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Abstract

We study approximate solutions to the time�dependent Schr�odinger
equation i��t�t�x���t � H�x��i�rx��t�x� with the Hamiltonian given
as the Weyl quantization of the symbol H�q� p� taking values in the
space of bounded operators on the Hilbert space Hf of fast �inter�
nal� degrees of freedom� By assumption H�q� p� has an isolated energy
band� Using a method of Nenciu and Sordoni �NeSo	 we prove that in�
terband transitions are suppressed to any order in �� As a consequence

associated to that energy band there exists a subspace of L��Rd �Hf�
almost invariant under the unitary time evolution� We develop a sys�
tematic perturbation scheme for the computation of e�ective Hamil�
tonians which govern approximately the intraband time evolution� As
examples for the general perturbation scheme we discuss the Dirac and
Born�Oppenheimer type Hamiltonians and we reconsider also the time�
adiabatic theory�
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� Introduction

Quantum theory has the remarkable feature that certain dynamical degrees
of freedom may become �slaved� and thus lose their autonomous status�
The origin of this phenomenon is a separation
 both in space and time
 into
slow and fast degrees of freedom� The fast modes quickly adapt to the slow
modes which in turn are governed by a suitable e�ective Hamiltonian� This
mechanism is called adiabatic decoupling�

As paradigm we mention the motion of nuclei� The electronic degrees
of freedom rapidly adjust to the state of lowest energy at given positions
of the nuclei and the electronic energy band serves as e�ective potential in
the Hamiltonian for the nuclei� This Born�Oppenheimer approximation is
the basis for the dynamics of molecules and
 as a consequence
 also for the
microscopic theory of classical �uids� There are many other examples of a
similar structure� A very widely studied case are electrons moving in the
periodic crystal potential
 which de�nes the short scale� The envelope of the
electronic wave function is governed by an e�ective Hamiltonian obtained
from the Peierls substitution
 in which the band energy is taken as e�ective
kinetic energy� For an electron coupled to the quantized radiation �eld the
photons are the fast degrees of freedom and the dynamics of the electron is
governed by an e�ective Hamiltonian accounting for spin precession� These
and other systems have been studied extensively by model speci�c approx�
imate methods without realizing that they share a common structure� In
fact
 all the examples given can be molded into the generic form

i�
�

�t
�t�x� � H�x��i�rx��t�x� � ���

Here H�q� p� is an operator�valued function on the classical phase space
� � R�d of the slow degrees of freedom with q a position like and p a
momentum like variable� H�q� p� is self�adjoint and acts on the Hilbert space
Hf of �internal� fast degrees of freedom� After quantization H�x��i�rx�
becomes the Hamiltonian of our system� To properly de�ne it one has to
specify an ordering of the operators x��i�rx
 for which we will adopt the
Weyl quantization rule as to be explained in full detail in the Appendix� �t
is a wave function on Rd with values in Hf � Thus the quantum mechanical
Hilbert space of states is H � L��Rd �Hf� � L��Rd � � Hf � Finally � is a
dimensionless parameter which controls the scale separation
 �� ��

Examples will be given in due course and we only remark that
 in general

��� is already the result of a proper identi�cation of the slow degrees of
freedom� For example
 in nonrelativistic QED q stands for the position of
the electron
 whereas p is the total momentum of the electron and photons�
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For an electron in a periodic potential ��� is the Hamiltonian in the crystal
momentum basis with x standing for the Bloch momentum k in the �rst
Brillouin zone
 see �PST���

Our goal is to construct approximate solutions to ���
 a task which we
divide into four steps�

�i� Almost invariant subspace� The adiabatic decoupling can be traced
to a spectral property of H�q� p�� It is assumed
 and it can be proved in
many particular cases
 that for each q� p the spectrum
 ��q� p�
 of H�q� p�
can be decomposed into a �relevant� part �r�q� p� and a remainder in such
a way that the relevant energy band f�q� p� �� � R�d�� � � � �r�q� p�g is
separated from the remainder f�q� p� �� � R�d�� � � � �r�q� p�cg by a gap

i�e� by a corridor of �nite width� In many cases of interest the relevant
part of the spectrum consists of a single
 possibly degenerate eigenvalue and
the relevant energy band is the graph of a smooth function� Of course
 a
given H�q� p� could have several such relevant energy bands and we suppose
one of them to be singled out
 e�g�
 through the initial condition� To the
relevant energy band of H one associates a subspace �H of H with the
property that if �� � �H
 then �t � �H up to an error which is smaller
than any power of �� For this reason �H is called an almost invariant
subspace� If bH denotes the Weyl quantization of H
 then � bH��� � O����

where � is the orthogonal projector onto the closed subspace �H� Of course

in practice
 approximations to � are constructed
 for which at order n the
error is O��n����

�ii� Reference Hilbert space� Clearly
 on �H the dynamics is generated
by the diagonal Hamiltonian � bH�
 up to O����� While properly de�ned

for a further analysis of the e�ective dynamics inside �H a representation in
terms of adapted coordinates for the slow degrees of freedom is more pow�
erful� We call the corresponding Hilbert space K � L��Rd �Kf� the reference
space� By de�nitionK is independent of �� The next task is thus to construct
a linear map U � �H � K
 which is unitary in the sense that U�U � � and
UU� � �K�

�iii� E�ective Hamiltonian� The e�ective Hamiltonian is de�ned through
h � U� bH�U� as operator on K� It is unitarily equivalent to the diagonal
Hamiltonian
 but acts on a simpler space� While h is still a rather abstract
object
 it can be expanded in powers of �
 which is the adiabatic perturbation
theory of the title� Already the lowest order approximations provide a wealth
of information on the motion of the slow degrees of freedom�

�iv� Semiclassical limit� In many applications of interest the e�ective
Hamiltonian is of a form which allows for a semiclassical analysis� The
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simplest situation is a relevant band which consist only of a single
 possibly
degenerate
 eigenvalue� Then the e�ective Hamiltonian has a scalar principle
symbol and the semiclassical analysis is straightforward�

We are certainly not the �rst ones to investigate approximate solutions to
��� and we have to explain which parts of the program outlined above have
been achieved before and which parts are our novel contribution� In addition
there have been other approaches to ��� on which we brie�y comment below�

To our knowledge
 the notion �almost invariant subspace� was �rst coined
by Nenciu �Ne�� in the context of gauge invariant perturbation theory� In
the context of space�adiabatic problems Brummelhuis and Nourrigat �BrNo�
construct � for the particular case of the Dirac equation and Martinez and
Sordoni �MaSo� based on �So� consider Born�Oppenheimer type Hamiltoni�
ans� The general scheme for the construction of � is sketched in Nenciu and
Sordoni �NeSo� and applied to the matrix�valued Klein�Gordon equation�
Our construction is based on the one in �NeSo�
 but di�ers in a few technical
details�

As in the case of � we construct the unitary U in several steps� First
we compute order by order the formal symbol of U 
 which
 after quantiza�
tion
 gives rise to an �almost unitary� operator� Finally the almost unitary is
modi�ed to yield a true unitary exactly intertwining �H and K� Our method
is speci�cally designed to deal also with problems as the Dirac equation and
the Bloch electron with external magnetic �elds
 where the projector � has
no limit for � � �
 see Remark ���� While the speci�c application and the
proof are new
 the general idea to construct a pseudodi�erential operator
which is almost unitary and diagonalizes a given pseudodi�erential opera�
tor has a long tradition
 �Ni� Section 
 and references therein
 �Ta�
�HeSj��
The method of successive diagonalization is also prominent in the physics
literature
 for example �FoWo� in the derivation of the Pauli equation and
its corrections
 �Bl�� for periodic Schr�odinger operators
 �Bl�� for the Dirac
equation
 �LiFl
 LiWe� for Born�Oppenheimer type Hamiltonians�

Our central result is the expansion of the e�ective Hamiltonian h� We
provide a scheme which is applicable in general and work out explicitly the
expansion as h � h� � �h� � ��h� � O����� In particular
 for a relevant
band consisting of a single eigenvalue
 h� is the Peierls substitution and h�
contains among other things the information on geometric phases�

Since h has
 in general
 a matrix�valued symbol
 we discuss and apply
some results on the semiclassical limit for matrix�pseudodi�erential opera�
tors with scalar principal symbol� We include this part to make the paper
self�contained and to demonstrate that in many cases of interest the motion
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of the slow degrees of freedom can be approximately described through the
appropriate classical Hamiltonian �ow�

Surely the reader will have noticed that our program makes no mention
of the initial conditions for ���� The reason is simply that our estimates
are uniform on �H
 respectively on K� Physically this partial independence
from the initial conditions is most welcome
 because in general they cannot
be controlled so easily� On the other hand
 in the approach of Hagedorn and
Joye �HaJo�� one constructs for a speci�c ��dependent ��

� the wave packet
t �� ��

t � H
 which solves ��� up to O���� or even O�e�c���� Hagedorn
and Joye study Born�Oppenheimer Hamiltonians� Periodic Schr�odinger op�
erators are considered in �GRT
 DGR�
 who employ a related multi�scale
analysis� Whereas in the other approaches the adiabatic and the semiclas�
sical limit are taken simultaneously
 both limits are clearly separated in our
results� We consider this an important conceptual advantage�

To give a brief outline of our paper� In Section � we explain the pre�
cise assumptions on the Hamiltonian H and construct the almost invariant
subspace �H� The reference space K and the unitary intertwining it with
�H are explained Section �� The central part of our paper is the expansion
of the e�ective Hamiltonian in Section �� In particular
 we work out the
expansion for Born�Oppenheimer Hamiltonians including order ��� We also
show that by the Howland trick the standard time�adiabatic theory can be
subsumed under ���� The semiclassical analysis for the e�ective Hamilto�
nian is summarized in Section �� Last but not least
 in Section � we discuss
the Dirac equation with slowly varying external vector potentials
 since it
is the simplest Hamiltonian for which the full generality of our approach is
needed and yields interesting physical results� In this case Hf � C � and
the classical symbol has two two�fold degenerate energy bands
 one for the
electron and one for the positron� Thus the reference Hilbert space e�g� for
the electron band is L��R� � C � �� The e�ective Hamiltonian is determined
including order �� The principal part h� describes the translational motion
through the Peierls substitution and the subprincipal part h� yields the spin
precession as governed by the BMT equation� Since the external vector
potential appears through minimal coupling
 the projection P �q� p� on the
electron subspace depends nontrivially on both coordinates
 in contrast to
Born�Oppenheimer and time�adiabatic theory
 where the relevant projection
P �q� p� depends only on one of the canonical coordinates� We end the paper
with some concluding remarks in Section 
 and with an Appendix reviewing
some results on pseudodi�erential calculus with operator�valued symbols�
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� General setting and construction of the almost�

invariant subspace

Space�adiabatic perturbation theory deals with quantum systems in which it
is possible to distinguish between fast and slow degrees of freedom� In par�
ticular we assume that the Hilbert space H admits a natural decomposition
as H � L��Rd�� Hf 
 where L��Rd� is the state space for the slow degrees of
freedom and Hf is the state space for the fast degrees of freedom�

As the second structural ingredient we require that the Hamiltonian is
given as the quantization of a B�Hf��valued function on the classical phase
space R�d of the slow degrees of freedom� Hence we need to consider the
generalization of the usual quantization rules to the case of B�Hf��valued
functions on R�d � This theory is well covered in the literature
 see for example
�H�o
 Fo
 Iv
 GMS�� Still
 for the convenience of the reader
 we provide a
self�contained review of the basic results in the Appendix
 where we also
introduce the relevant notation�

We now state the general assumptions on which the adiabatic perturba�
tion theory will be based in the following� Let Hf be a separable Hilbert
space
 the state space for the fast degrees of freedom
 and H � L��Rd��Hf �
The Hamiltonian bH of the full system is given as the Weyl quantization
of a semiclassical symbol H � Sm

� ���� We assume that bH is essentially

self�adjoint on S� A point in the classical phase space R�d is denoted by
z � �q� p� � R�d �

The adiabatic decoupling relies on a gap condition for the principal sym�
bol H� of H�

Condition �Gap��� For any z � R�d the spectrum ��z� of H��z� � B�Hf�
contains a relevant subset �r�z� which is uniformly separated from its com�
plement ��z� n �r�z� by a gap� More precisely there are two continuous
functions �j � R�d � R �j � �� �with �� � ��� such that�

�G�� for every z � R�d the spectral component �r�z� is entirely contained in
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the interval I�z� �� ����z�� ���z�� 

�G�� the distance between ��z� n �r�z� and the interval I�z� is uniformly
bounded away from zero and increasing for large momenta
 i�e�

dist���z� n �r�z�� I�z�� 	 Cg hpi
�  ���

�G�� the width of the interval I�z� is uniformly bounded
 i�e�

sup
z�R�d

j���z� � ���z�j � C �
 �

We denote the spectral projector corresponding to �r�z� by 	��z�� As
explained in the Introduction
 one expects interband transitions to be sup�
pressed for small �� To prove such a property we need either one of the
following assumptions to be satis�ed�

Condition of increasing gap �IG�m�

Let H be an hermitian symbol in Sm
� ���B�Hf�� �with 
 � � and m 	 ��

such that the principal symbol H� satis�es condition �Gap�� with � � m�

Condition of constant gap �CG��

Let H be an hermitian symbol in S�����B�Hf�� such that the principal symbol
H� satis�es condition �Gap�� with � � ��

Note that for the case H � S�����B�Hf�� one can show that bH 	 the Weyl
quantization of H 	 is essentially self�adjoint on the domain S�Rd �Hf� � H�
The proof is postponed to an appendix to the space�adiabatic theorem�

In analogy with the usual time�adiabatic theorem of quantum mechanics

see Section ���
 we baptize the following result as space�adiabatic theorem� It
establishes that there are almost invariant subspaces associated with isolated
energy bands� In spirit the result is not new� However
 to our knowledge
it appears in this explicit form only recently in the literature� Brummel�
huis and Nourrigat �BrNo� gave a proof for the Dirac equation
 Martinez
and Sordoni �MaSo� considered Born�Oppenheimer type Hamiltonians �cf�
Section ���� based on results from �So�
 and Nenciu and Sordoni �NeSo�
sketched the general scheme and applied it to a matrix�valued Klein�Gordon
type problem�

Theorem ��� �Space	adiabatic theorem�� Assume either �IG�m or �CG��
Let bH be the Weyl quantization of H� Then there exists an orthogonal pro�
jector � � B�H� such that � bH� �

�
� O���

�� ���
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and � � b	 � O���
��� where b	 is the Weyl quantization of a semiclassical

symbol

	 �
X
j��

�j	j in S�����

whose principal part 	��z� is the spectral projector of H��z� corresponding
to �r�z��

The subspace Ran� � H is thus an almost invariant subspace for the

dynamics generated by the Hamiltonian bH
 i�e� �e�i
bHt��� � O���

�jtj�
 and it
is associated with the spectral band �r�z�� The terminology was introduced
in �Ne��� Note
 however
 that Ran� is
 in general
 not an almost invariant
subspace in the sense of �Ne��
 since � need not have a limit as �� ��

Remark ���� Note that the growth condition on the gap in �IG�m is stronger
than one would expect from the analysis in �NeSo� or �Te��� Indeed
 in both
examples a gap which is bounded globally over phase space su!ces to prove
uniform adiabatic decoupling also in the presence of a Hamiltonian with
principal symbol increasing linearly in momentum� More general
 uniform
adiabatic decoupling should hold whenever �IG�m is satis�ed with � � m�
�
Indeed ��� follows from the following proof with slight modi�cations under
this weaker condition on the growth of the gap� However
 this modi�ed
proof does not give 	 � S�����
 a fact we will make use of in the following�
To avoid further complications in the presentation
 we decided to state only
the stronger result for the stronger growth condition�

Proof�We decompose the proof into two steps�

Step I� Construction of the Moyal projector

In general 	� is not a projector in the Moyal algebra
 i�e� 	� " 	� 
� 	��
The following lemma shows that 	� can be corrected
 order by order in
�
 so to obtain a true Moyal projector 	 which Moyal commutes with H�
Similar constructions appeared in the context of the Schr�odinger equation
several times in the literature �NeSo
 BrNo
 EmWe�� Our proof was strongly
in�uenced by the one in �NeSo�
 but di�ers in relevant details
 since we
consider di�erent symbol classes� It relies on the construction of the local
Moyal resolvent of H��z�� The construction of the global inverse of an elliptic
symbol
 often called the parametrix
 is well known �DiSj
 Fo
 Ni��

Lemma ��
� Assume either �IG�m or �CG�� Then there exists a unique
formal symbol

	 �
X
j��

�j	j 	j � S�j�� �B�Hf�� �
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such that 	��z� is the spectral projector of H��z� corresponding to �r�z�� with
the following properties�

�i� 	"	 � 	�

�ii� 	� � 	�

�iii� �H� 	 �� �� H "	 � 	"H � ��

Proof� We give the proof under the assumption �IG�m� The proof under
assumption �CG� is simpler
 since all the symbols which appear belong to
S������

We �rst provide a constructive scheme for the special case where �r�z� �
fEr�z�g is an eigenvalue
 which
 at the same time
 proves uniqueness of 	 in
the general case� It follows basically the construction as given in �EmWe��
The reason for including this scheme is that the aim of adiabatic perturbation
theory is
 in particular
 to give an as simple as possible recipe for explicitly
computing the relevant quantities� The inductive scheme for constructing
	 in the special case �r�z� � fEr�z�g is much better suited for explicit
computations than the general construction which will follow later on�

Note that 	� "	� � 	� � O��� and �H�� 	��� � O��� and proceed by
induction� Assume that we found 	�n� �

Pn
j	� 	j such that

	�n� "	�n� � 	�n� � �n��Gn�� �O��n��� � ���

where
 in particular
 ��� de�nes Gn��� Thus the next order term in the
expansion 	n�� must satisfy

	n�� 	� � 	� 	n�� � 	n�� � �Gn�� �

which uniquely determines the diagonal part of 	n�� to be

	Dn�� � �	�Gn�� 	� � ��� 	��Gn�� ��� 	�� � ���

Since Gn�� � 	�Gn�� 	� � ��� 	��Gn�� ��� 	�� follows from the fact that
Gn�� is the principal symbol of ��n���	�n� "	�n� � 	�n��
 ��n� �� 	�n� �
�n��	Dn�� indeed satis�es �i� up to an error of order O��n����

By induction assumption we also have that �H�	�n��� � O��n��� and
thus

�H���n��� � �n��Fn�� �O��n��� � ���
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Hence
 the diagonal part of 	n�� being �xed already
 the o��diagonal part
of 	n�� must satisfy �H�� 	

OD
n��� � �Fn��� In particular


H��z� �	��z�	n���z��� � 	��z��� � �	��z�	n���z��� � 	��z��� H��z�

� �	��z�Fn���z� �� � 	��z�� �
�

for all z � R�d � We �rst show that if �
� has a solution 	��z�	n���z��� �
	��z�� �� 	OD�

n�� �z�
 it is unique
 i�e� that the kernel of the map 	OD�
n�� �z� ��

�H��z�� 	OD�
n�� �z�� restricted to Ran���	��z�� contains only zero� To see this

let �r�z� �� �sup�r�z�� inf �r�z��
� and note that
 due to the gap condition

H��z� � �r�z� is invertible on Ran�� � 	��z�� with k�H��z� � �r�z������ �
	��z��k � �
diam��r�z��� Hence

�H��z�� 	OD�
n�� �z�� � � � �H��z�� �r�z�� 	OD�

n�� �z�� � �

� 	OD�
n�� �z� � �H��z�� �r�z��	OD�

n�� �z��H��z� � �r�z����

and therefore

k	OD�
n�� �z�k

� k�H��z�� �r�z��	��z�k k	OD�
n�� �z�k k�H��z�� �r�z������� 	��z��k

� C k	OD�
n�� �z�k

with C � �� Hence 	OD�
n�� �z� � � and we conclude that 	n�� is unique when

it exists�

In the special case that �r�z� � fEr�z�g
 �
� can be solved
 and one �nds

	�	n����� 	�� � 	� Fn�� �H� �Er�
�� ��� 	�� � ���

Using that Fn�� is the principal symbol of ��n���H���n���
 that 	� is the
principal symbol of ��n� and that ��n� satis�es �i� up to O��n���
 one �nds
that 	�Fn��	� � �� � 	��Fn���� � 	�� � � and thus that 	�n��� de�ned
through ��� and ��� satis�es �i� and �iii� up to O��n����

We conclude that by induction we have uniqueness of 	 in the general
case
 and an explicit construction for 	 when �r�z� � fEr�z�g� The latter
one involves four steps at each order� �a� Evaluation of Gn�� as in ���
 �b�
computation of 	Dn�� as in ���
 �c� evaluation of Fn�� as in ���
 �d� computa�
tion of 	ODn�� as in ����

We now turn to the construction of 	 in the general case� Since the Moyal
product is a local operation �it depends only on the pointwise value of the
symbols and their derivatives� it su!ces to construct 	 locally in phase space
and then uniqueness will liberate us from gluing the local results together�
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Let us �x a point z� � R
�d � From the continuity of the map z �� H��z�

and the gap condition it follows that there exists a neighborhood Uz� of z�
such that for every z � Uz� the set �r�z� can be enclosed in a positively�
oriented complex circle ��z�� �independent of z� in such a way that ��z�� is
symmetric with respect to the real axis


dist���z��� ��z�� 	
�

�
Cg hpi

� for all z � Uz� ���

and

Radius���z��� � Cr sup
z�Uz�

hpi� � ����

where Radius ���z��� is the radius of the complex circle � � ��z��� The
constant Cg in ��� is the same as in ��� and the existence of a constant Cr

independent of z� such that ���� is satis�ed follows from assumption �G���
We keep � in the notation as a bookkeeping device
 in order to distinguish
the contributions related to the gap
 although � � m�

Let us choose any � � � and restrict all the following expressions to
z � Uz� � There exist a formal symbol R��� 	 the local Moyal resolvent of H
	 such that

R��� " �H � ��� � � � �H � ��� " R��� on Uz� � ����

The symbol R��� can be explicitly constructed� We abbreviate

R���� � �H� � �����

where the inverse is understood in the B�Hf��sense and exists according to
���� By induction
 suppose that R�n���� �

Pn
j	� �

jRj��� satis�es the �rst

equality in ���� up to O��n����terms
 i�e�

R�n���� " �H � ��� � � � �n��En����� �O��n����

By choosing Rn�� � �En�� �H� � �����
 we obtain that R�n��� � R�n� �
�n��Rn�� satis�es the same equality up to O��n����terms� Then the formal
symbol R��� �

P
j�� �

jRj��� satis�es the �rst equality in ���� which 	 by
the associativity of the Moyal product 	 implies the second one�

Equation ���� implies that R��� satis�es the resolvent equation

R����R�� �� � �� � � �� R��� " R�� �� on Uz� � ����
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From the resolvent equation it follows 	 by using an argument similar to
the standard one in operator theory �Ka�� 	 that the symbol 	 �

P
j�� �

j	j
de�ned by

	j�z� ��
i

�	

Z


Rj��� z� d�� z � Uz� � ����

is a Moyal projector such that �H�	�� � � on Uz� � Indeed
 for every �xed
z � Uz� and j � N
 the map � �� Rj��� z� is holomorphic in a neighborhood
of the circle ��z��� Then ��z�� can be expanded to a slightly larger circle ��

without changing the left hand side of ���� and we obtain

�	 " 	�j �

�
i

�	

�� Z

�

d� �
Z


d�
�
R�� �� " R���

�
j

����

�

�
i

�	

�� Z

�

d� �
Z


d�
�
� � � �

��� �
R�� ���R���

�
j

�
i

�	

Z


Rj��� d� � 	j

where ���� has been used� The �rst equality in ���� follows by noticing that
for every � � N�d

��z 	j�z� �
i

�	

Z


��zRj��� z� d� z � Uz� �

and by expanding the Moyal product order by order in ��

Since the circle � is symmetric with respect to the real axis one imme�
diately concludes that 	� � 	
 since R���� � R�#�� as a consequence of �����
From ���� it follows that 	 Moyal�commutes with R��� for any � � �� Then

by multiplying 	"R��� � R��� "	 by �H ���� on both sides
 one obtains
that H "	 � 	"H�

Finally we have to show that 	j � S�j�� for every j � N� From the Riesz
formula ���� it follows that for every � � N�d one has

k���z 	j� �z�kB�Hf�
� �	 Radius ���z��� sup

��
�z��
k���zRj� ��� z�kB�Hf�

�

According to ���� we are left to prove that

sup
��
�z��

������q ��pRj

�
��� z�

���
B�Hf �

� C��j hpi
���j��j�j� � �� � � Nd � j � N �

����



G� Panati� H� Spohn� S� Teufel ��


where C��j must not depend on z�� As for R�
 we notice that according to
��� one has���H��z�� �����

��
B�Hf �

�
�

dist��� ��H��z���
�

�

Cg
hpi�� � ����

and moreover


krpR��z�kB�Hf �
� k��R�rpH�R���z�kB�Hf �

�

�
�

Cg

��

hpi��� krpH��z�kB�Hf�

� C hpi����m�� � C hpi���� �

where the last bound follows from the fact that H� � Sm
� �recall that � � m��

By induction one controls higher order derivatives and ���� follows for j � ��

Again by induction
 assume that R�� � � � � Rn satisfy the bound ����� Then

by writing out

En�� �
�
R�n���� " �H � ���� �

�
n��

and using ����
 one concludes that Rn�� � �En��R� satis�es ���� with
� � m�

Step II� Quantization

First of all
 by resummation �Prop� A��� we obtain a semiclassical symbol
	 � R�d� ��� ��� � B�Hf� whose asymptotic expansion is given by

P
j�� �

j	j �
Then
 by Weyl quantization
 one gets a bounded operator b	 � B�H� �see
Prop� A��� which is an almost�projector
 in the sense that

�i� b	� � b	 �O������

�ii� b	� � b	
�iii� � bH� b	� � O������

Notice that the assumption 
 � � is crucial in order to obtain �iii� for an
unbounded bH�

In order to get a true projector we follow the idea of �NeSo� and notice
that kb	� � b	k � O���� and the spectral mapping theorem for self�adjoint
operators imply that for each n � N there is a Cn �
 such that

��b	� � ��Cn�
n� Cn�

n� � ��� Cn�
n� � � Cn�

n� �� ��� � �
�
� �
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Hence one can de�ne for � � �
��C��

� ��
i

�	

Z
j���j	 �

�

�b	 � ���� d� �

Then �� � � follows and we claim that � � b	 �O���
��� Indeed


b	 �

Z
�����

�
�

�E�d�� � O���
n� �

Z
���

E�d�� � � �O���
n� for all n � N �

where E��� is the projection valued measure of b	� Finally notice that

� bH��� �
i

�	

Z
j���j	 �

�

� bH� �b	 � �����d�

� �
i

�	

Z
j���j	 �

�

�b	 � ����� bH� b	 ��b	 � ����d� �

which implies that��� bH���
��
B�H�

� C
��� bH� b	�

��
B�H�

� O���
�� �

This concludes the proof of the theorem�

Essential self	adjointness of bH�
Since H is an hermitian symbol its Weyl quantization bH is symmetric on
the invariant domain S�Rd �B�Hf�� � H� If H belongs to S���� then bH is a
bounded operator
 and there is nothing to prove�

In order to prove essential self�adjointness in the case H � S�����
 we use
an argument of �Ro�� The proof does not exploit the smallness of � and we
therefore consider any � � �� For s � � let

B�s�q� p� � �H��q� p�� is���� �

which
 according to Proposition A��
 belongs to S���B�Hf��� Moreover

�H � is�� $" B�s � �� �S�s �

where S�s � S�����
 since H � S����� and B�s � S������ After Weyl quantiza�
tion we obtain that

� bH � is�� bB�s � �� �bS�s with
��bS�s��B�H� � C

jsj
�

the latter bound following �for s large enough� from Proposition A�� and
from estimating the Fr�echet semi�norms of S�s� Essential self�adjointness of
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bH on the domain S follows
 if we can show that Ker� bH��is� � f�g for some
s � �� For this let � � Ker� bH�� is� and � � S� Using bB�S � S
 we obtain

� � h� bH� � is��� bB��i � h�� � bH � is� bB��i � h�� �� � �bS�s��i �
Since k�bS�sk � � for s large enough
 �� � �bS�s�S is dense in H and hence
� � � follows�

� Reference subspace and intertwining unitaries

The fact that the subspace associated with an isolated energy band decouples
from its orthogonal complement up to small errors in � leads immediately to
the following question� Is there a natural way to describe the dynamics of the
system inside the almost invariant subspace Ran�% The main obstruction
for such a simple description is the fact that the subspace Ran� depends on
� and is not easily accessible� Even worse
 in general the limit lim��� � does
not exist
 meaning that Ran� is not even close to an ��independent subspace�
In order to obtain a useful description of the e�ective intraband dynamics we
thus need to map Ran� to an easily accessible and ��independent reference
subspace�

&From the continuity of z �� H��z� and the gap condition it follows that
there is a subspace Kf � Hf independent of �q� p� such that the subspaces
Ran	��q� p� are all isomorphic to Kf � Let 	r be the projection on Kf 
 then
�r �� ��	r �� b	r� will serve as the projector on the reference subspace K ��
Ran�r� Of course Kf is highly non�unique and a convenient choice must be
made in concrete applications�

Once the reference Hilbert space is �xed we next chose a unitary operator
valued smooth function u��z� which pointwise in phase space intertwines
	��z� and 	r
 i�e�

u��z�	��z�u��z�� � 	r � ��
�

The existence of such a smooth map follows from a bundle�theoretic argu�
ment given at the end of this section� Again u��z� is not unique and must
be chosen conveniently� We will see in Section � that there is an optimal
choice for u��z�
 which re�ects the physics of the problem�

We cannot prove that it is possible to choose u� in S���B�Hf��� Indeed

relation ��
� does not imply any bound at in�nity on the derivatives of u�

as can be seen by multiplying u� with a highly oscillating phase� Hence we
assume that u� is in S���B�Hf��
 as will be the case in the physical examples�



��� Space�Adiabatic Perturbation Theory

In the following U�H� will denote the group of unitary operators over H�

Theorem 
��� Assume either �IG�m or �CG� and that there exists a U�Hf��
valued map u� � S���B�Hf�� which satis�es ����� Then there exist a unitary
operator U � B�H� such that

U �U� � �r ����

and U � bu � O���
��� where u �

P
j�� �

juj in S����� with principal symbol
u��

Remark 
��� In �NeSo� the Nagy transformation ���� is used in order to
map Ran� to the ��independent subspace Ranb	�� This is possible because
in their application the symbol 	� depends only on q and
 as a consequence
b	� is a projector satisfying k��b	�k � O���� However
 in general 	� depends
on q and p
 see Section � and �PST�� for relevant examples
 and the mapping
to the reference space becomes more subtle�

Proof� Step I� Construction of the Moyal unitaries�

Again u� fails to be a Moyal unitary �i�e� u�� "u� 
� �� and to intertwine 	
and 	r� However
 the following lemma shows that u� can be corrected order
by order to reach this goal� The idea of constructing a pseudodi�erential
operator which is almost unitary and diagonalizes a given pseudodi�erential
operator has a long tradition
 cf� �Ni� Section 
 and references therein
 and
was applied in di�erent settings many times
 e�g� �Ta
 HeSj��

Lemma 
�
� Assume either �IG�m or �CG� and that there exists a U�Hf��
valued map u� � S���B�Hf�� which satis�es ����� Then there is a formal

symbol u �
P

j�� �
juj� with uj � S�j�� �B�Hf��� such that

�i� u�"u � � and u"u� � � �

�ii� u" 	"u� � 	r �

where 	 is the Moyal projector constructed in Lemma 	�
�

Remark 
��� We emphasize that 	 as opposed to the Moyal projector 	
appearing in Lemma ��� 	 the Moyal unitary u is highly non�unique even
for �xed u�� As it will follow from the proof
 all the possible choices of
Moyal unitaries intertwining 	 and 	r with prescribed principal symbol u�
are parametrized by the antihermitian Moyal symbols which are diagonal in
the 	r�splitting�
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Proof of Lemma 
�
� Observe that u� satis�es �i� and �ii� on the principal
symbol level� We proceed by induction and assume that we found u�n� �Pn

j	� �
juj satisfying �i� and �ii� up to O��n���� We will construct un�� such

that u�n��� � u�n� � �n��un�� satis�es �i� and �ii� up to O��n���� To this
end we write without restriction

un�� �� �an�� � bn���u� �

with an�� hermitian and bn�� anti�hermitian� By induction assumption we
have

u�n� "u�n�� � � � �n��An�� �O��n���

u�n�� "u�n� � � � �n�� $An�� �O��n��� �

Thus un�� has to solve

u� u
�
n�� � un�� u

�
� � �An���

u�n�� u� � u�� un�� � � $An�� �
����

The �rst equation in ���� �xes an�� � ��
�An��
 since An�� is hermitian as

it is the principal symbol of ��n���u�n� "u�n�� � ��� The second equation
in ���� is then also satis�ed
 since the compatibility equation u�An�� �
$An�� u� follows from

�

�n��
u�n� " �u�n�� "u�n� � �� �

�

�n��
�u�n� "u�n�� � �� "u�n�

by noticing that u� $An�� �resp� An�� u�� is the principal symbol of the l�h�s
�resp� r�h�s��

Note that ���� puts no constraint on bn�� and we are left to determine
it using �ii�� Let w�n� � u�n� � �n�� an�� u�
 then by induction assumption

w�n� "	"w�n�� � 	r � �n��Bn�� �O��n���

and thus

u�n��� "	"u�n���� � 	r � �n�� �Bn�� � �bn��� 	r�� �O��n��� �

Hence we need to �nd an anti�hermitian bn�� satisfying

Bn�� � �bn��� 	r� � � �

which is given by

bn�� � �	r� Bn��� � ����
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provided that Bn�� is hermitian and o��diagonal in the 	r�splitting
 i�e�
	r Bn�� 	r and ��� 	r� Bn�� ��� 	r� vanish� This follows by noticing that
Bn�� is the principal symbol of ���n���

�
w�n� " 	 " w�n�� � 	r

�
and then

�� � 	r�Bn�� ��� 	r�
���
�

�

�n��
��� 	r�

�
w�n� "	"w�n�� � 	r

�
��� 	r�

�
�

�n��
��� 	r�

�
w�n� " 	 " w�n��

�
��� 	r�

�
�

�n��

�
���n���Bn��

�
w�n� " 	" w�n��

�
Bn�� �O��n���

�
���
� ��

where for the last equality we inserted � � 	r � w�n� " �� � 	� " w�n�� �
�n��Bn�� � O��n��� and used that w�n� solves �i� up to O��n��� and that
	 is a Moyal projector� A similar argument shows that 	r Bn�� 	r vanishes
too� Note also that ���� �xes only the o��diagonal part of bn�� and one
is free to choose the diagonal part of bn�� arbitrarily
 which is exactly the
non�uniqueness mentioned in Remark ����

It remains to show that the assumption u� � S�� implies that uj belongs

to S�j�� � Assume by induction that u�n� �M�
� ���� Then the formula

an�� � �
�

�
An�� � �

�

�

�
u�n� "u�n�� � �

�
n��

shows that an�� belongs to S
��n����
� as it is the �n � ���th term of an el�

ement of M�
� ���� By Proposition A��
 an�� u� � S

��n����
� as well� Anal�

ogously we have that Bn�� � S
��n����
� by induction assumption
 there�

fore bn�� � S
��n����
� and thus bn�� u� � S

��n����
� 
 which �nally gives

un�� � S
��n����
� �

Step II� Quantization

Now let u denote a resummation of the formal power series u �
P

j�� �
juj

in S����� �see Prop� A���� Then
 by Weyl quantization
 one gets a bounded
operator bu � B�H� �see Prop� A��� such that�

�i� bu �bu � � �O������ and bu bu � � � �O������

�ii� bu b	 bu � � �r �O�������

As a �rst step we modify bu by an O���
���term in order to get a true unitary

operator eU � U�H� �which
 in general
 does not correspond to the Weyl
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quantization of any semiclassical symbol�� Let

eU � bu �bu � bu��
�
� � ����

Notice that bu � bu is a self�adjoint positive operator which is O���
���close

to the identity operator� Then �bu � bu��
�
� is well�de�ned and again O���

���
close to the identity operator� Hence ���� de�nes a unitary operator which
moreover is O���

���close to bu�

Finally we modify eU in order to obtain a unitary which exactly inter�
twines �r and �� Since keU � eU ���rk � � for � su!ciently small
 the Nagy
formula as used in �NeSo�

W ��

	
��

�eU � eU � ��r

��
� �
� heU � eU � �r � ��� eU � eU ������r�

i
����

de�nes a unitary operator W � U�H� such that W eU � eU �W � � �r and
W � � � O���

��� Thus by de�ning U � W eU one obtains ����
 with the
desired properties�

Remark 
��� We sketch how to prove the existence of a smooth map u�
satisfying ��
�� Given

E �
n

�z� �� � R�d �Hf � � � Ran	��z�
o

the map �E � E � R�d � �z� �� �� z de�nes a �bration of Hilbert spaces over
the base space R�d �

The �bration is locally trivial� Indeed for any z� � R
�d there exists a

neighborhood Uz� such that k	��z�� 	��z��k � � for any z � Uz� 
 so that
the Nagy formula

w�z� �
h
�� �	��z�� 	��z���

�
i� �

�
�	��z�	��z�� � ��� 	��z���� � 	��z����

locally de�nes a unitary operator w�z� such that w�z��	��z�w�z� � 	��z���
A local trivialization of the �bration is then explicitly given by

' � ���
E �Uz�� � Uz� �Ran	�z�� � Uz� �Kf

�z� �� �� �z� w�z��� �� �z� ��z��w�z���

where we use the fact that there exists a unitary operator ��z�� � Ran	�z�� �
Kf � The existence of ��z�� follows from the fact that the dimension of
Ran	�z�� is independent of z�
 but the map z� �� ��z�� may be a priori
even discontinuous�
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Moreover one can check that any two such trivializations are U�Kf��
compatible
 and the previous data de�ne a linear U�Kf��bundle�

Since the base space is contractible
 the bundle is trivial and the asso�
ciated principal U�Kf��bundle �i�e� the bundle of the orthonormal frames�
admits a global smooth section� This implies the existence of a smooth map
u� � R�d � U�Hf� such that ��
� holds true�

� Adiabatic perturbation theory

��� The e�ective Hamiltonian

In the previous section we constructed a unitary U on H which exactly
intertwines the almost invariant subspace Ran� and the reference subspace
K � Ran�r� U and � are O���

���close to pseudodi�erential operators with
symbols u and 	 both in S������

We de�ne the e�ective Hamiltonian bh as the quantization of a resumma�
tion h of the formal symbol

h � u"H "u� � ����

Recall that we do not distinguish semiclassical symbols and formal symbols
in the notation� The following theorem is the basis for the adiabatic per�
turbation theory
 as it relates the unitary time�evolution generated by the
original Hamiltonian bH to the one generated by the e�ective Hamiltonian bh�

Theorem ���� Under the assumptions of Theorem 
��� one has that h �
Sm
� ��� and bh is essentially self�adjoint on S� Furthermore

�bh� �r � � � � ����

e�i
bHt � bu � e�ibht bu � O���

�jtj� ����

and

e�i
bHt � U� e�i

bht U � O���
��� � jtj�� � ����

Proof� Since u � S����� and H � Sm
� ���
 the composition rule for semiclas�

sical operators �see Prop� A��� yields h � Sm
� ��� and thus hj � Sm�j�

� �
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Let eh �� bu bH bu�� Since bu � is bounded with bounded inverse
 one �nds
 by
checking de�nitions
 that eh is self�adjoint on bu ���D� bH� and that eh is essen�
tially self�adjoint on bu ���S� According to Equation ������ in �DiSj�
 which
generalizes to B�Hf��valued symbols
 bu ��� � OPS���� and thus bu ���S � S�

Hence S is a core for eh and
 since bh� eh � B�H�
 the same conclusions hold
for bh�

Next observe that
 by construction
 �hj � 	r� � � for all j � N and thus

�hj � 	r�e� � � because 	r does not depend on �q� p� � R�d � Hence �bhj ��r� � �

and thus ���� follows�

For ���� observe that

e�i
bHt � bu � e�ibht bu � � i e�i

bHt

Z t

�
ds ei

bHs
� bH bu � � bu � bh� e�ibhs bu � O���

�jtj� �

since
 by construction
 � bH bu �� bu � bh� � O������� Finally ���� follows from
���� using U � bu � O���

���

Remark ���� It might seem more natural to de�ne the e�ective Hamilto�
nian as

He� � U � bH �U� � U ����� bH �����U� �

Clearly one should have He� � bh � O���� in some sense� However
 ifbH is unbounded
 this closeness does not follow in the norm of bounded
operators from our results
 since U need not be a semiclassical operator�
As a consequence no asymptotic expansion of He� in the norm of bounded
operators would be available�

In the remainder of this section we will study the �nite order asymptotic
approximations

bh�n� ��

nX
j	�

�j bhj
to the e�ective Hamiltonian bh� By virtue of ����
 we can
 whenever ap�
propriate
 restrict our attention to the reduced Hilbert space K � Ran�r�
Furthermore we de�ne bu�n� �

Pn
j	� �

j buj and obtain a �nite order expansion

of the unitary U as kU � bu�n� kB�H� � O��n����

Our main interest are approximations to the solution of the time�depen�
dent Schr�odinger equation

i
��t
�t

� bH �t
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over times of order ��k� 
 where � does not depend on � and k � N is
arbitrary� Starting with ���� on the almost invariant subspace we obtain

e�i
bHt� � bu � e�ibht �r bu �O���

�jtj�

� bu �n�� e�it
bh�n�k� �r bu �n� � �� � j� j�O���

n��� � jtj � ��k� ���
�

where 
�n � k � �� 	 m is assumed in order to have bh � bh�n�k� � B�H��
Hence
 given the level of precision �n and the time scale ��k
 the expansion
of bh must be computed up to order bhn�k and the expansion of U up to orderbun� Put di�erently
 in order to improve the error
 a better approximation
to the unitary transformation is necessary� On the other hand
 in order to
enlarge the time�scale of validity for the space�adiabatic approximation
 only
the e�ective Hamiltonian bh must be computed to higher orders�

Specializing ��
� to n � � and k � �
 one obtains the leading order
solution of the Schr�odinger equation as

e�i
bHt� � bu�� e�i�bh���bh��t �r bu� � �� � j� j�O���� � jtj � ���� � ����

where m � �
� Here the choice of k � � corresponds to the macroscopic
or semiclassical time�scale t
�� On this time�scale the e�ective dynamics

e�i
bht���r on the reference subspace is expected to have a nice semiclassical

limit
 under suitable conditions on bh�

Note that one can replace in ��
� and analogously in ���� � by ���� and
obtains

e�i
bHt� � bu�n�� e�ibh�n�k� �r bu�n� � �� � j� j�O���n����� � jtj � ���k���� �

����

Thus one can enlarge the time�span for which the approximation holds with�
out the need to compute further terms in the expansion� The price to be
paid is a larger error
 of course�

We emphasize that ��
� and ���� are purely space�adiabatic expansions
with no semiclassical approximation invoked yet� As a consequence one ob�
tains uniform results and a simple bound on the growth of the error with
time� Note in particular that the space�adiabatic approximation holds on
time�scales far beyond the Ehrenfest time�scale
 the maximal time�scale for
which semiclassical approximations are expected to hold� For some partic�

ular cases semiclassical expansions of the full propagator e�i
bHt�� have been

derived directly
 e�g� in the context of the Dirac equation �Ya
 BoKe��� These
expansions hold
 in general
 only for short times
 in the sense that they must
be modi�ed each time a caustic in the corresponding classical �ow is en�
countered� More important
 the clear separation of the space�adiabatic and
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the semiclassical expansion is not maintained
 which is a severe drawback

since in many physical situations the space�adiabatic approximation is valid
to high accuracy
 while the semiclassical approximation is not
 cf� Section ��
On the other hand
 a semiclassical expansion of the right hand side of ���� is
straightforward in many interesting cases
 as will be discussed in Section ��

In parentheses we remark that the space�adiabatic approximation can be
used also in the time�independent setting
 i�e� to estimate spectral properties
of bH� If one is able to compute eigenvalues of bh�n� up to errors of order o��n�


bh�n� ��n� � E�n� ��n� � o��n� �

it follows that

bH bu � ��n� � E�n� bu � ��n� � o��n� �

If
 in addition
 one knows from some a priori arguments that bH has pure
point spectrum near E�n�
 it follows that bH has an eigenvalue o��n��close
to E�n�� Otherwise one can at least conclude that there is a �resonance�
in the sense of a quasi bound state o��n��close to E�n�� We stress that no
explicit knowledge of U is needed as long as the interest is in approximate
eigenvalues only� For example
 the scheme just described can be applied to
the time�independent Born�Oppenheimer theory
 where one is interested in
the low lying spectrum of a molecule� The standard approaches to the time�
independent Born�Oppenheimer approximation �CDS
 Ha�
 KMSW� yield in
some respects mathematically stronger results� However
 our scheme su!ces
for estimating asymptotic expansions of eigenvalues and is simpler to handle

in general�

��� Leading order terms in the expansion of the e�ective

Hamiltonian

We turn to the explicit determination of the leading order terms hj in the

expansion of bh using ����� Of course
 in concrete applications only H and
u� are given explicitly
 while the higher order terms in the expansion of u
must be calculated using the construction from Section �� For a general
Hamiltonian bH such a program is feasible only for the terms h�
 h� and
possibly h�
 which will be our concern in the following�

The principal symbol of h is given by

h� � u�H� u
�
� �
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Higher order terms can be obtained using ����� The double Moyal product
becomes rather awkward to handle
 and alternatively we proceed inductively
by observing that

u"H � h� "u � � h� "u �O���� � � h� u� �O���� � ����

with the subprincipal symbol on the left hand side being

�u"H � h� "u�� � u�H� � u�H� � h�u� � �u� "H��� � �h� "u��� � ����

Recall the notation a" b �
P�

j	� �
j �a" b�j for the expansion of the Moyal

product
 see the Appendix� Combining ���� and ���� one obtains

h� �
�
u�H� � u�H� � h�u� � �u� "H��� � �h� "u���

�
u�� � ����

The expression ���� further simpli�es if one specializes to the case where
�r�q� p� � fEr�q� p�g consists of a single eigenvalue of H��q� p� and one
projects on the relevant subspace


	rh�	r � 	r
�
u�H� u

�
� � �u� "H��� u

�
� � �E� "u��� u

�
�

�
	r � ����

The right hand side has the nice property to be independent of u� and thus
to depend only on known quantities�

Along the same lines and under the same condition on �r�q� p�
 one com�
putes

	rh�	r � 	r

�
u�H� � u�H� � h�u� ����

� �u� "H��� � �u� "H��� � �E� "u��� � �h� "u���

� �u� "H��� � �E� "u���

�
u��	r �

Again
 ���� does not depend on u� for the special case under consideration

but it does depend on u�
 which must now be computed using the construc�
tion from Section ��

Although ���� looks still rather innocent
 in general
 it requires some
work to compute it explicitly� This is partly because the second order expan�
sion of the Moyal product in ���� tends to become rather tedious to obtain�
But
 in general
 also the determination of u� is nontrivial� To convince the
reader
 we state without details that the construction from Sections � and �
yields

u�� � u��

�
�

i

�
fu�� u

�
�g�

�
u� 	

OD
� u��� 	r

�
�

i

�

��
fu�� 	�gu

�
� � u�f	�� u

�
�g
�
� 	r
��

�

����



G� Panati� H� Spohn� S� Teufel ���

with

	OD� �� 	�	���� 	�� � ��� 	��	�	� �

where we used that �a" b�� � � i
�fa� bg� Recall the de�nition ���� of the

Poisson bracket f�� �g�

To compute 	� from the given quantities one has to use the construction
explained in Section �� One �nds

	OD� �
i

�

�
R��E���� � 	��fH� � E�� 	�g	�

�	� f	��H� �E�gR��E�� ��� 	��
�

�	�H�R��E���� � 	�� �R��E����� 	��H�	� �

where R��Er���� 	�� � �H� �Er�
����� 	�� is uniformly bounded because

of the gap condition� For sake of completeness we mention that 	� � 	OD� �
i
�f	�� 	�g in this case�

For the higher orders in the expansion of h we only remark that
 in
general
 hn depends on u�n�
 H�n� and h�n���� In the special
 but interesting
case of an isolated eigenvalue Er�q� p�
 hn depends only on u�n���
 H�n� and
h�n��� and is thus considerably easier to obtain�

Remark ��
� Note that in the case of �r�q� p� � fEr�q� p�g
 not only the
principal symbol h��q� p� � Er�q� p��Hf


 but also the subprincipal symbol
h��q� p� as given by ���� is well de�ned regardless of the gap condition

provided that the spectral projection 	��q� p� is su!ciently regular� Indeed

it can be shown
 at least in some special cases
 that there is still adiabatic
decoupling to leading order and an e�ective dynamics generated by bh� ��bh�
without a gap condition �Te��
 �Te���

To get even more explicit formulas for h� and h�
 note that in most
applications one has no naturally given transformation u�� Instead one
chooses a suitable basis f���q� p�g��I of Ran	��q� p� and de�nes u��q� p� �P

��I j��ih���q� p�j � r�q� p�
 where the vectors �� form a basis for Ran	r
and r�q� p� is some arbitrary unitary intertwining Ran	��q� p�	 and Ran		r �
	r hj�q� p�	r is independent of the choice of the unitary r�q� p� for all j � N�

We remark that such a basis f���q� p�g��I of global smooth sections of
the bundle over R�d de�ned by 	��q� p� always exists
 since R�d is contractible
�see Remark ����� However
 we are not aware of a proof which insures
u� � S�� � The situation changes completely
 once one considers local domains
in the base space which are not contractible� Then it might become necessary
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to chose as reference space the space of sections of a globally nontrivial
bundle�

Assuming that �r�q� p� � fEr�q� p�g consists of a single eigenvalue of
H��q� p� of multiplicity � �including � � 
�
 we obtain the � � ��matrix
	r h

����q� p�	r as

h
���
�� � h��� h

�����i � Er ��� � � h��� � ����

with

h��� � h��� h���i � h���H���i �
i

�
h��� f�H� � Er�� ��gi

� h���H���i � ih��� fEr� ��gi �
i

�
h��� f�H� �Er�� ��gi � ��
�

The indices � and � are matrix�indices
 both running from � to �� Equations
���� and ��
� are one of our central results� They are still of a simple form
and mostly su!ce to compute the basic physics� The �rst term in ����
is referred to as Peierls substitution and the �rst order correction carries
information on the intraband spinor evolution� E�g�
 as will be discussed
in Section �
 for the Dirac equation h� governs the spin precession� The
reason for the particular splitting of the terms in ��
� will be discussed in
Section �� Here we only remark that the second term in ��
� is related to
a �generalized� Berry connection� We omit the analogous formula for h��� 

since it is too complicated to be helpful�

��� Born�Oppenheimer type Hamiltonians

An instructive example to which formula ��
� applies are Born�Oppenheimer
type Hamiltonians of the form

HBO�q� p� �
�

�
p��Hf

� V �q� � ����

V � S��B�Hf��
 with an electronic energy band er�q� of constant multiplicity
�
 i�e� V �q�	��q� � er�q�	��q�� Adiabatic decoupling for Born�Oppenheimer
type Hamiltonians is established with exponentially small errors by Martinez
and Sordoni �MaSo�
 see also �So�� Their result partly triggered our interest to
develop a general theory� Exponentially accurate coherent state solutions for
Born�Oppenheimer type Hamiltonians have been constructed by Hagedorn
and Joye in �HaJo���

Note that the quadratic growth of HBO�q� p� as a function of p prevents
from applying the general results directly� As to be discussed in Section ���
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energy cuto�s need to be introduced� For the moment we ignore this problem
and proceed by working out the perturbative scheme formally�

We �x arbitrarily an orthonormal basis f���q�g	�	� of Ran	��q� depend�
ing smoothly on q which then satis�es HBO�q� p����q� � Er�q� p����q� with
Er�q� p� � �

�p
� � er�q� for � � � � �� Only the second term of our formula

��
� contributes and yields

h����q� p� � �i p � h���q��rq���q�i �� � p � A���q� �

which is well known in the case of a nondegenerate eigenvalue
 �ShWi
 LiWe

TeSp�� A���q� has the geometrical meaning of a gauge potential
 i�e� coef�
�cients of a connection on the trivial bundle Rd � C 	 
 the so called Berry
connection� As mentioned already
 a more detailed discussion of the origin
of the Berry connection will be given in Section ��

For the Born�Oppenheimer Hamiltonian the calculation of h��� is still
feasible without much e�ort and the result is

h��� �
�

�

	X

	�

A�
 �A
� �
�

�
hrq��� �� � 	�� � rq��i

� h p � rq��� R��Er� p � rq��i � ����

Recall the de�nition of R��Er� � �H� � Er�
���� � 	��
 which reduces to

R��Er��q� � �V �q� � er�q��
���� � 	��q�� in the present case� Although we

omit the details of the computation leading to ����
 we shortly describe how
���� relates to ����� Since H� � � and H� � � the corresponding terms in
���� do not contribute� Since u� and 	� are functions of q only
 the second
term in ���� is the only one contributing to u�
 and thus the third term in
���� also vanishes after projecting with the 	r(s from outside the brackets�
The last two terms in ���� cancel each other� The seventh term in ���� yields
the �rst term in ���� and the fourth and sixth term in ���� combine to the
second and third term in ����� In particular the calculation yields for the
symbol of the unitary

u�BO�q� p�	r �

	X
�	�

�
j���q�i� i�R��Er��q� j p � rq���q�i

�
h��j�O���� �

Thus the symbol of the second order e�ective Born�Oppenheimer Hamilto�
nian reads

hBO���q� p� �
�

�

�
p� �A�q�

��
��

� er�q����

�
��

�
hrq���q�� �� � 	��q�� � rq���q�i ����

� �� h p � rq���q�� R��Er��q� p � rq���q�i�O���� �
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where the �rst term from ���� nicely completes the square to the �rst term
in ����� Note that the third term on the right side of ���� depends on q only
and was interpreted in �ShWi� as a geometric electric potential in analogy to
the geometric vector potential A�q��

In the special case of a nondegenerate eigenvalue er and a matrix�valued
Hamiltonian H
 ���� reduces to the expression obtained by Littlejohn and
Weigert �LiWe�� They also remark that the previous studies �ShWi
 AhSt�
of the expansion of the e�ective Born�Oppenheimer Hamiltonian missed the
last term in ����� This strengthens our point of the usefulness of a general
and systematic space�adiabatic perturbation theory�

The full power of our scheme is in force in cases where Ran	� is de�
generate and depends both on q and p
 since then the known techniques
�LiFl
 LiWe
 NeSo
 MaSo� cannot be applied� The simplest example of this
kind is the one�particle Dirac equation with slowly varying electric and mag�
netic potentials
 which will be discussed in Section ��

��� The time�adiabatic theory revisited

With little additional e�ort our scheme can be applied even to the time�
adiabatic setup� As for notation
 we replace the phase space Rdq � R

d
p by

Rt � R� in the following� Given a Hilbert space H and family H��t�
 t � R
of self�adjoint operators such that H��t� �� H�t� �� �� � S����B�H��
 the
solutions of the equations

i��tU
��t� s� � H��t�U ��t� s� � s � R � ����

de�ne a unitary propagator� A unitary propagator is a unitary operator�
valued map U�t� s� strongly continuous in t and s jointly
 such that

U�t� t� � �H and U�t� r�U�r� s� � U�t� s�

for any r� s� t � R� In particular we have that U ��t� ���� solves the time�
dependent Schr�odinger equation

i�
�

�t
��t� � H��t���t� � ����

for any �� � H�

It is assumed in addition that H��t�
 the principal symbol of H��t�
 has
a relevant part �r�t� of its spectrum
 which is separated by a gap from the
remainder uniformly for t � R� As before we denote the spectral projection
on �r�t� by 	��t��
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The following theorem is a variant of the time�adiabatic theorem of quan�
tum mechanics �Ka�
 ASY
 JoPf
 Ne��
 however formulated in the language
of adiabatic perturbation theory� Sj�ostrand �rst recognized the usefulness
of pseudodi�erential calculus in this context �Sj� and we are grateful to G�
Nenciu for pointing this out to us� We remark that the proof below can
be adapted to the case of a time�dependent operator�valued classical sym�
bol H�q� p� t�
 as 	 for example 	 the Dirac Hamiltonian or the Pauli�Fierz
Hamiltonian with slowly varying time�dependent external potentials�

Theorem ��� �Time	adiabatic theorem�� Let H�t� and �r�t� be as above�

�i� Decoupled subspace� There exists a family of orthogonal projectors
��t� such that ���� � S����B�H��� ��t�� 	��t� � O���� and

U�t� s�� ��t�U�t� s� � ��s� �O���
�jt� sj� ����

uniformly for s� t � R� Whenever ��t H�t� � � for some t � R and all
� � N� then ��t� � 	��t��

�ii� Intertwining unitaries� There exists a family of unitaries u���� �
C�b �R�B�H�� with u��t�	��t�u

�
��t� � 	���� �� 	r and a family of uni�

taries U��� � S����B�H�� such that

U�t� ��t�U��t� � 	r and U�t�� u��t� � O���� �

�iii� E�ective dynamics� There exists a family of self�adjoint operators h�t��
h��� � S����B�H��� such that

�h�t�� 	r � � � for all t � R ����

and the solution of the initial value problem

i��tUe��t� s� � h�t�Ue� �t� s� � s � R � Ue��t� t� � �H

satis�es

U�t� s� � U��t�Ue� �t� s�U�s� �O���
�jt� sj� � ����

The asymptotic expansion of h�t� in B�H� reads

h�t� �
�X
n	�

�n

�� X
j�k�l	n

uj�t�Hk�t�u�l �t� ����

�
i

�

X
j�k��	n

�uj�t� )u�k�t�� )uj�t�u
�
k�t��


A �

where
P

n �
nHn�t� is the asymptotic expansion of H�t� in B�H� andP

n �
nun is the asymptotic expansion of U�t� in B�H��
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Before we turn to the proof we remark that
 for �r�t� � fer�t�g and
f���t�g	�	� an orthonormal basis of Ran	��t�
 the e�ective Hamiltonian in�
cluding second order reads

h���t� � er�t���� � i � h���t�� )���t�i �
��

�
h )���t�� R��er� )���t�i � O���� �

where R��er� � �H�t�� er�t��
�� ��� 	��t��� For the unitary U�t� one �nds

U��t�	r �

	X
�	�

�
j���t�i� i�R��er��t� j )���t�i

�
h�����j �O���� �

Proof� In order to apply the general scheme developed in the previous
sections it is convenient 	 in analogy with the extended con�guration space
in classical mechanics 	 to introduce the extended space K � L��R�H� �R 

R
H dt and to de�ne the extended Hamiltonian

bK � �i��t � H�t�

which is self�adjoint on the domain D� bK� � H��R�H� � K� By following

Howland �Ho�
 we notice that the unitary group e�i
bK�
 � � R
 is related to

the unitary propagator ���� through�
e�i

bK��
�

�t� � U�t� t� ����t � �� � ��
�

Moreover
 the unitary group e�i
bK� can now be studied by means of the

techniques developed in the previous sections
 since bK is nothing but the
Weyl quantization of the operator�valued function K�t� �� � � � H�t�
 and
K belongs to S���B�H���

By assumption K � S�� satis�es assumption �Gap�� with � � �� How�
ever
 because of the simple dependence of K�t� �� on �
 the conclusion of
Theorem ��� and ��� hold still true in a sense to be made precise�

Indeed
 by following the proof of Lemma ��� one obtains a semiclassical
symbol 	 � S�����B�H��
 depending on t only
 such that �K�	� �� � � in

S������ On the other hand


�K�	� �� � �H�	� �� � ��� 	� �� � �H�	� �� � i� ��t	�

where the last equality follows from the fact that ��� 	� �� is the symbol of

��i��t� 	�t�� � �i� ��t	� �t�� Since both �H�	� �� and �t	 belong to S�����
 one
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concludes that the asymptotic expansion �K�	� �� � � holds true in S�����


and hence � bK� b	� � O���
��� Finally one de�nes

��t� �
i

�	

Z
j���j	 �

�

�	�t�� ����d�

and �nds ���� � S����B�H��
 ��t� � 	�t� � O���
�� and �e�i

bK���� �
O���

�j�j� as in Section �� Together with ��
� this implies

ess sup
t�R

kU�t� t� ��� ��t�U�t� t� �����t� ��kB�H� � O���
�j�j� �

However
 since ��t� and U�t� s� are continuous functions of t
 the pointwise
statement ���� follows�

For u��t� one can use for example Kato(s construction �Ka�� and de�ne
u��t� as the solution of the initial value problem

d

dt
u���t� � � )	��t�� 	��t��u

�
��t� � u����� � � �

Clearly u��t� belongs to S��B�H��� Notice that the same construction does
not work in the multidimensional case
 since the evolutions in di�erent di�
rections do not commute� U can be obtained as in Section �
 where the
fact that 	�t� and u��t� both depend on t only and not on � simpli�es the
construction considerably and yields
 in particular
 a �bered unitary U�t��

As in the general setting let the e�ective Hamiltonian be de�ned as a
resummation of

k��� t� �� �
�
u"K "u�

�
��� t� �� �� � � h�t� �� �

with the explicit expansion ����� According to Theorem ��� we then have

e�i
bK� � U� e�i

bk� U � O���j�j� �

which implies according to ��
� that

ess sup
t�R

kU�t� t� ���U��t�Ue��t� t� ��U�t� ��kB�H� � O���
�j�j� �

The pointwise statement ���� follows again from the continuous dependence
on t of all involved expressions�
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��� Energy cuto�

The Born�Oppenheimer type Hamiltonians as well as many other physically
relevant Hamiltonians do not satisfy the general assumptions we imposed in
Sections � and �� This is so for two reasons� First of all they are quantizations
of symbols taking values in the unbounded operators� Secondly
 the gap does
not increase as fast as the Hamiltonian for large momenta
 e�g� quadratically
in the Born�Oppenheimer setting� The �rst problem is purely technical and
the domain questions which arise have to be dealt with case by case� The
second problem causes a qualitative change in the sense that the adiabatic
decoupling is no longer uniform
 as can be seen from the construction of the
almost invariant subspace in Section �� To deal with the second problem
one therefore needs a cuto� for large momenta� There are basically two
ways to implement such a cuto�� One possibility is to directly cut o� large
momenta as was done in �TeSp
 SpTe�
 but then one needs to control the
times for which no momenta exceeding the cuto� are produced under the
dynamics� However
 for a large class of Hamiltonians including the Born�
Oppenheimer type Hamiltonian ����
 cutting o� high energies is equivalent
to cutting high momenta� Then conservation of energy immediately ensures
that no momenta exceeding the cuto� are produced over time� This idea
was developped in �So� and also used in �MaSo�� We will brie�y indicate an
alternative way on how to implement such an energy cuto� in order to �t
the Born�Oppenheimer and similar settings into our general assumptions�

Let H� � Sm
� be elliptic and positive
 i�e� there is a constant C � � such

that H��q� p� 	 C hpim� For example the Born�Oppenheimer Hamiltonian
as de�ned in ���� satis�es H� � S�� and it is elliptic provided that V is
positive �otherwise just add a constant to H� since V � S��� Then we can
prove adiabatic decoupling uniformly for energies below any � � R
 i�e� on
Ran�l����

� bH���

Let * � f�q� p� � H��q� p� � �g
 then bounding the total energy by �
essentially corresponds to con�ning the slow degrees of freedom to the region
* in phase space� More precisely
 let �
 � C�� �R� such that �
j���

 � � and

�
j�
����� � � for some � � �
 then �
� bH�� � OPS��� is a semiclassical

operator� Furthermore
 its symbol � �� Symb��
� bH��� has an asymptotic
expansion which is identically equal to � on *
 i�e� �j� � � and identically
equal to � on the set where H��q� p� 	 �� �� The statements about �
� bH��
and its symbol follow from the functional calculus for semiclassical operators
as developped e�g� in �DiSj�
 Theorem ��
�

Next we assume that one can de�ne an auxiliary HamiltonianHaux�q� p� �
S�� such that
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�i� Haux�q� p� � H��q� p� for all �q� p� � *�� �� f�q� p� � H��q� p� � ���g


�ii� Haux�q� p� � H��q
�� p�� for all �q� p� 
� * � � and �q�� p�� � * � �

�iii� and Haux�q� p� satis�es the global gap condition �Gap���

This can be easily achieved e�g� in the Born�Oppenheimer setting by replac�
ing p� by an appropriate bounded function�

It follows from the previous discussion that � bH� � bHaux ��
� bH�� �
O������ and that �
� bH��� �
� bHaux� � O������� Using

�
� bH���l����

� bH�� � �l����

� bH�� �

one �nds
 in particular
 that� bH� � bHaux

�
�l����

� bH�� � O���

�� ����

in the norm of bounded operators and thus also�
e�i

bHauxt � e�i
bH�t
�

�l����

� bH�� ����

� � ie�i
bHauxt

Z t

�
ds ei

bHauxs
� bHaux � bH�

�
e�i

bH�s �l����

� bH�� � O���
�jtj� �

Now the scheme of Sections �
 � and � can be applied to Haux and by
virtue of ���� and ���� all results are valid for H� up to O���� if one restricts
to energies below �� In particular one �nds that for �q� p� � * the leading
order symbols of haux � U� bHauxU are given by the formulas obtained in
Section ��� using the symbol H��q� p��

� Semiclassical analysis for e�ective Hamiltonians

The results of the previous sections are genuine quantum mechanical� semi�
classical symbols have been used only as a tool in order to construct �and

eventually
 to approximate� � and U 
 but no semiclassical limit has been
performed� Indeed
 the adiabatic decoupling of energy bands is a purely
quantum phenomenon
 which is
 in general
 independent from the semiclas�
sical limit�

However
 under the assumption that �r�q� p� � fEr�q� p�g consists of
a single eigenvalue of H��q� p� of necessarily constant multiplicity �
 the
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principal symbol of bh is a scalar multiple of the identity
 i�e� h��q� p�	r �
Er�q� p��Kf


 and a semiclassical analysis of bh can be done in a standard
way� In particular
 the dynamics of quantum observables can be approxi�
mated by quantities constructed using only the classical �ow +t generated
by the �classical
 scalar� Hamiltonian Er�q� p�� This results in a generalized
Egorov(s theorem
 see Theorem ���� We emphasize that for more general
energy bands �r�q� p� one cannot expect a simple semiclassical limit
 at least
not in the usual sense�

��� Semiclassical analysis for matrix�valued symbols

Egorov
s Theorem� For the moment
 we identify Kf with C 	 and h with
	r h	r
 an � � ��matrix�valued formal symbol� At least formally
 Egorov(s
theorem is obtained through an expansion of the Heisenberg equations of
motion for semiclassical observables� Let a�q� p� �� � S�����B�C 	��
 then the
quantum mechanical time evolution of ba is given by

ba�t� � ei
bht�� ba e�ibht��

and satis�es

dba�t�

dt
�

i

�
�bh� ba�t�� � ����

Expanding both sides of ���� on the level of symbols and using �Er�� an�t�� �
�
 � � �C � 
 one obtains the following hierarchy of equations�

d a��t�

dt
� fEr�� a��t�g� i�h�� a��t�� ����

d a��t�

dt
� fEr�� a��t�g� i�h�� a��t���

�

�

�
fh�� a��t�g � fa��t�� h�g

�
� i�h�� a��t�� ����

d a��t�

dt
� fEr�� a��t�g� i�h�� a��t�� � � � � � ����

Since dan�t�
dt does not depend on higher orders
 the equations can be
solved iteratively� The solution of ���� with initial condition a��q� p� �� �
a��q� p� is given through

a��q� p� t� � D��q� p� t� a��+t�q� p��D�q� p� t� � ����

where +t � R�d � R�d is the solution �ow corresponding to the scalar Hamil�
tonian Er�q� p�� More precisely
 +t�q�� p�� � �q�t�� p�t��
 where �q�t�� p�t�� is
the solution of the classical equations of motion

)q � rpEr � )p � �rqEr
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with initial condition �q�� p��� D�q� p� t� is the solution of

�

�t
D�q� p� t� � � i h��+

t�q� p��D�q� p� t� � ����

with initial condition D�q� p� �� � �� One can think of ���� for �xed �q� p� �
R�d as an equation for the Schr�odinger�like unitary evolution induced by
the time�dependent Hamiltonian h��+

t�q� p�� on the Hilbert space C 	 � Since
h��q� p� is self�adjoint for all �q� p� � R�d 
 the solution D�q� p� t� of ���� is
unitary for all �q� p� t� � R�d � R�

To see that ���� is indeed the solution of ����
 note that the mappings

U�t� � Cb�R�d �B�C 	�� � Cb�R�d �B�C 	��

de�ned through ���� for t � R
 i�e��
U�t� a�

�
�q� p� � D��q� p� t� a��+t�q� p��D�q� p� t� � ����

form a one�parameter group of linear automorphisms on the Banach space
Cb�R�d � B�C 	��
 since�
U�s�U�t� a�

�
�q� p� �

� D��q� p� s�D��+s�q� p�� t� a��+s � +t�q� p��D�+s�q� p�� t�D�q� p� s�

� D��q� p� t � s� a��+
t�s�q� p��D�q� p� t � s�

�
�
U�t � s�a�

�
�q� p� �

Here the group structures of +t and of the solutions of ���� are used� Hence
U�t� is a group and it su!ces to check that ���� solves ���� at time t � �

which is easy to see�

The physical interpretation becomes simpler when translated to states�
a �classical� particle which started at time � at the phase space point �q� p�
with spinor �� � C

	 
 is at time t located at the phase space point +t�q� p�
with spinor �t � D�q� p� t���� Hence ���� implies that

d�t
dt

� � i h��+
t�q� p���t � ��
�

One can also think of U�t� as being the action on observables of a �classical�
�ow +t

	 on phase space R�d � SU��� de�ned as

+t
	�q� p� U� � �+t�q� p�� D�q� p� t�U� �

Turning to the higher order corrections ����
 ���� etc�
 they are of the
form

d an�t�

dt
� fEr�� an�t�g� i�h�� an�t�� � In�a��t�� � � � � an���t��
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with an inhomogeneity In�t� depending only on the known functions a��t��
� � � � an���t�� Thus
 assuming an��� � �
 one �nds

an�t� �

Z t

�
dsU�t� s� In�s� � ����

In order to solve Equation ���� for the subprincipal symbol one needs to
know h�� However
 if one is interested in semiclassical observables with a
principal symbol which is a scalar multiple of the identity
 e�g� in the position
a���� � q �
 the last term in � ��� vanishes at all times
 since
 according to
����
 a��t� is a scalar multiple of the identity for all times� In Section � the
back reaction of the spin of an electron on its translational motion will be
discussed on the basis of �����

We summarize the preceding discussion on Egorov(s theorem�

Theorem ��� �Egorov�� Let H satisfy either �IG�m for m � � and 
 � �
or �CG� with 
 � �� Let �r�q� p� � fEr�q� p�g be an eigenvalue of H��q� p�
of �nite multiplicity ��

Then the classical �ow +t generated by Er�q� p� and the solution of �

� with
initial condition D�q� p� �� � � exist globally in time� For a� � S���B�C 	���

a��t� given by �
�� is a solution of �
�� and a��t� � S���B�C 	�� for all t�

For each T �
 there is a constant CT �
 such that for all t � ��T� T �

ka�t� � W� �a��t��k � �CT � ����

where a�t� � ei
bht�� ba� e�ibht���

Proof� Up to the modi�cations discussed before
 the proof follows easily
along the lines of Egorov(s theorem for scalar valued observables �cf� �Ro

BoRo��� To make the expansion of the Heisenberg equation ���� rigorous

note that Er � 	rh�	r � Sm

� �R� with m � � and thus the corresponding
Hamiltonian vector �eld is smooth and bounded� It follows by standard ODE
techniques �Ro� that �ta��+

t� � S�� and hence also �ta��t� � S�� 
 where a��t�
is given by ����� Thus one can interchange quantization and di�erentiation
with respect to time and obtains

a�t��W��a��t�� �

Z t

�
ds

d

ds

�
ei
bhs��W��a��t� s�� e�i

bhs��
�

�

Z t

�
ds ei

bhs��

�
i

�

hbh�W��a��t� s��
i
�W�

�
da�
dt

�t� s�

��
e�i

bhs�� �
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Now
 by construction
 i
�

hbh� �a��t� s�
i
� W�

�
da�
dt �t� s�

�
is a semiclassical

operator in OPS����� with vanishing principal symbol� Hence the integrand
is really O��� as a bounded operator and ���� follows�

This matrix�valued version of Egorov(s theorem has been discussed sev�
eral times in the literature �Iv
 BrNo��

Berry connection� With this preparation we explain the motivation be�
hind the particular splitting of the terms in ��
�� It is of geometrical origin
and related to the Berry connection� Recall that in the Born�Oppenheimer
setting h����q� p� � �p �A���q� and thus A���q� acts as a gauge potential of
a connection on the trivial bundle Rd � C 	 � Its origin is purely geometrical

since it comes from the connection which the trivial connection on the trivial
bundle Rd �Hf induces on the subbundle de�ned by 	��q�� If one assumes
that Ran	��q� is ��dimensional
 the internal rotations along classical trajec�
tories are just phase changes
 the so called Berry phases
 and are due to
parallel transport with respect to the Berry connection �Be
 ShWi
 Si��

In the general case the second term of h����q� p� in ��
�
 which we denote
by

hBe���q� p� � �ih���q� p�� fEr� ��g�q� p�i�

corresponds exactly to this parallel transport along the generalized Berry
connection� More precisely
 the trivial connection on the trivial bundle R�d�
Hf induces a U����connection on the subbundle de�ned by 	��q� p�� After
unitary rotation u��q� p� the coe!cients of this connection on the bundle
R�d � C 	 are

A���q� p� � i

�
h���q� p��rq���q� p�i
h���q� p��rp���q� p�i

�
�

in the sense that a section s�q� p� is parallel if �r� iA�s � �� It is parallel
along some curve c��� �

�
q���� p���

�
in R�d if�

�� � )c��� � iA
�
q���� p���

��
s
�
q���� p���

�
� � �

For classical trajectories
 where )c�t� � �rpEr��rqEr�
T
 this condition be�

comes �
�t � i hBe

�
q�t�� p�t�

��
s
�
q�t�� p�t�

�
� � � ����
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If h� � hBe
 ���� is exactly Equation ��
� for the rotation of the spinor
�t
�
q�t�� p�t�

�
� D

�
q� p� t

�
�� along the trajectory of the particle� This means

if h� � hBe
 the spin dynamics corresponds to parallel transport with respect
to the Berry connection along classical trajectories�

Emmrich and Weinstein �EmWe� give a geometric meaning also to the
remaining terms in their analog of h�� While this is a natural venture in the
context of geometric WKB approximation
 it seems to be less natural in our
approach
 since we work in a �xed basis in order to obtain simple analytic
expressions�

Wigner function approach� The previous results on the time�evolution
of semiclassical observables translate
 by the duality expressed through

h�� ba� �i �

Z
R�d

TrC �
�
a��q� p�W��q� p�

�
dq dp �

to the time�evolution of the Wigner transform

W��q� p� �� Symb�P���q� p� � ��	��d
Z
Rd

d� ei��p ��q � ��
�� � ���q � ��
��

as

h�� ba��t��i �

�

Z
R�d

TrC �
�
a��q� p�D��q� p��t�W��+�t�q� p��D�q� p��t�

�
dq dp �O��� �

Transport equations for matrix�valued Wigner measures were derived in
�GMMP� and applied to the Dirac equation in �Sp��

Semiclassical propagator� Often one is not only interested in the semi�
classical propagation of observables
 but more directly in a semiclassical
expansion of the kernel K�x� y� t� of the unitary group�

e�i
bht���

�
�x� �

Z
Rd

dyK��x� y� t���y� � ����

As in the case of Egorov(s theorem
 generalizing the known results for
Hamiltonians with scalar symbols to the case of operator�valued symbols
is straightforward
 whenever the principal symbol h� of h is a scalar multi�
ple of the identity� As in the scalar case
 see �Ro�
 one makes an ansatz of
the form

K��x� y� t� �
�

��	��d

Z
Rd

dp e
i
�

�
S�x�p�t��y�p

�� �X
j	�

�jaj�x� p� t�
�
�
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where S�x� p� t� is real valued and the aj(s take values in the bounded linear
operators on C 	 � Demanding ���� at time t � �
 i�e� K��x� y� �� � ��x � y�

imposes the following initial conditions on S and fajgj���

S�x� p� �� � x � p � a��x� p� �� � � and aj�x� p� �� � � for j 	 � �

For later times the coe!cients are determined by formally expanding the
Schr�odinger equation for K��x� y� t�

i �
�

�t
K���� y� t� � bhK���� y� t�

in orders of �� At leading order only bh� � bE� contributes and one obtains
as in the scalar case

�t S�x� p� t� � Er

�
x�rxS�x� p� t�

�
� � � ����

the Hamilton�Jacobi equation for the symbol h�� The next to leading order
equation is the so called transport equation for a��

i�ta��x� p� t� � L�x� p� t� a��x� p� t� � h�
�
x�rxS�x� p� t�

�
a��x� p� t� � ����

The di�erential operator L�x� p� t� is the same as in the scalar case
 see �Ro�
for an explicit formula� Here we just want to point out that the known
techniques from the scalar case apply with one modi�cation� as in ����
 also
in ���� h� contributes as an additional rotation in the transport equation
for the leading order term� Since the solution of ���� exists only until a
caustic is reached
 the approximation ����
 ���� to the propagator is a short
time result only� The extension to arbitrary times is a complicated task
 in
general �MaFe��

��� An Egorov theorem

Ultimately the goal is to approximate expectation values of observables in
in the original Hilbert space H � L��Rd �Hf� rather than in H � L��Rd �Kf��
Before stating a theorem an obvious
 but important observation should be
made
 which seems to have been overlooked
 or at least not stressed su!�
ciently
 in related discussions
 e�g�
 �LiFl
 LiWe
 BoKe�
 MaSo�� We proved
that in the case �r�q� p� � fEr�q� p�g the e�ective Hamiltonian bh projected on
the subspace K � Ran�r has a semiclassical limit in the sense of a general�
ized Egorov theorem
 in principle
 to any order in �� However
 the variables q
and p in the rotated representation are not the canonical variables of the slow
degrees of freedom in the original problem� More precisely
 let bqH � x��Hf
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and bpH � �i�rx��Hf
be the position and momentum operators of the slow

degrees of freedom acting on H and let bqK � x��Kf
and bpK � �i�rx��Kf

be the same operators acting on K� Then bqK � �rU bqH U� �r � O��� andbpK � �r U bpH U� �r � O���
 with a
 in general
 nonvanishing ��correction�
Physically this means that the quantities which behave like position and
momentum in the semiclassical limit are only close to the position and mo�
mentum of the slow degrees of freedom
 but not equal� This phenomenon
is well known in the case of the nonrelativistic limit of the Dirac equation�
The Newton�Wigner position operator and not the standard position oper�
ator goes over to the position operator in the Pauli equation� The standard
position operator has neither a nice nonrelativistic limit nor
 as we will see

a nice semiclassical limit
 because of the Zitterbewegung� Switching to the
Newton�Wigner position operator corresponds to averaging over the Zitter�
bewegung
 or
 in our language
 to use the position operator bqK in the rotated
representation� We remark that in the Born�Oppenheimer case
 and more
generally whenever 	� depends on q only
 one has bqK � �rU bqH U� �r�O�����

With this warning we exploit that semiclassical observables do not change
after unitary rotation in leading order and state the Egorov theorem for the
observables in the original representation�

Corollary ���� Let H satisfy either �IG�m with m � � and 
 � � or �CG�
with 
 � � and let �r�q� p� � fEr�q� p�g consist of a single eigenvalue of
H��q� p� of �nite multiplicity �� Let b� � S���B�Hf�� such that �b�� 	�� � �

and B�t� �� ei
bHt��bb� e�i bHt��� Let a� �� 	r u� b� u

�
� 	r and de�ne a��t� is in

�
��� Then for each T � 
 there is a constant CT � 
 such that for all
t � ��T� T �

���B�t� � W��u
�
� a��t�u��

�
�
�� � �CT � ����

For b� � f �Hf
� with f � S���R�� one obtains as a special case of ���� that

����B�t� � �b��+t�
�
�
��� � �CT �

Corollary ��� follows from Theorem ��� and a straightforward expansion
in � of the terms to be estimated after rotation with U �
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� The Dirac equation

��� Adiabatic decoupling of electrons and positrons

We apply the adiabatic perturbation theory to the one�particle Dirac equa�
tion with slowly varying external potentials
 i�e� to

eHD � c� �
�
�i�ry �

e

c
A��y�

�
� �mc� � e���y�

acting on L��R� � C � �� Here A � R� � R� is the vector potential of an external
magnetic �eld B � r�A and � � R� � R the potential of an external electric
�eld E � �r�� For the Dirac matrices �
 � we make the standard choice

� �

�
� �
� �

�
� � �

�
�C � �
� ��C�

�
�

where � � ���� ��� ��� denotes the vector of the Pauli spin matrices� The
small parameter � � � controls the variation of the external potentials� To
keep track of the size of the error terms
 in this section all physical constants

including �
 are displayed�

Transforming to the macroscopic space�scale x � �y one obtains the
Dirac Hamiltonian

bHD � c� �
�
�i��rx �

e

c
A�x�

�
� �mc� � e��x� ����

and we are interested in the solution of the time�dependent Dirac equation
for times of order ���
 i�e� in solutions of

i ��
�

�t
�t � bHD �t ����

for jtj � O���� The solutions of ���� for small � approximately describe the
dynamics of electrons
 resp� positrons
 in weak �elds
 as in storage rings

accelerators
 or cloud chambers
 for example�

bHD is the Weyl quantization of the matrix�valued function

HD�q� p� � c� �
�
p�

e

c
A�q�

�
� �mc� � e��q�

on phase space R� 
 where now Weyl quantization is in the sense of p ��
�i��rx
 i�e� on the right hand side of �
�� � must be replaced by ��� �
appears here for dimensional reasons and is a �xed physical constant� The
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small parameter of the space�adiabatic expansion is �� HD�q� p� has two
two�fold degenerate eigenvalues

E��q� p� � �cp��q� p� � e��q�

with the corresponding eigenprojections

P��q� p� �
�

�

�
��

�

p��q� p�

�
� �
�
p�

e

c
A�q�

�
� �mc

��
�

where p��q� p� �
p
m�c� � �p� e

cA�q���� Obviously

E��q� p��E��q� p� � �cp��q� p� 	 Chpi � � �

whenever A is uniformly bounded� Therefore the corresponding subspaces
are adiabatically decoupled and the e�ective dynamics on each of them can
be computed using our general scheme� Assuming A � C�b �R� �R�� and � �
C�b �R� �R�
 one �nds that H� � S�� and thus the assumptions from Section �

are satis�ed� In particular
 bHD is essentially self�adjoint on S�R� � C �� andbE� on S�R���

To be consistent with the notation from the previous sections
 let 	��q� p�
� P��q� p� be the projector on the electron band� The reference subspace
for the electrons is K � L��R� � C � � and it is convenient to de�ne it as the
range of

�r ��

�
�C� �
� �

�
in L��R� � C ���

The only choice left is the one of u��q� p� or
 equivalently
 of a basis
f���q� p�g�	��� of Ran	��q� p�� Since the degeneracy of Ran	��q� p� is related
to the spin of the electron
 a natural choice is the �z�representation with
respect to the �mean��spin S�q� p� which commutes with HD�q� p� �FoWo

Th�� The eigenvectors ���q� p� of the operator e� �S�q� p� in Ran	��q� p� are

���q� p� � c
q

p�
��p��mc�

�BB�
�p��mc�

p�

�

v�

v��iv�


CCA � ���q� p� � c
q

p�
��p��mc�

�BB�
�

�p��mc�

p�

v��iv�

�v�


CCA �

We abbreviated v�q� p� �� c �p� e
cA�q��
p��q� p� for the velocity� The relevant

part of u� for the analysis of the electron band is thus given by u���q� p� ��
���q� p�� ���q� p�� �� �

�
with u� � S�� � Of course the positron part indicated
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by �(s would be given through charge conjugation� In our construction we
want to emphasize
 however
 that no speci�cation is needed in order to
determine the expansion of the e�ective electron Hamiltonian bhe �� �r

bh�r

up to arbitrary order�

An alternative way to arrive at the same u��q� p� is to note that the Foldy�
Wouthuysen transformation uFW�p�
 c�f� �FoWo�
 diagonalizes the free Dirac
Hamiltonian H��p�
 i�e� HD with A�� � �� Including the �elds u��q� p� �
uFW�p� e

cA�q�� then diagonalizes HD�q� p��

For the principal symbol of he one �nds of course

he���q� p� � E��q� p��C � �

For the subprincipal symbol after a lengthy but straightforward calculation
our basic formula ��
� yields

he���q� p� � �
�e

�p��q� p�
� �

�
B�q��

p�
c �p��q� p� � mc�

v�q� p� �E�q�

�
�� �

�

�
� � ,�q� p� � ��
�

Note that the factor � comes from the fact that the nth term in the space�
adiabatic expansion carries a prefactor �n� De�ning

��q� p� � �

p

�� �v�q� p�
c�� � p��q� p�
�mc�

one concludes that

,�q� p� �
e

mc

�
�

��q� p�
B�q��

�

c �� � ��q� p��
v�q� p� �E�q�

�
� ����

We remark that the second term in ��
�
 the �Berry term�
 does not coin�
cide with any of the terms in ����� Indeed
 the compact expression ���� is
obtained only through cancellations in more complicated expressions coming
from both terms contributing in ��
��

We summarize our results on the adiabatic decoupling and the e�ective
dynamics for the Dirac equation in the following

Theorem ���� Let A � C�b �R� �R�� and � � C�b �R� �R�� Then there exist

orthogonal projectors �� with �� � �� � � such that � bHD���� � O���
���

and there exists a unitary U and bh � OPS�� with

bh �

� bhe �

� bhp
�
� ����
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such that

e�i
bHDt � U� e�i

bht U � O���
�jtj� � �
��

Here bhe and bhp are semiclassical operators on L��R� � C �� with

he�q� p� �� � E��q� p��C � �

�X
j	�

�j he�j�q� p�

and he�j � 	r�u"HD "u��j	r � S��j� �B�C � �� for all j 	 �� where u � S�����
is constructed as in Section 
� In particular� he���q� p� is given by ���� and
thus

bhe �
�
c

r
m�c� � ��i��r�

e

c
A�x��� � e��q�

�
�C� � �

�

�
� � �,�q� p� � O���

�� �

Analogous results hold for hp� The errors in ���� and ����� are in the norm
of bounded operators on L��R� � C ��� resp� on L��R� � C ���

According to the e�ective Hamiltonian ����� the g�factor of the electron
equals �� There would be no problem to add to the Dirac Hamiltonian the
standard subprincipal symbol �Th�
 which accounts for the slightly larger
g�factor of real electrons� Blount �Bl�� computes the second order e�ective
Hamiltonian he��
 which he �nds to be proportional to �C � � he�� is a sum of
terms allowed by dimensional reasoning
 i�e� proportional to rB
 rE
 B�

E�
 EB� Second order corrections seem to be of interest for the dynamics
of electrons in storage rings� Ignoring the contribution �Bl��
 nonrigorous
expansions are �DeKo� and �HeBa��

��� The semiclassical limit of the Dirac equation

Equipped with he�� and he�� we can apply the general results of Section �
on the semiclassical limit to the Dirac equation� Let +t

� be the Hamiltonian

�ows generated by E��q� p� on phase space R� and let bB � bb�
 b � S���R�
 be
a semiclassical observable in the unrotated Hilbert space which does not de�
pend on spin� From Corollary ��� we conclude for each T �
 the existence
of a constant CT such that for all t � ��T� T �����B�t��W�

�
b�+t

��
�
�
�

��

��� � �CT �
����B�t��W�

�
b�+t

��
�
�
�

��

��� � �CT �

where B�t� � ei
bHDt����� bB e�i

bHDt������ Hence
 to leading order
 states in the
range of �� behave like classical relativistic electrons and states in the range
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of �� like classical relativistic positrons� We emphasize that
 in general
 ��

are not spectral projections of bHD
 since the variation of � can be larger than
the mass gap �mc�� Hence in the limit of slowly varying potentials a natural
characterization of �electronic� and �positronic� subspaces is obtained which
does not come from spectral projections of the free or full Dirac Hamiltonian�

Next we discuss the leading order spin dynamics
 which in the �rst place
requires to �gure out which operator represents the spin of the electron�
There has been a considerable discussion on this point
 cf� �Th�
 with no
general consensus reached� We suspect that the problem is void� The wave
function is spinor valued and what is observed is the spatial splitting of
di�erent spinor components in inhomogeneous magnetic �elds� Hence we
should pick the �spin observable� - such that the splitting can nicely be
attributed to it� E�g�
 in a magnetic �eld with gradient along the z�direction
the eigenvectors of -z should have the property that their spatial support
goes either parallel to �z or to �z
 but should not split� In view of ����� a
natural choice is to take as spin operator the vector of Pauli�matrices � in
the rotated electronic subspace� In the original Hilbert space this amounts
to

- � U�
�

� �
� �

�
U �

�

�
bS �O��� �

where S�q� p� is the �mean� spin de�ned before�

The leading order semiclassical approximation for

��t� � ei
bhet����� � e�i

bhet�����

follows from Theorem ���� For each T � 
 there is a constant CT � 

such that for t � ��T� T � ����t������t�

�� � �CT � �
��

where ��k�q� p� t�
 k � f�� �� �g
 is obtained as the solution of

� ��k�q� p� t�

�t
� �

i

�

h
� � ,�+t

��q� p��� ��k�q� p� t�
i

�
��

with initial condition ��k�q� p� �� � �k� This follows from the Equations ����
and ���� by setting ��k�q� p� t� � D��q� p� t��kD�q� p� t��

To solve Equation �
�� one makes an ansatz ��k�q� p� t� � sk�q� p� t� � �
with sk�q� p� �� � ek� Using ��n� �m� � � i �nmk �k
 one �nds that the spin�
or �magnetization��vector sk�q� p� t� is given as the solution of

� sk�q� p� t�

�t
� � sk�q� p� t� � ,�+t

��q� p�� � �
��
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�
�� is the BMT�equation �BMT
 Ja� on the level of observables� It was
derived by Bargmann
 Michel and Telegdi in ���� on purely classical grounds
as the simplest Lorentz invariant equation for the spin dynamics of a classical
relativistic particle�

The semiclassical limit of the Dirac equation has been discussed repeat�
edly and we mention only some recent work� Yajima �Ya� considers time�
dependent external �elds and proves directly a semiclassical expansion for
the corresponding propagator� As mentioned already at the end of Section �

this program is mathematically rather involved
 since one faces the problem
of caustics in the classical �ow
 and di�erent expansions have to be glued to�
gether in order to obtain results valid for all macroscopic times� Based on the
same approach Bolte and Keppeler �BoKe�� derive a Gutzwiller type trace
formula� Since bHD and U� bHD U are isospectral and since �
�� holds
 a trace
formula for the eigenvalue statistics of bHD could as well be derived from the
semiclassical propagator of bh � bhe� �� ��bhp� As argued in Section �
 the
latter is somewhat easier to obtain� In �GMMP
 Sp� the semiclassical limit
of the Dirac equation is discussed using matrix�valued Wigner functions�
Their results hold for an arbitrary macroscopic time interval
 but fuse
 as
does the WKB approach
 adiabatic and semiclassical limit� No higher order
corrections seem to be accessible and the results are weaker than ours in the
sense that the approximations do not hold uniformly in the states�

This leads us to the next natural question� What can be said about
higher order corrections% While in general one would need he��
 according

to ���� the semiclassical limit of observables of the type bb � bb��C� 
 b� �
S���R�
 can be determined without this explicit information� For such a scalar
symbol the principal symbol b��t�
 i�e� the solution to ����
 will remain scalar
and thus its commutator with he�� in ���� vanishes identically for all times�
The solution b��t� of ���� with initial condition b���� � �
 is not scalar
 in
general� Hence
 at this order there is back reaction of the spin dynamics on
the translational motion� We illustrate this point for the position operator
x�q� p� � x��q� p� �� q �C� and refer to �Te�� for a general analysis of the
higher order e�ects in the semiclassical dynamics of Dirac particles� Now
x��q� p� t� � x�

�
+t
��q� p�

�
and x��t� is obtained
 according to Equation ����


as the solution of

d x��t�

dt
� fE��� x��t�g� i�he��� x��t��� fhe��� x��t�g �
��

with initial condition x���� � �� The homogeneous part of this equation is
just the classical translational and spin motion and the inhomogeneity is

fhe��� x��t�g � �
�

�
� � f,� x��t�g � �
��
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which is not scalar and thus responsible for the splitting of trajectories of
electrons with distinct spin orientation� Hence
 as in ����


x��t� � �
�

�

Z t

�
dsU�t� s�� � f,� x��s�g �

where U�t� is the �classical �ow� de�ned through �����

Without claim of rigor
 we observe in ���� that for small velocities v�q� p�
one has

,�q� p� �
e

mc
B�q� �

Let us further assume that B�q� � b qz ez 
 then

�

�
� � f,� x��t�g �

�e

�mc
�z
�B

�qz

�+t
q

�pz
� t

�e

�m�c

�
b �
� �b

�
and thus according to �
��
 �
�� the correction to the velocity is proportional
to t
 corresponding to a constant force with absolute value �e
��mc�jrBj

as expected for a spin��� particle�

� Conclusions

The basic formulae ����
 ���� can be applied
 in essence in a mechanical
fashion
 to any concrete quantum problem with two provisos� First of all
the problem has to be cast into the general form ��� and secondly one must
have su!cient information on the principal symbol H��q� p�� Depending on
H� considerable simpli�cations of ����
 ���� may be in force
 one example
being the e�ective Hamiltonian of the time�adiabatic theorem studied in
Section ���� As a net result
 if the conditions of the space�adiabatic Theorem
��� are satis�ed
 the full Schr�odinger equation is approximated by an e�ective
Schr�odinger equation referring to a speci�c relevant energy band� The errors
are estimated and
 in general
 the time scale of validity is much larger than
the one which can be reached within a semiclassical approximation�

We focused our interest on a single relevant energy band� No information
on the complement is needed except for global quantities like the resolvent
�H��q� p��Er�q� p�������	��q� p��� In previous investigations �Bl�
 LiFl� all
energy bands are treated simultaneously� An example which would not fall
under such a scheme is nonrelativistic QED
 which governs electrons coupled
to the quantized radiation �eld� In this case the principal symbol has a two�
fold degenerate eigenvalue at the bottom of the spectrum separated by a gap
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from the continuous spectrum
 provided jpj is su!ciently small and there is
a suitable infrared cuto� �PST���

The main restriction of our work is the gap condition of Section �� There
are two standard mechanisms of how this condition is violated� ��� There are
two �or possibly more� locally isolated energy bands of constant multiplicity
which cross on a lower dimensional submanifold� Away from the crossing
region the wave function in one band is governed by the e�ective Hamiltonian
discussed before� If the wave function comes close to the crossing manifold

there is a certain probability to make a transition to the other band� In rather
speci�c model systems such transitions have been studied in considerable
detail �Ha�
 HaJo�
 FeGe
 FeLa�� ��� H� has a smooth band of constant
multiplicity bordering the continuous spectrum without gap� This is the rule
in models from nonrelativistic QED with massless photons� Results for the
massless Nelson model �Te�� indicate that smoothness of 	��q� p� su!ces also
in general for adiabatic decoupling at leading order with intraband dynamics
generated by h� � �h� as de�ned by ����� However
 the expansion stops at
this stage� Physically
 the electron looses energy through radiation
 which
means that the next order correction must be dissipative�

&From the physics point of view the dynamics of molecules and the dy�
namics of electrons in a solid are the two most prominent areas of application
for the space�adiabatic perturbation theory� The former has been discussed
already in Section ���� Bloch electrons do not quite fall into our scheme

since the classical phase space is Rd � Td
 Td a �at d�dimensional torus�
This requires substantial changes which are discussed in �PST���

A Operator�valued Weyl calculus

Pseudodi�erential operators with operator�valued symbols have been widely
discussed in the literature� The results presented in this Appendix can be
found in �H�o
 Fo
 Iv
 GMS�� We start with some notation� Let E be a Banach
space
 then C�Rd � E� denote the space of E�valued continuous functions on
Rd � In the same spirit we will employ the notation S�Rd � E�
 Lp�Rd � E�
 with
the obvious meaning� Note that
 in the special case where E � Hf is an
Hilbert space
 one has L��Rd �Hf� �� L��Rd ��Hf � The space of the bounded
operators on E will be denoted as B�E��
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A�� Weyl quantization

Let A be a B�Hf��valued rapidly decreasing smooth function on R�d 
 i�e�
A � S�R�d �B�Hf��� If we denote by FA the Fourier transform of A then
 by
Fourier inversion formula


A�q� p� �
�

��	�d

Z
R�d

�FA���� �� ei���q���p� d�d� �

where the integral is a Bochner integral for B�Hf��valued functions� This
suggest to de�ne an operator bA � B�H�
 called the Weyl quantization of
A
 by substituting ei���q���p� with ei���bq���bp� � �Hf

where bq is multiplication
by x and bp � �i�rx in L��Rd �� The exponential is de�ned by using the
spectral theorem and it is explicitly given by�

ei���bq���bp��
�

�x� � ei��������ei��x��x � ��� for � � L��Rd�� �
��

Thus

bA �
�

��	�d

Z
R�d

�FA���� ��
�
ei���bq���bp� � �Hf

�
d�d� � �

�

and
 in particular


�� bA��
B�H�

�
�

��	�d

Z
R�d

k�FA���� ��kB�Hf �
d�d� �

which implies that bA belongs to B�H� provided the Fourier transform of A
belongs to L��R�d � B�Hf��� We will also use the notation W��A� � bA in
order to emphasize the � �dependence�

Substituting �
�� in �

� one obtains that for every � � S�Rd �Hf�

� bA���x� �
�

��	��d

Z
R�d

A
�
�
��x � y�� �

�
ei���x�y��� ��y� d�dy� �
��

i�e� bA is an integral operator with kernel

KA�x� y� �
�

��	��d

Z
Rd

A
�
�
��x � y�� �

�
ei���x�y��� d� �

Taking �
�� as a de�nition
 the Weyl quantization can be extended to
much larger classes of symbols A�q� p��
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De�nition A��� A function A � C��R�d �B�Hf�� belongs to the symbol
class Sm

� �B�Hf�� �with m � R and � � 
 � �� if for every �� � � Nd there
exists a positive constant C��� such that

sup
q�Rd

������q �
�
pA��q� p�

���
B�Hf �

� C��� hpim��j�j

for every p � Rd � where hpi � �� � jpj������

The space Sm
� �B�Hf�� is a Fr�echet space
 whose topology can be de�ned by

the �directed� family of semi�norms

kAk
�m�
k � sup

j�j�j�j�k
sup

q�p�Rd
hpi�m��j�j

������q �
�
pA��q� p�

���
B�Hf �

� k � N �

�
��

The following result is proved exactly as in the scalar case
 cf� also �GMS��

Proposition A��� Let A � Sm
� �B�Hf��� then bA given trough ���� maps

S�Rd �Hf� continuously into itself�

Since A � Sm
� �B�Hf�� impliesA� � Sm

� �B�Hf��
 the previous result allows

to extend bA to a continuous map on S ��Rd �Hf��

It is convenient to introduce a special notation for such classes of opera�
tors acting on S�Rd �Hf�
 called pseudodi�erential operators


OPSm
� ��

�
W��A� � A � Sm

� �B�Hf��
�
�

In the following we will sometimes denote Sm
� �B�Hf�� simply as Sm

� and we
will use the shorthand Sm �� Sm

� � Notice that Sm
� � Sm

�� for any 
 	 
��

If A belongs to S��B�Hf�� then the corresponding Weyl quantization is
a bounded operator on H � L��Rd �Hf�� The following proposition sharpens
this statement �see �Fo�
 Theorem ��
���

Notation� Denote by Ck
b�Rd � E� the space of E�valued
 k times continuously

di�erentiable functions on Rd � such that all the derivatives up to the order
k are bounded� Equipped with the norm

kAkCk
b

�� sup
j�j�k

sup
x�Rd

k���xA��x�kE

it is a Banach space�
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Proposition A�
� �Calderon�Vaillancourt� There exists a constant Cd �

 such that for every A � C�d��

b �R�d �B�Hf�� one has�� bA��
B�H�

� Cd sup
j�j�j�j��d��

sup
q�p�Rd

������q �
�
pA��q� p�

���
B�Hf�

� Cd kAkC�d��
b

�

This implies
 in particular
 that the Weyl quantization
 regarded as a map
W� � S��B�Hf�� � B�H�
 is continuous with respect to the Fr�echet topology
on S��B�Hf���

A�� The Weyl�Moyal product

Next we consider the composition of symbols� The behavior of the symbol
classes with respect to the pointwise product is very simple
 as can be proved
by using the Leibniz rule�

Proposition A��� If A � Sm�
� �B�Hf�� and B � Sm�

� �B�Hf��� then AB be�
longs to
Sm��m�
� �B�Hf�� for every m��m� � R�

The behavior under pointwise inversion is described in the following propo�
sition� For every T � B�Hf� let the internal spectral radius be 
int�T � ��
inf fj�j � � � ��T �g �

Proposition A��� Assume that A � Sm
� �B�Hf�� is a normal symbol which

is elliptic� in the sense that there exists a constant C� such that


int�A�q� p�� 	 C� hpi
m for any p � Rd �

Then the pointwise inverse A�� exists and belongs to S�m� �B�Hf���

Proof� As a consequence of the spectral theorem �for bounded normal
operators� one has��A���q� p�

��
B�Hf �

� 
int�A�q� p���� � C hpi�m �

Similar bounds on derivatives can be obtained by noticing that��rp�A
���
��
B�Hf �

�
���A���rpA� A��

��
B�Hf �

� C � hpi�m��

and applying the chain rule�

The crucial result for pseudodiferential calculus is the following� One
can de�ne an associative product in the space of classical symbols which
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corresponds to the composition of the operators� Given A � Sm�
� �B�Hf��

and B � Sm�
� �B�Hf�� we know that bA and bB map S�Rd �Hf� into itself�

Then bA bB is still an operator on S�Rd �Hf� and one can show that there
exists a unique ��dependent symbol Symb� bA bB� �� A $"B � Sm��m�

� �B�Hf��
such that

W��A�W��B� � W��A $" B��

The symbol A $"B is called the Weyl product �or the twisted product�
of the symbols A and B� For the proof of the following proposition in the
operator valued case we refer again to �GMS��

Proposition A��� Let A � Sm�
� �B�Hf�� and B � Sm�

� �B�Hf��� then bA bB �bC with C � Sm��m�
� �B�Hf�� given through

C�q� p� � exp

�
i�

�
�rp � rx �r� � rq�

��
A�q� p�B�x� ��

����
x	q��	p

��
�
A $"B

�
�q� p� � ����

In particular
 S���B�Hf�� and S�� �B�Hf�� ��
S
m�R S

m
� �B�Hf�� are algebras

with respect to the Weyl product $"�

Since the product A $" B depends on � by construction
 one can expand
���� in orders of �� To this end
 it is convenient to de�ne suitable classes
of ��dependent symbols
 called semiclassical symbols
 which 	 roughly
speaking 	 are close to a power series in � of classical symbols with nicer and
nicer behavior at in�nity� Our de�nition is a special case of the standard
ones �see �DiSj
 Ma
 Fo
 H�o���

De�nition A��� A map A � ��� ��� � Sm
� � � �� A� is called a semiclassical

symbol of order m and weight 
 if there exists a sequence fAjgj�N with

Aj � Sm�j�
� such that for every n � N one has that

�
A� �

Pn��
j	� �

jAj

�
belongs to Sm�n�

� uniformly in �� in the following sense� for any k � N there
exists a constant Cn�k such that for any � � ��� ��� one has

���A� �
n��X
j	�

�jAj

����m�n��
k

� Cn�k �
n � ����

where k� � � k
�m�
k is the k�th Fr�echet semi�norm in Sm

� � introduced in �����

One calls A� and A� the principal symbol and the subprincipal symbol

of A� The space of semiclassical symbols of order m and weight 
 will be
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denoted as Sm
� ���� If condition ���� is ful�lled
 one writes

A �
X
j��

�jAj in Sm
� ���

and one says that A is asymptotically equivalent to the series
P

j�� �
jAj

in Sm
� ���� If A is asymptotically equivalent to the series in which Aj � �

for every j � N
 we write A � O����� To be precise
 we should write
A � O���� in Sm

� ���
 but the latter speci�cation is omitted whenever it is
unambiguous from the context�

In general a formal power series
P

j�� �
jAj is not convergent
 but it is

always the asymptotic expansion of a �non unique� semiclassical symbol �e�g�
�Ma���

Proposition A��� Let be fAjgj�N an arbitrary sequence such that Aj �

Sm�j�
� � Then there exists A � Sm

� ��� such that A �
P

j�� �
jAj in Sm

� ��� and
A is unique up to O����� in the sense that the di�erence of two such symbols
is O���� in Sm

� ���� The semiclassical symbol A is called a resummation

of the formal symbol
P

j�� �
jAj�

The Weyl product of two semiclassical symbols is again a semiclassical sym�
bol with an explicit asymptotic expansion �see �Fo�
 Theorem ������

Proposition A��� If A �
P

j�� �
jAj in Sm�

� ��� and B �
P

j�� �
jBj in

Sm�
� ���� then A $" B � Sm��m�

� ��� has an asymptotic expansion given by

�
A $" B

�
k

�q� p� � ��i��k
X

j�j�j�j�j�l	k

����j�j

j�j.j�j.

�
���q �

�
pAj���

�
p �

�
qBl�

�
�q� p�

����

where it is understood that k� j� l � N and �� � � Nd �

For example �A $" B�� is simply given by the pointwise product A�B� and

�A $" B�� � A�B� � A�B� �
i

�
fA�� B�g

where f�� �g denotes the Poisson bracket on S�� �B�Hf��
 de�ned through

fA�Bg �
dX

j	�

�A

�pj

�B

�qj
�
�A

�qj

�B

�pj
� ����
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Notice that
 in general
 fA�Bg 
� �fB�Ag since operator�valued derivatives
do not commute
 in particular fA�Ag 
� �� The usual Poisson algebra is
recovered in the special case in which one of the two arguments is a multiple
of the identity
 i�e� A�z� � a�z��Hf

�

As a consequence of the previous result
 it is convenient to introduce the
space of the formal power series with coe!cients in S�� �B�Hf��� This space

equipped with the associative product given by ���� and with the involution
de�ned by taking the adjoint of every coe!cient
 will be called the algebra
of formal symbols over B�Hf�� In particular we will denote as Mm

� ��� the
subspace of the formal power series with a resummation in Sm

� ���
 i�e�

Mm
� ��� ��

���X
j��

�jAj � Aj � Sm�j�
�

��� �

In the context of formal power series
 the product de�ned by ���� will be
called the Moyal product and denoted simply as " � Notice that " de�nes
a map from Mm�

� ����Mm�
� ��� to Mm��m�

� ���� The Moyal product can also
be regarded as a map from Mm�

� ���B�Hf�� �Mm�
� ���Hf� to Mm��m�

� �Hf�

where in ���� the operator A and its derivatives act on the vector B and its
derivatives�

To sum up the previous discussion
 we wish to point out that one can
prove statements on three levels� formal symbols �i�e� formal power series�

semiclassical symbols
 and operators on S�Rd �Hf� � L��Rd �Hf�� A sim�
ple example illustrates the interplay between these levels� Suppose that
two formal symbols A � Mm�

� ��� and B � Mm�
� ��� Moyal commute
 i�e�

�A�B�� � A"B �B"A � �� Let A� � Sm�
� ��� and B� � Sm�

� ��� be any two
resummations of A and
 respectively
 B� Since we know a priori �by Prop�
A��� that the Weyl product A�

$" B� belongs to Sm��m�
� ��� it follows that

the Weyl commutator �A�� B�� �� is asymptotically close to zero in Sm��m�
� ���


which can be rephrased in the following way� for any n� k � N there exists a
constant Cn�k such that for any � � ��� ��� one has����A�� B�� ��

����m��m��n��

k
� Cn�k �

n �

If 
 � � we obtain that de�nitely m��m��n
 � � for some n � N and then
Prop� A�� assures that the operator commutator � bA�� bB�� can be bounded
in the B�H��norm� Moreover
 for 
 � �
 we can conclude that � bA�� bB��
is a smoothing operator �i�e� it belongs to OPS��� �� �m�ROPS

m
� � and

in particular one can prove that it is a �small� bounded operator between
the Sobolev spaces Hq and Hq�r for any q� r � N� To be precise
 for any
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q� r� n � N there exist a constant Cn�q�r such that���� bA�� bB��
���
B�Hq �Hq�r�

� Cn�q�r �
n

for any � � ��� ���
 where Hq stands for Hq�Rd �Hf�� Notice that for 
 � �
and m� � m� �� m � � it is not possible to conclude from �A�B�� � �

that � bA�� bB�� is a bounded operator
 since it could happen 	 for example 	

that �A�� B�� �� � e�
�
� pm� which is asymptotically close to zero in Sm

� ���� In
the following we will use the same symbol for an element in Sm

� ��� and its
expansion in Mm

� ���� As suggested by the preceding discussion
 we introduce
the following synthetic notation�

Notation� Let be A and B semiclassical symbols in Sm
� ���� We will say

that B � A � O������ if B � A is asymptotically close to zero in Sm
� ���

for 
 � ��

With a little abuse
 we will employ the same notation for pseudodi�erential
operators too
 i�e� we write bB � bA � O������ if B � A � O������� As
noticed above this is a strong concept of closeness
 since it implies that bB� bA
is a smoothing operator� Compare with the following weaker concept�

Notation� Let be R and S two ���dependent� operators on H� We will say
that R � S�O���

�� if for every n � N there exists a constant Cn such that

kR� SkB�H� � Cn�
n

for every � � ��� ���� In such a case we will say that R is O���
���close to S�
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