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We report a root system architecture (RSA) traits examination of a larger scale soybean accession set to study trait genetic diversity.
Suffering from the limitation of scale, scope, and susceptibility to measurement variation, RSA traits are tedious to phenotype.
Combining 35,448 SNPs with an imaging phenotyping platform, 292 accessions (replications = 14) were studied for RSA traits
to decipher the genetic diversity. Based on literature search for root shape and morphology parameters, we used an ideotype-
based approach to develop informative root (iRoot) categories using root traits. The RSA traits displayed genetic variability for
root shape, length, number, mass, and angle. Soybean accessions clustered into eight genotype- and phenotype-based clusters
and displayed similarity. Genotype-based clusters correlated with geographical origins. SNP profiles indicated that much of US
origin genotypes lack genetic diversity for RSA traits, while diverse accession could infuse useful genetic variation for these
traits. Shape-based clusters were created by integrating convolution neural net and Fourier transformation methods, enabling
trait cataloging for breeding and research applications. The combination of genetic and phenotypic analyses in conjunction with
machine learning and mathematical models provides opportunities for targeted root trait breeding efforts to maximize the
beneficial genetic diversity for future genetic gains.

1. Introduction

Root system architecture (RSA) is essential for water and
nutrient acquisition, microbe interaction, nutrient storage,
and structural anchorage and impacts grain yield [1, 2].
Crop breeding programs including soybean rarely utilize
RSA as selection criteria; therefore, RSA traits have devel-
oped indirectly in crop species [3]. Researchers are cogni-
zant of the genetic and phenotypic complexity that is
inherent at the organismal level and promote standardiza-
tion in terminology and removal of redundancies for the
measurement of every conceivable trait [4–6]. However,
RSA studies have been hindered by trait, measurement,
and environment complexity. The plethora of root traits
identified through different studies and software further
complicate the identification of opportunities to select the
most informative and relevant suite of traits [5, 7–11]. A

recent focus on the investigation of root trait methodolo-
gies has significantly advanced trait measurement capabil-
ity and capacity [4, 12–17]. Continual efforts are needed
to utilize genomics and phenomics tools to study the
RSA trait variation for application in crop breeding and
research programs [18].

Various systems have been introduced to study RSA
traits including methods that focus on the controlled envi-
ronment (lab bench, growth chamber, and greenhouse) and
in the field environment [4, 13, 16, 17]. Controlled environ-
ments provide the ease of use, speed, and scalability required
for crop breeding programs. Field environment methods can
provide higher immediate applicability despite being more
resource intensive and with lower trait heritability [4].
Researchers have attempted to gain insight through a bal-
anced approach utilizing higher throughput systems with
advanced technology together with field-based validation
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leveraging the advantages of both artificial and field-based
methods while reducing their drawbacks [9, 19–21]. This
insight will ensure a comprehensive understanding of
RSA traits, their genome to phenome relationship, and
trait selection targets for cultivar development. However,
due to higher trait heritability and ease of scale, controlled
environment experiments serve as a strong foundation for
future RSA trait studies.

In each crop species, one of the first steps in utilizing
traits for practical breeding outcomes starts with the explora-
tion of its genetic diversity [11, 22, 23]. Limited information
is available in soybean [Glycine max L. (Merr.)] for RSA
traits, although some QTL studies with a limited number of
genotypes have been published [24–26]. Soybean is an inter-
esting crop for these studies due to a severe genetic bottle-
neck reported in cultivated varieties [27]. Despite the
narrow genetic diversity of soybean cultivars in the USA,
nonroot trait-focused studies have reported the value of
germplasm banks being well equipped with large and useful
genetic diversity [28–32]. Therefore, an initial scan to cata-
logue the diversity of root phenotypes within soybean
genetic diversity is needed.

Morphology parameters are useful to classify roots into
different types and to correlate root type to environmental
advantages such as nutrient acquisition and drought or flood
tolerance. For example, crop species with deep rooting sys-
tems have been correlated to adaptation in drought prone
environments [1, 33, 34] while those with shallow, fibrous
root systems have been shown to have efficient phosphorus
uptake in phosphorus-deficient soils [35–42]. The “steep,
deep, and cheap” root type in maize has been promoted for
efficient and effective water and nitrogen acquisition [43]. A
highly competitive root with fast-growing characteristics
and efficient root placement, including deep roots, to chase
moisture through the soil profile is most suitable for water
deficit crop growing environments [1, 34, 44, 45]. Soybean
taproots that elongate faster from germination also have been
shown to burrow deeper into the soil profile, have increased
root densities at depth, and are better able access to water
in drought situations [46, 47]. A current dilemma is that opti-
mum root architecture is based on the assumption that deep
roots need to be complemented with shallow lateral roots to
efficiently forage for soil immobile nutrients [36, 48, 49]. This
dichotomy creates a need to further explore the elusive
optimum root architecture. The initial step should be the
compilation of reported root shape categories available in
the literature (see Materials and Methods; iRoot categories),
which can be accomplished through the combination of
genetic and phenotypic information. For example, single-
nucleotide polymorphisms (SNPs) can help determine
genetic variability and create genotype-based clusters. Simi-
larly, genetic diversity and RSA can be studied on a trait by
trait or overall trait basis using phenotypic information in
conjunction with principal component analysis (PCA), and
hierarchical and k-means statistical methodologies allowing
further insights to be drawn using these relationships [50].

The overall objective of this research was to catalogue
soybean root trait diversity in controlled environment condi-
tions and to investigate the correlation between genotype,

phenotype- and nonroot phenotype/country of origin-based
descriptors. This study was carried out using 292 diverse soy-
bean accessions from the USDA core collection primarily in
maturity groups II and III together with a subset of the Soy-
bean Nested Association Mapping (SoyNAM) parents. These
accessions were studied in controlled environment condi-
tions and phenotyped with an imaging platform at 6 (6 d),
9 (9 d), and 12 (12 d) days after germination. Genotype-
based clusters (GBC) were created using SNP data generated
by 50K Illumina chip [51] in which genotypes were separated
using hierarchical cluster analysis. Eight phenotype-based
clusters (PBC) were created based on hierarchical clustering
of thirteen root traits derived from the experimental study.
Root shape-based clusters were created using averaged,
smoothed, normalized, and compressed (high-level features)
root shape outline data generated by Elliptic Fourier Trans-
formation (EFT) and a Convolutional Neural Network
(CNN). We created informative root (iRoot) categories based
on characteristic root types described in the literature such as
drought tolerant or nutrient foraging as a method looking
beyond individual root traits to capture the essence of differ-
ing root shapes and characteristics. Our results indicate that
soybean accessions for RSA traits are genetically diverse
and cluster-specific trends and differentiations were evident.
The US accessions showed limited genetic diversity, suggest-
ing it could benefit from the infusion of useful RSA trait
diversity in breeding programs. The approach present in this
paper is applicable to other crops for RSA-focused breeding
and research applications.

2. Materials and Methods

2.1. Experimental and Technical Design. We developed a
mobile, low-cost, and high-resolution root phenotyping sys-
tem composed of an imaging platform to establish a seamless
end-to-end pipeline previously described in Falk et al. [52].
The platform includes obtaining root samples through
image-based trait processing and extraction of biologically
relevant time series data on root growth and development
for phenomics, genomics, and plant breeding applications.
The seedling growth system component allowed for easy
removal from the growth chamber and nondestructive imag-
ing at multiple time points (6, 9, and 12 days) after germina-
tion. The imaging platform component consisted of a Canon
T5i digital SLR camera (lens: EF-S 18-55mm f/3.5-5.6 IS II)
(Canon USA, Inc., Melville, NY) mounted to an aluminum
T-slot extrusion frame (80/20 Inc., Columbia City, IN) with
two softbox photography lights (Neewer; Shenzen, China),
four 70-watt CFL bulbs in total, to provide consistent illumi-
nation. Together with a connected laptop computer, the
entire system was assembled on a utility cart (Uline, Pleasant
Prairie, WI) creating a small, mobile imaging station. Images
were captured via a laptop computer using Smart Shooter 3
remote capture software [53] allowing for automatic image
naming via the affixed barcode, optimizing time and reduc-
ing human transcription error.

Root phenotyping software, ARIA 2.0 [52], was used to
batch process over 12,000 images. Prior to image processing,
color thresholding app extension in MATLAB (MathWorks,

2 Plant Phenomics



Inc., Natick, MA) was used to interactively develop a rule to
generate a binary image for segmenting the foreground (root)
and the background (blue germination paper). The devel-
oped rule was to convert the RGB image to HSV and consider
the pixels with a hue (H) value higher than 175° as the blue
background. The rule did not work for some images where
the background was infrequently oversaturated by light
reflection. In these cases, the RGB image was converted to
Lab color space and a threshold value for L (lightness) chan-
nel was selected heuristically for the background. These rules
were implemented in the ARIA 2.0. Bulk image sets were

automatically processed through the ARIA 2.0 software for
root segmentation and skeletonization, followed by root sys-
tem architecture trait information extraction (Table 1). Seed-
ling shoot and root dry weights were also collected at 12 days
after germination.

2.2. Plant Materials. The diversity panel used in this experi-
ment consisted of plant introductions (PIs) from the USDA
core collection and Soybean Nested Association Mapping
(SoyNAM) parental lines [54]. Selections from the SoyNAM
panel included lines with diverse ancestry (n = 10) and high-

Table 1: Measured and derived root system architecture traits captured by ARIA 2.0 including the 13 which were used to create iRoot
categories and for clustering analysis.

Symbol Trait name Unit Trait description

TRL Total root length∗ Cm Cumulative length of all the roots in centimeters

TRL_GR Total root length growth rate∗ Cm Change in total root length

PRL Primary root length∗ Cm Length of the primary root in centimeters

TRLUpper Total root length upper∗ Cm Total root length of the upper one-third

DEP Depth∗ Cm The maximum vertical distance reached by the root system

WID Width∗ Cm The maximum horizontal width of the whole RSA

CVA Convex area∗ cm2 The area of the convex hull that encloses the entire root image

RHZO Rhizosphere area∗ cm2 Length of 2mm surrounding the TRL

VOL Volume∗ cm3 Volume of the primary root

LRA Lateral root angle∗ Angle Median root angle along the extent of all lateral roots

SOL2 Solidity (inverse)∗ Ratio The fraction equal to the convex area divided by the network area

LED Length distribution∗ Ratio TRLUpper/TRLLower

NLR Nodes of lateral roots Count Number of nodes of lateral roots

IRB Independent lateral root branches Count Number of independent lateral root branches

MED Median Count The median number of roots at all Y-location

MAX MaximumR Count The maximum number of roots at all Y-location

TRArea Total root area cm2 Area of the RSA as observed in the 2D projected view

PRA Primary root surface area cm2 Surface area of the primary root

TRAUpper Total root area upper cm2 Total root area of the upper one-third

TRALower Total root area lower cm2 Total root area of the lower two-thirds

WDR Width/depth ratio Ratio The ratio of the maximum width to depth

SOL Solidity Ratio The fraction equal to the network area divided by the convex area

BSH Bushiness Ratio The ratio of the maximum to the median number of roots

SRL/PRL SRL by PRL Ratio Number of the secondary root per unit length of the primary root

COM Center of mass Ratio Center of gravity of the root/depth

COP Center of point Ratio Absolute center of the root regardless of root length/depth

CMT Center of mass (top) Ratio Center of gravity of the top 1/3 of the root (top)/depth

CMM Center of mass (mid) Ratio Center of gravity of the middle 1/3 root (middle)/depth

CMB Center of mass (bottom) Ratio Center of gravity of the bottom 1/3 root (bottom)/depth

CPT Center of point (top) Ratio Absolute center of the root regardless of root length (top)/depth

CPM Center of point (mid) Ratio Absolute center of the root regardless of root length (middle)/depth

CPB Center of point (bottom) Ratio Absolute center of the root regardless of root length (bottom)/depth

Seed weight Grams Weight of 100 seeds

Shoot weight Grams Dry weight of shoot

Root_weight∗ Grams Dry weight of root

Pixels converted to cm. ∗Root trait used in one or more iRoot categories.
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yielding elite lines (n = 13), which were combined with the
USDA core collection landraces (n = 269) to assemble a
genetically diverse panel that has previously been genotyped
[17] (Supplementary files 1 and 2). These genotypes con-
sisted of a wide range of geographies (12 countries of origin),
maturity groups (groups 1 (n = 19), 2 (n = 115), 3 (n = 156),
and 4 (n = 2)), and growth habit (determinate (n = 88), semi-
determinate (n = 34), and indeterminate (n = 164)) along
with various other morphological and seed quality traits.

2.3. Seedling Growth. The protocol for seed germination and
transplanting is described by Falk et al. [52]. Ten seeds of
each genotype were germinated in paper rolls in which two
of the ten seedlings were transplanted at five days onto wet
blue germination paper for further growth and root trait phe-
notyping. Two blue germination papers (30 cm × 45 cm)
(Anchor Paper, Minneapolis, MN); each containing seed-
lings of each genotype was placed together, attached with
binder clips as a growth pouch unit. Each growth pouch unit
was suspended by the rungs of a growth chamber shelf with
the lower 3 cm of the paper submerged in water as a wick
to bring moisture to the roots.

The growth chambers were 175 cm by 100 cm and con-
tained standard metal grate shelves 1.3 cm by 35 cm slots
(Controlled Environments Ltd., Winnipeg, Canada). The
growth chambers contained a plastic tote on the floor provid-
ing a water depth of 5 cm allowing each growth paper unit to
be submerged to 3 cm. Growth chambers were set at 25°C
during a 16-hour day, 22°C for an 8-hour night. Growth
chamber light intensity was measured at 300 and 350μmol
photons (m-2 s-1) using a Li-250A light meter (Li-Cor Biosci-
ences, Lincoln, NE, USA).

2.4. Statistical Analysis. All statistical analyses were per-
formed using R programming language unless otherwise
specified. To evaluate the 292 genotypes, we first eliminated
outliers using Tukey’s boxplot method [55] before calculat-
ing the best linear unbiased predictor (BLUP) values for each
trait utilizing a mixed model and the “lme4” package [56, 57].
In the model (Equation (1)), yik is the response variable of the

ith genotype at the kth block (i.e., growth chamber used), μ is
the total mean, gi is the genetic effect of the i

th genotype, bk is
the block effect, and eik is the experimental error following
N ð0, σ2eÞ. All factors were considered random effects. Broad
sense heritability was calculated on an entry-mean basis
using Equation (2), where σ2g is the genotypic variance and

r is the number of replications (r = 14). Tukey’s honestly sig-
nificant differences (HSD) [58] were used to identify statisti-
cal differences between genotype-based clusters (GBC) in
which MSE is the mean squared error, q is the test statistic
found in the q-table, and Sa is the number of observations
of the ath group (Equation (3)). To identify excessive correla-
tion, a collinearity test of the predictor variables was per-
formed using a variance inflation factor of five as a
threshold to quantify the severity; R is the regression coeffi-
cient of the jth variable with respect to the rest of the variables
(Equation (4)). Fixation indices were calculated using the
Hudson FST approach using the fst.hudson function in the

KRIS R package where ni is the sample size and ~pi is the sam-
ple allele frequency in population i for i ϵ f1, 2g (Equation
(5)).

yik = u + gi + bk + eik, ð1Þ

H2 =
σ
2
g

σ2g + σ2e /rð Þ
, ð2Þ

Tukey′s HSD = q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
MSE

1

Sa
+

1

Sa‘

� �

s

, ð3Þ

Variance inflation factor =
1

1 − R2
j
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FHudson
ST =

~p1 − ~p2ð Þ
2
− ~p1 1 − ~p1ð Þð Þ/ n1 − 1ð Þð Þ − ~p2 1 − ~p2ð Þð Þ/ n2 − 1ð Þð Þ

~p1 1 − ~p2ð Þ + ~p2 1 − ~p1ð Þ
:

ð5Þ

2.5. Informative Root (iRoot) Categories. We created iRoot
categories in an effort to (a) reduce dimensionality (looking
at a category rather than individual traits), (b) aggregate
traits, as opposed to focusing on an individual root trait for
increased biological relevance, and (c) identify specific trait
measurements and statistical analyses to quantify differing
root shapes based on a previous scientific work found in
the literature [7, 9, 59–61]. All 292 genotypes were ranked
from 1 (highest numerically) to 292 (lowest) based on each
root trait. These rank scores of genotypes are summed for
the specific traits that compile each iRoot category. Five iRoot
categories and their constituent root traits included the fol-
lowing: (1) nutrient foraging (WID, TRL-GR, and TRLUp-
per), (2) drought tolerant (PRL, LRA, SOL2, and TRL_GR),
(3) umbrella (PRL, WID, CVA, LRA, and LED), (4) beard
(TRL, WID, LRB, LRA, SOL2, and LED), and (5) maximum
(TRL, PRL, WID, CVA, LRB, VOL, RHZO, and Root_
weight) (Figure 1). For example, a particular genotype ranked
highly in the nutrient foraging iRoot category would display
high values in three root traits: WID, TRL_GR, and TRLUp-
per. To be clear, iRoot categories selected roots that display
root trait characteristics affiliated with the quality (e.g., deep
roots for drought tolerance) in the growth chamber experi-
ment, not to be confused with genotypes displaying “classical
drought tolerance characteristics” in the field environment.
Additionally, the analysis of all iRoot categories was
restricted to images from nine days after germination (9 d)
as particular slow growing genotypes lacked significant lat-
eral roots at 6 d while other fast growing genotypes were sub-
ject to outgrow the germination paper medium by 12 d.

The nutrient foraging iRoot category was based from pre-
vious reports [36] which describe this phenotype as maximiz-
ing the distribution of lateral roots in the topsoil at a minimal
metabolic cost to outperform competitor genotypes in nutri-
ent poor soil. The phenotype was created to contain a wide
root system with a high ratio for total root length in the upper
1/3 of the root system as well as a fast TRL_GR. The drought
tolerant iRoot category followed the steep, deep, and cheap
paradigm [43] created by selecting a long primary root with
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Figure 1: Pearson’s correlations of root traits. Correlations at 9 days after germination measured on 292 soybean genotypes (replications = 14).
Hierarchical clustering was used to group similar traits. Symbols (shape and color) denote RSA traits used in the corresponding iRoot index
(cumulative trait scores).
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a high total root length growth rate while selecting steep lat-
eral root angles (low angle is more advantageous) and mini-
mizing root solidity (NWA/CVA) thus minimizing spatial
density and therefore the metabolic cost. The beard iRoot
type [62] maximizes total root length, the number of lateral
root branches, and length distribution (TRLUpper/TRL-
Lower) while minimizing total root width, lateral root angle,
and root solidity (NWA/CVA) thus maximizing root density.
The umbrella category [62] maximizes primary root length,
root width, convex area, shallow lateral root angle, and length
distribution (root length in the upper 1/3 over root length in
the lower 2/3 of the root system). Finally, the maximum
iRoot category was created for this study as an effort to iden-
tify genotypes that maximize the phenotypic potential with-
out a particular environment in mind. As previously stated,
these iRoot categories were created for dimension reduction,
to increase of biological relevance and to facilitate compari-
son with a previous scientific work.

2.6. RSA Trait Correlations. Correlations between 49 plant
traits were obtained using Pearson’s correlation by imple-
menting cor function in the “stats” package. Traits were
grouped using hierarchical clustering using complete linkage
with the hclust function. Visualization was performed using
the “corrplot” package.

2.7. Phenotype-Based Clusters. Aside from typical trait-based
analytical approaches, we explored alternate methods to
group and correlate genotypes and their root trait pheno-
types. While iRoot traits were picked using a heuristic
approach, PBC were generated using unsupervised hierarchi-
cal clustering. Genotypes were grouped into eight PBC clus-
ters based on 13 phenotypic root trait values (TRL, PRL,
WID, CVA, LRB, VOL, LRA, SOL2, LED, RHZO, TRL_GR,
TRLUpper, and Root_weight). A heatmap was created using
the “heatmap2” and “dendextend” packages to display the
interactions between the genotypic relationships and pheno-
typic trait values across the 13 root traits. In this manuscript,
better performance indicates a higher value of the root trait,
with LRA and SOL2 being exceptions. These are exceptions
as steep root angle (lower number) and low solidity can be
advantageous root traits.

2.8. Genotype-Based Clusters. Genotype-based clusters were
formed by grouping the 292 genotypes into eight groups
based on hierarchical clustering of the SNP data. These acces-
sions, from the USDA soybean germplasm collection, have
been genotyped using the Illumina SoySNP50k iSelect Bead-
Chip (Illumina, San Diego, USA), which detected the segre-
gation of 42,509 SNPs [51]. Using preprocessing steps to
eliminate SNPs below a minor allele frequency of 0.05 and
monomorphic SNPs, 35,448 SNPs were identified and used
for subsequent analysis. Principal component analysis
(PCA) was performed on SNP data using the prcomp func-
tion the “stats” package and graphed using the “ggplot2”
package. Nei’s genetic similarity was used to construct a pair-
wise distance matrix using all polymorphic SNPs [63–65].
Hierarchical cluster analysis using Ward’s minimum vari-
ance produced a linkage dendrogram using the “dendextend”

and “circlize” packages [66]. The optimal number of SNP-
based clusters was determined using the iterative k-means
approach in which the procedure successively increases the
number of clusters and measures the goodness of fit based
on the Bayes Information Criterion (BIC). Eight genotype-
based clusters (GBC) were inferred from the inflection point
in the BIC curve (Supplementary Figure S1).

2.9. Mean Root Shape and Shape Clusters. Shape-based clus-
ters were formed by grouping the 292 genotypes into eight
groups based on the mean root shape of each genotype, with
clustering of the root shapes via a CNN algorithm. Mean root
shape outline was generated from all the root images at day 9
for each genotype using Elliptical Fourier Transformation
(EFT) [67] (Supplementary Figure S2). In brief the steps are
as follows: (a) collect all the segmented root images for a
genotype, (b) dilate the images with a 50 × 50 kernel, (c)
extract the root shape outline, (d) perform EFT on the
outline, (e) calculate mean Fourier descriptors for all the
roots (n ≤ 14) for a genotype, and (f) reconstruct mean
shape outline with N Fourier harmonics. Here, a dilation
step (b) was necessary to capture the root shape faithfully
by EFT. Additionally, in the reconstruction step (f), we
used N = 5 harmonics to capture only the basic shape of the
roots. Shape-based clustering was performed on the mean
root shape using a CNN and k-means algorithms. In brief,
the steps are as follows: (a) fill the mean shape outline and
pad the image along the width direction to make it square,
(b) use a convolution autoencoder network to convert the
images into eight-dimensional (high-level feature) vectors
(Supplementary Figure S3), and (c) cluster the roots into
eight groups using k-means clustering with Euclidean
distance as the distance metric.

3. Results

3.1. Genetic Diversity for Root System Architecture (RSA)
Traits. Descriptive statistics, broad sense heritability and
ANOVA analysis of root, shoot, and seed traits are reported
(Table 2). Accessions displayed a range of phenotypic expres-
sion across the three imaging days. Representative pheno-
typic root traits for a particular maturity group, growth
habit, or diversity was not identified. Genotypes were a sig-
nificant source of variation for all but one trait (width-depth
ratio (WDR) at 12 d). Large variation was observed for a
majority of traits evidenced through comparison of mean,
median, and trait ranges for RSA traits. Broad sense heritabil-
ity (H2) across RSA traits ranged 0.26–0.93 (6 d), 0.14–0.92
(9 d), and 0.04–0.93 (12 d). Minimal differences of the traits
were observed among the diverse, elite, and landrace groups.
Supplementary Table S1 displays the statistically significant
root traits between diversity groupings. PRL, PRA, and
DEP of accessions with diverse ancestry, and elite lines
were often larger than landraces at 9 d and 12 d based on
Tukey’s HSD metrics. Additionally, WDR of landraces at
12 d was higher than elite lines which could be attributable
to elite lines’ increased DEP. No perceptible relationship
patterns were detected among genotypes when comparisons
were made between maturity groups and growth habits.
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These relationships were explored using tSNE and Gower
clustering approaches, as well as neural networks.

3.2. Trait Relationship and iRoot Categories. Trait relation-
ships were determined using Pearson’s correlation coeffi-
cients (Figure 1). A large set of traits, which provide general
metrics for length, width, and area (WDR, MSL, SRL_LRB,
Area, TRLUpper, TRAUpper, MAX, TRL_GR, PER, RHZO,
SRL, TRL, and NWA), showed strong correlations and
formed a single hierarchical cluster. Root_weight correlated
(greater than 0.8) with shoot weight, TRArea, and TRAUp-
per. TRArea and TRAUpper formed a separate cluster
together. Intertrait correlations were strongest at 6 d and
decreased in intensity (measured using cumulative correla-
tion intensity) in successive stages (Supplementary
Figure S4). Individual traits often transitioned among
clusters between time points; however, the general
clustering of traits related to (a) length, (b) width, and (c)
area remained consistent.

Due to the close correlation of many of the root traits,
from here on in this paper, we narrow the focus to 13 root
traits (TRL, PRL, WID, CVA, LRB, VOL, LRA, SOL2, LED,
RHZO, TRL_GR, TRLUpper, and Root_weight) that define
the iRoot categories. While some of the 13 root traits showed
collinearity, we report on all to ensure comparison with previ-
ous literature [7, 9, 59–61] (Supplementary Table S2). These
thirteen root traits show a range of phenotypic expression
(Figure 2). For effective visualization and analysis, mean
values of the traits for the top 10 ranked iRoot genotypes
were employed as a reference (Figure 2, Table 3).

The highest ranked soybean genotypes in each of the
iRoot category were as follows: nutrient foraging—PI
479713, drought tolerant—PI 458506, umbrella type—PI
438139, beard type—PI 430596, and maximum—PI 507487
(Figure 2). Particular accessions often scored high rankings
in two or three different iRoot categories. For example, geno-
types PI 507487 and PI 578367 ranked in the top ten soybean
lines for three separate iRoot categories including maximum,

Maximum
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Figure 2: Five iRoot categories developed using 13 descriptive traits. (a) Root trait performance generated from the mean trait values of the
top 10 ranked genotypes based on iRoot metrics at 9 days after germination. Data was compiled from 292 soybean accessions
(replications = 14; genotypic BLUPs are represented by the black dots). Segmented root images of the top ranked genotypes representing
the five iRoot categories: (b) nutrient foraging, PI 479713; (c) drought tolerant, PI 458506; (c) beard, PI 430596; (d) umbrella, PI 438139;
and (e) maximum, PI 507487 displayed at 9 days after germination.
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nutrient foraging, and umbrella. Soybean genotypes PI
458506 and PI 507491 scored in top ten for maximum, nutri-
ent foraging, and drought tolerant, while PI 89134 placed in
top ten for maximum, beard, and drought tolerant categories
(Supplementary Figure S5). The maximum and foraging
iRoot categories have a substantial overlap (7 of the top 10)
of genotypes representing both categories. These results
reveal that despite being calculated from different root
traits, iRoot categories such as maximum, nutrient foraging,
and umbrella displayed similarities due to trait correlations.

3.3. Phenotype-Based Clusters. Aside from typical trait-based
analytical approaches, we explored alternate methods to
group and correlate genotypes, their genotypic data, root
shape, and individual root trait phenotypes. Eight
phenotype-based clusters (PBC) were created based on hierar-
chical clustering of thirteen root traits used to create the
iRoot categories. Due to the nature of the analysis and its
reporting, PBC were arranged so that high performing
genotypes constituted PBC “A” (n = 3) while a decreasing
gradient was formed to the lowest performing PBC “H”

(n = 4) (Table 4, see also Supplementary Table S3). The
majority of the 292 genotypes fell into PBC “C,” “D,” and
“E” creating a bell-like distribution curve from PBC 1 to
PBC 8. One exception to the decreasing gradient was the
SOL2 root trait and, to a lesser extent, LRA. Lower angles
provide a steeper root angle of attack, and such genotypes
can cover a large area with limited root length scavenging
soil more efficiently.

3.4. Genotype-Based Clusters. Genotype-based clusters were
formed by grouping the 292 genotypes into eight groups
based on clustering the SNP data. The first two principal
components explain 11.3% and 6.2% of the genetic variation
(Figure 3). Visually, the PCA scaffold was predominately soy-
bean accessions from China, while clusters of accessions
representing USA, Japan, and Russia were also evident
(Table 4). To further visualize the relationship between
country of origin and GBC, we created a dendrogram rep-
resentation based on genetic distance and the genetic clus-
tering of the 292 soybean genotypes (Supplementary
Figure S6). The USA accessions comprised a majority of
GBC “A,” Japan in “E,” and Korea and Russia in “B.”
Soybean accessions from China were represented in all
eight GBC. GBC “B” and “E” accessions were primarily of
determinate growth habit. Mean fixation indices, based on

SNP values, were calculated between GBC to display
genetic diversity (Table 5). The ranking of iRoot
categories showed that GBC “B,” “C,” “D,” “E,” and “H”

have representatives in the top 25 representative genotypes
of each iRoot categories while GBC “F” has none
(Supplementary Table S5).

3.5. GBC-PBC Relationship. To visualize the relationship
between PBC and GBC, we created a dendrogram represen-
tation containing PBC and GBC information of the 292 soy-
bean genotypes (Figure 4). The distance between the tree’s
branches is based on genetic relatedness, the branch color
represents the GBC of the genotypes, the leaf text denotes
the country of origin, and the leaf text color represents the
PBC of the genotype. A phenotype-based clustering algo-
rithm created a gradient from high to low root trait values.
The first PBC with genotypes having numerically high trait
values we labeled “A,” while the last PBC with very low trait
values we labeled “H.” PBC “A” was given a numerical value
as “1” with a gradient of reducing root trait values to PBC
“H” as “8.” These numerical values allowed us to correlate
GBC and PBC. We ranked the grouping of each GBC by cal-
culating the mean PBC of the genotypes within the GBC clus-
ter: 1 being high and 8 being low. Genotype-based clusters
with a PBC mean closer to 1 correspond to genotypes dem-
onstrating high root trait values, while a mean closer to 8 sug-
gests low trait values. The resulting mean PBC values for each
GBC from “A” to “H” are 4.00, 3.72, 3.35, 4.15, 4.12, 6.88,
4.55, and 3.7, respectively (Table 4). Genotype-based clusters
with a mean < 4: “B” (3.72), “C” (3.35), and “H” (3.7), are
comprised of genotypes with numerically higher trait values.
Genotypes comprising GBC “F” and “G” display mean PBC
values of 6.88 and 4.55 consisting of lower root trait values.

To correlate between PBC and country of origin, the
mean PBC value for each country, from low to high PBC
mean, was 3.47 for Russia, 3.65 for Korea, 3.99 for China,
4.17 for USA, 4.29 for Other, and 4.46 for Japan. To correlate
between iRoot categories and PBC, we focused on PBC values
of only the top 10 genotypes of each iRoot category. The top
10 genotypes of the maximum and drought tolerant catego-
ries come from high performing PBC “A,” “B,” and “C” while
the top 10 nutrient foraging came solely from PBC “A” and
“B.” The top 10 genotypes of the umbrella type representa-
tives are from mid-performing PBC “B,” “C,” and “D”; and
the beard type has 10 representatives in relatively lower per-
forming PBC “C,” “D,” and “E.”

Table 3: Five iRoot categories. Mean root trait values of the top 10 ranked (of 292 total) genotypes for each iRoot category at 9 days after
germination. Only italic values were used to calculate iRoot rankings.

iRoot category TRL PRL WID CVA LRB VOL LRA SOL2 LED RHZO TRL_GR TRLUpper Root_weight

N. Foraging 288 37.7 20.2+ 393 79 201 87.7 129 3.46 4841 201+ 211+ 0.041

Drought Tol. 266 37.3+ 17.9 341 80 166 85.8- 121- 2.73 4513 188+ 176 0.038

Beard 225+ 37.2 16.1- 304 81+ 153 85.8- 129- 2.3- 3852 152 140 0.038

Umbrella 249 38.5+ 19.5+ 380+ 77 207 88.3+ 145 3.5+ 4250 171 183 0.044

Maximum 289+ 38.1+ 19.8+ 386+ 82+ 211+ 87.7 127 3.13 4826+ 201 205 0.043+

Italic values denote root trait used in iRoot category. +Higher value of the trait is favorable for the specific iRoot category. -Lower value of the trait is favorable for
the specific iRoot category.
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A two-way clustering heatmap was used to further illus-
trate the comparison of genotype and phenotype perfor-
mance (Figure 5). The dendrogram tree on the left-hand
side groups the 292 genotypes based on genetic relatedness
with GBC identified by color. The first branch division of
the tree indicates that GBC “G” and “H” are genetically dis-
tinct from the other 6 GBC. Genotypes from these to clusters
have also contained lower root trait values (Table 4). On the
red-black heatmap to the right of the dendrogram, color is
based on iRoot category with black signifying high (closer
to 1) and red signifying low (closer to 292) ranking for the
iRoot category. Genetically distinct GBC “G” and “H” show
poor ranking (red) across most of the iRoot categories with
exception of the beard type. GBC “C” displays high root trait
values (black) for three iRoot categories. Other GBC such as
“A,” “B,” and “E” are definitive with branches within each
cluster containing high values with others low. A second den-
drogram above the heatmap connects phenotypic traits based
on hierarchical relatedness of their numerical values. Here,
the iRoot categories of umbrella, maximum, and nutrient for-
aging form a distinct group. The largest grouping of root
traits consisted of WID, CVA, TRLUpper, TRL_GR, TRL,

and RHZO; and this group remained consistent at 6 d, 9 d,
and 12d while the remaining 7 traits did not form tight
groups (Supplementary Figure S7).

The heatmap on the right-side is based on phenotypic
performance of 13 root traits with blue being high and orange
being low trait values. GBC “F” and “G” were generally
grouped together as identified by the red (left) and orange
(right) shading denoting low value iRoot category perfor-
mance. Conversely, GBC “B,” “C,” and “H” perform well
with black (left) and blue (right) shading. Further examina-
tion within each GBC indicates that particular subbranches
within each cluster often show higher values than others
which is evident for iRoot categories and individual traits.
For example, this is evident in the lowest-most subbranch
of the large GBC “B.” This subbranch contains 19 genotypes
which display high values for umbrella, maximum, nutrient
foraging, and drought-tolerant iRoot types as well as for
many root traits.

To further explore the relationship between genotypic
data, phenotypic data, and iRoot categories, iRoot category
ranking (for each genotype from 1 to 292) was averaged for
each GBC (Table 4). The results reflect whether certain
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Figure 3: Principal component analysis of 292 soybean genotypes. Genotypic data 35,448 SNP markers. The two principal components
accounting for 11.3% (PCA1) and 6.2% (PCA2) of the genetic variation. (a) Color represents the country of origin. (b) Color represents
“maximum” iRoot category rank. Blue (best rank) to red (worst rank) color gradient is used to show ranks of 292 soybean genotypes. (c)
292 genotypes colored by their allotted genotype-based cluster (GBC).

Table 5: Mean fixation indices. Indices based on SNP value comparison between genotype-based clusters (GBC) (low number = low diversity,
high number = high diversity).

A B C D E F G

Genotype-based clusters

B 0.123

C 0.202 0.165

D 0.199 0.112 0.243

E 0.244 0.146 0.308 0.156

F 0.339 0.297 0.370 0.286 0.391

G 0.298 0.260 0.292 0.251 0.380 0.245

H 0.195 0.118 0.233 0.105 0.218 0.259 0.142
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genotypic clusters display iRoot features. In step with earlier
results, GBC “C” produced the highest average ranking in
umbrella, nutrient foraging, and maximum iRoot types as
well as having the highest overall average ranking (116 of
292) (Table 4). GBC “F” produced the worst ranking in nutri-
ent foraging, drought tolerant, umbrella, and maximum
iRoot types as well as the worst overall average ranking
(239 of 292). Ranking results for GBC “D” displayed a high
ranking for the beard iRoot type (68 of 292). Interestingly,
the average iRoot scores of the 19 genotypes that make up a
small, aforementioned genetically divergent subbranch of

GBC “B” are 89, 104, 66, 95, and 164 out of a possible 292
for maximum, drought tolerant, nutrient foraging, umbrella,
and beard iRoot types, respectively. These results suggest that
these 19 genetically related accessions display many desirable
phenotypic attributes in this experimental environment.
Genotypes from Russia and Korea produced higher than
average iRoot rankings (121 of 292) each in relation to
China = 147, Other = 148, USA = 159, and Japan = 164.
Finally, maximum root type iRoot rank results were plotted
on the genomic data that produced PCA plot for visualiza-
tion (Figure 3(b)). The presence of plane separation between
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red (low root trait values) and blue (high root trait values)
data points displays the evidence of the correspondence
between the performance of soybean accessions and geno-
typic data.

Differences appear when comparing genotype- and
phenotype-based clustering methods across 13 root traits in
which GBC “C” performed well and GBC “F” performed
poorly (Figures 6(a) and 6(b)). Genotypic-based clusters
“B,” “E,” and “H” display consistency in relation to the other
clusters. The trend lines from 6d to 12 d show that GBC “F”
and “G” consistently have lower trait value performance
(Supplementary Figure S8). GBC “A” performed similarly
to GBC “B,” “C,” and “E” for the majority of root traits
with the exception of PRL and DEP. PRL and DEP have a
higher trait value compared to the mean at 6 d, 9 d, and
12 d. The LRB trait has 1.1% more lateral root branches
than the mean on 12 d (Supplementary Table S4). In GBC
“A,” with the exception of LG05-4464, the 23 genotypes
from the USA displayed relatively similar trait values to
one another (data not shown). LG05-4464, a line with

diverse ancestry, ranked first of 23, in TRL and TRArea
measurements as well as WID, and thus outpaced the
others within the USA-dominated GBC “A.”

3.6. Shape-Based Clusters. Shape-based clustering into eight
groups was performed on 9 d roots. Mean values of shape-
based clusters (SBC) labeled “A,” “B,” “C,” and “D” display
high values across the 13 root traits while SBC “G” and “H”

display low values (Figure 6(c)). SBC “A” has high values in
the 13 traits used in iRoot estimation while SBC “H” has gen-
erally low values (Table 4). Cross-referencing SBC “A” to
GBC, individuals were derived from higher trait valued
GBC including GBC “B” (n = 17), “H” (n = 6), “C” (n = 4),
“D” (n = 4), and “E” (n = 4). GBC “F” contains eight geno-
types which all correlate to low trait valued shape clusters,
four being in SBC “G” and four being in SBC “H”. SBC “A”
has a higher iRoot ranking than other SBCs for maximum,
drought tolerant, nutrient foraging, and umbrella types while
SBC “H” has the highest ranking for beard type (Table 4).
Accessions from China are well distributed across SBC while
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accessions from Japan have a moderate presence in SBC “H”

(n = 14). Genotypes derived from the USA-based cluster
(GBC “A”) do not show distinct correlation with SBC, how-
ever, lacking presence in both high (SBC “A”) and low
(SBC “H”) root trait valued clusters.

3.7. Mean Root Shape Outline of the iRoots.Mean root shape
profiles of the top 10 ranked genotypes of each iRoot at 9d
were generated using five harmonics of Elliptic Fourier
descriptors as described in Materials and Methods
(Figure 7). The shape profiles were created solely from
images of the top 10 ranked genotypes of each iRoot category.
Initial impression suggests the outlines look similar; however,
each profile is subtly distinct due to a combination of shape,
size, and structure. The nutrient foraging and maximum rep-
resentations display a similar shape while the beard shape is
visually distinct from the other categories. The drought-
tolerant based shape shows a reduced upper to lower width
ratio compared to maximum, umbrella, and nutrient forag-
ing which were less distinct from each other.

4. Discussion

Over 12,000 images were collected over three time points
throughout the course of this experiment. ARIA 2.0-based
trait extraction provided over 500,000 data points. The best
linear unbiased predictors (BLUPs) were calculated to act
as a weighted genotypic mean for all root system architecture
traits as well as seed, root, and shoot dry weights. Broad sense
heritability of root traits was equal or above similar previous
studies [7, 59, 61] with 15 traits being above 0.9 and 27 being
above 0.8. These heritability results could be reflective of the
number of replications (14) used in this study as compared to
previous studies (Pace et al., n = 3; Adu et al., n = 5; Gioia
et al., n = 10; Liu et al., n = 8; 15) [7, 59, 61, 68]. The inherent
variability in complex root traits requires maximizing repli-
cations. Our analysis indicated that 14 replicates maximized
broad sense heritability and are advantageous to lower the
number of replications (Supplementary Figure S9). Strong
correlations between root traits concurred with an a priori

hypothesis that Root_weight correlated with long TRL
and increased LRB, CVA, VOL, and WDR. The root
traits providing metrics for length and width generally
clustered together, while those for weight, volume, and root
number congregated together. Additionally, correlations
between traits exhibited the highest values (measured using
cumulative correlation intensity) at 6d and lowest at 12d.
This effect could be the result of lower trait variability at
earlier growth stages.

This study is aimed at connecting genomic and phenomic
information to elucidate genetic diversity present for RSA
traits. Using genomic distance approaches, genotypes were
grouped into eight clusters for analysis using SNP data
(GBC) and eight clusters using the phenotypic data (PBC)
using data from 13 root traits. We explored the trait expres-
sion in depth to determine the extent of genetic diversity as
it is important for breeding applications. Selection efforts in
the last century have only indirectly targeted root architec-
ture traits, while the primary efforts have been to select for
seed yield under the influence of agronomic and manage-
ment practices including plant population density, fertilizer
application, water availability/irrigation, and soil types.
Implicit assumptions are made that above ground trait vari-
ability and expression are mirrored in below ground RSA
traits. This knowledge could be leveraged in the future as
studies have shown a positive relationship between a com-
mon bean leaf surface area and a root surface area [69],
allowing for indirect selection of root through shoot assess-
ment. Our results show that GBC “A”, composed primarily
of US accessions, did not have full expression of phenotypic
diversity for RSA traits. GBC “A” at 9 d displayed average
root trait expression with the exception of above average
PRL and DEP (two correlated traits; at 9 d; r = 0:996) sug-
gesting US cultivars exhibit increased depth suggesting
potential drought tolerance characteristics. However, GBC
“A” did not display differences in LRA or TRL_GR, with
other traits reported for positive drought response. A field
study is needed to ascertain if the US germplasm accessions
have been indirectly selected for long PRL (reported in this
paper using controlled environment conditions), which has
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been linked to increased drought tolerance [33, 34], and for
LRA and other surrogates of drought tolerance response.
Additionally, high root trait values such as TRL have not
been correlated to increased seed yield in soybean. While
some US accessions were cultivars, the lack of RSA trait
diversity presents opportunities to further improve the
genetic potential of soybean cultivars. While our interest is
predominantly focused on studying the US accessions, these
approaches and results can be useful for breeders and
researchers worldwide to understand the full complement
of genetic and trait diversity in their programs and targeted
regions. Strong performing accessions can be identified indi-
vidually or as a cluster using genomic population structure to
direct further exploration using genomic selection with a
multivariate approach bridging genomics and phenomics
data. For example, subbranches within genomic-based clus-
ters contained many highly related genotypes displaying high
root trait values. The near-exhaustive analyses we performed
did not uncover significant correlations to geographic origin,
climatic zone, and root phenotype. Our scope of inference is
limited to 6, 9, and 12 days after germination, and additional
studies are needed to confirm if this lack of relationship is
maintained at later growth stages.

The iRoot categories were generated by leveraging phe-
nomics data to identify specific trait measurements and sta-
tistical analyses to quantify differing root shapes. While
these iRoot categories have been reported in different crops,
we were interested in integrating information from multiple
crops to study and explain the root trait diversity in soybean.
The iRoot categories were based on a previous work of the
root scientific community including nutrient foraging [36],
drought tolerant [43], beard [62], and umbrella [62]. The
maximum iRoot category was developed to identify the
greatest root growth potential without a particular environ-
ment in mind. The umbrella iRoot category was based on
Liao et al.’s study, who use the common bean as an archetype
of umbrella shape describing it as P-foraging noting that
“basal roots tend to be shallow in the phosphorus-rich topsoil
and tap roots tend to be deep for water in the subsoil.” The
nutrient foraging iRoot category, similar to the umbrella
type, was created to capture a root phenotype that could opti-
mize nutrient acquisition in low-fertility soils [36]. The nutri-
ent foraging iRoot is composed of a wide root system with a
high ratio for total root length in the upper 1/3 of the root
system as well as a fast growth rate. The beard shape iRoot
was noted as the ideal rice root type, “moderately dispersed
yet uniformly distributed adventitious and lateral roots so
as to keep most roots in the topsoil for phosphorus and a
few roots in the subsoil for water” [59]. The drought tolerant
iRoot category was developed to “chase the water”; in other
words, fast growing, steep, deep roots provide yield security
during drought [36, 49]. Potentially, soybean genotypes with
a dominant, rapidly elongating taproot could lead to a deeper
root system and enhanced water acquisition. Uga et al. report
that steeper root angles in rice have also been correlated to
higher yield in drought environments [70]. Our observation
of the correlation between shallow LRA and TRL growth rate
(r = 0:28) suggests that, genetically, roots may have a predis-
position to both traits and require further testing in field

tests. Lab-based root angles have been shown to correlate to
drought tolerance by other studies [37, 71] including
Rellán-Álvarez et al. who noted that water-deficient Arabi-
dopsis roots grow at a steeper angle in soil-filled rhizotrons
compared to the well-watered treatment and serve as an opti-
mal starting point for larger scale genetic studies [9]. The
maximum iRoot, which successfully correlated phenotypic
root traits with genotypic based population structure visual-
ized in Figure 3(b), suggests that genotypic information can
predict certain population groups which may have potential
use in breeding. The next step in this root trait research is
to develop and perform a large-scale study to correlate con-
trolled environment and field-based results. Our preliminary
investigations of top ranked iRoot genotypes in a field envi-
ronment experiment display visual similarities worth further
investigation (Figure 8). Additional experiments are needed
to verify the seed yield performance associated with different
iRoot categories.

We combined mathematical functions Elliptical Fourier
Transformation (EFT) and machine learning (ML)
approaches on image data to generate shape profiles and
shaped-based clusters, which have previously not been
reported for root-related trait studies. The EFT approach is
advantageous to explore root shape diversity allowing for sys-
tematic root outline analysis while maintaining the integrity
of the shape. In our efforts, we generated mean shape profiles
of the iRoot categories and the profiles qualitatively capture
the expected difference among the categories. The shape-
based clusters removed the human annotation steps and
helped to segregate strong performing and weak performing
genotypes into different shape-based clusters. SBC “A” con-
tained genotypes with high mean trait values that were
grouped into high performing PBCs. Additionally, the SBC
“A” was also the highest ranking for 4 of 5 iRoot categories.
Genotypes grouped within SBC “G” and “H” performed
poorly for trait values, PBC, and iRoot categories. These
results suggest that high performing genotypes can be identi-
fied solely from their root shape and present an attractive
application for phenomics in breeding and research. However,
this approach requires further validation for comparison with
state-of-the-art shape profile generation and applicability to
field performance through plant breeding efforts.

We propose that RSA trait research for practical breeding
outcomes will benefit from further studies in high through-
put phenotyping systems that can do the following: (a) con-
nect artificial and field environment studies, (b) make
correlations between easily assessed and difficultly assessed
traits to determine optimal balance of traits to focus on, (c)
understand the physiology behind drivers for yield using
large plant populations in specific and diverse environments,
and (d) integrate genomics and phenomics pipeline for
breeding decision-making. Root trait research requires infu-
sion of analytics, such as leveraging advanced sensors
coupled with computer vision and ML-based feature extrac-
tion methods [72–77]. Finally, robotics-assisted phenotyping
is transforming above ground trait studies [78], and there is a
need for robotics-based phenotyping solution for end-to-end
phenotyping platforms and root excavation without infor-
mation loss. Unlike above ground traits, root systems still
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do not have well-described growth stages and are often
described by corresponding length or depth which lacks the
inclusion of development stages [79, 80]. An understanding
of root growth stages and developmental process stages and
processes is integral to adapting root development into math-
ematical growth models, which will help breeders develop
more efficient crops. These abovementioned solutions will
help integrate multitrait objective functions [81] for above
and below ground trait selections for furthering genetic gains.
There is a need to deploy RSA traits in prescriptive cultivar
development [82] and continue to explore and identify trait
predictors for phenomics-assisted breeding [83].

5. Summary

In this study, we explored informative root categories
(iRoot), built on a previous literature in different crops,
leveraging data to identify specific trait measurements and
statistical analyses to quantify iconic root shapes. Results
demonstrate that superior root trait values and root shape
correlate to specific genomic clusters. In addition, US-
derived genotypes have long primary roots but fail to show
further root trait values indicating room for improvement
of the RSA of US germplasm. However, other groupings of
genotypically related accessions did show high root trait

Figure 8: Field extracted roots. Images of iRoot representative roots excised from soil at the R7 (left) and V1 (right) stages. (a, b) maximum
(PI 507487), (c, d) nutrient foraging (PI 479713), (e, f) drought tolerant (PI 458506), (g, h) beard type (PI 430596), and (i, j) umbrella
type (PI 438139).
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values. Our study demonstrates the relevance of ML and
computer vision-based software for the study of RSA traits.
These tools can be useful for discovering and characterizing
new traits and advancing time series-based studies on the
growth and development of root systems. While we now
can correlate root values and shape to genomic clusters, there
is a need to connect controlled environment studies to field-
based studies to improve methods of data collection. There is
a large inventory of genetic variation among the world’s soy-
bean germplasm collection which provides the base for future
crop improvement for RSA traits. After centuries of indirect
selection for RSA, there is a pressing need to harness and
implement quality soybean RSA diversity in cultivar develop-
ment programs. Building upon the correlations of root phe-
notype and shape to genomic regions with improved
phenotyping andML techniques, we have captured the diver-
sity of RSA available within the soybean germplasm core col-
lection and can now leverage our results to develop improved
soybeans using traditional and phenomics integrated plant
breeding approaches.

Data Availability

The ARIA 2.0 code is freely available at the address: https://
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is freely available at the address: https://github.com/
mighster/ARIA2.0. Root extracted data, raw images and/or
segmented masks are available upon request.
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Supplementary Materials

Supplementary 1. Supplementary Figure S1: Bayes inflection
curve based on genotypic values. Supplementary Figure S2:
mean root shape outline. Shapes were generated from all
the root images for a genotype using via Elliptical Fourier
Transformation (EFT). Supplementary Figure S3: architec-
ture of the deep convolution autoencoder model. This model
was used to represent the reconstructed mean root shape
profile image in an eight-dimensional (high-level feature)
vector. Supplementary Figure S4: Pearson’s correlations of
51 root traits at (a) 6 and (b) 12 days after germination. Root
traits measured on 292 soybean accession (replications = 14).
Hierarchical clustering was used to group similar traits.
Symbols (shape and color) denote RSA traits used in the
corresponding iRoot index (cumulative trait scores). Sup-
plementary Figure S5: segmented binary images of PI
578367, PI 89134, and PI 507491. Supplementary Figure
S6: dendrogram displaying genomic and country of origin
relationships of 292 soybean genotypes. Eight genotype-
based clusters (GBC) based on genetic distances are dis-
played as the tree’s branch colors. Genotype’s country
of origin is displayed as the tree’s leaf text and colors.
Supplementary Figure S7: correlations between pheno-
types (x-axis) and genotypes (y-axis). Supplementary Figure
S8: eight genotype-based cluster performance based on 13
root traits. Supplementary Figure S9: nine RSA traits display-
ing the increase in broad-sense heritability (H2) with each
replicate tested (n = 14).

Supplementary 2. Supplementary Table S1: Tukey’s Honest
Significant Difference comparisons among the three diversity
groups. Supplementary Table S2: variance inflation factor
results show high collinearity between root traits. Supple-
mentary Table S3: alternate table to Table 4 summarizing
soybean root values and metadata. Supplementary Table S4:
Tukey’s Honest Significant Difference groupings for the 13
traits used to develop iRoot categories. Supplementary Table
S5: presence of the top 25 ranked iRoot from each category
within the genotype-based cluster.
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