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1 Introduction and motivation

The study of Sp(2N) gauge theories has the potential to unveil many new phenomena

of general relevance in field theory and its phenomenological applications within high en-

ergy physics. The recent progress in lattice gauge theory makes it an ideally suited non-

perturbative instrument for this type of investigation. The literature on the subject is

somewhat limited (see for instance [1]). There is a large number of questions that we envi-

sion can be answered with dedicated lattice studies, and in this introduction we list them

and discuss the long-term research programme that this work initiates, before specialising

to the investigations and results we will report upon in this paper.

1.1 The Sp(2N) research programme

In the context of physics beyond the standard model (BSM), the discovery of the Higgs

particle [2, 3], combined with the absence of evidence for new physics at the TeV scale

from LHC direct searches, exacerbates the little hierarchy problem. If the mass of the

Higgs particle has a common dynamical origin with hypothetical new physics at multi-

TeV scales, the low-energy effective field theory (EFT) description of the system is in

general unnatural (fine-tuned). The framework of Higgs compositeness we refer to in

this paper [4–25] addresses this problem by postulating the existence of a new underlying

strongly-coupled theory, in which an internal global symmetry is broken spontaneously by

the dynamically-generated condensates, resulting in a set of parametrically light pseudo-

Nambu-Goldstone bosons (PNGBs). One writes their EFT description in terms of scalar

fields, and weakly couples it to the standard-model gauge bosons and fermions. Four of

the PNGBs of the resulting EFT are interpreted as the Higgs doublet, hence providing an

elegant symmetry argument for the lightness of the associated particles.

Particular attention has been devoted to models based on the SU(4)/Sp(4) coset [8, 26–

37], as EFT arguments suggest that the resulting phenomenology is both realistic and

rich enough to motivate a more systematic study of the underlying dynamics. This coset

emerges naturally in gauge theories with pseudo-real representations, such as Sp(2N) gauge

theories with two massless Dirac fermions in the fundamental representation of the gauge

group. Phenomenological arguments — ultimately related to the fact that if fundamen-

tal fermions carry SU(3)c (colour) quantum numbers, one can further implement partial

top compositeness — select SU(2) ∼ Sp(2) and Sp(4) as most realistic viable candidates

for BSM physics. A number of studies has considered the dynamics of SU(2) (see for

instance [28–34]), while here we focus on Sp(4).

The primary objectives of our research programme include the study of the mass

spectrum of mesons and glueballs, and the precise determination of decay constants and

couplings of all these objects by means of lattice numerical techniques.1 Eventually, we

want to gain quantitative control over a large set of measurable quantities of relevance

for phenomenological (model-building) considerations, which include also more ambitious

determinations of the width of excited states, and of the values of the condensates in the

underlying dynamics.

1An alternative non-perturbative approach is followed for example in [38].
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A separate set of objectives relates to the physics of baryons and composite fermions.

In Sp(2N) with fundamental matter, baryons are bosonic objects, and hence not suitable as

model-building ingredients for top (partial) compositeness. Composite fermions could be

realised for example by adding 2-index representations to the field content of the dynamics

(see for example [26, 27, 35]). We envision to start soon a non-trivial programme of study

of their dynamical implementation on the lattice.

A third set of dynamical questions that our programme wants to address in the long

run pertains to the thermodynamic properties of the Sp(2N) theories at finite temperature

T and chemical potential µ. It is of general interest to study the symmetry-restoration

pattern of these models at high temperature (see [34] for a step in this direction in the

case of SU(2)). Furthermore, the pseudo-real nature of Sp(4) makes it possible to study

the phase-space of the theory, while avoiding the sign problem.

Finally, there is a different field-theoretical reason for studying Sp(2N) gauge theories.

It is known that the Yang-Mills theories based on SU(N), SO(N) and Sp(2N) all agree

with one another on many fundamental physical quantities when the limit of large N is

taken. Lattice results allow for non-trivial comparisons with field-theory and string-theory

studies in approaching the large-N limit. While there is a substantial body of literature

on SU(N) theories on the lattice [39], for example for the calculation of the glueballs, and

some literature on SO(N) models (see for instance [40–42] and references therein), there is

no systematic, dedicated study of the Sp(2N) gauge theories. We aim at comparing with

results in Yang-Mills theories based on other groups, and with conjectures such as those

put forwards in [43] and [44].

1.2 Laying the foundations of the Sp(4) lattice studies

With this paper, we start the programme of systematic lattice studies of the dynamics of

such gauge theories. We focus here on the Sp(4) gauge group, which is of relevance for the

phenomenology of composite-Higgs models. We perform preliminary studies of the lattice

theories of interest, a first exploratory computation of the meson spectrum in the quenched

approximation and a first test of the same calculation with dynamical fermions.

We aim at gaining a quantitative understanding of the properties of the bound states,

possibly describing them within the EFT framework. Starting from the leading-order

chiral-Lagrangian description of the PNGBs, we extend it to include heavier mesons, aiming

at providing dynamical information useful for collider searches. As is well known, the

description of the spin-1 composite particles is weakly-coupled only in the large-N limit:

we do not expect the EFT to fare particularly well for Sp(4), yet it is interesting to use

it also in this case, in view of possible future extensions to Sp(2N). We also begin the

analysis of the next-to-leading-order corrections to the chiral Lagrangian of the model, as a

first preliminary step towards understanding realistic model building in the BSM context.

While still beyond the purposes of this paper, we find it useful also to briefly summarise

the main goals of the exploration of the dynamics of composite fermions emerging from

introducing on the lattice matter in different representations.

We devote a significant fraction of this paper to the study of the pure Yang-Mills

theory. We perform our Sp(4) lattice calculations in such a way that the technology we

– 3 –
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use can be easily generalised to any Sp(2N) theories, in view of implementing a systematic

programme of exploration of the large-N behaviour. We present the spectrum of glueballs,

and study the effective string-theory description, for Sp(4) pure Yang-Mills, with no matter

fields. Our results have a level of accuracy that is comparable to the current state-of-the-

art for SU(N) gauge groups in four dimensions. This both serves as an interesting test of

the algorithms we use, but also nicely complements existing literature on related subjects.

The paper is organised as follows. In section 2 we define the field theory of interest,

and introduce its low-energy EFT description in terms of PNGBs. We also extend the EFT

to include the lightest spin-1 states in the theory (see also appendix A and B). We define

the framework of partial top compositeness for these models, and the lattice programme

that we envision to carry out in the future along that line.

In section 3 we describe in details the lattice actions, as well as the Heat Bath (HB)

and Hybrid Monte Carlo (HMC) algorithms used in the numerical studies. In section 4 we

focus on scale setting and topology. These two technical sections, together with appendix A

and C, set the stage not only for this paper, but also for future physics studies we will carry

out. In section 5 we present the spectrum of glueballs for Sp(4). We also explain in details

the process leading to this measurement, that will be employed in the future also for the

spectrum of Sp(2N) with general N . Section 6 is devoted to the spectrum of mesons of

Sp(4) in the quenched approximation, the extraction of the masses and decay constants

and a first attempt at comparing to the low-energy EFT. Preliminary (exploratory) results

for the full dynamical simulation are presented in section 7. In particular, we exhibit the

first (to the best of our knowledge) evidence that a bulk phase transition is present for

Sp(4) with fundamental matter. We conclude the paper with section 8, summarising the

results and highlighting the future avenues of exploration that this work opens.

2 Elements of field theory, group theory and effective field theory

The Sp(4) gauge theory of interest has matter content consisting of two (massive) Dirac

fermions Qi a, where a = 1 , · · · , 4 is the colour index and i = 1, 2 the flavour index, or

equivalently four 2-component spinors qj a with j = 1 , · · · , 4. The Lagrangian density is

L = iQi
a γ

µ (DµQ
i)a − mQi

aQ
i a − 1

2
TrVµνV

µν , (2.1)

where the summations over flavour and colour indices are understood, and where the field-

strength tensors are defined by Vµν ≡ ∂µVν − ∂νVµ + ig [Vµ , Vν ].

In the m → 0 limit, the global symmetry is U(1)A × SU(4). The presence of a finite

mass m 6= 0 is allowed within the context of composite-Higgs models, and may play an

important (model-dependent) role. We write the symplectic matrix Ω as

Ω =















0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0















, (2.2)
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Fields Sp(4) SU(4)

Vµ 10 1

q 4 4

Σ0 1 6

M 1 6

Table 1. The field content of the theory. Sp(4) is the gauge group, while SU(4) is the global

symmetry. The elementary fields Vµ are gauge bosons, q are 2-component spinors. Σ0 is the

composite scalar defined in eq. (2.3), the VEV of which is responsible for the breaking SU(4) →
Sp(4). The mass matrix M is treated as a scalar spurion, formally transforming as ∼ 6 of SU(4).

and define the composite operator Σ0 as

Σ nm
0 ≡ Ωabq

naT C̃qmb , (2.3)

so that in 2-component spinor language the mass matrix is M ≡ mΩ. We collect in

appendix A some useful elements of group theory. For the most part we ignore the anoma-

lous U(1)A. We display the field content in table 1, where we list also the transformation

properties of the composite field Σ0, and the (symmetry-breaking) spurion M .

The vacuum is characterised by the fact that 0 6= 〈Σ0〉 ∝ Ω, hence realising the breaking

SU(4) → Sp(4). In the absence of coupling to the SM fields, the vacuum structure aligns

with the mass term, which hence contributes to the masses of the composite states, by

breaking the global SU(4) while preserving its global Sp(4) subgroup. As a result, the

lightest mesons of the theory arrange themselves into irreducible representations of Sp(4):

the PNGBs π and axial-vectors a1 transform on the 5 representation of the unbroken Sp(4),

while the scalars a0 and the vectors ρ on the 10 of Sp(4). There exist also the corresponding

scalar, pseudo-scalar, vector and axial-vector Sp(4) singlets, but we will not discuss them

in this paper.

2.1 EFT analysis

The EFT treatment of the lightest mesons depends on the coset, with only numerical

values of the coefficients depending on the underlying gauge group. We summarise here

some useful information about two different EFTs. Some of the material collected in this

subsection can also be found in the literature [8, 11–18, 26–32, 34]. We construct the

chiral Lagrangian for the SU(4)/Sp(4) coset, and its generalisation in the sense of Hidden

Local Symmetry (HLS) [45–49] (see also [50–53]). The former assumes that only the pions

are dynamical fields in the low-energy EFT, while the latter includes also ρ and a1 as

weakly-coupled fields. We will comment in due time on the regime of validity of the two.

2.1.1 EFT description of pions

The low-energy EFT description of the pions π is constructed by introducing the real

composite field Σ that obeys the non-linear constraint ΣΣ† = I4, and transforms as the

antisymmetric representation Σ → UΣUT , under the action of an element U of SU(4).

– 5 –
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The antisymmetric vacuum expectation value (VEV) 〈Σ〉 ∝ Ω breaks SU(4) to the Sp(4)

subgroup, and as a result five generators TA, with A = 1, · · · , 5, are broken, while 10 other

TA, with A = 6, · · · , 15, are not. We normalise them all as Tr TATB = 1
2δ

AB.

The field Σ contains the PNGB fields π = πATA, conveniently parametrised as

Σ ≡ e
iπ
f Ωe

iπT

f = e
2iπ
f Ω = Ω e

2iπT

f , (2.4)

in terms of which, at leading-order, the EFT has the Lagrangian density

L0 =
f2

4
Tr
{

∂µΣ (∂µΣ)†
}

(2.5)

= Tr {∂µπ∂µπ} +
1

3f2
Tr
{

[∂µπ , π] [∂
µπ , π]

}

+ · · · . (2.6)

The pion fields are canonically normalised, hence f = fπ is the pion decay constant.

If it were promoted to a field, the spurionM would transform asM → U∗MU †, so that

the combination Tr M Σ would be manifestly invariant under the SU(4) global symmetry.

The (symmetry-breaking) mass term is hence written as

Lm = −v
3

4
Tr {M Σ} + h.c. (2.7)

= 2mv3 − mv3

f2
Trπ2 +

mv3

3f4
Tr (ππππ) + · · · , (2.8)

which confirms that the 5 pions are degenerate in the presence of the explicit breaking given

by the Dirac mass for the fermions, because of the unbroken SO(5) ∼ Sp(4) symmetry. The

GMOR relation is automatically satisfied, and takes the form:

m2
πf

2
π = mv3 . (2.9)

As is the case for the chiral-lagrangian description of low-energy QCD, we are making

use of two expansions: the derivative expansion, that suppresses terms of higher dimension,

and that is reliable provided we consider observables at energies E ≪ 4πfπ, and the chiral

expansion, reliable when the mass of the pion satisfies mπ ≪ 4πfπ.

At the sub-leading order, we could for example add to the chiral Lagrangian the con-

tribution

Ls = v0Tr (MΣ)Tr
(

∂µΣ∂
µΣ†

)

+ h.c. (2.10)

= −32
mv0
f2

L0 +
16mv0
f4

Tr {ππ}Tr {∂π∂π} + · · · . (2.11)

The first term of the expansion comes from setting Σ = Ω, and amounts to a m-dependent

rescaling of the interacting L0. No correction to the mass term appears, but just an overall

rescaling of both f and π, so that the GMOR relation is respected. However, an additional

quartic pion coupling is generated, that contributes to the ππ scattering amplitude. In the

massless limit fπ can be equivalently extracted from either 2-point functions or from the

ππ scattering amplitude. For m 6= 0 there are subtleties: in the following we will always

extract fπ from the q2 → 0 limit of the 2-point functions, and we will highlight this fact

by denoting the pion decay constant (squared) as f2π(0) in the rest of the paper.

– 6 –
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Figure 1. The moose diagram representing the low-energy EFT description of the model

in eq. (2.16), along the lines of HLS [45–49] (see also [50–53]). The two sites represent the

SU(4)A × SU(4)B global symmetry. The scalar S transforms on the bifundamental representation,

while Σ is antisymmetric. The SU(4)A group is gauged with coupling gρ, while the SU(2)L×U(1)Y
SM subgroup of SU(4)B can be weakly gauged, with couplings g and g′. In most of this paper

we set g = 0 = g′, and hence ignore the interactions of the strongly coupled dynamics with the

standard-model fields.

2.1.2 Hidden Local Symmetry description of ρ and a1

Hidden Local Symmetry provides a way to include spin-1 excitations such as the ρ mesons

into the EFT treatment, hence extending the validity of the chiral Lagrangian (see for

instance [45–49] and also [50–53]). While very appealing on aesthetics grounds, when

applied to QCD such idea shows severe limitations: the heavy mass and non negligible

width of the ρmesons imply that the weak-coupling treatment is not fully reliable. Yet, this

description offers a nice way to classify operators and it is expected to become more reliable

at large-N [49]. As we envision future studies with larger Sp(2N) groups, it is useful to

show the construction already in the programmatic part of this paper, and test it on Sp(4).

The full set of ρ and a1 mesons spans the adjoint representation of the global SU(4)

symmetry. An EFT description of their long-distance dynamics can be built starting from

the diagram in figure 1. The 15 spin-1 fields are introduced as gauge fields of SU(4)A. Two

scalars, the antisymmetric Σ of SU(4)A, and the bi-fundamental S, transform as

Σ → UAΣU
T
A , S → UB S U

†
A , (2.12)

under the action of UA ∈ SU(4)A and UB ∈ SU(4)B. The VEV of S breaks the enlarged

symmetry and provides mass for all the vectors. S is subject to the constraints S†S = I4,

that are solved by parametrising S = e
2iσ
F , with σ = σATA and F the decay constant. At

the same time, we parametrise Σ = e
2iπ
f Ω, in such a way that the two scalars together

implement the breaking SU(4)A × SU(4)B → Sp(4), and describe the 15 exact Goldstone

bosons that are higgsed away into the longitudinal components of the massive spin-1 states,

as well as the remaining 5 (massive) PNGB, denoted as π̄A in the following.

In composite Higgs models, the SM gauge group SU(2)L × U(1)Y is a subgroup of

SU(4)B, and it is chosen to be a subgroup of the unbroken global Sp(4). The covariant

derivative of S is given by

DµS = ∂µS + i
(

gWµ + g′Bµ

)

S − iSgρAµ , (2.13)

– 7 –
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with Aµ = AA
µT

A and TA the generators of SU(4)A, while Wµ = W i
µt

i
L and Bµ are the

gauge bosons of SU(2)L ×U(1)Y . The covariant derivative of Σ is

DµΣ = ∂µΣ+ i
[

(gρAµ)Σ + Σ(gρAµ)
T
]

(2.14)

=
{

∂µe
2iπ
f + i

[

(gρAµ)e
2iπ
f − e

2iπ
f Ω(gρAµ)

TΩ
]}

Ω , (2.15)

where we have made use of the fact that Ω2 = −I4. From this point onwards, we set

g = 0 = g′, and focus on the dynamics of the strongly-coupled new sector in isolation from

the SM fields.

We write the Lagrangian density describing the 15 gauge bosons AA
µ , as well as the 20

pseudo-scalar fields πA and σA, as

L = −1

2
Tr AµνA

µν − κ

2
Tr
{

AµνΣ(A
µν)TΣ∗}

+
f2

4
Tr
{

DµΣ (DµΣ)†
}

+
F 2

4
Tr
{

DµS (DµS)†
}

+b
f2

4
Tr
{

Dµ(SΣ) (D
µ(SΣ))†

}

+ c
f2

4
Tr
{

Dµ(SΣS
T )
(

Dµ(SΣST )
)†}

−v
3

8
Tr
{

M S ΣST
}

+ h.c. (2.16)

−v1
4
Tr
{

M (DµS) Σ (DµS)T
}

− v2
4
Tr
{

M S (DµΣ) (D
µS)T

}

+ h.c.

−y3
8
Tr
{

AµνΣ
[

(Aµν)TSTMS − STMSAµν
]}

+ h.c.

−y4
8
Tr
{

AµνΣ
[

(Aµν)TSTMS + STMSAµν
]}

+ h.c.

− v25
128

(

TrMSΣST + h.c.
)2

.

The first line of eq. (2.16) depends on the field-strength tensor Aµν of the gauge group,

and includes the symmetry-breaking term controlled by κ, that would be omitted from the

linear-sigma model version of the same EFT. The covariant derivatives of combinations of

S and Σ are defined in the obvious way, generalising the covariant derivatives of S and Σ.

The mass deformations are introduced via a new spurion M and via combination of fields

such as SΣST , that transforms as SΣST → UBSΣS
TUT

B . The spurion differs from the one

in the chiral Lagrangian as it formally transforms as M → U∗
BMU †

B. In this way the whole

Lagrangian is manifestly SU(4)A gauge invariant.2

In the expansion, we include two sets of operators. We call leading order (LO) the

ones appearing in the first four lines, controlled by the parameters F , f , b, c, κ, gρ and v.

This is an exhaustive set of operators, at this order. We call next-to-leading order (NLO)

those in the last four lines, controlled by the parameters v1, v2, y3, y4 and v5. As we will

discuss shortly, the list of NLO operators is incomplete. In total there are 12 parameters.

This Lagrangian has to be used with caution. The appearance of ρ and a1 fields in the

2If part of the SU(4)B were gauged, as in technicolor models, then one might be forced to work in the

m = 0 limit. But further discussion of this point can be found in appendix B.

– 8 –
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EFT is fully justified only if the coupling gρ is small, which must be discussed a posteriori,

yet is expected to hold in the large-N limit, and as long as m is small.

The last four lines of eq. (2.16) contain terms that are sub-leading in the power-

counting. Because we are going to perform lattice simulations at finite mass m, a priori

we do not know how important such terms are, and hence we include them. While non-

vanishing values of m are allowed within the composite-Higgs framework, the EFT is useful

only when m is small enough that truncating at this order is justified.

We do not include the full set of sub-leading four-derivative terms, because they are

not important for our current purposes. These terms would become important when a

complete analysis of 3-point and 4-point functions is performed, for example. We also

omit topological terms. Furthermore, we do not include in L terms with the structure of

eq. (2.10), such as

Tr
{

M S ΣST
}

Tr
{

Dµ(SΣS
T )
(

Dµ(SΣST )
)†}

. (2.17)

We will comment later in the paper on the implications of all these omissions.

We conclude this subsection with a technical comment. Some of the terms in the La-

grangian density in eq. (2.16) involve only nearest-neighbour interactions, in the sense of

the diagram in figure 1, while other couplings introduce non-nearest-neighbour interactions.

Such additional interactions might for example emerge from the process of integrating out

heavier degrees of freedom. One of the big limitations of the HLS language is that the num-

ber of independent, admissible such non-nearest-neighbour interactions grows rapidly with

the number of fields in the theory, and hence by introducing more resonances the EFT La-

grangian density loses predictive power because of the proliferation of new free parameters.

In the special Lagrangian we wrote, such interactions are controlled by the parameters κ, b,

c, as well as v, v1, v2, y3, y4 and v5. If only nearest-neighbour couplings were to be allowed,

the set of parameters would be restricted to just f , F and gρ, at this order in the expansion.

2.1.3 2-point functions

To compute masses and decay constants of the mesons, we use the language of the SU(2)tL×
SU(2)tR symmetry that would be of direct relevance if we were to treat this as a Technicolor

model. In particular, this symmetry is not a subgroup of the unbroken Sp(4) global sym-

metry, and the condensate breaks it. We treat this as a technical tool, that is convenient

in order to extract physical quantities from the correlation functions. Yet our results hold

also for finite m, and apply as well to the composite-Higgs scenario, as we never include

in the calculations the effects of the couplings to the external (weakly-coupled) SM fields.

The Left-Left current-current correlator is (see appendix B)

Σ(q2) = f20 +
M2

ρf
2
ρ

q2 −M2
ρ

+
M2

a1f
2
a1

q2 −M2
a1

, (2.18)
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from which one can read that the masses and decay constants are given by

M2
ρ =

1

4(1 + κ+my3)
gρ

2
(

bf2 + F 2 + 2mv1
)

, (2.19)

M2
a1 =

1

4(1− κ−my4)
gρ

2
(

bf2 + F 2 + 2mv1
)

+ (2.20)

+
g2ρ

1− κ−my4

(

f2 +m(v2 − v1)
)

,

f2ρ =
1

2

(

bf2 + F 2 + 2mv1
)

, (2.21)

f2a1 =

(

bf2 − F 2 + 2m(v1 − v2)
)2

2 ((b+ 4)f2 + F 2 − 2mv1 + 4mv2)
, (2.22)

f20 = F 2 + (b+ 2c)f2 . (2.23)

and that the pion decay constant is

f2π(0) = lim
q2→0

Σ(q2) = f20 − f2ρ − f2a1 . (2.24)

As anticipated, the notation explicitly specifies that f2π(0) is extracted from 2-point func-

tions evaluated at q2 = 0. The fact that f20 = f2π(0) + f2ρ + f2a1 is independent of m is

the accidental consequence of the truncation we made, in particular of the omission of the

operator in (2.17). Whether or not this is justified, depends on the range of m considered

and on the size of the EFT coefficients, as emerging from lattice data.

One can compute the right-hand-side of the first and second Weinberg sum rules,

within the EFT, to obtain

f2a1 − f2ρ + f2π(0) = 2(cf2 −mv1) , (2.25)

f2ρM
2
ρ − f2a1M

2
a1 =

g2ρ
8

(

(−bf2 + F 2 + 2m(v2 − v1))
2

κ+my4 − 1
+

(bf2 + F 2 + 2mv1)
2

κ+my3 + 1

)

, (2.26)

hence showing explicitly that the non-nearest-neighbour couplings b, c, κ, y4, y3, v1 and

v2 yield to direct violations of the Weinberg sum rules, within the EFT. As anticipated,

this is not surprising: non-nearest-neighbour interactions are expected to emerge from

integrating out heavy degrees of freedom, and result in the violation of the Weinberg sum

rules because their rigorous derivation involves summing over all possible resonances. The

additional couplings, in effect, parameterise the contribution to the sum rules of heavier

resonances that have been omitted.

2.1.4 Pion mass and gρππ coupling

To compute the physical mass and couplings of the pions, it is convenient to fix the unitary

gauge, by setting σA = 0 along the unbroken A = 6 , · · · , 15 generators, and

σA = Sπ̄A =
((2 + b)f +mv2/f)F

N π̄A , (2.27)

πA = Cπ̄A =
F 2 − bf2 − 2m(v1 − v2)

N π̄A , (2.28)
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for A = 1 , · · · , 5 along the broken generators, with the normalisation factor N chosen so

that the physical π̄A are canonically normalised:

N 2 =

(

(b+ 4)f2 + F 2 − 2mv1 + 4mv2
)

f2

{

2f2mv2(b+ 2c)−m2v2
2 + (2.29)

+ f2
(

bcf2 − 2mv1(b+ c+ 1) + bf2 + bF 2 + 4cf2 + cF 2 + F 2
)

}

.

The 5 degenerate pions have mass

m2
π =

(

mv3 +m2v25

) ((4 + b)f2 + F 2 − 2mv1 + 4mv2)
2

2f2N 2
, (2.30)

which modifies the GMOR relation to read

m2
πf

2
π = m(v3 +mv25) . (2.31)

The gρππ coupling is conventionally defined by the Lagrangian density

Lρππ = −2igρππTr
(

ρµ[∂µπ̄ , π̄]
)

, (2.32)

so that the width (at tree level) is Γρ =
g2ρππ

48π Mρ

(

1− 4m2
π

M2
ρ

)3/2
. We find that

gρππ =
gρ

2f2N 2
√
1 + κ+my3

{

m2v22
(

(5b− 8)f2 − 3F 2 + 10mv1
)

+(b+ 2)f2
((

2f2 + F 2
) (

bf2 + F 2
)

−2mv1
(

2(b+ 1)f2 + F 2
))

+ 2mv2
(

2b(b+ 3)f4 +mv1
(

F 2 − 3bf2
)

+2(b+ 1)f2F 2 − 2m2v21
)

− 8m3v32

}

. (2.33)

We conclude with a comment about unitarity. While the calculations performed here

make use of the unitary gauge, we must check that the kinetic terms of all the Goldstone

bosons be positive before setting to zero the linear combinations providing the longitudinal

components of the vectors. We call the relevant normalisations k10, k5 and k
′
5, coming from

the kinetic term of σA with A > 5, as well as the trace and the determinant of the kinetic

matrix mixing σA and πA with A < 6. Such combinations are explicitly given by:

k10 =
bf2 + F 2 + 2mv1

F 2
,

k5 = 2 + b+ c+ (b+ 4c)
f2

F 2
− 2mv1 , (2.34)

k′5F
2 = b

(

(c+ 1)f2 + F 2 − 2mv1 + 2mv2
)

+

+c
(

4f2 + F 2 − 2mv1 + 4mv2
)

− m2v22
f2

+ F 2 − 2mv1 .

We require that k10, k5, k
′
5 > 0. Furthermore, for the kinetic terms of the vectors to be

positive definite one must impose κ+my4 < 1 and κ+my3 > −1.
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2.1.5 On the regime of validity of the EFT

In the EFT we wrote to include the ρ and a1 particles, we are making use of several

expansions. Besides the derivative expansion and the expansion in the mass of the fermions

m, appearing also in the chiral Lagrangian, there is a third expansion, that involves the

coupling gρ and deserves discussing in some detail.

From lattice calculations of 2-point functions, one extracts the decay constants of π, ρ

and a1, in addition to the masses. In the m = 0 limit, the expressions for the five quantities

Mρ, Ma1 , fρ, fa1 and fπ depend on the six free parameters f , F , b, c, κ and gρ, that hence

cannot all be determined. Let us choose to leave κ undetermined, for example, and solve

the algebraic relations for the other five parameters in terms of the physical quantities.

The gρππ coupling can then be written as

lim
m→0

g2ρππ = lim
m→0

M2
ρ (f

2
ρM

2
a1(−1 + κ) + f2a1M

2
ρ (1 + κ))2

2f4πf
2
ρM

4
a1(1− κ)2

. (2.35)

If one were restricted to the massless theory, only by gaining access to 3-point func-

tions could one measure κ. Yet, detailed information about the m-dependence of 2-point

functions can be used to predict gρππ, and the width of the ρ meson. In principle, the

width of the ρ meson Γρ could be compared with the physical width extracted from lattice

calculations [55, 56]. In this way we would be able to adjudicate explicitly whether the

weak-coupling assumption that underpins this EFT treatment is justified. However, the

direct extraction of Γρ from lattice data is highly non-trivial, and will require a future

dedicated study.

There is no reason a priori to expect that gρ, or gρππ, be small, except in the large-

N limit. The fact that from 2-point functions we can infer some of the properties of

the EFT that enter the 3-point functions holds only provided the coupling is small, with

g2ρππ/(48π) ≪ 1. Furthermore, if Mρ andMa1 happen to be large in respect to fπ, bringing

them close to the natural cut-off set by the derivative expansion, it would again signal a

break-down of the perturbative expansion within the EFT.

Nevertheless, even in the regime of large gρ, we can still learn something from the

expansion in small mass m. In particular, we should be able to use the EFT to reproduce

the m-dependence of masses and decay constants, at least in the small-m regime. In the

future, we envision repeating the study performed in the following sections for Sp(2N)

theory with dynamical fermionic matter, and with larger values of N , and hence track the

N -dependence of the individual coefficients.

2.2 Spin−1/2 composite fermions and the top partner

In composite-Higgs models, the generation of the SM fermion masses is often supplemented

by the mechanism of partial compositeness (PC). The SM fermions, in particular the top

quark, mix with spin-1/2 bound states emerging from the novel strong-interaction sector

(the composite sector), and phenomenologically this allows both to enhance the fermion

mass (as in precursor top-color models) and to trigger electroweak symmetry breaking

via vacuum (mis)alignement. As an example, we borrow some of the construction in [8]

– 12 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
5

and [27]. So many other, equally compelling, examples exist in the literature, that we refer

the reader to the review [16] and to the references therein.3

Let us assume that the microscopic theory admits the existence of Sp(4)-colour singlet

operators Ψ̂i and Ψ̂c
i , that have spin-1/2, carry SU(3)c colour and, combined, span vectorial

representations of the SM gauge group. The index i = 1, 2 refers to the SU(2)L singlets and

doublets, respectively, and the notation refers to the fact that we write the operators as 2-

component fermions. Let us now consider the low-energy description of the lightest particles

excited from the vacuum by such operators, and write it in terms of new 2-component spino-

rial fields Ψi and Ψc
i with the same quantum numbers as Ψ̂i and Ψ̂c

i . Coarse-graining over

model-dependent details, Ψi and Ψc
i have the correct quantum numbers to couple to the SM

quarks, in particular to the SM top quark, represented by the 2-component Weyl fermions

t and tc, provided Ψi transforms on the fundamental of SU(3)c and Ψc
i on its conjugate.

Below the electroweak symmetry-breaking scale vW , the mass terms take the form

Lmix = −1

2

{

λ1M∗

(

M∗
Λ

)dΨ−5/2

ΨT
1 C̃t

c + λ2M∗

(

M∗
Λ

)dΨc−5/2

tT C̃Ψc
2 +

+λM∗
[

ΨT
1 C̃Ψ

c
1 + ΨT

2 C̃Ψ
c
2

]

+ yvW

[

ΨT
1 C̃Ψ

c
2 + ΨT

2 C̃Ψ
c
1

]

}

+ h.c. , (2.36)

where λ1, λ2, λ and y are dimensionless couplings, M∗ represents the typical scale of the

masses of composite fermions in the Sp(4) gauge theory and Λ represents the underlying

scale at which (third-generation) flavour physics arises (see also [8]). dΨ = dΨc is the

dimension of the operators Ψ̂ and Ψ̂c in the underlying theory.

Diagonalisation of the resulting mass matrix, under the assumption that yvW be small

in respect to the other scales, yields two heavy Dirac masses approximately given by

m2
1 ≃

(

λ2 + λ21

(

M∗
Λ

)2dΨ−5
)

M2
∗ , (2.37)

m2
2 ≃

(

λ2 + λ22

(

M∗
Λ

)2dΨc−5
)

M2
∗ , (2.38)

and finally the mass (squared) of the top is given approximately by

m2
t ≃

λ21λ
2
2y

2
(

M∗

Λ

)2dΨ+2dΨc−10
v2WM

4
∗

m2
1m

2
2

. (2.39)

In order to assess the viability of these models, one needs to provide a microscopic origin

for all of the parameters appearing in eq. (2.36). To do so, one must specify the (model-

dependent) microscopic details controlling the nature of the composite fermions. Spin-1/2

composite Sp(4)-neutral particles arise in the presence of fermions in higher-dimensional

irreducible representations. As an example, ref. [27] proposes to extend the field content

of the microscopic theory in table 1 to include 2-component elementary fermions χ (and

3See also the approach based on an extended EFT in [54].
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χc) in the antisymmetric representation of the gauge Sp(4), transforming as singlets of the

global SU(4), and on the fundamental (and anti-fundamental) representation of the SU(3)c
gauge symmetry of QCD.

The χ and χc fermions carry QCD colour charge, which allows to construct coloured

composite states in the antisymmetric, six-dimensional representation of the global SU(4)

group, by coupling them to a pair of fundamental fermions q. For example, the operators

Ψ̂ and Ψ̂c aforementioned can be obtained as

Ψ̂abα ≡
(

qaχαqb
)

, Ψ̂c ab
α =

(

qaχc
αq

b
)

, (2.40)

where summations over Sp(4) gauge indices are understood, while we show explicitly the

(antisymmetrised) global SU(4) indices a and b, and the SU(3)c colour index α.

One of our long-term goals is to study the PC mechanism with lattice simulations,

which requires generalising the lattice study we will report upon in the following sections

to the case in which the field content contains at least two species of fermions transforming

in different representations of the fundamental gauge group. The example we outlined here,

though incomplete, immediately highlights how, from the phenomenological perspective,

the determination of the masses of the top partners (the scale M∗ and couplings such as

λ, as a function of the elementary-fermion mass m) in the PC mechanism are of direct

interest, as they represent a way to test the theory. At the same time, they are accessible

on the lattice, even without introducing (model-dependent) couplings to the SM fields.

The other additional, essential, input from non-perturbative dynamics of the micro-

scopic theory is the anomalous dimension of the top-partner operators, such as Ψ̂ and Ψ̂c

in the example. For the PC mechanism to be valid, in principle one needs the operator

dimensions to be small, for example dΨ ≤ 5/2, which implies that the operator Ψ̂T
1 C̃t

c is

relevant in the IR, and that the anomalous dimensions of the candidate operators have to

be non-perturbatively large. In practice, since Λ/M∗ is not infinity, this requirement may

be relaxed, at the price of admitting some degree of fine-tuning.

Finally, the (model-dependent) extension of the field content, required by the PC

mechanism, also implies the enlargement of the global symmetry, and additional light

PNGB’s, some of which are neutral, some of which carry SU(3)c colour, and many of

which may be lighter than the typical scale of the other composite particles. Lattice

calculations of the masses of such particles would offer the opportunity to connect with the

phenomenology derived from direct particle searches at the LHC.

3 Numerical lattice treatment

In this section, we present the discretised Euclidean action and Monte Carlo techniques

used in the numerical studies. We adapt the state-of-the-art lattice techniques established

for QCD to the two-flavour Sp(4) theory. Pioneering lattice studies of Sp(4) gauge theory

without matter can be found in [1]. Numerical calculations are carried out by modifying

the HiRep code [57].
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3.1 Lattice action

For the numerical study of Sp(2N) gauge theory on the lattice, we consider the standard

plaquette action

Sg[U ] = β
∑

x

∑

µ<ν

(

1− 1

2N
Re Tr Pµν(x)

)

, (3.1)

where β = 4N/g2 is the lattice bare gauge coupling, and N = 2 in the Sp(4) case of this

paper. The plaquette Pµν is given by

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x) , (3.2)

where the link variables Uµ(x) are Sp(4) group elements in the fundamental representation,

while µ̂ and ν̂ are unit vectors along the µ and ν directions.

In the dynamical simulations with two Dirac fermions in the fundamental representa-

tion, we use the (unimproved) Wilson action

Sf [U, ψ̄, ψ] = a4
∑

x

ψ̄(x)Dmψ(x) , (3.3)

where the massive Wilson-Dirac operator is given by

Dmψ(x) ≡ (D +m0)ψ(x)

= (4/a+m0)ψ(x)−
1

2a

∑

µ

{

(1− γµ)Uµ(x)ψ(x+ µ̂)+ (3.4)

+(1 + γµ)Uµ(x− µ̂)ψ(x− µ̂)
}

,

where a is the lattice spacing and m0 is the bare fermion mass.

3.2 Heat bath

As a powerful way to perform calculations in the pure Sp(4) gauge theory, we implemented

a heat bath (HB) algorithm with micro-canonical over-relaxation updates, to improve the

decorrelation of successive configurations. As in the case of SU(N) [58], the algorithm acts

in turn on SU(2) subgroups, the choice of which can be shown to strongly relate to the

ergodicity of the update pattern.

A sufficient condition to ensure ergodicity is to update the minimal set of SU(2) sub-

groups to cover the whole Sp(2N) group. This condition can be suitably translated to

the algebra of the group and generalised to any Sp(2N). In the Sp(4) case, of relevance

to this paper, we choose to update a redundant set of subgroups, in order to improve the

decorrelation of configurations. We provide below a possible partition of the generators

used to cover all of the Sp(4) gauge group, written with the notation of [34].

• SU(2)L subgroup, with generators T i
L in eq. (B.6) of [34].

• SU(2)R subgroup, with generators T i
R in eq. (B.7) of [34].
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Figure 2. Difference between the averaged plaquette obtained at various values of β in this work

and in ref. [1]. The symbols 〈P 〉 and 〈P 〉H.P.W. denote the measurements from this work and those

reported in ref. [1], respectively. Our lattice volume is V = 84, and both calculations use the HB

algorithm with over-relaxation, as explained in section 3.2. Each point has been obtained from

5000 measurements, and the errors are corrected for autocorrelations.

• SU(2)τ subgroup, with generators expressed in terms of B.4 in [34]:

τ1 = T 11 ; τ2 = T 7 ; τ3 = T 15 . (3.5)

• SU(2)τ̃ subgroup, with generators expressed in terms of B.4 in [34]:

τ̃1 = T 13 ; τ̃2 = T 8 ; τ̃3 = T 14 . (3.6)

The set of 10 generators T i
L, T

i
R, τ

1 , 2 and τ̃1 , 2 spans the whole Sp(4). The minimal set

of 5 elements that generate the whole group by closure consists for example of any two

elements T i
L, any two elements T j

R and one additional element among τ1 , 2 and τ̃1 , 2.

As a check of correctness of the algorithm we employed, we compared the average of

the elementary plaquette to the results obtained in [1], as shown in figure 2, confirming

that they are compatible within the statistical errors.

3.3 Hybrid Monte Carlo

In the study of Nf = 2 dynamical Dirac fermions, we make use of the hybrid Monte Carlo

(HMC) algorithm. As Sp(4) is a subgroup of SU(4), most of the numerical techniques

used for SU(N) with an even number of fermions can straightforwardly be extended to our

study. However, there are two distinguishing features.

First of all, in contrast to the HB algorithm, the explicit form of the group generators

of Sp(4) is necessary for the molecular dynamics (MD) update. For instance, the MD

forces for the gauge fields are given by

FA
G (x, µ) = − β

2NTF
Re Tr[iTAUµ(x)V

†
µ (x)], (3.7)

– 16 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
5

2 4 6 8 10 12 14

β

−0.0006

−0.0004

−0.0002

0.0000

0.0002

0.0004

0.0006

δ
=

〈P
〉−

〈P
〉 H

.P
.W

.

Figure 3. Differences between the average plaquette values 〈P 〉 obtained by using the HMC

algorithm described in section 3.3 with heavy quarks (am0 = 10.0) and the HB for pure Sp(4)

theories from the literature [1].

where Vµ(x) is the sum of forward and backward staples around the link Uµ(x). The

generators TA with A = 6 , · · · , 15 are given in appendix B of [34]. The group invariant

TF is defined as Tr (TATB) = TF δ
AB, which in our case yields TF = 1/2, so that for Sp(4)

the normalization is 2NTF = 2.

Secondly, due to machine precision, it is not guaranteed that the link variables stay

in the Sp(4) group manifold. In analogy with the re-unitarization process implemented in

SU(N) studies, we perform a re-symplectisation at the end of each MD step. We describe

in appendix C the procedure, based on Sp(4) projection that makes use of the quaternion

basis.

As a further test of this implementation of the HMC algorithm, we calculated the

expectation value of the difference of the auxiliary Hamiltonian at the beginning and the

end of a MD trajectory 〈∆H〉 for various values of the integration step size ǫ, in the

case with β = 6.9 and am0 = −0.85 on a 24 × 123 lattice. We found that 〈∆H〉 is

proportional to ǫ4, as expected for a second order Omelyan integrator [59], and Creutz’s

equality 〈exp(−∆H)〉 = 1 [60] is satisfied. We also checked that the average plaquette

values are consistent with each other for all values of the step size.

The HiRep code [57] is designed to implement SU(N) gauge theories with a generic

number of colours and flavours, with fermions in any two-index representation. One of its

crucial features is that the gauge group and the representation can be fixed at compile time

by using preprocessor macros. This provides us with great flexibility in implementing the

aforementioned features of Sp(4).

As a nontrivial test of the HMC code, we first calculate the expectation value of the

plaquette of the theory with two degenerate, very heavy fundamental fermions (am0 =

10.0) and compare the results with the pure Sp(4) results from [1]. In figure 3, we plot the

differences of the average plaquette values between the two calculations for various values

of β. The two series are compatible with each other, within the statistical errors.
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Figure 4. Probability distribution P (Φ) of the expectation value of the Polyakov loop Φ averaged

over the space-like points, defined in eq. (3.8), with the normalisation of
∫

dΦP (Φ) = 1, measured

on a lattice with size 4 × 123, by making use of the HMC algorithm. The lattice couplings are

β = 7.3, 7.339 and 7.345 (top to bottom panel), roughly corresponding to temperatures T below,

at, and above the critical temperature Tc, respectively.
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It is known that the pure Sp(4) theory in 3 + 1 dimensions exhibits a first-order

deconfinement phase transition [1]. Although a finite-size scaling analysis is needed to

confirm the existence of the first-order phase transition, for the purpose of a consistency

check of the code it is worth showing numerical evidence of the coexistence of the confined

and deconfined phases. To this end, we calculate the expectation value of the Polyakov

loop averaged over the space-like points, defined by

Φ ≡ 1

N3
s

∑

~x

Tr

(

Nt−1
∏

t=0

U0(t, ~x)

)

. (3.8)

The temperature T in lattice units is identified with the inverse of the extent of the tem-

poral lattice, 1/Nt. Near the critical temperature Tc, the probability distribution of Φ

indeed shows the coexistence of two phases, as in the second panel of figure 4. In agree-

ment with expectations, the numerical results also show that the expectation value of the

Polyakov loop averaged over space is dominated by configurations at Φ = 0 in the confining

phase (first panel of figure 4), while it is dominated by two non-zero values of Φ in the

deconfinement phase (third panel of figure 4).

4 Lattice calibration

This section is devoted to discuss two lattice technicalities that are important in order to

extract the correct continuum physics: we address the problem of setting the scale, using

the gradient flow, and study the topology of the ensembles generated by our numerical

process, to verify that there is no evidence of major problems in the lattice calculations.

4.1 Scale setting and gradient flow

Lattice computations are performed by specifying dimensionless bare parameters in the

simulation, and all dimensionful results are extracted in units of the lattice spacing. These

results have to be extrapolated to the continuum limit to make impact on phenomenology.

It is also desirable to express them in natural units. Such demands make the scale setting

an important task in lattice calculations. To carry out this task, the most straightforward

approach is to compute a physical quantity on the lattice, and then compare with its

experimental measurement. In the absence of experimental results for the Sp(4) gauge

theory, one can still accomplish reliable continuum extrapolations by employing a scale

defined on theoretical grounds, such that one can determine the ratio a1/a2 of the lattice

spacings in two simulations performed at different choices of the bare parameters.

The gradient flow in quantum field theories, as revived in recent years by Martin

Lüscher in the context of the trivialising map [61], is a popular method for scale setting [62,

63]. To study the gradient flow in a field theory, one first adds an extra dimension, called

flow time and denoted by t. An important point articulated by Lüscher is that a field theory

defined initially with a cut-off can be renormalised at non-vanishing flow time. In addition,

choosing carefully the bulk equation governing the gradient flow, the theory does not
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generate new operators along the flow time (counter-terms), keeping the renormalisation

of the five-dimensional theory simple.4

The Yang-Mills gradient flow of the gauge field Bµ(t, x) is implemented via the equation

dBµ(t, x)

dt
= DνGνµ(t, x) ,with Bµ(t, x)|t=0 = Aµ(x), (4.1)

where Gµν is the field strength tensor associated with Bµ(t, x), Dµ = ∂µ + [Bµ, ·] the
corresponding covariant derivative, and Aµ(x) the initial gauge field in the four-dimensional

theory. Noticing that eq. (4.1) describes a diffusion process, the flow time t therefore

has length-dimension two. It has been shown that, to all orders in perturbation theory,

any gauge invariant composite observable constructed from Bµ(t, x) is renormalised at

t > 0 [63]. In particular, Lüscher demonstrated that the action density can be related to

the renormalised coupling, α(µ), at the leading order in perturbation theory through

α(µ) = kαt
2〈E(t)〉 ≡ kαE(t) , (4.2)

with µ = 1√
8t
, and

E(t) = −1

2
Tr(GµνGµν) . (4.3)

The dimensionless constant kα is analytically computable [62]. Equation (4.2) can actually

serve as the definition of a renormalisation scheme: the gradient-flow (GF) scheme. Fur-

thermore, since t2〈E(t)〉 ≡ E is proportional to the GF-scheme coupling, this quantity can

be used to set the scale. In other words, if one imposes the condition

E(t)|t=t0 = E0 , (4.4)

where E0 is a constant that one can choose, then
√
t0 should be a common length scale,

assuming lattice artefacts are under control. In practice, one measures
√
t0 in lattice units.

That is, one computes
√
t0/a ≡

√

t̂0. This allows the determination of the ratio of lattice

spacings from simulations performed at different values of the bare parameters.

It is worth mentioning that the diffusion radius in eq. (4.1) is
√
8t, and it is convenient

to define the ratio

cτ =
√
8t/L , (4.5)

where L is the lattice size.

Given that the right-hand side of eq. (4.1) is the gradient of the Yang-Mills action, the

most straightforward way to latticise it is5

∂Vµ(t, x)

∂t
= −g20

{

∂x,µS
(flow)
latt [Vµ]

}

Vµ(t, x), Vµ(0, x) = Uµ(x) , (4.6)

where Vµ(t, x) is the gauge link at flow time t, and S
(flow)
latt is a lattice gauge action. Notice

that S
(flow)
latt does not have to be the same as the gauge action used in the Monte Carlo

simulations. We employ the Wilson flow where S
(flow)
latt is the Wilson plaquette action.

4See ref. [64] for a choice of the flow equation that induces the need for extra care of renormalisation in

the φ4 scalar field theory.
5The precise meaning of the Lie-algebra valued derivative ∂x,µ is given in ref. [62].
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Figure 5. The Wilson flow functions E(t) in eq. (4.2) (left panel) and W(t) in eq. (4.7) (right

panel) for Nf = 2, β = 6.9, am0 = −0.90 and L = 12, as a function of the flow time t, computed

by using the methods described in section 4.1.

The gradient flow serves as a smearing procedure for the gauge fields. This means

the larger the flow time, the smoother the resultant gauge configurations will be. In

other words, the larger the flow time is, the smaller the ultraviolet fluctuations of flown

observables. On the other hand, it also means the gauge fields become more extended

objects as the flow time grows. This results in longer autocorrelation time, and makes

the statistics worse. Furthermore, having cτ > 0.5 can lead to significant finite-volume

effects. These are issues one would have to consider carefully when choosing a value for

the constant E0 in eq. (4.4).

The action density E(t) at non-vanishing flow time is obtained from the diffusion

process in eq. (4.6), starting from the bare gauge fields. To further reduce the cut-off effects

in the scale-setting procedure, an alternative quantity was proposed in ref. [65]. Define

W(t) ≡ t
dE(t)
dt

. (4.7)

Then the scale can be set by

W(t)|t=w2
0
= W0, (4.8)

where W0 is again a dimensionless constant that one can choose.

On the lattice, the calculation of E(t) depends on a definition of Gµν , for which a

variety of choices are available. The most obvious is to associate it with the plaquette

Pµν ; an alternative is to define a four-plaquette clover, which has a greater degree of

symmetry [62]. In the continuum, all definitions should become equivalent, and at finite

lattice spacing the relative difference between the two decreases at large t. The shape of

E(t) at very small t is dominated by ultraviolet effects, and so differs strongly between the

two methods; this introduces further constraints into the choice of E0. Figure 5 shows E(t)
and W(t), calculated both via the plaquette and the clover. As anticipated from [65], the

discretisation effects are smaller in W(t) than E(t); this is visible in the splitting between

plaquette and clover curves being smaller in the W(t) case.6

6The relative size of discretisation effects in two different observables can also depend on the actions

used in the Monte Carlo simulations and the implementation of the gradient flow [66, 67], as well as the

flow time [68].
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Figure 6. The gradient flow scales t0 defined in eq. (4.4) (left panel) and w0 defined in eq. (4.8)

(right panel), normalised to the lattice spacing a, as a function of the fermion mass am0 (on the

horizontal axis), for various choices of the scales E0 and W0, and for the two choices of plaquette or

clover (as indicated in the legend). Lattices with size 32× 163 were used for −0.92 ≤ am0 ≤ −0.89

and 24× 123 for −0.87 ≤ am0 ≤ −0.85.

In the continuum theory, Bµ(x) are elements of the Sp(4) gauge group; however, it is

possible that the finite precision of the computer could introduce some numerical artefact

that would cause the integrated Bµ(x) to leave the group. Since the integration is an initial

value problem, any such artefact introduced would compound throughout the flow, giving

potentially significant distortions at large flow time. For this reason we have introduced

the re-symplectisation procedure described in appendix C after each integration step. We

find no appreciable difference between the flow with and without re-symplectisation.

We now proceed to set the values of E0 and W0, such that t0 and w0 avoid both the

regions of finite lattice spacing and finite volume artefacts. In order to obtain a single value

for the lattice spacing corresponding to a particular value of β, and allow comparisons to be

drawn with pure gauge theory, we must also be in the vicinity of the chiral limit. Findings

in [65] indicate that when the fermions are light enough any mass dependence in w0 should

be small.

Figure 6 shows the fermion-mass dependence in
√
8t0 and w0 at β = 6.9, choosing

E0 = W0 ∈ [0.2, 1.0]. The discretisation effects are significantly smaller in w0. We see a

relatively strong dependence on the fermion mass in both t0 and w0; this is contrary to

expectations from studies of QCD with light quarks [65]. Presently we are studying this

fermion-mass dependence. Results of this study will be detailed in future publications. It

should be noted that if the behaviour highlighted here persists also in proximity of the

chiral limit, extra care will be needed in the process of taking the continuum limit.
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Figure 7. Histories and statistical distributions of the topological charge in eq. (4.9) for three

selected ensembles. Top to bottom, the figures show the result for the following choices. The pure

gauge case, with β = 7.62 and L = 16 yields the average charge Q0 = −0.17±0.24 and the standard

deviation is σ = 3.24 ± 0.24, with χ2/d.o.f = 0.88. For Nf = 2, with β = 6.9, L = 12 and am0 =

−0.85 we find Q0 = 0.23±0.88 and σ = 5.75±0.89, with χ2/d.o.f = 2.51. For Nf = 2 with β = 6.9,

L = 16 and am0 = −0.92 we obtain Q0 = 1.26± 0.97 and σ = 6.61± 0.98, with χ2/d.o.f = 1.28.

4.2 Topological charge history

As the lattice extent is finite in all directions, a given configuration will fall into one

of a number of topological sectors, labelled by an integer (or, at finite a, near-integer)

topological charge Q, which is expected to have a Gaussian distribution about zero. Since

it is probabilistically unfavourable to change a discrete global observable using a small local
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update, Q can show very long autocorrelations; as the continuum limit (i.e. the limit of

integer Q) is approached, Q can “freeze”, ceasing to change at all.

It is necessary to check that Q is not frozen, and instead moves hergodically, for two

reasons. Firstly, the exponential autocorrelation time of the Monte Carlo simulation as a

whole scales as one of the longest autocorrelation time in the system (see e.g. [69]). Sec-

ondly, the values of physical observables depend on which topological sector a configuration

is in [70]; sampling a single Q or an unrepresentative distribution of Qs will introduce an

uncontrolled systematic error. It is therefore necessary to verify that Q not only moves

sufficiently rapidly, but also displays the expected Gaussian histogram.

The topological charge Q is computed on the lattice as

Q =
∑

x

q(x) ,with q(x) =
1

32π2
ǫµνρσ Tr {Uµν(x)Uρσ(x)} , (4.9)

and where x runs over all lattice sites. For gauge configurations generated by Monte Carlo

studies, this observable is dominated by ultraviolet fluctuations; therefore it is necessary

to perform some sort of smoothing to extract the true value. The gradient flow (described

in the previous subsection) is used for the purposes of this work.

We have examined the topological charge history for all our existing ensembles, in-

cluding both pure gauge and those with matter. In most cases, Q is found to move with

no noticeable autocorrelation, and shows the expected Gaussian distribution centred on

Q = 0. Samples of these histories are shown in figure 7. Some marginal deviation is visible

for example in the second of the three series.

5 The spectrum of the Yang-Mills theory

In this section, we focus our attention on the Sp(4) Yang-Mills theory. We start by remind-

ing the reader about several technical as well as conceptual points related to the physics

of glueballs and to the description of confinement in terms of effective string theory. We

then summarise the specific methodology we adopt in the process of extracting physical

information from the lattice data. We conclude this section by presenting our numerical

results on the glueballs, and commenting on their general implications.

5.1 Of glueballs and strings

At zero temperature, Sp(4) Yang-Mills theory is expected to confine. The particle states

are colour-singlet gluon bound states, referred to in the literature as glueballs, and labelled

by their (integer) spin J and (positive or negative) parity P quantum numbers as JP .7

To distinguish between states with the same JP assignment but different mass, in the

superscript of the n-th excitation we add n asterisks (∗). For instance, 2+∗∗ denotes the

second excitation with J = 2 and P = +, while 2+ is the ground state in the same channel.

The calculation of the mass spectrum of glueballs requires a fully non-perturbative

treatment of the strongly interacting dynamics. We follow the established procedure that

7Since the gauge group is pseudo-real, charge conjugation is trivial.
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extracts glueball masses from the Monte Carlo evaluation of two-point functions of gauge-

invariant operators O(x). The operators O(x) transform according to irreducible represen-

tations of the rotational group and either commute or anti-commute with the parity opera-

tor, hence having well-defined JP . Given O(x) defined at any spacetime point x = (t, ~x), we

separate the space-like and time-like components ~x and t,8 and define the zero-momentum

operator O(t) as

O(t) =
∑

~x

O(t, ~x) , (5.1)

where the sum runs over all spatial points ~x at fixed t. The lowest-lying glueball mass in

the JP channel is then given by

mJP = − lim
t→∞

log〈O†(0)O(t)〉
t

. (5.2)

Assuming only contributions from poles (an hypothesis that certainly holds at large

N), we can insert a complete set of single-glueball states |gn(J, P )〉 carrying the same

quantum numbers of O(t) in the correlator 〈O†(0)O(t)〉, and arrive to

〈O†(0)O(t)〉 =
∑

n

|cJP ,n|2e−m
JP ,n

t , (5.3)

with cJP ,n = 〈gn(J, P )|O(0)|0〉 being the overlap of the state |gn(J, P )〉 with the state

O(0)|0〉, created by acting with O(0) on the vacuum |0〉. The correlator 〈O†(0)O(t)〉 con-
tains information not only on the ground state but also on all excitations with non-null

overlap with O(0)|0〉 in the given JP channel.

Glueballs are not the only interesting observables in Yang-Mills theory. In the presence

of infinitely massive, static quarks, the spectrum contains also confining flux tubes. While

flux tubes are exposed by the static probes, their physics is fully determined by the Yang-

Mills dynamics and plays a crucial role in the study of confinement. Consider a static

quark QS and the corresponding antiquark Q̄S , a distance ∆x apart. In a confining theory,

the static quark-antiquark pair is bound by a linearly rising potential

V (∆x) = σ∆x , (5.4)

where the quantity σ (having dimension of a mass squared) is the (confining) string tension,

and provides a measurement of the dynamically generated confinement scale. In Yang-Mills

theory there is only one dynamically generated dimensionful quantity, hence the square

root of the string tension also sets the scale of the glueball masses, besides providing a

fundamental test of confinement.

The semiclassical cartoon associated with linear confinement explains the latter as

arising from the formation of a thin (flux) tube in which the conserved colour flux is being

channeled. Over distances much bigger than the transverse size of the confining flux tube,

the latter can be represented by a string of tension σ binding quark and antiquark together.

At zero temperature, a signature of confinement is the area law:

〈W (∆x,∆t)〉 ≃ e−σA , (5.5)

8Not to be confused with the flow time in section 4.1.

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
5

where the Wilson loop W (∆x,∆t) is defined as

W (∆x,∆t) = Tr
(

Peig
∮
R

Aµdxµ
)

. (5.6)

The contour integral of the gauge field Aµ extends over a rectangular path R of sides ∆x

along one spatial direction and ∆t in the temporal direction. In eq. (5.6), g is the coupling,

Tr indicates the trace and the exponential is path-ordered along R. The potential is then

obtained as

V (∆x) = − 1

∆t
ln〈W (∆x,∆t) 〉 . (5.7)

At finite temperature, the temporal direction of size τ is compactified on a circle, and

the resulting thermal field theory has temperature T = 1/τ . The order parameter for

confinement can be identified with the expectation value of the Polyakov loops :

Φ(~x) ≡ Tr
(

Peig
∮
C
A0(t,~x)dt

)

, (5.8)

with C being the circle (of circumference τ) at fixed spatial point ~x.9 The expectation

value of this quantity vanishes in the confined phase. This observable has the advantage

that it makes transparent the fact that the transition is associated with the breaking of

the centre symmetry of the gauge group. In this respect, the Sp(2N) theories play a useful

complementary rôle with respect to SU(N), the centre of the former being Z2 for every N ,

as opposed to the ZN centre of the latter. In this set-up, the propagation of a pair of static

conjugated quarks is represented by two oppositely-oriented Polyakov loops and their cor-

relator 〈Φ†(~0)Φ(~x)〉 probes strings attached to two static lines at ~0 and ~x. In the language

of string theory, the confining string stretching between static sources is an open string.

Yet, in Euclidean space we can reinterpret the zero-th direction as a compact spatial

dimension and (for instance) the third direction as Euclidean time. From this point of

view, the string is not attached to any static source but closes upon itself. For this reason,

it can be also interpreted as a closed string. Choosing ~x = (0, 0, z) and inserting a complete

set of eigenstates |ln〉 of the transfer matrix (the time-translation operator) in the third

direction yields

〈Φ†(~0)Φ(~x)〉 =
∑

n

clne
−Enz , cln = |〈0|Φ†(~0)|ln〉|2, (5.9)

with cln the overlap between the state Φ(~0)|0〉 and the n-th eigenstate of the Hamiltonian

along z and En the corresponding energy eigenvalue. In this case the Polyakov loop corre-

lator probes (closed) string states wrapping along the compact direction, created at ~0 and

annihilated at ~x.

The fact that the same correlator can be interpreted in terms of either propagating

closed or open strings expresses the open-closed string duality, a key observation that has

9To avoid confusion with the average over spatial directions Φ in eq. (3.8), when referring to Polyakov

loops we explicitly indicate the ~x-dependence, being it understood that the average over the other space-like

coordinates is taken. For example, we will later indicate as Φ(z) the average of Φ(~x) over two space-like

directions x and y.
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profound physical implications. Among them, the most direct and practically relevant for

our study is the fact that the string tension can be extracted in the closed string channel

from correlators of Polyakov loops. This is related to the fact that the topology of the

world-sheet swept by the string is cylindrical.10

If we instead consider the operator obtained by averaging Φ(~x) along two dimensions

Φ(z) =
1

N2
s

∑

(x,y)

φ(x, y, z) , (5.10)

where the sum runs over the two spatial coordinates in the directions orthogonal to z, for

the correlator we obtain

〈Φ†(0)Φ(z)〉 =
∑

n

clne
−ml

nz , (5.11)

and open-closed string duality implies that

σ = lim
τ→∞

ml
0

τ
. (5.12)

The state corresponding to ml
0 (where the subscript l stands for loop) can be interpreted

as the ground state mass of a torelon, a stringy (flux tube) state that wraps around the

compact direction. In general, torelon states can be labelled by their length τ , the absolute

value of their angular and longitudinal momenta J and q, their (transverse) parity Pt in a

plane transverse to their symmetry axis, and their longitudinal parity Pt along the wrapping

direction. As for glueballs, the gauge group being pseudo-real, charge conjugation is always

positive, and furthermore we are interested only in torelons with both transverse momenta

equal to zero and both positive parities.

The quantum fluctuations around the classical world-sheet solution corresponding to

the area law in eq. (5.5) generate a spectrum of modes for the flux tube that can be

computed using an effective string theory description. The relevant degrees of freedom are

identified as the D−2 Goldstone bosons living in the 2-dimensional world-sheet of the flux

tube that breaks the D-dimensional Poincaré group ISO(D) according to:

ISO(D) −→ ISO(2)× SO(D − 2) . (5.13)

If the theory has a mass gap, as is the case for Yang-Mills theory, and no other degrees of

freedom are present on the world-sheet, the most general effective action Seff[X] describing

the dynamics can be expressed as an expansion in derivatives of Xµ = {ξa, X i} with respect

to the world-sheet parameters (ξ0, ξ1),

Seff[X] =

∫ τ

0
dξ0

∫ l

0
dξ1

[

σ + C0 (∂aX
i)2 + C2 (∂aX

i∂aX
i)2 +

+ C3 (∂aX
i∂bX

j)2 + C4 (∂cX
k)2(∂a∂bX

i∂a∂bXi) + . . .
]

(5.14)

10In the case of zero temperature, where the relevant observable is the Wilson loop, the world-sheet has

a disk topology.
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where a, b, c = 0, 1, while i, j = 2, . . . , D − 1 and summation over repeated indices is

understood. This action can be naturally recast as an expansion in powers of 1/(στl), as

a low momentum expansion around an infinitely long string. This expansion is meaningful

as long as lτ ≫ 1/σ. In turn, a flux tube is string-like provided the long-string expansion

is valid (l ≫ τ), and hence provided l ≫ 1/
√
σ.

In lattice calculations, spacetime is a box of finite extent. When taking limits such as

the r.h.s. of eq. (5.12), the extraction of ml
0 is contaminated by short-distance contributions

that can be non-negligible. Let us specialise to the closed string channel, for which the world

sheet is a cylinder with time direction collinear to its axis. The mass can be systematically

approximated as

ml
0 = στ

(

1 +
∞
∑

k=1

dlk
(
√
στ)k

)

. (5.15)

The dimensionless quantities dlk — related to the Ck in eq. (5.14) — enclose all the short-

distance effects that have been integrated out in this effective description. They are not

completely independent: the request that Seff inherits the same space-time symmetry as the

underlying Yang-Mills field theory imposes constraints (open/closed string duality being

an example), and only few of the dlk — equivalently, the Ck — are left as free parameters.

This striking effective string-theory feature determines the universal nature of the quantum

corrections to the area law, to which we devote the remainder of this subsection.

In one of the earliest works on the subject [71], it was shown that the first non-null

coefficient appears at O
(

1
στ2

)

, and has a universal nature:11

ml
0(τ)LO = στ − c

π(D − 2)

6τ
. (5.16)

The correction is known as the Lüscher term [73], and can be interpreted as the Casimir

energy of the string massless modes. The coefficient c captures the central charge of the

effective string theory, hence encoding information on its nature. For example, the purely

bosonic string theory in non-critical dimension has c = 1, and there is evidence that it can

be used to describe SU(N) Yang-Mills gauge theory (see e.g. [74–76]).

The next-to-leading-order correction coming from the effective field theory has been

studied in [77, 78] (see also [79–82] for a related derivation in the Polchinski-Strominger

approach). It arises at O(1/(στ2)2). Duality arguments (in particular the annulus-annulus

duality [78]) can be used to prove the universality of this correction. At this order, the

effective mass appearing in Polyakov loop correlators is given by

ml
0(τ)NLO = στ − π(D − 2)

6τ
− 1

2

(

π(D − 2)

6

)2 1

στ3
. (5.17)

Interestingly, the same result can be obtained by expanding in powers of 1
στ2

the light-cone

spectrum obtained from the Nambu-Goto action in non-critical dimensions (D 6= 26):

ml
0(τ)NG = στ

√

1− (D − 2)π

3στ2
. (5.18)

11An alternative description reaching similar conclusions and based on the long-distance restoration of

conformal invariance has been proposed by Polchinski and Strominger in [72].
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Going for a moment beyond the specific purposes of our paper, we recall that establish-

ing the nature of the string that forms between a static quark-antiquark pair in a confining

gauge theory is a very interesting programme in itself, as it can shed some crucial light on

the nature and on the mechanism of colour confinement. The recent revival in its interest

has resulted in new fundamental advances, among which the key observation that the con-

straints mentioned above are in fact particular cases of a more general viewpoint allowing

to extend universality considerations to higher orders. Because the effective action is still

Poincaré invariant (despite spontaneous symmetry breaking), the difference between the

number of derivatives and the number of fields (called weight) is an invariant. The expan-

sion of Seff can be organised according to the weight, and (non-linearly realised) Poincaré

invariance imposed upon each of the terms. The result is the emergence of recurrence rela-

tions among dlk terms of the same weight. The unique weight-0 invariant action is precisely

the Nambu-Goto action, with the leading correction appearing at weight-4. This explains,

for example, why up to order 1/τ5 and in D = 4, the predictions of the light-cone spectrum

for the ground state energy are fully universal. For a more detailed analysis, we refer the

reader to [83, 84] and references therein.

Coming back to our lattice calculation, we build on the results available for SU(N) and

assume that the nature of the confining string is reproduced also in Sp(4). We use (rather

than derive) the expressions for the bosonic string in order to extract numerical values for

the string tension σ. Subject to the validity of such working assumption this enables us to

remove large finite-size corrections from the extraction of the string tension.

5.2 A variational approach to the mass spectrum

In this subsection, we outline the lattice methods used to extract both σ and the spectrum

of glueball masses [85–87]. It is important to note from the outset that because of centre

symmetry, glueball and flux-tube states do not mix in the confined phase. Glueballs and

flux tubes are sourced by products of link matrices around contractible and non-contractible

loops C, respectively, with their geometrical symmetry properties determining JP for the

former and size L, momentum q, angular momentum J and parities Pl and Pt for the latter.

We limit our study of flux tubes to the state with J = q = 0 and Pt = Pl = +. We refer

to [76] for a detailed analysis of creation of excited flux tubes in various channels.

The isotropic lattice breaks the continuum rotational group to the octahedral group

(the 24-elements group of the symmetries of the cube). At finite lattice spacing, glueball

states are classified by the conventional names R = A1, A2, T1, T2, E of the irreducible

representations of the octahedral group, so that we label the glueballs as RP , instead of

using the continuum JP .

The irreducible representations of the octahedral group can be decomposed into irre-

ducible representations of the continuum rotational group. Since the octahedral group is

finite, different continuum spins are associated with a given octahedral irreducible repre-

sentation. For instance, the continuum J = 0 spectrum is found in the A1 representation,

which also contains (among others) J = 4 states. While on physical grounds one can as-

sume that the lightest A1 state corresponds to a J = 0 glueball (at least when P = +),

distinguishing different continuum channels in the excited spectrum measured on the lat-
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tice is not an easy task. Guidance is provided by the degeneracies that are expected in

different octahedral representations, where different polarisations of the same state can

appear. This is for instance the case for the continuum J = 2 states, two polarisations

of which are to be found in the octahedral E representation, and the other three in T1.

Hence, close to the continuum limit, states that are degenerate in the E and T1 channel

can be interpreted as would-be continuum states with J = 2.

Given a lattice path C with given shape and size, located at reference coordinates (t, ~x)

on the lattice, that transforms in an irreducible representation R of the octahedral group

and is an eigenstate of parity, the lowest-lying mass in the RP channel can be extracted

from the asymptotic behaviour of the correlator

ΓC(t) =
〈O†

C(0)OC(t)〉
〈O†

C(0)OC(0)〉
=

∑

i |〈i|OC(0)|0〉|2 e−mit

∑

i |〈i|OC |0〉|2
, (5.19)

where mi is the mass of state |i〉 and OC(t) is the zero momentum operator:12

OC(t) =
1

N3
s

∑

~x

Tr

(

∏

C
Ul

)

. (5.20)

The decay of each exponential appearing in the spectral decomposition is controlled

by the squared normalised amplitudes

|cj |2 =
|〈j|OC(0)|0〉|2
∑

i |〈i|OC |0〉|2
. (5.21)

In practice, since the statistical noise is expected to be constant with t, the signal-to-

noise ratio decays exponentially, eventually defying attempts to isolate the ground state.

Hence, for a generic choice of C, the mass that is extracted at large but finite t suffers

from contamination from excited states. We notice that, as a consequence of unitarity, this

results in an overestimate of the mass.

To improve accuracy in the extraction of mi, in principle one should choose the op-

erators O to maximise the overlap of OC(t)|l〉 with the desired state |l〉. While such an

operator is not known a priori, we can operationally construct a good approximation by

performing a variational calculation involving loops C of various shapes and sizes. The

size λ of the loop C must be chosen appropriately: in order for it to capture the infrared

physics, it should have a size of the order of the confinement scale. This means that in

practice the size of C in lattice units must grow as the lattice spacing goes to zero. Over

the years, various methods to circumvent these potential problems have been suggested.

In this work, we shall use a variational calculation involving an operator basis constructed

with a combination of smearing and blocking operations. We briefly review the method

used, and we refer to [40] for more details, before presenting our results in section 5.3.

Given a set of N operators Oi, defined as in eq. (5.20) for paths Ci of different shape
and sizes labelled by i, we compute the N ×N , normalised correlation matrix

Cij(t) =
〈0|O†

i (0)Oj(t)|0〉
〈0|O†

i (0)Oj(0)|0〉
. (5.22)

12If C is a circle in the time direction, then OC = Φ as defined in eq. (3.8).
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Assuming maximal rank, Cij can be diagonalised, and we call C̃ii the N resulting functions

of t. The special linear combination
∑

i αiOi(t), corresponding to the maximal eigenvalue,

has the maximal overlap with the ground state in the given symmetry channel. Assuming

its mass is the only one present in the given channel, we obtain it by fitting the data with

the function

C̃ii(t) = |ci|2 cosh
(

mit−
Nt

2

)

, (5.23)

where |ci|2 and mi are the fit parameters, and where the appearance of the cosh is due to

the inclusion of backward propagating particles through the periodic boundary. In general

the data is contaminated by contributions from states with higher mass. Hence we must

restrict the fit to the range for which we see the appearance of a plateau in the quantity

meff(t) = arcosh

(

C̃ii(t+ 1) + C̃ii(t− 1)

2C̃ii(t)

)

. (5.24)

In order to include operators which extend beyond the ultraviolet scale, following [40],

we subjected the lattice links to a combination of smearing and blocking transformations.

These are iterative procedures similar to block transformations in statistical mechanics,

except that we restrict them to space-like links. The operators Oi defined as in eq. (5.20)

for paths Ci are evaluated using the output links from each iterative smearing and blocking

step. After S iterations, one has a collection of S×N such operators, where N is the number

of basis paths in the given channel. We chose to build the operators Oi by starting from a

large set of basic lattice paths. In this set, we include all the closed paths with length λ up

to ten in units of the lattice spacing, appropriately symmetrised to transform according to

an irreducible representation of the octahedral group and to have definite parity.

We implement the process of smearing along the directions orthogonal to the direction

of propagation, by starting from the link U s=0
i (x) ≡ Ui(x) and iteratively defining Ũ s>0

i (x)

as follows

Ũ s+1
i (x) = U s

i (x) + pa
∑

j 6=i

U s
j (x)U

s
i (x+ ̂)U s†

j (x+ ı̂) + (5.25)

+pa
∑

j 6=i

U s†
j (x− ̂)U s

i (x− ̂)U s
j (x− ̂+ ı̂) ,

where ̂ and ı̂ refer to the unit-length displacements along the lattice directions j and i,

respectively, while the positive parameter pa controls how much smearing is taking place at

each step. The smeared matrices Ũ s>0
i (x) are not elements of the gauge group. We project

those matrices to the target group by finding the Sp(4) matrix U s>0
i (x) that maximizes

ReTr Ũ s†
i (x)U s

i (x). This is done in two steps: a crude projection is operated by using one

of the re-symplectization algorithms presented in appendix C, and afterwards a number of

cooling steps [88] (15 in our case) is performed on the link.

Similarly, blocking is implemented by replacing simple links U b=0
i (x) ≡ Ui(x) with

super-links Ũ b>0
i (x) that join lattice sites 2b spacings apart, where b is the number of
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blocking iterations, as described by

Ũ b+1
i (x) = U b

i (x)U
b
i (x+ 2bı̂) + (5.26)

+pa
∑

j 6=i

U b
j (x)U

b
i (x+ 2b̂)U b

i (x+ 2b̂+ 2bı̂)U b †
j (x+ 2bı̂) +

+pa
∑

j 6=i

U b †
j (x− 2b̂)U s

i (x− 2b̂)U s
i (x− 2b̂+ 2bı̂)U b

j (x− 2b̂+ 2bı̂) .

Again, each such step yields a matrix Ũ b+1
i (x) that does not belong to the Sp(4) group, and

hence must be projected onto U b+1
i (x) within the group in same way as for the smearing.

In practical terms, when performing numerical lattice studies blocking allows to reach the

physical size of the glueball in fewer steps, while at the physical scale smearing provides a

better resolution. Due to the fact that the identification of the physical scale is a dynamic

problem, an iterative combination of n smearing steps (generally, n = 1, 2) with a blocking

step generally proves to be an efficient strategy [89].

5.3 Lattice results

In this subsection, we report the results of our numerical analyses of the glueball spectrum

and the string tension of the pure Sp(4) Yang-Mills theory. The calculations have been

performed on fully isotropic lattices of various sizes and lattice spacings. To investigate

the finite size effects, we first consider the coarsest lattice with β = 7.7. Based on

the estimate of the critical coupling of the bulk phase transition [1], the choice of this

value should provide a prudent yet reasonable compromise between the practical necessity

of performing a detailed calculation at a lattice coupling at which the physically large

volumes can be reached on a moderately coarse grid and the physically paramount request

that the lattice gauge theory be in the confining phase connected to the continuum theory

as a → 0. Indeed, we have found evidence in our calculations that at β = 7.7 the lattice

theory is in the physically relevant confined phase.

We started with this β = 7.7 value, and increased the lattice size, starting from L =

10a, until we found the best economical choice at which the (exponentially suppressed)

finite-size effects became much smaller than the statistical errors. Assuming scaling towards

the continuum limit, this analysis provides a lower bound for the physical volume of the

system such that finite-size effects are negligible with respect to the statistical errors, and

hence ensures that the calculations cannot be distinguished from infinite volume ones.

We repeated the same set of measurements on progressively finer lattices (larger β),

always making sure that the physical volume were large enough for the calculation to

be considered at infinite volume for all practical purposes, and extrapolated the glueball

spectrum to the continuum limit.

The whole procedure is illustrated more quantitatively in the following two subsub-

sections. Our parameter choices for the continuum extrapolation are reported in the first

two columns of table 2. For each lattice setup 10000 configurations were generated, and

a binned and bootstrapped analysis of errors was carried out to take care of temporal

autocorrelations. Operators blocked to the level Nb ≤ L and with 15 cooling steps were

used, resulting in a variational basis of ∼ 200 operators.
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L/a β
√
σa

32 8.3 0.1156(3)

26 8.2 0.1293(6)

20 8.0 0.1563(6)

18 7.85 0.1885(7)

16 7.7 0.227(1)

Table 2. The final estimates for
√
σ at different lattice setups (L and β), as discussed in section 5.3.

5.3.1 The string tension

To extract the string tension from measurements of masses of closed flux tubes, we turn

to effective string theory. A finite overlap with flux-tube states can be obtained with

lattice operators defined on non-contractible loops, as described earlier. We produce two

measurements of the string tension, that we denote as σt and σs. The former is obtained as

follows. We first consider loops that wrap the time-like direction as in eq. (5.8) and average

them along two space-like dimensions as in eq. (5.10). We then compute the correlators as

in eq. (5.11), with an additional statistics-enhancing average over interchanges of (x, y, z),

to extract the lowest mass ml
0 (which in this case we refer to as mt). Finally, we determine

the string tension as in eq. (5.12) in three different ways: by using eq. (5.16) (LO), eq. (5.17)

(NLO) or eq. (5.18) (NG).

A similar procedure is performed for obtaining σs, which is extracted from the mass ms

associated with correlators in time of Polyakov loops winding one of the spatial directions

— except that in this case there is no average over interchange of equivalent directions.

Because the lattice used is isotropic, we expect σt to be compatible with σs, since the

latter could be obtained from the former by interchanging the roles of the time direction

and one of the space directions used for defining the correlation functions associated with

mt. Notice that because of the averaging over interchanges of spatial directions, the

statistical error on σt is reduced in respect to σs.

In order to carefully assess finite size effects, we show the results of the analysis for

β = 7.7 in table 3. We perform a best fit analysis of the data for mt and ms by using

eqs. (5.16)–(5.18). We start from the largest flux length L = 24a and gradually add in the

fit lower-length values, until the value of the χ2/d.o.f becomes larger than a fixed threshold

that we conventionally set at 1.2. We find the following best fit results for σt, obtained

with the largest possible range for which χ2/d.o.f < 1.2:















σt(LO)a2 = 0.05174(29), 14 ≤ L/a ≤ 24 , χ2/d.o.f ≃ 1.12 ,

σt(NLO)a2 = 0.05166(25), 12 ≤ L/a ≤ 24 , χ2/d.o.f ≃ 1.19 ,

σt(NG)a
2 = 0.05169(24), 12 ≤ L/a ≤ 24 , χ2/d.o.f ≃ 1.07 .

(5.27)
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L/a amt ams
√
σta(NG)

√
σsa(NG)

√
σa

24 1.218(13) 1.157(30) 0.2294(12) 0.2237(28) 0.2285(11)

20 0.981(11) 0.995(18) 0.2275(12) 0.2290(20) 0.228(10)

16 0.7570(93) 0.762(19) 0.2271(13) 0.2278(26) 0.2272(11)

14 0.6436(73) 0.647(15) 0.2272(11) 0.2277(23) 0.2273(10)

12 0.5196(53) 0.534(11) 0.22623(96) 0.2288(20) 0.22673(86)

10 0.3744(32) 0.3804(69) 0.22215(69) 0.2234(15) 0.22238(63)

Table 3. Masses obtained from Polyakov loop correlators winding in the time direction (mt) and

in a spatial direction (ms), together with the corresponding string tensions σt and σs extracted

from the Nambu-Goto (NG) prediction for the ground state energy of the flux tube of length L at

β = 7.7. In the last column, we report the result of the weighted average in eq. (5.29).

The analogous process yields for σs the following:














σs(LO)a2 = 0.05164(36), 12 ≤ L/a ≤ 24 , χ2/d.o.f ≃ 0.59 ,

σs(NLO)a2 = 0.05187(38), 12 ≤ L/a ≤ 24 , χ2/d.o.f ≃ 1.19 ,

σs(NG)a
2 = 0.05190(39), 12 ≤ L/a ≤ 24 , χ2/d.o.f ≃ 0.70 .

(5.28)

For both mt and ms, our requirement for the acceptability of the fit is verified down to

L = 12a for all the three proposed functional forms, except for the leading-order ansatz

in the case of σt, which requires L = 14a. We regard this last case as a warning that at

L = 12a the effective string description at leading order might break, although the results

for the NLO and NG descriptions give us confidence that higher orders cure this problem.

The fits provide very good indications that the description we adopted is robust for

L/a ≥ 14. Indeed, all the reported fitted values are compatible, regardless of the ansatz

used and of the direction of correlation of the Polyakov loops from which we extract the

relevant mass. Conversely, when we try to extend the fit down to L = 10a, we typically find

a significantly larger χ2/d.o.f, of order 3-10, indicating that the effective string description

cannot be trusted between L = 10a and L = 12a. The only exception is the NG description

of σs, for which we get χ2/d.o.f ≃ 1.75. While it would be tempting to interpret this result

as evidence that the NG ansatz provides a better description of the data, in the absence

of confirmation of this hypothesis in the σt case (for which an extension down to L = 10a

leads to χ2/d.o.f ≃ 8.22) and given also the scope of our calculation, we prefer to take a

cautious attitude towards our results and assume that a safe lower bound for all effective

string models analysed to work (and to produce compatible results) is L = 14a.

Given all of these considerations, and taking into account all our estimates of a2σ, a

safe infinite-volume value for the latter quantity that encompasses the spread of the fits is

σa2 = 0.5179(50), which translates into
√
σa = 0.2276(11). Using this result, in physical

units one finds that L
√
σ = 2.731(13) for L = 12a and L

√
σ = 3.186(15) for L = 14a. The

fact that effective string description works remarkably well for Polyakov loop correlator

masses down to at least L = 14a is consistent with the picture of confinement through the

formation of thin flux tubes.
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Figure 8. Values of the time-like σta
2 (left panel) and space-like σsa

2 (right panel) string tensions

extracted at fixed lattice spacing (β = 7.7) and varying lattice size L/a, using the LO(•), NLO(N)

and NG(�) expressions for the ground state energies from eqs. (5.16), (5.17) and (5.18), respectively.

It is of practical relevance for numerical studies to assess how well the infinite-volume

value of the string tension is represented by the result extracted inverting eqs. (5.16)–(5.18)

at a single finite size L, and how this would be affected by varying L. To provide information

about this, we report the results of our procedure in table 3 and in figure 8. As we see from

the figure, the value of σa2 is constant for a wide range of L. This holds for the LO, NLO

and the NG extractions, with the corresponding values being always compatible within

errors. Based on these observations, we use the NG approximation to extract our best

estimate. We detect finite-size effects for the smallest lattice volumes L = 10a. Though

we do not present the detailed results, we also detect a discrepancy at L = 24a between

the space-like and time-like string tensions. This discrepancy may be a consequence of the

systematic error coming from the difficulty in extracting the asymptotical behaviour of the

correlator for very large masses.

Our final estimate for the value of
√
σ as a function of L is obtained from the first two

columns of table 3 by computing the weighted average

√
σ =

√
σt

(∆
√
σt)2

+
√
σs

(∆
√
σs)2

(

1
∆
√
σ

)2 , (5.29)

where the error is given by

∆
√
σ =

1
√

1
(∆

√
σt)2

+ 1
(∆

√
σs)2

.
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The resulting values are reported in the last column. From the behaviour of
√
σ we conclude

that finite size effects are certainly smaller than the statistical error for L ≥ 14a, and we

take as a final estimate of
√
σ at this coupling the value at L = 16a. We also note that

compatible results are obtained for L = 12a.

Assuming scaling towards the continuum, from our finite-size study we obtain firm

evidence that all lattices for which L
√
σ ≥ 3 provide an estimate of the string tension that is

compatible within the statistical errors with the infinite-volume value. Hence, we conclude

that finite-volume effects are negligible once L
√
σ & 3. In particular, we have verified that

the condition L
√
σ & 3 is safely fulfilled when carrying out calculations on lattice ensembles

with larger β, starting from the finite-size analysis at β = 7.7. Table 2 reports the lattice

parameters of the calculations we have used to extrapolate to the continuum limit and the

corresponding results for
√
σ.

5.3.2 The mass spectrum of glueballs

As for the string tension, we began our analysis of glueball masses with a study of finite-

size effects for lattice coupling β = 7.7. We aimed at estimating finite-volume effects as a

function of the lattice size L, and bound L such that the systematic error due to the finite

size be negligible with respect to statistical error on the measurement of the masses.

Our results for the mass spectrum at β = 7.7 for various volumes are reported in the

rows of table 4. While this particular choice of β is suitable for finite-size studies, as it allows

us to reach large lattices in physical units with a relatively small computational effort, the

coarseness of the lattice spacing pushes most of the masses above the lattice cut-off, making

their extraction numerically challenging. For this reason, we observe a systematic effect

related to the isolation of the ground state on all irreducible representations other than

the lowest-lying one. While in our tables we quote only the statistical error, for higher

excitations the systematic error coming from the ground state isolation in a given channel

is expected to have a comparable size.

Another systematic effect that affects our calculation of the glueball masses is contam-

ination of the spectrum by multi-glueball scattering states and torelon states (the latter

being lattice artefacts associated with state propagation of pairs of oppositely directed

Polyakov loops). Separating the physical spectrum from those unwanted states requires a

more demanding calculation13 that goes beyond the scope of this first exploration of the

glueball masses in Sp(4). What results is a hard-to-control error related to mixing with

spurious states, which is strongly dependent on the volume and manifests itself in occa-

sional sudden jumps and irregularities of the extracted masses. Indeed this is visible for

some of the most massive states we report in table 4. In view of all these considerations,

and to focus the discussion to the main purposes of this paper, we limit the analysis of

finite-size effects at β = 7.7 to the ground state (found in the A1+ channel) and to the

would-be continuum 2+ glueball (expected to appear in the E+ and in the T1+ channels).

13See e.g. [89] and references therein for a discussion of a calculation performed along those lines.
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RP L/a = 10 L/a = 12 L/a = 14 L/a = 16 L/a = 20 L/a = 24

A1+ 0.569(13) 0.728(15) 0.738(16) 0.742(16) 0.764(15) 0.739(11)

A1− 1.039(35) 1.275(41) 1.406(47) 1.210(40) 1.300(34) 1.323(34)

A2+ 1.70(11) 1.706(95) 1.778(95) 1.650(76) 1.771(81) 1.748(74)

A2− 2.48(34) 1.83(17) 1.74(14) 2.21(25) 2.23(24) 2.252(22)

E+ 0.623(13) 1.111(32) 1.150(32) 1.159(27) 1.217(26) 1.036(59)

E− 1.402(62) 1.347(58) 1.401(48) 1.509(66) 1.597(59) 1.463(45)

T1+ 1.170(43) 1.220(36) 1.202(39) 1.209(31) 1.173(26) 1.82(11)

T1− 1.465(75) 1.513(69) 1.515(66) 1.522(57) 1.499(51) 1.87(12)

T2+ 1.53(11) 1.70(12) 1.99(14) 1.578(94) 1.839(96) 1.179(95)

T2− 1.60(12) 2.04(18) 2.38(27) 2.07(18) 1.94(15) 1.505(46)

Table 4. Glueball masses obtained at coupling β = 7.7, with operators blocked at level Nb ≤ NL

and with 15 cooling steps. The quantum number RP refer to the octahedral group as explained in

section 5.1. The calculations are repeated for various values of the lattice size L/a.
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Figure 9. Continuum limit extrapolations of the glueball masses m/
√
σ, in units of the string

tension, in Sp(4) Yang-Mills, as described in section 5.3.2. States are labelled by the quantum

numbers of the octahedral group, but notice the emergence of degeneracies in the continuum limit,

in the case of T+
1 and E+, as well as T−

1 and E−.
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Figure 10. Continuum limit extrapolations of the glueball masses m/
√
σ, in units of the string

tension, in Sp(4) Yang-Mills, as described in section 5.3.2. States are labelled by the quantum

numbers of the octahedral group.

Starting with the A1+ state, we fit the behaviour of the extracted mass to the size

dependency parameterised as follows:

m(L) = m

(

1 +
b1e

−b2mL

mL

)

, (5.30)

and we find its infinite volume limit to be

am = 0.746(6) , χ2/d.o.f = 0.68 . (5.31)

This value for am is compatible within errors with all the measured masses in the A1+

channel for L/a ≥ 12. Hence, as in the case of the string tension discussed earlier, the

systematic error due to neglecting the finite size of the lattice is found to be comfortably

less than the statistical error as long as L
√
σ ≥ 3. Thus, having taken care that this bound

be satisfied at all β values simulated for the continuum extrapolation, in the extraction of

the continuum limit we shall use the value measured at one lattice size.

It is also interesting to look at the masses in the E+ and in the T1+ channels, as the

lowest-lying states in these two channels are expected to be degenerate in the continuum

limit, since they correspond to different polarisations of the continuum 2+ state. From
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Figure 11. Continuum limit extrapolations of the glueball masses for selected excited states m/
√
σ,

in units of the string tension, in Sp(4) Yang-Mills, as described in section 5.3.2. States are labelled

by the quantum numbers of the octahedral group.

RP m(RP )/
√
σ

A1+ 3.557(52)

A1+∗ 6.05(4)

A1− 5.74(19)

A1−∗ 7.81(8)

A2+ 7.91(17)

A2− 9.42(40)

E+ 5.02(16)

E− 6.61(13)

T1+ 5.070(91)

T1− 6.872(89)

T2+ 8.73(30)

T2− 9.50(37)

Table 5. Continuum extrapolated glueball masses in all the symmetry channels. States are labelled

by the quantum numbers of the octahedral group.
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table 4 we infer that this degeneracy is satisfied for lattice sizes other than the smallest

L/a = 10 (for which large finite-size effects are expected to arise differently in the two

channels) and the largest L/a = 24, where some uncontrolled systematics (possibly due to

mixing with spurious states) creates visible anomalies in this measurement. We take the

agreement in the intermediate region as a good indication that β = 7.7 is sufficiently close

to the continuum limit to justify its inclusion in the continuum extrapolation.

Going towards the continuum, we have measured glueball masses in the various lattice

channels for the couplings and volumes reported in the first two columns of table 2. Con-

tinuum extrapolations for the ratio mG/
√
σ are obtained from the expectation that the

corrections due to discretisation are linear in σa2. The results are reported in table 5 and

represented in figures 9 and 10. Some excited states are shown in figure 11. As expected, in

the continuum limit the states T±
1 and E± are degenerate in pairs. The channels T±

2 show

strong fluctuations and discretisation effects that are caused by the difficulty in extracting

their masses in lattice units. The values obtained for the 0+ and 2+ states are at the same

order of magnitude as those obtained in SU(N) theories [90].

5.3.3 Epilogue

In this section, we have reported on what is (to the best of our knowledge) the first

controlled calculation in the continuum limit of the glueball spectrum and of the string

tension for the Sp(4) pure Yang-Mills theory. The main purpose of our study is to gain some

understanding of the glue dynamics in this theory, and progressively aim at providing an

interpretation of the results emerging from the theory with dynamical quarks. Nevertheless,

the outcomes of our investigation in the pure gauge case are interesting in their own right:

for instance, they provide a first step towards a systematic calculation of the pure Yang-

Mills spectrum in the large N limit of Sp(2N) gauge theories and give us an opportunity

to contrast the non-perturbative dynamics of Sp(2N) with that of SU(N) gauge theories.

Albeit expected, the first remarkable outcome of our calculation is that the pure gauge

quantities behave not dissimilarly from those of SU(N). The mass associated to the decay

of Polyakov-loop correlators follows the properties expected from a confining flux tube,

hence supporting the confining nature of the pure gauge dynamics in Sp(4). The lowest-

lying state in the glueball spectrum is the 0+ glueball. The ratio m0+/
√
σ ≃ 3.55 is not far

from the large-N value from SU(N) groups, m0++/
√
σ ≃ 3.3 [39], and is indeed compatible

within errors with the SU(3) value of m0++/
√
σ = 3.55(7) [40], with the value for SU(4) of

m0++/
√
σ = 3.36(6) being appreciably different, albeit close.

This behaviour is consistent with the above ratio being a mildly decreasing function of

the number of generators — while SU(4) has 15 generators, SU(3) has 8 and Sp(4) has 10

— and deserves further enquiry by performing numerical studies of Sp(2N) gauge theories

at larger N . An interesting observation has been put forward in [44], by suggesting that

m2
0++

σ
= η

C2(A)

C2(F )
, (5.32)

where C2(A) and C2(F ) are the quadratic Casimir of the adjoint and of the fundamental

representation, respectively, and η is a universal constant, in the sense that it depends on
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the dimensionality of the spacetime, but not on the gauge group. Noting that for Sp(2N)

C2(A)

C2(F )
=

4 (N + 1)

2N + 1
, (5.33)

we find that our determination of the proportionality constant

η = 5.27(15) , (5.34)

is compatible with the value η = 5.41(12) extracted from SU(N) in 3+1 dimensions [44].

The rest of the glueball spectrum also follows a pattern that is broadly similar to that

of SU(N). Another interesting quantity in the glueball sector is the ratio m2++/m0++ .

Using universality arguments, it has been argued in [43] that for confining theories where

the dynamics does not yield large anomalous dimensions, as in pure Yang-Mills, one should

find m2++/m0++ =
√
2. Our numerical results give m2++/m0++ = 1.425(32), a value that

is fully compatible with the conjecture of [43].

Besides being relevant for models of electroweak symmetry breaking based on a Pseudo-

Nambu-Goldstone interpretation of the Higgs field, the investigation of which is the central

leitmotif of this paper, studies of Sp(2N) pure gauge theories provide new relevant infor-

mation on universal aspects of Yang-Mills dynamics. We shall develop this latter line of

research in future numerical investigations.

6 Of quenched mesons: masses and decay constants

In this section, we present our results for the masses and decay constants of the lightest

flavoured mesons in the quenched approximation. Our main purpose is to illustrate the

process that we envision we will carry out once simulations with dynamical quarks are

available. Although we are aware of the fact that the quenched results may not capture in

full the features of the theory, we still expect it to provide some useful information about its

qualitative features. Experience on QCD with light quarks suggests that several quantities

are well captured by the quenched approximation, although we already cautioned the reader

about the fact that such considerations may not extend to these dynamical theories.

The EFT in section 2.1, within the limitations discussed therein, describes the con-

tinuum limit of the dynamical simulations, not the quenched ones. In principle, one could

make more sense of the comparison by adopting the approach of quenched chiral per-

turbation theory [91, 92] or of partially-quenched chiral perturbation theory [93–95], but

for present purposes our strategy will suffice, though we invite the reader to use caution,

in particular for quantities such as the gρππ coupling, that are certainly affected by the

quenching procedure.

6.1 Observables

As discussed in section 2.1, the observables of most direct phenomenological relevance,

and at the same time the most directly accessible to lattice calculations, are the masses,

mM , and the decay constants, fM , of pseudo-scalar, vector and axial-vector mesons. This
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Label Operator OM Meson JP

PS Qiγ5Q
j π 0−

V QiγµQ
j ρ 1−

AV Qiγ5γµQ
j a1 1+

Table 6. Interpolating operators used for the measurement of the properties of flavoured mesons

(i 6= j) in the pseudo-scalar (PS), vector (V) and axial-vector (AV) cases, associated with the

π, ρ and a1 mesons, respectively. We also report the Lorentz-group quantum numbers JP . The

summations over colour and spinor indices are understood.

numerical study focuses on flavoured particles. The interpolating operators and quantum

numbers are summarised in table 6.

We define the ensemble average of two-point meson correlators in the Euclidean space

as

COM
(~p, t) ≡

∑

~x

e−i~p·~x〈0|OM (~x, t)O†
M (~0, 0)|0〉 , (6.1)

where OM denotes any of the meson interpolating operators in table 6. In the limit in

which the Euclidean time t is large, and for vanishing three-momentum ~p, the correlation

function is dominated by the ground state. Its exponential decay is controlled by the meson

mass mM , and can be approximated as

COM
(t)

t→∞−−−→ 〈0|OM |M〉〈0|OM |M〉∗ 1

mML3

[

e−mM t + e−mM (T−t)
]

, (6.2)

where T and L are the temporal and the spatial extent of the lattice, respectively. In the

meson states |M〉, we define M = M iT i, with T i the generators of the group. Using this

convention, the mesonic matrix elements are parameterised in terms of decay constants fM
and masses mM as14

〈0|Q1γ5γµQ2|PS〉 = fπpµ ,

〈0|Q1γµQ2|V 〉 = fρmρǫµ ,

〈0|Q1γ5γµQ2|AV 〉 = fa1ma1ǫµ , (6.3)

where ǫµ is the polarisation vector obeying ǫµp
µ = 0 and ǫµǫ

µ = +1. Using eq. (6.2) and

eq. (6.3), for vector and axial-vector mesons we can rewrite the correlation functions

COV
(t)

t→∞−−−→
mρf

2
ρ

L3

[

e−mρt + e−mρ(T−t)
]

,

COAV
(t)

t→∞−−−→ ma1f
2
a1

L3

[

e−ma1
t + e−ma1

(T−t)
]

. (6.4)

14For comparison, with these conventions and normalisations, the corresponding experimental value of

the pion decay constant in QCD is fπ ≃ 93MeV.
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∆Σ1
∆γµ ∆γ5γµ

−12.82 −7.75 −3.00

Table 7. Results of one-loop integrals for the matching coefficients in eq. (6.8) at the choice of the

Wilson parameter r = 1, and taken from [96].

To calculate the decay constant of the pseudo-scalar meson, we additionally consider

the following two-point correlation function

CΠ(~p, t) =
∑

~x

e−i~p·~x〈0|[Q1γ5γµQ2(~x, t)] [Q1γ5Q2(~0, 0)]|0〉

t→∞−−−→ fπ〈0|OPS |PS〉∗
L3

[

e−mπt − e−mπ(T−t)
]

. (6.5)

The pion mass mπ and matrix element 〈0|OPS |PS〉 are obtained from the pion correlator,

COPS
(t)

t→∞−−−→ |〈0|OPS |PS〉|2
mπL3

[

e−mπt + e−mπ(T−t)
]

. (6.6)

Meson decay constants computed on the lattice are matched to the continuum. In this

work, we perform one-loop matching in lattice perturbation theory. Because we are using

Wilson fermions, the axial and vector currents are not conserved in the lattice theory, and

hence receive (finite) renormalization, that we write as

f renπ = ZAfπ , f renρ = ZV fρ , and f rena1 = ZAfa1 . (6.7)

The pion decay constant fπ is renormalised by ZA, as the axial current is used to define

fπ in eq. (6.3). In the continuum limit, the renormalization constants are expected to be

unity. The one-loop matching coefficients taken from [96] are given by

ZA = 1 + C(F )
(

∆Σ1
+∆γ5γµ

) g2

16π2
,

ZV = 1 + C(F )
(

∆Σ1
+∆γµ

) g2

16π2
, (6.8)

where g is the coupling constant and the eigenvalue of the quadratic Casimir operator is

C(F ) = 5/4 for Sp(4). The coefficients ∆I , relating the lattice computation with the con-

tinuum MS regularisation scheme, result from one-loop integrals performed numerically,

and are summarised in table 7. We notice that the coefficients reported here have been

obtained by restricting the integrals within the first Brillouin zone. We verified explic-

itly that the errors in numerical evaluation for these integrals are 2% or less, and that

there are no discernible finite-volume effects. Therefore we neglect the uncertainty on the

∆i coefficients in the rest of this paper. The coefficient ∆Σ1
is taken from the wave-

function renormalization of the external fermion lines, without taking into account the

power-divergence contribution, while the coefficients ∆γµ and ∆γ5γµ are extracted from the

one-loop computations of the vertex functions.

Wilson fermions receive quite large renormalisation and thus the perturbative expan-

sion with the bare coupling is reliable only at very large values of the lattice coupling
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β a2tp0 a2tc0 awp
0 awc

0 〈P 〉 ZV ZA

7.62 1.805(7) 2.049(7) 1.436(4) 1.448(4) 0.60190(19) 0.71599(9) 0.78157(7)

8.0 4.899(18) 5.115(19) 2.300(6) 2.308(6) 0.63074(13) 0.74185(5) 0.80146(4)

Table 8. Gradient-flow scales tp0, t
c
0, w

p
0 and wc

0, plaquette values 〈P 〉, and one-loop matching

factors ZV and ZA, computed for the two values of the lattice coupling β used in subsequent

exploratory quenched calculations. The errors quoted arise from the stochastic determination of

the tadpole-improved coupling.

β = 4N/g2. As in the continuum case, in lattice perturbation theory, the appropriate

expansion parameter is the renormalised coupling ḡ rather than the bare counterpart g.

Following [97], we use the simple tadpole improved coupling defined by

ḡ2 ≡ 2Ng2

〈Tr P〉 , (6.9)

where P is the plaquette operator.

6.2 Numerical results and EFT

As a first exploratory step towards understanding the qualitative features of mesons of the

Sp(4) theory, as well as to test the low-energy EFT and illustrate its use, we calculate the

mesonic observables described in the previous section in the quenched approximation at

β = 7.62 and 8.0. For each ensemble we generate 200 gauge configurations on a lattice

of size 48 × 243, using the HB algorithm. We first measure the plaquette values (which

are used to compute the one-loop matching factors in eq. (6.8) with the tadpole improved

coupling ḡ), and the gradient flow scales t0 and w0. The numerical results are summarised

in table 8. The gradient flow scales are determined by setting E0 = W0 = 0.35. As discussed

in section 4, we use two definitions of Gµν denoted by the superscript p for a plaquette and

c for a (four-plaquette) clover, with the difference of the two measuring the size of finite

lattice spacing artefacts. We find that, compared to t0, the difference between the clover

and the plaquette regularisations for w0 is significantly smaller, and thus we choose to use

wc
0 to convert lattice units to physical ones.

The mesonic two-point correlation functions in eq. (6.1) are measured using stochastic

wall sources [98] at various quark masses. While at sufficiently large time we use the

asymptotic expressions of two-point correlation functions in eqs. (6.2), (6.4) and (6.5) to

extract the meson masses and decay constants, we perform multi-exponential fits when the

time extent is not large enough to reach the asymptotic region, according to

COM
(t) =

∞
∑

i=0

Ci

(

e−Eit + e−Ei(Nt−t)
)

, (6.10)

where E0 = mM < E1 < E2 < · · · . We find that the two-exponential fits are good enough

to describe the numerical data in most cases. The numerical results (not renormalised) are

summarised in tables 9 and 10. The statistical errors are estimated by using a standard
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am0 a2m2
π a2m2

ρ a2m2
a1 a2f2π a2f2ρ a2f2a1

−0.65 0.4325(5) 0.5087(8) 1.04(4) 0.01451(9) 0.0376(3) 0.021(4)

−0.7 0.3042(4) 0.3916(11) 0.943(29) 0.01246(8) 0.0365(4) 0.029(3)

−0.73 0.2318(4) 0.3272(14) 0.862(20) 0.01101(8) 0.0354(5) 0.0313(20)

−0.75 0.1856(4) 0.2875(15) 0.831(16) 0.00995(8) 0.0346(4) 0.0352(16)

−0.77 0.1409(4) 0.2485(19) 0.769(22) 0.00879(8) 0.0329(6) 0.0350(22)

−0.78 0.1191(4) 0.2312(21) 0.796(17) 0.00822(8) 0.0327(6) 0.0415(16)

−0.79 0.0977(4) 0.2115(26) 0.772(20) 0.00760(8) 0.0314(8) 0.0418(19)

−0.8 0.0765(4) 0.193(3) 0.748(24) 0.00698(8) 0.0301(10) 0.0417(23)

−0.81 0.0553(4) 0.175(5) 0.73(3) 0.00635(9) 0.0285(14) 0.042(3)

−0.815 0.0446(4) 0.166(7) 0.70(4) 0.00606(9) 0.0280(19) 0.040(4)

−0.82 0.0328(4) 0.158(13) 0.70(6) 0.00572(15) 0.028(4) 0.041(6)

Table 9. Masses and decay constants (squared) of pseudo-scalar (π), vector (ρ), and axial-vector

(a1) mesons, as obtained from the quenched calculations described in section 6.2, for β = 7.62 on

lattice of size 48× 243.

am0 a2m2
π a2m2

ρ a2m2
a1 a2f2π a2f2ρ a2f2a1

−0.45 0.5556(12) 0.5837(13) 0.868(13) 0.00832(14) 0.0153(3) 0.0057(5)

−0.5 0.4244(11) 0.4551(14) 0.734(11) 0.00771(14) 0.0149(3) 0.0073(6)

−0.55 0.3037(8) 0.3383(12) 0.593(11) 0.00691(10) 0.0145(3) 0.0084(7)

−0.6 0.1937(8) 0.2325(14) 0.465(12) 0.00567(8) 0.0131(3) 0.0096(8)

−0.625 0.1437(7) 0.1862(16) 0.405(13) 0.00494(8) 0.0125(4) 0.0102(10)

−0.64 0.1156(7) 0.1612(15) 0.363(20) 0.00449(7) 0.0124(3) 0.0099(18)

−0.65 0.0974(7) 0.1448(16) 0.349(15) 0.00414(7) 0.0120(3) 0.0109(13)

−0.66 0.0812(5) 0.1302(14) 0.343(14) 0.00397(5) 0.0123(3) 0.0128(12)

−0.67 0.0642(5) 0.1179(18) 0.318(18) 0.00352(4) 0.0123(4) 0.0123(17)

−0.68 0.0479(4) 0.1040(22) 0.323(13) 0.00319(4) 0.0122(5) 0.0150(11)

−0.69 0.0318(4) 0.0907(28) 0.304(19) 0.00270(5) 0.0115(5) 0.0151(17)

Table 10. Masses and decay constants (squared) of pseudo-scalar (π), vector (ρ), and axial-vector

(a1) mesons, as obtained from the quenched calculations described in section 6.2, for β = 8.0 on

lattice of size 48× 243.

fit range (m0) χ2/d.o.f wc
0 m

∗
0 wc

0v wc
0v5

β = 7.62 [−0.82, −0.73] 0.17 −1.214(22) 0.750(5) 0.408(5)

β = 8.0 [−0.69, −0.625] 0.58 −1.636(27) 0.862(27) 0.431(22)

Table 11. Results of the fit of the quenched meson data to the GMOR relation in eq. (2.31), where

the quark mass m is replaced by the combination wc
0(m0 −m∗

0).
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fit range (m0) χ2/d.o.f wc
0v̄ wc

0v̄5

β = 7.62 [−0.82, −0.75] 0.19 0.1839(17) 0.1302(16)

β = 8.0 [−0.69, −0.66] 0.74 0.1873(25) 0.1276(34)

Table 12. Results of the fit of the quenched meson data to the GMOR relation in eq. (2.31), where

the quark mass m is replaced by the combination (wc
0mPS)

2. The barred variables are defined as

v̄ = v/(2B)1/3 and v̄5 = v5/(2B).
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w0(m0 −m∗
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Figure 12. Tests of the GMOR relation in the quenched data. The solid and dashed lines are

fit results for the cases of β = 8.0 and 7.62, respectively. In the top panel, we show the result of

identifying the quark mass with the quantity w0(m0−m∗

0), replaced in the lower panel by (w0mPS)
2.
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Figure 13. The quantity f20 = f2π(0) + f2ρ + f2a1
, defined in eq. (2.18), measured in the quenched

approximation for varying values of w0(m0 −m∗

0).

bootstrapping technique (with about 250 bootstrap samples) and a correlated fit with χ2

minimisation.

To analyse the numerical results using the continuum EFT developed in section 2.1,

we reinstate the correct dimensionality by expressing all mass and decay constants in units

of w0 = wc
0. The decay constants are further renormalised using perturbative one-loop

matching.

Let us first restrict our attention to the pseudo-scalar mesons and check the GMOR

relation. In the upper panel of figure 12 we plot m2
PSf

2
PS , against the quark mass, where

the latter is defined by the difference between the bare quark mass and the critical mass

at which the mass of pseudo-scalar mesons vanishes. Even for the lightest masses m0

available we do not find the expected leading-order linear behaviour. Therefore, we fit the

data to the NLO results including the v5 term in eq. (2.16). The solid and dashed lines in

figure 12 are the fit results for β = 8.0 and 7.62, respectively, where the fitting ranges and

the resulting fit parameters are found in table 11.

As the quark mass is scheme-dependent, to compare the lattice results obtained with

different coupling we would have to properly renormalise the quark mass. Instead of doing

so, we consider the GMOR relation with respect to the pseudo-scalar meson mass, mPS ,

which is a scheme independent (physical) quantity, and show the result in the bottom panel

of figure 12. As shown in the fit results in table 12, we find that the parameters of the

NLO GMOR relation between two lattices are statistically consistent, implying that finite

lattice artefacts affect this observable only in a negligible way.

One of the interesting quantities in the EFT is f20 , the sum of the squared decay

constants of pseudo-scalar, vector, and axial-vector mesons, which is independent of the
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Figure 14. Plots of the meson masses (top panel) and decay constants (bottom panel) from

the quenched calculation with β = 7.62, compared to the best-fit results based upon the EFT

description in section 2.1.2. Blue circles, orange crosses, and green bars represent for pseudo-scalar

(π), vector (ρ), and axial-vector (a1) mesons, respectively. For the EFT fits are based on the data

in the shaded region.

mass m0 if one adopts eq. (2.16). As shown in figure 13, the numerical results are in good

agreement with such expectation. In the figure, blue circles and orange crosses represent

the choices β = 7.62 and for β = 8.0, respectively. Notice that we derived this relation from

our NLO EFT at the tree level. In principle, one has to consider the contribution from the

one-loop corrections, including chiral logarithms. We performed a constant fit to the results

and obtained f20 (β = 8.0) = 0.0926(17) and f20 (β = 7.62) = 0.0944(18) denoted by blue

and orange bands, respectively. As for the case of the GMOR relation, we find that lattice

spacing artefacts in f20 are negligible, in the sense that no appreciable difference is measured.
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Figure 15. Plots of the meson masses (top panel) and decay constants (bottom panel) from

the quenched calculation with β = 8.0, compared to the best-fit results based upon the EFT

description in section 2.1.2. Blue circles, orange crosses, and green bars represent for pseudo-scalar

(π), vector (ρ), and axial-vector (a1) mesons, respectively. For the EFT fits are based on the data

in the shaded region.

We finally use the NLO EFT relations to construct a global fit to the meson masses

and decay constants. The results are illustrated in figures 14 and 15. We perform an

uncorrelated fit to the data, restricted to the eight and six lightest masses m0 for β = 7.62

and 8.0, respectively. The fitting range is shown as the shaded region in the figures. There

are two main technical difficulties in this fit procedure. First of all, the parameter space

is too large to determine the actual global minimum. In the NLO EFT we have thirteen

fit parameters (including the critical bare mass m∗
0). The standard χ2 minimisation is not

stable, and it typically yields two qualitatively very different results, one fairly linear and

one exhibiting highly nonlinear behaviours with respect to the quark mass. We take the
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Figure 16. Comparison between the meson masses (top panel) and decay constants (bottom panel)

in the quenched calculations with two different values of the lattice coupling β. The colour coding for

the pseudo-scalar, vector, and axial-vector mesons is explained by the legend. The numerical results

are shown as a function of the combination (w0mPS)
2, highlighting the corresponding reduction of

finite-spacing effects.

former as our best fit as the stability of the fits is better than the latter when we vary the

fitting range. Secondly, statistical uncertainties vary widely for different types of mesons,

and as a result the pseudo-scalar mesons tightly constrain the fit results. Furthermore, the

numerical data suffer from several systematics such as quenching and discretising effects.

Undeterred by all these limitations and difficulties, since the purpose of this explorative

study with quenched calculations is to show how our EFT works, we attempted to perform

the global fit to the central values using the standard χ2 minimisation. The fit results are

represented by the dashed lines in the figures. For completeness, we report the resulting
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values of the fit parameters for β = 7.62:

κ=−0.83, y3/w0=−0.41, y4/w0=3.14, gρ=1.93, b=−0.38, c=0.027,

fw0=0.84, Fw0=0.57, v1w0=0.075, v2w0=−0.33, vw0=0.27, v5w0=0.40,

m∗

0w0=−1.21, χ2/d.o.f=0.11,

and for β = 8.0:

κ=−0.90, y3/w0=−0.26, y4/w0=2.61, gρ=1.62, b=−0.28, c=0.012,

fw0=1.06, Fw0=0.62, v1w0=0.028, v2w0=−0.31, vw0=0.28, v5w0=0.48,

m∗

0w0=−1.64, χ2/d.o.f=0.99.

We explicitly checked that all of these fits satisfy the unitary constraints. Notice that

the values of χ2/d.o.f are very reasonable, as also shown by the figures. Yet, the fitting

procedure is very rough, the comparison between quenched data and continuum EFT is

not rigorous, and hence we do not include uncertainties on these values of the couplings as

a way to stress the fact that they should be used just for illustrative purposes. With this

illustrative values of the parameters, one finds that g2ρππ/(48π) ∼ 0.76 (for β = 7.62), and

g2ρππ/(48π) ∼ 1.0 (for β = 8.0). Such large values of gρππ are affected by the uncontrolled

systematics originating from quenching effects, and hence should not be used beyond the

illustrative purposes of this exercise.

In future studies with dynamical calculations, a dedicated examination of the statistics

and the systematics of the EFT fits will be required to determine the corresponding low-

energy constants in a meaningful way. Furthermore, we anticipate that it will be more

involved to apply the continuum EFT result to the dynamical simulation, because the

scale-setting procedure becomes more subtle. For instance, we observed in section 4.1

that the scale w0 used in our analysis changes visibly as the quark mass is varied in the

dynamical case. Finally, it would be interesting to compare the results for masses and

decay constants to the calculation presented in [38], and a possible extension that includes

the dependence on the quark mass m0.

In order to investigate finite lattice spacing artefacts, as we observed earlier it is more

effective to plot the mesonic observables with respect to the pseudo-scalar meson mass,

rather than the bare quark mass. The results are shown in figure 16. In this case, only

the masses of vector and axial-vector mesons are plotted. As we already learned from

the GMOR relation, discretisation effects for the pseudo-scalar mesons are negligible in

their spectroscopy. Similar conclusion can be drawn for the axial-vector mesons, given

the current uncertainties. On the other hands, the masses and decay constants of vector

mesons are affected significantly by lattice artefacts.

7 Towards dynamical fermions

The study of strongly-coupled gauge theories on discretised Euclidean space-time assumes

the existence of a proper continuum limit as the lattice spacing a decreases, so that the

field-theory dynamics is recovered. In order to avoid uncontrollable systematic effects in
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Figure 17. Value of the plaquette from a lattice parameter scan with dynamical fermions for

lattice size of 44, while varying the bare mass am0 and the coupling β. The colours refer to the

choices of β indicated in the legend.

the continuum extrapolation, one must explore the lattice parameter space to identify any

singularities or bulk transitions before carrying out detailed numerical studies of physical

observables. In particular, a bulk phase where lattice discretisation effects dominate the

behaviour of the system is expected to be present at strong coupling, with the interesting

physical region separated by this bulk region by a first-order phase transition, or a very

sharp cross over.

The identification of the associated (pseudo-)critical coupling is also strongly desired

for practical purposes, because with finite numerical resources one cannot reduce the lattice

spacing to arbitrarily small values, while at the same time using large enough volumes. For

the pure Sp(4) lattice theory with the standard plaquette action the numerical study in [1]

shows the absence of bona-fide bulk phase transitions. To the best of our knowledge, no

such a study for dynamical simulation with Nf = 2 Wilson fermions exists in the literature.

A possible choice of order parameter associated with the lattice bulk transition is the

expectation value of the plaquette. To have a rough mapping of the transition, we first scan

the parameter space over the range of β = [6.0, 7.0] using a 44 lattice, and show the results

in figure 17. For each lattice coupling, we calculate the average plaquette values and vary

the bare mass in steps of 0.1, over the range 0.0 ≤ −am0 ≤ 1.4. Near the region in which

the change of the plaquette value is large as a function of am0, we add twice more data

points, to increase the resolution. The abrupt change of the plaquette expectation value,

visible at smaller values of β, strongly suggests the presence of a bulk phase transition.

To find more concrete evidence of the bulk phase and determine the phase boundary,

we increase the volume to 64 and 84 for two lattice couplings, β = 6.6 and 6.8. In figure 18

we plot the trajectories of the average plaquette measured on a 84 lattice with various

values of bare quark mass close to the transition. All configurations are generated from
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Figure 18. Trajectories of plaquette values for β = 6.6 (top panel) and β = 6.8 (bottom panel)

on a lattice with size 84, and for various values of the bare mass, as explained in the legend, from

HMC calculations with dynamical quarks.

a cold start — the individual link is the unit matrix. The top panel for β = 6.6 shows

evidence of metastability at the critical mass which is expected for a first-order bulk phase

transition. By comparison, in the bottom panel of figure 18, obtained for β = 6.8, the

plaquette values varies smoothly.

These results are further supported by measuring the plaquette susceptibility χ =

(〈P2〉 − 〈P〉2)V , and investigating the dependence of its maximum on the lattice four-

volume V , as shown in figure 19. The peaks of χ from the largest two volumes roughly

scale with V for β = 6.6, while they are almost constant for β = 6.8, indicating cross-over

behaviour.

– 53 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
5

−1.2 −1.1 −1.0 −0.9 −0.8 −0.7
am0

0.0

0.1

0.2

0.3

0.4

0.5

χ

T = L = 4

T = L = 6

T = L = 8

−1.0 −0.8 −0.6 −0.4 −0.2
am0

0.00

0.02

0.04

0.06

0.08

0.10

χ

T = L = 4

T = L = 6

T = L = 8

Figure 19. Plaquette susceptibilities χ, measured in HMC calculations with dynamical quarks,

for β = 6.6 (top panel) and β = 6.8 (bottom panel), as a function of the bare mass am0, for three
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Figure 20. Trajectories of plaquette values for dynamical-fermion calculations at β = 6.9. Different

colours represent various fermion masses, as reported in the legend.
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Figure 21. Effective mass plots for pseudo-scalar, vector, and axial-vector mesons at β = 6.9 and

am0 = −0.91. The shaded regions denote the fitting ranges and the statistical uncertainties of fit

results.

From the combination of all these numerical results, we find that a conservative es-

timate of the minimum value of β that ensures the existence of the continuum limit is

β ≥ 6.8. Based on this finding we perform fully dynamical simulations at β = 6.9 as a very

preliminary study of the meson spectrum. We generate six ensembles, am0 = −0.85, −0.87

on a 24× 123 and am0 = −0.89, −0.9, −0.91, −0.92 on a 32× 163 lattices, using the HMC

algorithm.

In figure 20, we show the trajectories of the plaquette values. The asymptotic value of

plaquette gradually increases as the bare fermion mass decreases. The typical thermalisa-

tion time appears to be ntraj. ∼ 300, while the typical autocorrelation time ranges from 12

to 32, depending on the ensembles. The MD time steps for gauge and fermion actions are

optimized such that the acceptance rate in the Metropolis test is in the range of 75− 85%.

Figure 21 shows the effective masses for pseudo-scalar, vector, and axial-vector mesons

at am0 = −0.91, as an illustrative example. The pseudo-scalar and vector mesons clearly

exhibit plateaux at large time, starting around t = 10 and persisting over six time slices.

These two mesons are much lighter than the UV cutoff and we find that mπ

mρ
∼ 0.8. The best

estimation of the axial-vector meson mass is carried out by fitting the effective mass for

t = [7 , 9], but the resulting mass is already at the scale of the UV cutoff ∼ 1/a, as visible

from figure 21. More interesting numerical studies including the EFT fits are beyond the

aims of this paper: a dedicated investigation of systematic effects, such as those relevant to

the scale-setting and the continuum extrapolation, has to be carried out, before we perform

a detailed analysis of confronting the lattice data with the EFT.

8 Summary and outlook

With this paper (see also [99–101]), we have started a programme of systematic lattice

studies of the dynamics of Sp(2N) gauge theories with Nf = 2 fundamental Dirac fermions

and N > 1. As explained in the Introduction, we envisage developing this programme along
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several distinct lines, of relevance in the contexts of composite-Higgs phenomenology, of

composite fermions at strong coupling, and of thermodynamics at finite T and µ. We are

also interested in the pure Yang-Mills theories (Nf = 0), and in studying how the properties

of these theories evolve as a function of N . We outlined here the whole programme, and

took some important steps along these lines. We focused for the time being on Sp(4), but

constructed our numerical algorithms, data-analysis procedures and EFT treatment in such

a way that they generalise straightforwardly to larger N . We conclude the paper by sum-

marising our findings, and how they allow us to proceed to the next steps in the near future.

We performed preliminary, technical analyses of the Sp(4) lattice gauge theory, and

the results are shown in sections 3 and 4. We used two different lattice algorithms; we

successfully checked that the Hybrid Monte Carlo and Heat Bath both yield results that

are compatible with each other as well as with those reported previously in the literature,

having introduced an adequate re-symplectization procedure. We tested that the topolog-

ical charge moves across sectors with dynamics suggesting good ergodicity properties and

that the distributions of the ensembles for various choices of the lattice parameters do not

show appreciable indications of severe autocorrelation. We also addressed the question of

scale setting, by studying the gradient flow associated with the quantities t0 and w0 defined

in the main body of the paper, and we found visible signals of quark-mass dependence.

From the field-theory perspective, this may not come as a surprise, given that the RG

flow is two-dimensional and non-trivial. Yet, it shows that in calculations with dynamical

fermions one has to use extra caution in the process of extrapolating to the continuum

limit. We expect that at least when the physical mass is small compared to the confine-

ment scale, and for lattice calculations performed close enough to the continuum limit, the

RG flow be driven mostly by the gauge coupling, with small dependence on the mass, as

is the case of QCD [65]. We would like to collect evidence of this with values of lattice

parameters beyond those employed in this paper (but see also [30, 102]).

The main body of this paper mostly focused on the dynamics of the glue. In section 5

we studied in detail the pure (Yang-Mills) Sp(4) theory, showed that it confines in a way

that is compatible with the effective string description, and performed the first detailed

study of the spectrum of glueballs. We were able to perform the continuum-limit extrap-

olation of the latter, hence providing a set of determinations for the physical masses that

is of quality comparable to the current state-of-the-art for other gauge theories. We could

hence compare the spectrum of Sp(4) to that of SU(N) gauge theories, and in particular

we found novel numerical support for two general expectations from the literature: the

ratio R between the masses of the lightest spin-2 and spin-0 glueballs is independent of

the gauge group [43], and the ratio of the mass of the lightest spin-0 glueball to the string

tension obeys Casimir scaling [44].

The long-term objective of this programme is the investigation of whether composite-

Higgs models of new physics based upon the SU(4)/Sp(4) coset are realistic and predictive.

Having discussed the main features (and limitations) of the low-energy effective field theory

description of pions, ρ, and a1 mesons in section 2, and postponing to the future the study

of dynamical fermions, we performed a first, exploratory calculation of the masses and

decay constants of the mesons in the quenched approximation, and reported the results

in section 6. The main purpose of this study is to show that the whole technology works
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effectively. We took particular care of precisely defining the operators of interest on the

lattice, and of renormalizing the decay constants with one-loop matching coefficients. We

performed the calculations by varying the value of the bare mass over a large range, while

considering only two values of the lattice coupling β and one choice of lattice volume.

We found several potentially interesting results for the mesons, although the prelimi-

nary nature of this quenched study implies that much caution has to be adopted. While we

found that the spectra and decay constants of pions, ρ and a1 mesons can be fitted satisfac-

torily with the EFT description we provided, the spin-1 mesons are heavy with respect to

the pion decay constant, and their coupling to the pions is large, hence bringing into serious

question the reliability of the EFT description itself. We do not know whether this feature

persists also with dynamical fermions, yet we expect an improvement with larger values of

N , and hence find it encouraging that the fits within quenched Sp(4) work well. We also

found several other interesting features. For example, the special combination f0 (defined

in section 2) of the decay constants of the mesons appears to be independent of the quark

mass. It will be interesting to test such features beyond the quenched approximation, and

possibly explaining them within field theory.

Finally, we uncovered evidence of a first-order (bulk) phase transition in the lattice

theory with dynamical fermions, and presented in section 7 the first results of the coarse

scanning of the parameter space, hence identifying regions that are safely connected to

the field theory in the continuum limit. We exemplified the calculations of the meson

spectrum in the full dynamical theory for one choice of such parameters. A much more

extensive study of the spectra would be needed to match to the expectations from field

theory, particularly because of the subtleties involved in taking the continuum limit for

generic, non-trivial values of the fermion mass. Having shown the feasibility of such a

study with the instruments we put in place, we postpone to the future this extensive task.

The next steps of our programme will involve the following studies.

• We will compute the spectrum of glueballs in pure Yang-Mills for generic Sp(2N).

The HB algorithm has been already generalised to any N and tested [101], and the

process leading to the extraction of masses has been shown here to be robust. This

will allow us to put the level of understanding of the spectra of Sp(2N) Yang-Mills

theories on the same level as the SU(N) ones.

• The mass spectrum and decay constants of mesons will be studied with dynami-

cal fermions, hence providing quantitative information of direct relevance to model-

building and phenomenology in the context of composite-Higgs models of new physics.

• We want to extend the present study to be of relevance to the context of composite

fermions, by generalising the underlying action to include fermionic matter in differ-

ent representations. This is a novel direction for lattice studies, the very first such

attempts having appeared only recently [102, 103]. We envision to perform a prelim-

inary study, possibly quenching part of the fermions, before attacking the non-trivial

(and model-dependent) problem of analysing the properties of fermionic composite

states.
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Further in the future, we intend to extend the study of the mesons to other non-trivial

dynamical properties of relevance to composite-Higgs models, such as the width of the

excited mesons, and the value of the condensates. We are also interested in extending to

Sp(2N) the study of the high temperature behaviour of the theory, along the lines followed

for SU(2) ∼ Sp(2) in [34], and to introduce non-trivial chemical potential. Combinations

of all these studies will provide a coherent framework within which to gain new insight of

relevance for field theory, model building, and thermodynamics in extreme conditions.
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A Some useful elements of group theory

We choose the generators of SU(4) and of its Sp(4) maximal subgroup as in appendix B

of [34]. We summarise some useful properties of the symplectic groups of interest, which

we conventionally refer to as Sp(2N), and the real algebra of which is denoted CN in [104].

The group Sp(2N) is defined as the set of 2N × 2N unitary matrices U with complex

elements that satisfy the relation

UΩUT = Ω, (A.1)

where Ω is the symplectic form, written — consistently with eq. (2.2) — in N×N blocks as

Ω =

[

0 IN

−IN 0

]

. (A.2)

As suggested by eq. (A.1), U may be written in block form as

U =

[

A B

−B∗ A∗

]

, (A.3)

where A and B satisfy A†A + B†B = I and ATB = BTA. From these relations, we

can deduce many properties of Sp(2N) matrices. Having unit determinant, the matrices

of Sp(2N) can be shown to form a compact and simply connected subgroup of SU(2N).

Moreover, the structure in eq. (A.3) implies that the centre of the group is isomorphic to Z2
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for any N . Lastly, since U∗ = ΩUΩT and Ω ∈ Sp(2N), every representation of the group

is equivalent to its complex conjugate. Thus Sp(2N) has only pseudo-real representations,

and charge conjugation is trivial.

In model-building as well as numerical applications, a prominent role is played by the

subgroups of Sp(2N), especially those isomorphic to some SU(N). In particular, one notices

that Sp(2N) ⊂ SU(2N), and that Sp(2(N − 1)) ⊂ Sp(2N). Starting with Sp(2) ∼ SU(2),

this allows us to use the machinery already developed for the Monte Carlo simulation of

SU(2N) groups to the case of Sp(2N). Particular attention has to be given to the choice

of subgroups, as we further discuss in appendix C in the HB context.

The subgroup structure of Sp(2N) can be understood in terms of its algebra, to the

study of which we now turn. Locally, one can represent a generic group element with the

exponential map U = exp(ı̇H) and impose the constraints of Sp(2N). This is equivalent

to taking only the generators of SU(2N) that satisfy eq. (A.1), i.e. the hermitian traceless

matrices with H∗ = ΩHΩ, from which a block structure for H follows,

H =

[

A B

B∗ −A∗

]

. (A.4)

The properties A = A† and B = BT are a consequence of H† = H. These conditions

leave a total of 2N(N + 1) degrees of freedom for H, which is also the dimension of the

Sp(2N) group. The choice of generators that we use in this work is explicitly stated in [34].

The rank of the group is N , thus in Sp(2N) we can find N independent SU(2) subgroups.

Once the elements of the algebra have been chosen, the SU(2) subgroups of Sp(2N) follow

from their matrix structure (see, once more, appendix C).

B EFT and technicolor

The 2-flavour Sp(4) theory can be used as a technicolor (TC) model, provided the embed-

ding of the SM symmetries is such that the condensate breaks them, and so can the EFT

treatment we apply to the spin-1 states, provided we identify the natural SU(2)tL×SU(2)tR
symmetries acting on the left-handed and right-handed components of Qi a as the SM global

symmetry (following the conventions in appendix B in [34]). We added the superscript t to

the weakly-coupled gauge groups to distinguish them from the embedding used in the body

of this paper, in the context of composite-Higgs models The embedding is chosen so that

(SU(2)tL×SU(2)tR)∩Sp(4) = SU(2), hence realising spontaneous symmetry breaking. One

can then match this model to the familiar electroweak chiral Lagrangian and its extensions,

based on the (SU(2) × SU(2))/SU(2) coset, which is practically advantageous as it allows

to re-use well known results.

Gauge invariance of the electroweak theory in this case requires setting M = 0, so

that the pions are massless,15 and to gauge SU(2)tL ×U(1)tY , where the latter factor is the

15To be rigorous, in the presence of a mass term one should replace M with a dynamical field with

infinitesimal kinetic term, hence reinstating explicitly gauge invariance. Because we focus only on the

transverse polarizations of the vectors, we do not worry about this otherwise important point.
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subgroup of SU(2)tR generated by the diagonal t3R. The gauge couplings are g̃ and g̃
′, respec-

tively. By doing so, the exact symmetry is reduced from SU(4) to SU(2)tL×U(1)tY ×U(1)B,

with the last abelian factor denoting baryon number. The condensate then breaks SU(2)tL×
U(1)tY → U(1)e.m., and theW and Z bosons acquire a mass via the usual Higgs mechanism.

We discuss this TC model mostly for completeness, and for technical reasons related

to the calculation of the 2-point functions. Among the phenomenological reasons why this

is not a realistically viable TC model are the following.

• The spectrum contains two light (pseudo-)Goldstone bosons.

• Precision parameters such as S might exceed experimental bounds.

• The spectrum does not contain a light scalar (Higgs) particle.

• There is no high scale to suppress higher-dimensional operators and FCNC transi-

tions.

• There is no natural way to enhance the mass of the top quark.

We address here only the first two points, within the low-energy EFT, mostly for technical

reasons that are of interest also in the composite-Higgs framework. We introduce the

adjoint spurion G, formally transforming as

G→ UBGU
†
B , (B.1)

and fix it to

G = ΛG diag
{

1 , 1 , −1 , −1
}

, (B.2)

We add to the Lagrangian density the additional (symmetry-breaking) term

LG =
Λ2
G

4
Tr
{

G
(

SΣST
)

G∗ (SΣST
)∗}

, (B.3)

in such a way as to induce the explicit breaking SU(4)B → SU(2)tL × SU(2)tR ×U(1)B. By

expanding explicitly we find that

LG = Λ4
G − Λ4

G

(

2S

F
+

2C

f

)2
(

(π̄4) 2 + (π̄5) 2
)

+ · · · , (B.4)

where C and S have been defined in eqs. (2.27) and (2.28). We hence provided a mass for

π̄4 and π̄5, while the massless π̄i fields, with i = 1, 2, 3, eventually become the longitudinal

components of theW and Z bosons. In the limit ΛG → +∞, π̄4 and π̄5 decouple completely,

while the dynamics of the spin-1 states is unaffected, and the first of the phenomenological

problems mentioned above is avoided.

We can now focus on the 2-point functions, by matching the theory defined by eq. (2.16)

onto the leading-order part of the effective Lagrangian for the transverse components of

the SM gauge bosons V i
µ = (L1

µ, L
2
µ, L

3
µ, R

3
µ), which reads

LEFT =
1

2
PµνΠij(q2)V i

µ(q)V
j
ν (−q) , (B.5)
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where Pµν = −qµqν/q2+ ηµν , qµ is the four-momentum, and all the dynamics is contained

in the non-trivial functions Πij(q2).

The functions Πij are defined by matching the (gaussian) path integrals (at the tree-

level). In practice, one takes the second derivatives in respect to the 15+3+1 = 19 gauge

bosons Vµ i of the original theory PµνΠij
T ≡ Pµρ ∂2

∂Vρi∂Vνj
L = Pµν

(

q2δij − (M2) ij
)

(where

M2 is the complete mass matrix of the vectors), then one inverts it and retains only the

4 × 4 sub-matrix along the directions of SU(2)tL × U(1)tR, and finally inverts it again to

obtain Πij =
(

(

Π−1
T

)

L,R

)−1
.

Focusing on the 1 and 2 components of Πij , one can write Π11(q2) = Π22(q2) = q2 −
g̃2

4 Σ(q
2)+O(g̃2/g2ρ), and hence obtain the Left-Left current-current correlator in eq. (2.18):

Σ(q2) ≡ lim
g̃→0

4

g̃2

(

q2 −Π11(q2)
)

. (B.6)

By expanding Πij(q2) in powers of q2 one also obtains the precision electroweak parame-

ters. They are defined by first normalising the fields Vµi so that Π
′ ii(0) ≡ d

dq2
Πii(q2)

∣

∣

∣

q2=0
=

1 for i = 1 , · · · , 4, and then defining [105]

Ŝ ≡ g̃

g̃′
Π′L3R3

(0) , T̂ ≡ 1

M2
W

(

Π′L3L3

(0)−Π′L2L2

(0)
)

. (B.7)

In the current case, one finds that T̂ = 0, because of the custodial SU(2), while the

experimental bounds obtained from precision parameters are Ŝ < 0.003 (at 3σ c.l.) [105].

A subtlety should be noted here: the structure of the effective Lagrangian describing

all the vectors in the case of relevance for TC should include additional terms in respect

to eq. (2.16), as in this case the condensate breaks the SU(2)tL symmetry. For example,

this yields kinetic mixing between the W and B gauge bosons, which contributes directly

to the Ŝ parameter, and can be thought of as the contribution to Ŝ coming from heavier

composite states that have been integrated out. We do not include such terms, because

they go beyond the purposes of this paper.

If one applies the formalism described here to the Lagrangian density in eq. (2.16),

what results is not the S parameter,16 but rather the contribution to S coming from ρ and

a1 mesons only, which we called S0. We notice that the following sum rule (occasionally

referred to as zeroth order in the literature) is verified exactly within the framework defined

by eq. (2.16):

S0
4π

=
f2ρ
M2

ρ

− f2a1
M2

a1

. (B.8)

We can express this result explicitly in terms of the coefficients in the EFT Lagrangian

density:

S0
4π

=
2

g2ρ

(

1 + κ+my3 −
(1− κ−my4)(−bf2 + F 2 + 2m(v2 − v1))

2

((2b+ 4)f2 + 2mv2 − bf2 + F 2 + 2m(v2 − v1))2

)

. (B.9)

16The normalization of S by Peskin and Takeuchi [106] is such that S
4π

≡ 4

g̃2
Ŝ, which yields a result

independent of the SM gauge coupling g̃, contrary to the phenomenologically more convenient Ŝ [105].
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We stress once more that this result holds only within the EFT in eq. (2.16), but not in the

fundamental theory,17 for which one would have to replace the right-hand side of eq. (B.8)

with a summation over all possible spin-1 states, not just the ground state. To include such

contributions in the EFT would require introducing explicit symmetry-breaking terms in L
of the form of kinetic mixing terms that are forbidden within the composite-Higgs scenario,

and are hence omitted here.

We conclude with an exercise. By making use of the quenched calculations reported

in subsection 6.2, and of the fits of the low-energy couplings in eq. (2.16), we find that

S0/4π ∼ 0.049 (for β = 7.62), and S0/4π ∼ 0.041 (for β = 8.0). The large values of S0,

in respect to QCD (for which the same treatment would yield S0/4π ∼ 0.025, obtained by

just replacing the masses and decay constants from experiments [109]), might be due, at

least in part, to the dimension of the gauge group Sp(4) being larger than that of QCD.

Yet these numerical results show a significant decrease in approaching the continuum limit,

and are affected by quenching, hence they must be taken as just for illustration purposes.

C Projecting on Sp(4)

The update of local gauge links must be supplemented by a projection onto the Sp(4) group

manifold, to remove machine-precision effects that would bring the algorithm outside of

the group manifold. In this appendix we explain how we implement this re-symplectisation

procedure.

The generic Sp(2N) elements can be represented by 2N × 2N complex matrices com-

posed of quaternions,

Q(x, µ) = Q0(x, µ)⊗ I2 +Q1(x, µ)⊗ e1 +Q2(x, µ)⊗ e2 +Q3(x, µ)⊗ e3, (C.1)

where the quaternion units are

I2 =

(

1 0

0 1

)

, e1 =

(

i 0

0 −i

)

, e2 =

(

0 1

−1 0

)

, e3 =

(

0 i

i 0

)

. (C.2)

Qi(x, µ) are N × N real matrices. Given the updated link variables U(x, µ) in the HMC

algorithm, we project it onto the quaternion basis and normalise it, hence obtaining a

symplectic U(x, µ) ahead of the Metropolis test.

To gauge the potential size of the violation of symplectic conditions and the impor-

tance of the Sp(4) projection, we plot in figure 22 the trajectories of the plaquette val-

ues with (top) and without (bottom) re-symplectisation. The result shows that the re-

symplectisation is successfully working and the plaquette values are stable.

In the HB calculations, we use instead a variant of the (modified) Gram-Schmidt

algorithm. A re-symplectisation algorithm that inherits the numerical stability of the

Gram-Schmidt process and that can be applied to any N is obtained by noting that, owing

17We refer the reader to ref. [107] for an example of such calculations on the lattice, specialised to the

SU(3) gauge theories with nf = 2 and 6 fermions in the fundamental representation, and to [108] for an

earlier calculation of S within QCD.
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Figure 22. Trajectories of plaquette values without (top panel) and with (bottom panel) resym-

plectization, as described in appendix C. The orange band denotes the quenched result in [1],

while the green band denotes the fit result. The lattice parameters are β = 8.0, m0 = 1.0, and

Nt ×N3
s = 8× 83.

to the general form of Sp(2N) matrices, once the first N columns of the matrix are known,

the remaining ones can be computed from

colj+N = −Ω col∗j . (C.3)

After normalising the first column, one can obtain the (N+1)-th. The second column is

then obtained by orthonormalisation with respect to the first and the (N+1)-th. Repeating

the process for every column, one obtains an Sp(2N) matrix.
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