Paneth cells 

in their small intestine (unpublished data). In such mice, Sox9 

staining was invariably identical to that of wild-type mice 

 (unpublished data), indicating inef� ciency of the Cre recombinase. 

Thus, dysplastic-like lesions were always found in the colon of 

true Sox9-de� cient mice. That we never observed true carcinoma 

in the intestine of Sox9-de� cient mice up to 6 mo old suggests, 

in turn, that Sox9 de� ciency may not be suf� cient, per se, to 

 induce cell transformation.

Hyperplastic- and dysplastic-like crypts were found to 

strongly overexpress Wnt pathway–related genes, such as 

c-Myc and cyclin D1, suggesting an increase of Wnt-dependent 

transcriptional activity (Fig. 6, compare g with h, and i with j). 

This overexpression resulted from both an increase in the num-

ber of c-Myc– and cyclin D1–expressing cells and increased 

staining intensities in individual positive cells (unpublished 

data). Expression of the Ki-67 proliferation marker was also af-

fected (Fig. 6, compare k with l). This � nding was con� rmed by 

Western blot analysis of extracts from Sox9� ox/� ox and Sox9� ox/� ox-

vil-Cre mice. Although few variations were found in the small 

intestine, likely because the few proliferating crypt cells are not 

suf� ciently represented in the whole epithelial cell population, 

a clear increase of c-Myc and cyclin D1 was evident in the 

Sox9-de� cient colon (Fig. 6 m). The increase in cell proliferation 

rate in Sox9-de� cient mice (estimated as 15% from BrdU incorpor-

ation rates) was probably not suf� cient to be clearly visualized 

with an anti-PCNA Western blot (Fig. 6 m). An alternative 

explanation is that, although crypt hyperplasia and increased 

BrdU intake are evident, the density of crypts is reduced in 

Sox9-de� cient animals, which may compensate the increased 

proliferation observed in each crypt. That the overexpression of 

Wnt target genes is much more visible in the colon samples may 

Figure 7. Sox9 fi ne-tunes the activity of the 
�-catenin–Tcf4 transcriptional effector of the Wnt 
signaling pathway. (a and b) No alteration of the 
number of cells containing nuclear β-catenin (arrows) 
is found in Sox9-defi cient animals. Bars, 40 μm. 
(c and d) Analysis of the transcriptional activity 
of the β-catenin–Tcf4 complex, using a luciferase 
reporter system (Morin et al., 1997). Endogenous 
transcriptional activity of the β-catenin–Tcf4 com-
plex. Transient overexpression of Sox9 inhibits the 
β-catenin–Tcf4 activity, whereas overexpressing 
∆CSox9 increases it (c). Similarily, induction of 
Sox9 overexpression in the HT29-16E-Sox9 cell 
line causes inhibition of β-catenin–Tcf4 transcrip-
tional activity, whereas inducing overexpression of 
∆CSox9 in the HT29-16E-∆CSox9 cell line resulted 
in a considerable increase of this activity (d). Regu-
lation of the β-catenin–Tcf4 transcriptional activity 
impacted c-Myc and cyclin D1 mRNA expression. 
The amounts of mRNA after doxycycline induction 
are indicated as a percentage of the noninduced 
state (e, dashed line). These variations at the mRNA 
level were refl ected at the protein level (f).



JCB • VOLUME 178 • NUMBER 4 • 2007 642

re� ect either the bigger size of the crypts relative to the entire 

epithelium in the colon compared with the small intestine or the 

presence of dysplastic-like lesions, which strongly overexpress 

Wnt target genes, in the colon samples.

We then asked whether these alterations in the small in-

testine and colon structure may impact the mouse physiology. 

Indeed, the weight of Sox9� ox/� ox-vil-Cre animals was always 

reduced (unpublished data), compared with the related Sox9� ox/� ox 

control mouse. This reduction was modest (mean 17%; n = 10) 

but, despite the heterogeneity in the age and sex of the pairs of 

animals tested, reached statistical signi� cance (P < 0.05, t test). 

In addition, stools from Sox9� ox/� ox-vil-Cre mice were more 

 hydrated than those of control mice, indicating a partial im-

pairment of the colonic epithelium function in Sox9-de� cient 

animals (Fig. 6 n).

Sox9 modulates Wnt pathway 

activity in vitro

To understand the molecular bases of the observed up-regulation 

of Wnt target genes, we compared the expression of nuclear 

β-catenin, the hallmark of Wnt signaling, in Sox9-de� cient versus 

control mice. Comparable results were found in both situations, 

with a typical nuclear staining of some cells scattered through 

the crypt bottom (Fig. 7, a and b; and Fig. S3, A and B, available 

at http://www.jcb.org/cgi/content/full/jcb.200704152/DC1), 

indicating that the overexpression of Wnt target genes found 

in Sox9-de� cient animals was not due to increased levels of 

β-catenin, in the crypt nuclei of Sox9� ox/� ox-vil-Cre mice.

We and others have shown that the level of Sox9 ex-

pression regulates the transcriptional activity of the β-catenin–

Tcf4 complex in cultured HEK293 cells (Akiyama et al., 2004b; 

Blache et al., 2004). Physical interaction between Sox9 and 

β-catenin has been reported, resulting in a competition between 

Sox9 and Tcf4 for binding to β-catenin. Formation of the Sox9–

β-catenin complex results in degradation of the two proteins 

(Akiyama et al., 2004b). We thus hypothesized that the absence 

of Sox9 in crypt cells of Sox9� ox/� ox-vil-Cre mice, where Wnt 

signaling is physiologically active, might result in increased 

availability of the nuclear pool of β-catenin for binding to Tcf4. 

To test this, we analyzed the transcriptional activity of the 

β-catenin–Tcf4 complex after manipulation of Sox9 expression 

in colon carcinoma cell lines containing a constitutive activation 

of the β-catenin–Tcf transcriptional complex (Korinek et al., 

1997). The basal β-catenin–Tcf4 activity present in DLD-1 

cells was ef� ciently inhibited by Sox9 and increased after over-

expression of a dominant-negative version of Sox9 (Fig. 7 c). 

Comparable results were obtained in other colon carcinoma cell 

lines, such as SW480, HCT116, and HT29Cl.16E (Fig. S3, C–E), 

demonstrating that even in colon carcinoma cells, in which 

 nuclear β-catenin accumulates constitutively, the level of Sox9 

 expression critically modulates the level of β-catenin–Tcf tran-

scriptional activity.

We used the HT29Cl.16E-Sox9 and HT29Cl.16E-∆CSox9 

cell lines, inducibly overexpressing full-length or C-terminally 

truncated Sox9, respectively, to test whether Sox9 overexpres-

sion would result in a down-regulation of expression of endog-

enous Wnt pathway target genes. Doxycycline induction of Sox9 

or ∆CSox9 expression also resulted in down- or up-regulation, 

respectively, of the β-catenin–Tcf complex activity (Fig. 7 d). 

Using real-time PCR, we found that induction of Sox9 ex-

pression resulted in a down- regulation of c-Myc and cyclin D1 

mRNA expression, whereas that of ∆CSox9 resulted in an up-

regulation of these two Wnt target genes (Fig. 7 e). C-Myc and 

cyclin D1 protein expression changed accordingly (Fig. 7 f). 

Figure 8. Sox9 transcriptionally activates expression of inhibitors of the 
�-catenin–Tcf activity. Structure–function analysis of the inhibitory function 
of Sox9 on the β-catenin–Tcf activity (a–e) in DLD-1 cells. (a) Diagram 
showing the different constructs used in this study. (b) Transcriptional activ-
ity of Sox9 and its mutated or truncated versions on a Sox-luciferase 
 reporter system. (c) Inhibition of the β-catenin–Tcf activity by Sox9 and its 
truncated or mutated versions. (d) Transcriptional activity of the Sox9-
VP16 chimeric protein compared with that of Sox9 on a Sox-luciferase re-
porter system. (e) Inhibition of the β-catenin–Tcf activity by Sox9 and 
Sox9-VP16. In panels b and d, the activity of the wild-type Sox9 construct 
is arbitrarily set to 100. In panels c and e, the endogenous β-catenin–Tcf 
activity is arbitrarily set to 100. (f and g) Real-time RT-PCR analysis of the 
expression of the inhibitor of β-catenin and Tcf (ICAT) and Groucho-related 
inhibitors of the β-catenin–Tcf activity in HT29Cl.16E-Sox9 cells before 
and after induction of exogenous Sox9 expression (f) and in the intestinal 
mucosa of Sox9fl ox/fl ox versus Sox9fl ox/fl ox-vil-Cre mice (g). Results are ex-
pressed relative to the noninduced or nonrecombined states. Standard 
 deviations are indicated. 
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This result demonstrates modulation of expression of key 

β-catenin–Tcf target genes by Sox9, but the molecular mecha-

nism underlying this regulation remained unclear, as the ∆C-Sox9 

construct does not contain the domain thought to interact with 

β-catenin (Akiyama et al., 2004b).

The previously reported physical interaction between 

Sox9 and β-catenin had been detected after overexpression of 

tagged Sox9 and β-catenin in COS cells (Akiyama et al., 2004b). 

We reasoned that if this interaction was important to modulate 

Wnt signaling in colon carcinoma cells, then the endogenous 

complex should be readily detectable in these cells. Despite 

repeated efforts, no β-catenin–Sox9 complex could be immuno-

precipitated, although Tcf4 coimmunoprecipitated with β-catenin 

(unpublished data). We concluded that β-catenin–Sox9 com-

plexes are probably not abundant in colon carcinoma cells. In 

addition, the subcellular localization of both β-catenin and Tcf4 

was unchanged after transient overexpression of Sox9 in SW480 

cells (Fig. S4, A–F, available at http://www.jcb.org/cgi/content/

full/jcb.200704152/DC1), and the level of β-catenin expression 

was not decreased after induction of Sox9 expression in the 

HT29Cl.16E-Sox9 cells (Fig. S4 G).

To identify another possible mechanism, we performed 

mutational analysis of the Sox9-mediated inhibition of the 

β-catenin–Tcf activity. The W143R point mutation (Fig. 8 a) was 

originally identi� ed in a campomelic dysplasia patient and abol-

ishes the DNA binding properties of Sox9 (Meyer et al., 1997). 

We introduced this mutation in both the Sox9 and ∆CSox9 con-

structs. The resulting products did not have any transcriptional 

activity using Sox-luciferase reporters (Fig. 8 b) and failed to 

modify β-catenin–Tcf activity (Fig. 8 c). This indicates that 

Sox9-mediated inhibition of the β-catenin–Tcf activity requires 

an intact DNA binding domain of Sox9, which raises the possi-

bility that this inhibition might be at least partly due to transcrip-

tional regulation. To test this, we used a Sox9 construct in which 

the C-terminal domain of Sox9, involved in transactivation, and 

in the interaction with β-catenin (Akiyama et al., 2004b), is 

 removed and replaced by the unrelated VP16 transactivating 

 domain (Kamachi et al., 1999; Fig. 8 a). Transient transfection 

of this construct in colon carcinoma cells showed that the Sox9-

VP16 chimeric protein potently activates transcription of a Sox-

luciferase reporter gene (Fig. 8 d) and inhibits the β-catenin–Tcf 

activity even more ef� ciently than wild-type Sox9 (Fig. 8 e). We 

conclude that Sox9-mediated inhibition of β-catenin–Tcf activ-

ity involves transcriptional regulation.

We then aimed to identify potential Wnt pathway inhibi-

tors, such as the inhibitor of β-catenin and Tcf (ICAT; Tago 

et al., 2000) and Groucho-related (Grg/TLE) corepressors (Cavallo 

et al., 1998; Roose et al., 1998), which might be transcriptionally 

regulated by Sox9. In vitro, the induction of Sox9 expression in 

HT29Cl.16E-Sox9 cells resulted in increased expression of the 

ICAT and TLE2-4 genes, whereas the expression of TLE1 was 

unaffected (Fig. 8 f). We then analyzed the expression of the 

mouse homologues of these genes in Sox9� ox/� ox-vil-Cre mice 

and Sox9� ox/� ox mice, and we found that, again, the expression of 

Grg2, -3, and -4 was obviously down-regulated in Sox9-de� cient 

mice, whereas that of Grg1 remained unchanged (Fig. 8 g). Icat 

expression seemed unchanged in Sox9-de� cient mice, but this 

result varied with the samples analyzed (unpublished data). 

Although additional Wnt pathway inhibitors may be involved, 

this result provides a basis to explain the increased expression of 

Wnt target genes observed in Sox9-de� cient mice, despite the 

absence of an increase in nuclear β-catenin expression.

Sox9 expression defi nes 

compartmentalization of the crypt

When we stained small intestinal tissue for c-Myc and cyclin 

D1 protein expression, we found that both genes were expressed 

as expected in the stem/progenitor cell compartment but that 

their expression was strongly decreased in Paneth cells (Fig. 9, 

a and c). In contrast, the absence of Sox9 resulted in uniform 

expression of both c-Myc and cyclin D1 in the whole crypt bottom 

(Fig. 9, b and d), which then lacked Paneth cells.

Thus, Sox9 expression may de� ne a compartment in which 

nuclear β-catenin expression results in a genetic program that 

includes low c-Myc and cyclin D1 expression, and in which 

differentiation of Paneth cells occurs. In the absence of Sox9, 

Paneth cells do not develop, and the genetic program characterized 

by high c-Myc and cyclin D1 expression expands to include the 

whole crypt base.

Discussion

This study shows that loss of Sox9 function affects the intestinal 

epithelium physiopathology at the level of (1) cell differentia-

tion, (2) tissue homeostasis, and (3) colon tissue morphology. 

These different aspects of the phenotype were sex independent.

Figure 9. Alteration of c-Myc and cyclin D1 expression in the bottom of 
Sox9-defi cient crypts. C-Myc and cyclin D1 expression was analyzed by 
immunohistochemistry in the intestine of Sox9fl ox/fl ox (a and c) and Sox9fl ox/fl ox-
vil-Cre (b and d) mice. Arrows indicate the Paneth cell compartment in 
Sox9flox/flox control mice (a and c) and the equivalent location in the 
Sox9fl ox/fl ox-vil-Cre mice (b and d). Bars, 50 μm.
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Control of cell differentiation by Sox9—

relationship with the Wnt pathway

Interference with the Wnt pathway results in depletion of the 

Paneth cell lineage (Pinto et al., 2003) and, conversely, loss of 

the key negative regulator of the pathway, Apc, results in an ex-

pansion of the Paneth cell lineage (Sansom et al., 2004; Andreu 

et al., 2005). In addition, the terminal maturation of Paneth cells 

requires Wnt signaling through the Frizzled-5 receptor (van Es 

et al., 2005). As we previously showed that Sox9 is a transcrip-

tional target of Wnt signaling, the Sox9 requirement for the dif-

ferentiation of the Paneth cell lineage is likely to re� ect its role 

to specify this speci� c aspect of the Wnt pathway. In this view, 

Sox9 function would be expected to occur at an earlier stage 

than the Wnt–Frizzled-5 pathway, during the course of Paneth 

cell differentiation, as this pathway was previously shown to be 

involved in the terminal differentiation of already committed 

Paneth cells (van Es et al., 2005). Although less likely, an alter-

native in which Sox9 and Wnt signaling, as two distinct path-

ways, would control Paneth cell differentiation cannot be 

formally excluded.

The functional consequence of the loss of the Paneth cell 

lineage, a component of the innate immunity, is still a matter of 

debate. In this study, we did not � nd an increased mortality 

in the Sox9-de� cient mice lacking Paneth cells. In agreement 

with this, a previous experiment with ablation of Paneth cells 

concluded that the turnover of epithelial cells was not grossly 

perturbed. In addition, no major alteration of microorganism 

population along the crypt–villus axis was detected (Garabedian 

et al., 1997). On the other hand, a role of Paneth cells in regulat-

ing the villus angiogenesis (Stappenbeck et al., 2002) and in 

clearing bacterial infections (Wilson et al., 1999) have been de-

scribed, although no major impact was reported at the physio-

pathological level.

The reduction of goblet cell numbers indicates that Sox9 

is also involved in the differentiation of this lineage. This quan-

titative impact of the Sox9 de� ciency on the goblet cell popula-

tion is probably physiologically relevant given the key role of 

mucus in protecting the epithelium against the luminal content, 

well illustrated, for instance, by the colon epithelium tumori-

genesis resulting from a deletion of the Muc2 gene (Velcich 

et al., 2002). This function of Sox9 in regulating the differentia-

tion of goblet cells might also play a part in the cellular response 

to Wnt signals, as altered goblet cell differentiation was also 

found in mice in which the Wnt pathway has been impaired 

(Pinto et al., 2003). That Sox9 de� ciency results in the complete 

absence of Paneth cells but leads only to a reduction of the gob-

let cell lineage might indicate different Sox9 requirements for 

the differentiation of these two lineages, and suggests that addi-

tional factors might be involved in this process, at least for gob-

let cell lineage differentiation.

What is the function of Sox9 in goblet 

cell differentiation?

In a previous report, we showed that overexpression of Sox9 in 

the LS174T colon carcinoma cell line repressed the Muc2 gene 

(Blache et al., 2004). This apparently contrasts with the present 

� nding that the absence of Sox9 in the intestinal epithelium 

causes an obvious reduction of the number of goblet cells 

in vivo. The remaining goblet cells express the Muc2 gene, which 

indicates their maturation into functional mucus-producing 

cells. The apparent discrepancy between the two experiments 

likely lies in the fundamentally different nature of the experi-

mental models used (i.e., LS174T human colon carcinoma cells 

grown in vitro versus mouse intestinal epithelium in its physio-

logical tissue context). We conclude that Sox9 de� nitely plays a 

role in the differentiation of the goblet cell lineage, and we hy-

pothesize that this role occurs primarily at the level of cell fate 

choice, similar to what was shown previously in the developing 

nervous system (Spokony et al., 2002). In addition, as suggested 

by in vitro data and the respective expression patterns of Sox9 

and Muc2, down-regulation of Sox9 expression might be neces-

sary to allow terminal maturation of committed goblet cells, al-

though this hypothesis is dif� cult to test using the present gene 

inactivation model.

“Gatekeeper” role of Sox9 in modulating 

Wnt pathway activity?

Our in vitro and in vivo results indicate that Sox9 down-regulates 

the transcriptional activity of the β-catenin–Tcf4 complex 

on endogenous target promoters, such as the c-Myc and cyclin D1 

gene promoters. Although previous studies indicated that Sox9 

could inhibit the activity of the β-catenin–Tcf4 complex in 

HEK293 cells transiently transfected with arti� cial luciferase 

reporters (Akiyama et al., 2004b; Blache et al., 2004), the ob-

served regulation of the β-catenin–Tcf4 complex transcriptional 

activity on endogenous target gene promoters, in cultured colon 

carcinoma cells known to have a constitutive β-catenin–Tcf4 

activity, was somewhat unexpected. In this study, although 

down-regulation of an arti� cial luciferase Tcf reporter gene was 

obvious, that of endogenous β-catenin–Tcf target genes was 

slighter and necessitated optimization of the cell culture condition. 

Indeed, Sox9-mediated down-regulation c-Myc and cyclin D1, 

which was hardly detectable in low-con� uence cell culture 

condition, became evident when a more con� uent cell culture 

setting was used. In agreement with this, a down-regulation of 

the β-catenin–Tcf4 complex has been reported as cultured 

colon carcinoma cells reach con� uence (Mariadason et al., 2001). 

Thus, in low- con� uence culture conditions, the endogenous 

level of β-catenin–Tcf4 complex likely saturates the endog-

enous target gene promoters, even in the presence of exogenous 

Sox9. In contrast, the transfected luciferase Tcf reporter system 

exists in multiple copies in each transfected cell, which might 

explain its increased sensitivity to Sox9 regulation. When cells 

are more con� uent, the endogenous β-catenin–Tcf activity 

likely decreases and allows regulation of endogenous Wnt tar-

get genes by Sox9. This also explains the apparent discrepancy 

between the results presented here and in our previous report, in 

which we showed that c-Myc was not regulated by Sox9 in low-

con� uence cell culture conditions (Blache et al., 2004). Thus, 

even in cells in which the Wnt pathway is constitutively active, 

Sox9 may play an important retroinhibition role.

We could show that the transcriptional activity of Sox9 is 

involved in this inhibition, and genes encoding inhibitors of the 

β-catenin–Tcf activity have been found to be regulated by Sox9 
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in vitro and in vivo. This � nding might explain how many Sox 

proteins, which lack homology outside the HMG DNA binding 

domain, have the conserved property of inhibiting β-catenin–

Tcf activity.

In vivo, inactivation of the Sox9 gene results in an increase 

in the rate of BrdU incorporation in crypt epithelial cells. This 

correlates with the development of hyperplastic- and dysplastic-

like crypts, which overexpress Wnt target genes. The percent-

age of BrdU-positive cells obtained in this study with the 

Sox9� ox/� ox control mice (46–56% with a 2-h BrdU pulse) is 

consistent with previous analyses showing a 3H labeling index 

of 29–33% after a 1-h treatment with 3H-thymidine (Cheng and 

Bjerknes, 1982). The 16–32% increase in BrdU-positive cells 

in Sox9flox/flox-vil-Cre mice is therefore likely to signi� cantly 

impact epithelial homeostasis, given the rate of renewal of the 

intestinal epithelium. This increased proliferation rate likely 

explains the occurrence of Wnt target genes overexpressing 

hyperplastic- and dysplastic-like crypts in Sox9-de� cient mice, 

whereas this was never observed in Sox9� ox/� ox animals. In 

agreement with this, an apparent increase of Musashi-expressing 

cells was found in Sox9-de� cient mice, suggesting that Sox9 might 

regulate the number of stem cells in the intestinal epithelium.

A role of Sox9 in regulating cell proliferation has already 

been proposed in chondrocytic cell lines, in which Sox9 pro-

moted differentiation (Panda et al., 2001), as well as in breast and 

prostate tumor cell lines (Afonja et al., 2002; Drivdahl et al., 

2004). Here, however, Sox9 is speci� cally expressed, in a normal 

physiological situation, in the proliferative compartment of the 

intestinal epithelium, and activity of the protooncogenic Wnt path-

way is required for its expression (Blache et al., 2004). Thus, 

Sox9 might function as a gatekeeper in intestinal crypts to pre-

vent overactivity of the Wnt-dependent transcriptional program.

Role of the Sox9-mediated inhibition 

of the Wnt pathway in the differentiation 

of Paneth cells

Wnt signaling is known to be important for the maintenance of 

the proliferating compartment (Korinek et al., 1998; Pinto et al., 

2003; Kuhnert et al., 2004), as well as for the differentiation and 

maturation of Paneth cells (Pinto et al., 2003; Andreu et al., 

2005; van Es et al., 2005). Here, we found that c-Myc, a central 

effector of the Wnt pathway, as well as cyclin D1, was expressed 

in the proliferative compartment of the small intestinal epithe-

lium but not, or at a much lower level, in the Paneth cell com-

partment of wild-type mice. This was unexpected given that 

Paneth cells have been reported to express the highest levels of 

nuclear β-catenin (van Es et al., 2005). This suggests that dis-

tinct genetic programs are set, downstream to the Wnt pathway, 

in the stem/progenitor versus Paneth cell compartments, and 

this was re� ected by a recent transcriptomic study (Van der 

Flier et al., 2007). The absence of Sox9 results in a single pro-

liferative stem/progenitor compartment, in which all the cells 

express c-Myc and cyclin D1. This suggests that Sox9 is re-

quired to specify the Paneth cell compartment, in which the 

presence of nuclear β-catenin results in a “Paneth cell” genetic 

program instead of a “stem/progenitor” program that includes 

c-Myc expression.

This also raises the question of the role of Sox9 in Wnt 

pathway–triggered tumorigenesis. Our data suggest that loss of 

Sox9 might promote tumorigenesis, either through the reduction 

of mucus protection or through up-regulation of the β-catenin–

Tcf activity. It should be noted, however, that up-regulation of 

the β-catenin–Tcf complex activity by loss of Sox9 function is 

expected to occur only in cells in which Wnt pathway activity 

preexists, and Sox9 deletion might not be suf� cient to cause 

neoplasia. Consistent with this, no evidence for spontaneous neo-

plasms was found in Sox9-de� cient mice up to 6 mo old.

Conclusion

This study reveals the dual role played by Sox9 in relation with the 

Wnt pathway. (1) It likely mediates part of the Wnt-dependent 

program, involved in Paneth and goblet cell differentiation. 

Sox9 thus provides the � rst example of a transcription factor in-

volved in specifying the cellular response to Wnt signals, which 

potentially trigger very diverse cellular behaviors, including 

proliferation, differentiation, sorting of the cells along the 

crypt–villus axis, etc. (2) Sox9 � ne-tunes the transcriptional out-

put of the canonical Wnt pathway in vitro, and inactivation of 

this gene causes an increase of BrdU incorporation rate and 

leads to hyperplasia and dysplasia of the intestinal epithelium 

and increased putative stem cell numbers. (3) Finally, Sox9 may 

also act independently of the Wnt pathway to control colon 

 epithelium morphology, a role that had not been previously re-

ported for the Wnt pathway, although architectural degeneration 

was described after Dickkopf-1 overexpression in the colon epi-

thelium (Kuhnert et al., 2004).

Materials and methods

Mouse lines
The vil-Cre strain (el Marjou et al., 2004) was in a nearly pure C57BL/6 
background (at least 14 backcrosses to this background). To generate 
Sox9+/fl ox mice (Kist et al., 2002), exons 2 and 3 of the Sox9 gene were 
fl anked by LoxP sequences. Cre recombination results in the deletion of 
the last two exons, which encode part of the HMG DNA binding domain 
and the transactivation domain, thus resulting in a likely null allele. A pep-
tide might still be produced from the fi rst exon, but this would not contain 
any known functional domain. Sox9+/fl ox mice were originally on a 
129P2/OlaHsd × C57BL/6 mixed genetic background and have been 
backcrossed to C57BL/6 for three generations. These N3 mice were 
made Sox9fl ox/fl ox by sister–brother mating before being crossed with the 
vil-Cre strain.

Cells and cell culture conditions
Colorectal cancer cell lines HCT116, HT29.16E, DLD1, and SW480 were 
cultured at 37°C in Dulbecco’s modifi ed Eagle’s medium supplemented 
with 10% fetal bovine serum (Eurobio), 1% L-glutamine, and penicillin/
streptomycin. The HT29.16E-Sox9 and HT29.16E∆CSox9 cell lines were 
described previously (Blache et al., 2004; Jay et al., 2005).

DNA constructs, transient transfections, and luciferase assays
Full-length human Sox9 and C-terminally truncated (dominant-negative) 
 human Sox9 constructs were described previously (Südbeck et al., 1996), 
as were the pTOP-FLASH and pFOP-FLASH reporter constructs (Morin 
et al., 1997). The Sox9-VP16 construct (Kamachi et al., 1999) was a gift 
from H. Kondoh (Institute for Molecular and Cell Biology, Osaka University, 
Osaka, Japan). The full-length human Sox9 (W143R) and the C-terminally 
truncated human Sox9 (W143R) expression constructs were constructed 
from a human Sox9(1–304) construct containing the W143R mutation, 
provided by P. de Santa Barbara (Institut National de la Santé et de la 
 Recherche Médicale, Montpellier, France). DLD1, SW480, HCT116, and 
HT29-16E cells were cotransfected (EXGEN500; Euromedex) with 0.25 μg 
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pcDNA3, Sox9, or ∆CSox9 DNA constructs and 0.25 μg TCF/LEF-1 re-
porter (pTOP-FLASH) or control vector (pFOP-FLASH), using standard 
procedures. 0.025 μg pRLSV-Renilla was used as an internal control. 
Luciferase assays were performed with the Dual luciferase reporter assay 
system (Promega) according to the manufacturer’s instructions. Luciferase 
activities in cell lysates were normalized relative to the Renilla luciferase 
activity, and the indicated activities represent the TOPFLASH/FOPFLASH 
ratio, indicative of the Tcf binding site-specifi c activity. Each experiment 
was performed in duplicate and repeated several times, and representa-
tive examples are shown.

Quantitative RT-PCR
Total RNAs were prepared using the RNeasy minikit (QIAGEN) from 
HT29.16E-Sox9 or HT29.16E-∆CSox9 cells grown to 100% confl uence 
and treated or not for 6 d with doxycycline. For mRNA quantifi cation, 2.5 μg 
of total RNA was pretreated with DNase RQ1 (Promega) for 30 min at 
37°C and used for reverse transcription with M-MLV reverse transcriptase 
(Invitrogen). Quantitative PCR was performed using the LightCycler FastStart 
DNA MasterPlus SYBR Green I kit (Roche Diagnostics). Results were nor-
malized with GAPDH expression.

Primers used are as follows: hGAPDH, forward (5′-G G T G G T C T C C T-
C T G A C T T C A A C A -3′) and reverse (5′-G T T G C T G T A G C A A A T T C G T T G T -3′); 
hCYCLIN D1, forward (5′-C C G T C C A T G G G G A A G A T C -3′) and reverse 
(R-5′-A T G G C C A G C G G G A A G A C -3′); hc-MYC, forward (5′-C G T C T C C A-
C A C A C A T C A G A G C A A -3′) and reverse (5′-T C T T G G C A G C A G G A T A G T C-
C T T -3′); hICAT, forward (5′-G C T C T G G T G C T T T A G T T A G G -3′) and reverse 
(5′-G C A C T T G G T T T C T T T C T T T T C -3′); hTLE1, forward (5′-A A A G A G G A G G-
C G A C A A G T -3′) and reverse (5′-T T C C G T T C C T C A A T C C T A C A A -3′); hTLE2, 
forward (5′-G C C C T G C C T A G G A A C C G T -3′) and reverse (R-5′-T T T T A T T T-
C   C A C G A G G T C C C C -3′); hTLE3, forward (5′-C T C C C T C A A G T T C G C C T A C -3′) 
and reverse (5′-T C C G C T G A A A T G T C A C A A C T C -3′); hTLE4, forward 
(5′-T G T G G C A A A T G G T T T G T A A G C A C -3′) and reverse (5′-C C C C A G A G C-
C A G T G A C A A T G T A T -3′); hLYSOZYME, forward (5′-A A A C C C C A G G A G C-
A G T T A A T -3′) and reverse (5′-C A A C C C T C T T T G C A C A A G C T -3′); hMMP7, 
forward (5′-G A C T T A C C G C A T A T T A C A G T G -3′) and reverse (5′-A T C C C T A-
G A C T G C T A C C -3′); hANG4, forward (5′-C T G G G C G T T T T G T T G G T C -3′) 
and reverse (5′-G G T T T G G C A T C A T A G T G C T G G -3′); mGapdh, forward 
(5′-A T T G T C Z G C A A T G C A T C C T G -3′) and reverse (5′-A T G G A C T G T G G T C-
A T G A G C C -3′); mIcat, forward (F-5′-C C C G G G A A G A G T C C G G A G G -3′) 
and reverse (5′-G T C T T C C G T C T C C G A T C T G G -3′); mGrg1, forward (5′-G C T   -
G T G G T G G C C T A T G G G -3′) and reverse (5′-C A T T T G G C C A T C A G C A G T A A-
C A T -3′); mGrg2, forward (5′-G A G C T G G A T C A G G G A T T T A C A C T -3′) and 
reverse (5′-C C A G C C T G G T T T A C A T A G T T T C A -3′); mGrg3, forward (5′-C T G  -
T G A C A T T T C A G C G G A T G A C A -3′) and reverse (5′-C C C T C C T T C T G C C G T-
C C T -3′); mGrg4, forward (5′-G C T G C A G C G A C G G T A A C A T C -3′) and 
reverse (5′-C A G A G C T T G G T G C C A T C A T T A G A -3′).

Immunohistochemistry and Western blot
Immunohistochemistry was performed essentially as described previously 
(Blache et al., 2004). Sections of human intestinal metaplasia were pro-
vided by F. Bibeau (CRLC Val d’Aurelle Lamarque, Montpellier, France). In 
brief, for preparation of mouse intestinal sections, the intestinal tract was 
dissected as a whole from 2–6-mo-old mice and fl ushed gently with cold 
PBS to remove any fecal content. The small intestine and colon were rolled 
up into a compact circle and fi xed in 4% PFA in PBS at RT for 4 h, dehy-
drated, embedded in paraffi n, and sectioned at 5 μm, using standard pro-
cedures. Sections were dewaxed in a xylene bath and rehydrated in 
graded alcohols. Endogenous peroxidase activity was quenched with 
1.5% H2O2 in methanol for 20 min and washed in PBS. Antigen retrieval 
was performed by boiling slides in 10 mM sodium citrate buffer, pH 6.0, 
except for anti–c-Myc and anti–cleaved Caspase3 antibodies, for which 
antigen retrieval was performed by boiling slides 20 min in 100 mM TRIS 
and 12.6 mM EDTA, pH 9.0. Nonspecifi c binding sites were blocked with 
1% BSA, 3% NGS, and 0.2% Triton X-100 in PBS for 45 min at RT for all 
antibodies staining except for anti–c-Myc (1% BSA in PBS) and anti-Ki67 
(no blocking). Slides were incubated with the primary antibodies overnight 
at 4°C in PBS with 0.1% BSA. In all cases, Envision+ (DakoCytomation) 
was used as a secondary reagent, stainings were developed with DAB 
(brown precipitate) or Vector Vip substrate (purple precipitate), and hema-
toxylin counterstain was used. After dehydration, sections were mounted in 
Pertex (Histolab). For alkaline phosphatase activity staining, sections were 
dewaxed and rehydrated as described, and the alkaline phosphatase sub-
strate (Vector red; Vector Laboratories) was applied for 10 min. Sections 
were counterstained, dehydrated, and mounted as described. For BrdU 
countings, mice were injected with a solution (0.1 milligram per gram of mouse 
body weight) of Brdu diluted in PBS. Mice were killed 2 h after injection. 

For BrdU staining, the same method as explained above was used, except 
for an additional step in HCl 2N for 45 min, added after antigen retrieval. 
For the Musashi staining, an ABC kit (Vectastain) was used instead of the 
Envision+ system.

For Western blotting, an equal amount of protein, measured by the 
Bradford assay, was loaded on each lane of the gel. Protein lysates and 
immunoblotting were performed as described previously (Hollande et al., 
2003). Proteins were visualized using ECL Plus (GE Healthcare), and the 
bands were quantifi ed by densitometry using ImageJ 1.32J (NIH).

Quantifi cation of c-Myc and cyclin D1 stainings
Immunofl uorescence stainings were performed essentially as immunohisto-
chemical stainings, but a goat anti–rabbit secondary antibody (Alexa Fluor 
488; Invitrogen) was used, and nuclei were counterstained with Hoechst. 
Fluorescence quantifi cations were performed with ImageJ software. Nuclei 
were selected using the freehand selection tool, and integrated densities 
were measured.

Antibodies
The Muc2 antibody (1:250) was provided by I. Van Seuningen (Institut 
 National de la Santé et de la Recherche Médicale, Lille, France), the Cdx2 
antibody (1:200) was provided by J.-N. Freund (Institut National de la 
Santé et de la Recherche Médicale, Strasbourg, France), the Musashi-biotin 
antibody (1:500) was provided by H. Okano (Keio University, Tokyo, Japan), 
and the anti-Sox9 was described previously (de Santa Barbara et al., 
1998). β-Actin A5441 (Western blot; 1:5,000) was purchased from Sigma-
Aldrich, anti-Ki-67 (1:200) and anti-lysozyme (1:1,000) were purchased 
from DakoCytomation, anti-PCNA (1:100) and anti–cyclin D1 (1:100) 
were purchased from Neomarker, anti-c-Myc (1:50) was purchased from 
Santa Cruz Biotechnology, Inc., anti–E-cadherin (1:150) and anti–β-catenin 
(1:50) were purchased from BD Biosciences, anti-Claudin2 (1:100) was 
obtained from Zymed Laboratories, anti–chromogranin A (1:300) was pur-
chased from Immunostar, anti-BrdU (1:200) was obtained from Novocas-
tra, and anti-Caspase3 (1:100) was purchased from Cell Signaling.

Analysis of stool hydration
To determine stool hydration, freshly isolated stool was weighted before 
and after overnight incubation at 50°C. Four mice of each genotype were 
analyzed. Mean and standard deviation values, as well as statistical sig-
nifi cance (t test) were calculated using Excel (Microsoft).

Measurements of crypt diameter and of the number of BrdU-positive cells
Fields containing crypt transverse sections were selected randomly at several 
locations along the rostrocaudal axis of the small intestine. Only sections 
with several BrdU-positive cells and an apparent lumen were considered to 
avoid large variation in the position of the section in the crypt–villus axis. 
Six to nine fi elds, each containing 6–40 measured crypts, were analyzed 
by two individuals, who were blinded to the mouse genotypes, and two 
mice of each genotype were analyzed. Mean and standard deviation values, 
as well as statistical signifi cance (t test) were calculated using Excel.

Image acquisition and manipulation
Immunohistochemistry images were acquired at RT using either an Axio-
phot microscope (Carl Zeiss MicroImaging, Inc.) with 10× 0.3 Plan Neo-
fl uar or 40× 1.0 Plan Apochromat lenses (Carl Zeiss MicroImaging Inc.) 
and a camera (DXM1200; Nikon) or an Eclipse 80i microscope (Nikon) 
with Plan Fluor 10× 0.3, 20× 0.5, 40× 0.75, and 60× 0.5–1.25 
lenses (Nikon) and a camera (Q-Imaging Retiga 2000R with a Q-Imaging 
RGB Slider). Images were acquired with ACT-1 or Q-Capture Pro soft-
wares (Nikon) and manipulated with Photoshop (Adobe), using the crop, 
levels, curves, brightness/contrast, and image size commands. For acqui-
sition of immunofl uorescence experiments, an Axiophot2 (Carl Zeiss 
MicroImaging, Inc.) microscope was used with a 63× 1.4 Plan Apochromat 
objective (oil) and a Coolsnap (Photometrics) camera driven by the Meta-
vue software.

Online supplemental material
Fig. S1 shows Sox9 expression in Paneth cells fand a general view of a 
Sox9-defi cient colon, showing the localization and extent of the described 
phenotypic features. Fig. S2 provides an analysis of the goblet cell popula-
tion and of apoptosis rates in Sox9-defi cient mice. Fig. S3 shows β-catenin 
expression in Sox9-defi cient mice and consequences of Sox9 and ∆CSox9 
overexpression on the β-catenin–Tcf4 activity in a panel of colon carcinoma 
cell lines. Fig. S4 shows no modifi cation in the subcellular localization 
of β-catenin or Tcf4 or in the degradation of β-catenin after induction of 
Sox9 expression in the HT29Cl.16E-Sox9 cell line. Fig. S5 shows that in 
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Sox9-defi cient mice, the c-Myc and cyclin D1 genes are expressed by an 
increased number of cells, and individual cells express higher levels of the 
c-Myc and cyclin D1 proteins. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200704152/DC1.
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