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Abstract As multithreaded server applications and runtime systems prevail,
garbage collection is becoming an essential feature to support high performance sys-
tems, especially those running data-intensive applications. The fundamental issue of
garbage collector (GC) design is to maximize the recycled space with minimal time
overhead. This paper proposes two innovative solutions: one to improve space effi-
ciency, and the other to improve time efficiency. To achieve space efficiency, we
propose the Space Tuner that utilizes the novel concept of allocation speed to reduce
wasted space. Conventional static space partitioning techniques often lead to ineffi-
cient space utilization. The Space Tuner adjusts the heap partitioning dynamically such
that when a collection is triggered, all space partitions are fully filled. To achieve time
efficiency, we propose a novel parallelization method that reduces the compacting GC
parallelization problem into a tree traversal parallelization problem. This method can
be applied for both normal and large object compaction. Object compaction is hard
to parallelize due to strong data dependencies such that the source object can not be
moved to its target location until the object originally in the target location has been
moved out. Our proposed algorithm overcomes the difficulties by dividing the heap
into equal-sized blocks and parallelizing the movement of the independent blocks. It
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is noteworthy that these proposed algorithms are generic such that they can be utilized
in different GC designs. The proposed techniques have been implemented in Apache
Harmony JVM and we evaluated the proposed algorithms with SPECjbb and Dacapo
benchmark suites. The experiment results demonstrate that our proposed algorithms
greatly improve space utilization and the corresponding parallelization schemes are
scalable, which brings time efficiency.

Keywords Java virtual machine · Garbage collection

1 Introduction

Garbage collection technology is widely used in managed runtime systems such as Java
virtual machine (JVM) [2] and Common Language Runtime (CLR) [6]. Data-intensive
multithreaded applications with large heaps running on modern servers present new
challenges as far as designing suitable garbage collectors is concerned. Particularly,
server applications are required to operate continuously and remain highly responsive
to frequent client requests. Thus the garbage collector should impose minimum pause
time while providing maximum throughput. On the other hand, increasingly parallel
multicore systems will be used even in low-end devices that impose real-time con-
straints. When garbage collection is used in these systems, its impact on the overall
performance needs to be minimized so as to meet the real-time constraints. Mean-
while, garbage collection needs to be effective in recycling space, especially when the
available memory space is limited. Therefore, to meet the needs of modern and future
data-intensive multithreaded applications, it is essential to design garbage collectors
that provide both space and time efficiency.

There are two main aspects in garbage collector (GC) design, namely, the parti-
tioning of heap space and the algorithms for garbage collection. As shown in [13], for
better memory management, a modern high performance GC usually manages large
and normal objects separately such that the heap is divided into large object space
(LOS) and non-large object space (non-LOS). However, the object size distribution
varies from one application to another and from one execution phase to the next even
in one application, thus it is impossible to predefine a proper heap partitioning for
LOS and non-LOS statically. The current known GCs with separate allocation spaces
mostly suffer from the problem that they don’t fit well with the dynamic variations
of object size distribution at runtime. This problem leads to imbalanced space uti-
lization and impacts the overall GC performance negatively. Besides LOS/non-LOS
space partitioning, the problem of imbalanced space utilization indeed exists in any
GCs that have multiple spaces. For example, a generational GC has typically a young
object space and a mature object space. The space partitioning for both spaces also
needs a careful design to achieve maximal GC efficiency.

For garbage collection algorithms, conventional mark-sweep and reference count-
ing collectors are susceptible to fragmentation due to the lack of object movements. To
address this problem, copying or compacting GCs are introduced. Compaction algo-
rithms are now widely utilized in GC designs [14,1,15,19]. Compaction eliminates
fragmentation by grouping live objects together in the heap and freeing up large
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contiguous spaces for future allocation. As multi-core architectures prevail, paral-
lel compaction algorithms have been designed to achieve time efficiency. However,
none of the proposed parallel compaction algorithms can be used for large object
compaction. Large object compaction is hard to parallelize due to strong data depen-
dencies such that the source object can not be moved to its target location until the
object originally in the target location has been moved out. Especially, when there are
only few very large objects, the parallelism is seemingly inadequate.

The fundamental issue of garbage collector (GC) design is to maximize the recy-
cled space with minimal time and memory overhead. In this paper, we propose two
innovative solutions, one to improve space efficiency, and the other to improve time
efficiency. To improve space utilization, we introduce the Space Tuner, which adjusts
the heap partitioning between the spaces dynamically according to the application’s
runtime behavior, such that when collection happens, both spaces are fully utilized.
To improve time efficiency, we propose a parallelization algorithm that reduces the
compaction parallelization problems into a tree traversal parallelization problem, and
apply it to both normal and large object compaction. Note that although we demon-
strate our algorithms on a parallel compacting GC based on the LISP2 design [14,2],
these algorithms are indeed generic and have much broader applications: The Space
Tuner can be utilized in any design with multiple allocation spaces, and the paral-
lel compacting algorithms can be applied in any design that involves object move-
ments.

In this paper we present the design details of the proposed algorithms and eval-
uate their efficiencies. These algorithms are implemented in Apache Harmony, a
production-quality open source JAVA SE implementation [2]. This paper is organized
as follows. Section 2 discusses the related work. Section 3 introduces the basic algo-
rithm designs of the Space Tuner and the parallel compaction mechanisms. Section 4
presents the implementation details of these designs in Apache Harmony. Section 5
evaluates and discusses the design with representative benchmarks. And at the end,
Sect. 6 concludes and discusses the future work.

2 Related Work

For better memory management, Caudill and Wirfs-Brock first proposed to use sep-
arate spaces to manage objects of different sizes, large object space (LOS) for large
objects and non-large object space (non-LOS) for normal objects [5]. Hicks et al. have
done a thorough study on large object spaces [13]. The results of this study indicate
three problems for LOS designs. First, LOS collection is hard to parallelize. Second,
LOS shares the same heap with non-LOS, thus it is hard to achieve full utilization
of the heap space. Third, LOS and non-LOS collections are done in different phases,
which may affect the scalability of parallel garbage collection. In Soman et al. [16],
discussed about applying different GC algorithms in the same heap space, but their
work does not involve adjusting the heap partitioning dynamically. The study done by
Barrett and Zorn [4] is the only known publication that studies space boundary adjust-
ment. Nevertheless, this work is not aimed for GC efficiency; instead, it is designed to
meet the resource constraints such as pause time, thus it attacks completely different
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problems than our design. To address the inefficiency of space utilization, the Space
Tuner utilizes allocation speed to adjust the heap partitioning at runtime.

As exemplified by the LISP2 algorithm [14], compaction algorithms are utilized in
GC designs to avoid heap fragmentations. It achieves this by grouping live objects to-
gether in the heap and freeing up large contiguous spaces available thereafter for future
allocation. However, compaction usually imposes lengthy pause time. To address this
issue, several parallel compaction algorithms have been proposed. Flood et al. [12]
presented a parallel compaction algorithm that runs three passes over the heap. First,
it determines a new location for each object and installs a forwarding pointer, second
it fixes all pointers in the heap to point to the new locations, and finally, it moves all
objects. To make this algorithm run in parallel, the heap is split into N areas such that
N threads are used to compact the heap into N/2 chunks of live objects. The main
disadvantage of this design is that the resulted free space is noncontiguous. Abuaiadh
et al. [1] proposed a three-phase parallel compactor that uses a block-offset array and
mark-bit table to record the live objects moving distance in blocks. The disadvantage
of this algorithm is that it wastes about 3% of heap space due to internal fragmenta-
tion of blocks. Kermany and Petrank [15] proposed the Compressor that requires two
phases to compact the heap; also Wegiel and Krintz [19] designed the Mapping Col-
lector with nearly one phase. Both approaches strongly depend on the virtual memory
support from the underlying operating system. The former leverages the memory pro-
tection support to copy and adjust pointer references on a fault, and the latter releases
the physical pages that have no live data. Although these algorithms are efficient in
compacting normal objects, as far as we know, no algorithm has been proposed to
parallelize the compaction of large objects. We hereby propose a novel parallelization
method that reduces the normal and large object compaction parallelization problem
into a dependence tree traversal parallelization problem.

Concurrent garbage collectors run in parallel to the application on a separate thread
using part of the overall computing resources, while the application continues to run
on the rest of these resources. Steele and Dijkstra proposed the first concurrent collec-
tors, which are based on mark-sweep algorithms [18,8]. Endo et al. proposed a mostly
concurrent collector that does not use compiler supports, such as write barriers, but
uses virtual memory primitives [11]. Several groups [9,10,3] have proposed fully
concurrent on-the-fly mark-sweep collectors that provide low pause time; but these
designs are complex to implement due to the requirement of expensive write barriers.
However, concurrent GC and Stop-The-World (STW) GC designs are fundamentally
different: they have different design goals, evaluation metrics, and algorithms: con-
current GC is designed to reduce pause time, whereas STW GC is designed to increase
throughput. In this paper, we only focus on STW GC design.

3 Space-and-Time-Efficient Garbage Collection Algorithms

In this section, we conceptually demonstrate the space and time efficiency problems
faced in GC designs. To address these problems, we present the Space Tuner algo-
rithm, which aims to improve space efficiency; and the parallel compaction algorithm,
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which aims to improve time efficiency. The implementation details of the algorithms
proposed in this section will be discussed in Sect. 4.

3.1 The Space Tuner

As shown in Fig. 1a, when the heap is partitioned into multiple spaces, for instance
LOS and non-LOS, a collection is triggered when either space is full. In times when
a collection is triggered by one space while the other space is sparsely filled, the heap
is not fully utilized. Consequently, it leads to more frequent collections and lower
application performance.

The key question here is why one space would get full before the other one does.
This is because one space allocates objects faster than the other. That is, within the
same amount of time, a higher fraction of one space’s free region is allocated than
that of the other space. Hence, if both spaces allocate the same fraction of its free
space within a fixed amount of time, then both spaces should be full when garbage
collection is triggered. Based on this observation, we propose the Space Tuner. The
Space Tuner dynamically monitors the allocation speed, which is defined as the size
of objects allocated per unit time (e.g. bytes/seconds), of different spaces, and utilizes
this information to adjust the heap partitioning. Thus, in the ideal case, if the sizes of
LOS and non-LOS are set proportionally to their respective allocation speeds, then we
can guarantee that both spaces become full at the same time. During an application’s
execution, both spaces may have some live objects surviving after a collection. So
the space size that matters is the remaining free (unallocated) size in the space after a
collection. The Space Tuner manages to adjust the heap partitioning right after every
collection, by allocating the remaining free space of the heap to LOS and non-LOS.
The sizes of the free spaces given to LOS and non-LOS are proportional to their
allocation speeds.

Figure 1 illustrates the basic idea of the Space Tuner. In the upper half of Fig. 1a,
non-LOS becomes full and triggers a garbage collection, but at this time, only 50%
of LOS is utilized, thus the allocation speed in non-LOS is twice of that in LOS.

LOS Non-LOS

Allocated LOS space

Allocated non-LOS space

Free space

LOS Non-LOS

LOS Non-LOS

(A)

(B)

Fig. 1 a Space inefficiency in GC with separate allocation spaces. b The Space Tuner
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In the upper half of Fig. 1b, the Space Tuner captures this information and assigns
more space to non-LOS and shrinks LOS correspondingly. Such that in the next allo-
cation period, non-LOS would have more space for object allocation.

SpaceSizeLOS = AllocSpeedLOS

(AllocSpeedLOS + AllocSpeednon−L O S)

∗ (FreeSizeLOS + FreeSizenon−L O S) + Survivor Si zeLOS

(1)

Equation 1 presents the Space Tuner algorithm for LOS size computation. In this
equation, SpaceSizeLOS represents the space size of LOS; AllocSpeedLOS represents
the allocation speed of LOS; AllocSpeednon−L O S represents the allocation speed of
non-LOS; FreeSizeLOS represents the freed space size in LOS after the collection;
FreeSizenon−L O S represents the freed space size in non-LOS after the collection;
and Survivor Si zeLOS represents the used space size in LOS by the survivors after
the collection. This equation calculates the new LOS size for next allocation period
based on allocation speed and other information. The first term on the right hand side
calculates the relative allocation speed of LOS. The second term calculates the total
size of unallocated space in both partitions, such that the unallocated space can be
re-assigned to the partitions according to their relative allocation speed calculated in
the first term. Then the third term adds the survivor size of the partition to calculate the
new size of the partition (LOS in this case). Note that the computation of allocation
speed can be flexible. For example, it can be just the total allocated bytes from last
collection, or the average value of the speeds in last few collections. In our experi-
ence, it is sufficient to use the allocated bytes from the last collection. To get the new
non-LOS size, we can simply subtract SpaceSizeLOS from total heap size.

3.2 The Basic Parallel Compaction Algorithm

Compacting GCs move live objects towards one end of the heap to eliminate frag-
mentations. To increase GC efficiency, parallel compaction algorithms are essential
in modern GC designs. The fundamental goal of a parallel compaction algorithm is to
exploit as much parallelism as possible while keeping the synchronization cost low.

As shown in Fig. 2, there are two problems in the parallelization of object compac-
tion: In non-LOS, there are many normal objects and the data dependencies between

LOS Non-LOS

Fig. 2 Normal and large object compaction
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normal objects are fairly low, implying a high degree of parallelism. However, in order
to parallelize the compaction process in a straightforward manner, an atomic opera-
tion, which is notorious for its inefficiency, is needed for each object movement. Thus
the cost of parallelization may be well over the performance gain. On the other hand,
there exist strong data dependencies in LOS such that the source object can not be
moved to its target location until the object originally in the target location has been
moved out. Especially, when there are only few very large objects, the parallelism is
seemingly inadequate.

This observation indicates that we need to set a proper parallelization granular-
ity such that it reduces the high synchronization overheads caused by fine-grain data
movement (as in non-LOS) and the false data dependencies caused by coarse-grain data
movement (as in LOS). Our design is to divide the heap into equal-sized blocks thus
the parallelization granularity is a block. For non-LOS, each block contains multiple
objects. During collection, each thread obtains a block and moves all the objects in the
block. When it finishes the current block, it fetches another one. In this case, at most
one atomic operation is required for the movement of multiple objects in a block, thus
greatly reducing the synchronization overhead. Furthermore, the atomic operations
can be largely eliminated if a group of blocks are assigned to one collector. This is the
case in our design shown in later text. On the other hand, for LOS, each object contains
one or more blocks. When one block of a large object can not be moved due to data
dependency, the other blocks can still be moved, thus reducing the false dependency
problem. For instance, in Fig. 3a, originally, due to false data dependencies, blocks 6,
7, and 8 cannot be moved until block 2 has been moved out. With equal-sized blocks,
dependencies only exists between blocks 6 and 2, thus the movements of block 7 and 8
can be parallelized. The block sizes for LOS and non-LOS can be different, while they
are equal within either space. This brings flexibilities so that we can select appropriate
block sizes for either space. For example, the block size of LOS can be as small as
possible to bring more parallelism as long as the synchronization overhead can be
amortized by the parallelization benefits.

Further complications exist in parallelizing the compaction process. For non-LOS,
races between multiple collectors exist when they move objects from a source block
to a target block. For instance, two collectors may move data from two source blocks
into the same target block, or one collector may write into a target block in which
the original objects have not been moved away yet. This observation indicates two
properties. First, each block has two roles, it is a source block when its objects are
compacted to some other block, and it can be a target block after its original data has
been moved away. Second, in non-LOS, multiple source blocks may compact into one
target block, and thus the access to this target block should be coordinated or syn-
chronized. In order to achieve high performance, the complicated relations between
the blocks need to be clarified before the compacting threads start. To achieve this,
we generate dependence trees, such as the one in Fig. 3b, which captures all data
dependencies between the blocks. For instance, in LOS, block 2 is the source block
for block 1 and it is also the target block for block 6. Thus, block 6 cannot be moved
to block 2 until block 2 has been moved to block 1. In non-LOS, both block 9 and
10 are the target blocks for block 12, and block 9 is also the target block for block
10. Thus, block 12 cannot be moved to block 10 until block 10 has been moved to
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Fig. 3 Partitioning of the heap into equal-sized blocks

block 9. When compaction starts, the threads traverse the tree in parallel, such that
each thread obtains a source block and a target block. After the current data move-
ment is done, the thread moves down the tree to obtain a new source block and set
the old source block to be the new target block. This process finishes after the thread
has reached the leaf nodes of the tree. Therefore, we actually reduce the compaction
parallelization problem into a tree traversal parallelization problem. For LOS com-
paction, the situation is simpler because one source block has only one target block,
and vice versa. Thus in this case the dependency trees degenerate into dependency
lists.

4 Implementation Details

All proposed algorithms have been implemented in Apache Harmony, a production-
quality open source JAVA Virtual Machine [2]. The default garbage collector in Apache
Harmony is a generational garbage collector, such that for normal object allocation,
there is a nursery object space (NOS), which is used for new object allocation, and a
mature object space (MOS), which is used for the storage of older objects that have
survived one or more garbage collections. For better memory management, Apache
Harmony GC utilizes LOS for large object management, and non-LOS for normal
object management, in this case, non-LOS is MOS and NOS. During allocation, when
NOS is full, live objects in NOS are copied to MOS, and LOS is not mark-swept.
This is called minor collection. When either MOS or LOS is full, a major collection is
triggered to compact in both MOS and LOS. To exploit more parallelism, we divided
the heap space into equal-sized blocks, and each block contains a block header for its
metadata, including block base address, block ceiling address, block state, etc. In this
study, the block size is set to 4 KB and the size threshold for large objects is set to
2 KB.

123



Int J Parallel Prog (2011) 39:451–472 459

4.1 The Space Tuner

We implemented the space tuner in Apache Harmony GC such that when major
collections happen, it can adjust the LOS and non-LOS sizes based on their respective
allocation speeds. The detailed algorithm is illustrated in Fig. 4. When GC receives an
allocation request, it first checks whether it is a large object. If it is a large object, its
size is added to LOS allocation speed; otherwise, its size is added to non-LOS alloca-
tion speed. Since the time elapsed between two collections is the same for both LOS
and non-LOS, and the Space Tuner cares only the ratio of their allocation speeds, thus
the total allocation size (in unit of bytes) in respective spaces can be utilized as their
allocation speed. When garbage collection is triggered, the Space Tuner calculates the
total survivor size, or the total size of all live objects, in both spaces. Next, the free
size in each space is calculated by subtracting the survivor size from the space size,
and these numbers are then plugged into Eq. 1 to calculate the new space sizes for
LOS and non-LOS.

There is no need to invoke the Space Tuner when the allocation speeds of both spaces
have stabilized. Thus, we have implemented a simple function, gc_decide_space_tune,
to check whether space tuning is necessary. This function first gathers information
about the allocation speeds, the survivor ratios, and the size of free space of all par-
titions. Then from this information, it calculates the wasted space on the heap. For
instance, if garbage collection is triggered by LOS, then the wasted space is the unused
space in non-LOS at the moment when garbage collection is trigged. Next, it com-
pares the wasted space to the threshold value. If the wasted space is greater than the
threshold, then space tuning is necessary; otherwise, it eliminates the performance
overhead of the invocation of the Space Tuner. Note that this threshold value can be

Object allocation
request received by

GC

Size(obj)>threshold?

AllocSpeed_LOS +=
Size(obj)

AllocSpeed_nonLOS
+= Size(obj)

Allocation Space
full?

GC allocates object

Garbage collection is
triggered and collects

the heap

Compute the LOS
and non-LOS size
using Equation 1

Yes No

Yes

No

Fig. 4 Space tuner algorithm
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adjusted, by default it is set to be 4 MB in our design. With the Space Tuner, we expect
that when a garbage collection happens, both LOS and non-LOS should be almost
fully utilized, and as a consequence, the number of garbage collections should be
significantly decreased compared to that of without the Space Tuner.

4.2 Parallel LOS Compaction

To demonstrate the effect of the parallel LOS compaction algorithm, we modified the
Apache Harmony GC with separate allocation spaces such that the parallel Mark-
Compact algorithm is utilized for non-LOS management, whereas our parallel LOS
compaction algorithm is applied for LOS management. The two key steps in the par-
allel LOS compaction algorithm are the generation of dependency lists and the data
movement. First, when the garbage collectors are trying to compute the new addresses
of the objects, a number of disjoint dependence lists are generated. Figure 5 shows
the pseudo-code for dependency lists generation: first, multiple collectors compete to
grab the large objects from the heap; the accesses to the heap are guarded with atomic
operations (Label 1). Second, after obtaining a task, the collector thread updates the
global_target_address to allow other threads to continue (Label 2). At last, the col-
lector computes the dependencies between the source and target blocks of the large
objects and inserts these blocks into the dependency lists (Label 3).

After the dependency lists have been constructed, the collectors can start moving the
large objects in parallel. Each collector atomically grabs a dependency list and works
on it independently. Thus, it only requires an atomic operation for each dependency list
instead of for each block. The pseudo-code for this parallel large object compaction is
shown in Fig. 6. In essence, a thread first acquires the ownership of a dependency list
through an atomic operation. From the list, it gets the first block, which is the target

global_target_address = heap_start;
for (each collector thread in parallel ){
Label1: // atomically grab a large object

large_obj = pick_node_atomically(large_object_list);
obj_size = num_of_blocks (large_obj) * size_of_block;

Label2: //atomically increment global_target_adress with the object size aligned at block boundary
      do{

old_target_address = global_target_address;
new_target_address = old_target_address + obj_size;
 temp  = atomic_compxchg (global_target_address, new_target_address, old_target_address);

      }while( temp !=  old_target_address);
Label3: // build the list for the dependence between the source blocks and target blocks.

source_block = address_to_block_index( large_obj);
target_block = address_to_block_index( old_target_address);

      for( i = 0; i++; i < num_of_blocks (large_obj) ){
        insert_a_dependence_to_list(target_block, source_block);

target_block++;
source_block++;

      }
} //loop back for next object

Fig. 5 Generation of dependence lists
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Procedure Parallel_Large_Object_Compaction()

Begin

dep_list = get_next_compact_dep_list();

while(dep_list){

target_block = get_first_block(dep_list);

source_block = get_next_block(dep_list);

while(source_block != NULL){

memmove(target_block, source_block);

target_block = source_block;

source_block = get_next_block(dep_list);

}

dep_list = get_next_compact_dep_list();
}

End

Fig. 6 Parallel large object compaction

block, and the second block, which is the source block, and moves the source to the
target. When it finishes this block movement, the source block now becomes the target
block and a new source block is obtained by taking the next block in the dependency
list. This operation repeats until there is no more block in the dependency list. Then,
the thread obtains another dependency list from the task pool.

4.3 Parallel non-LOS Compaction

In order to evaluate the effect of our parallel compaction algorithm on non-LOS, we
implemented a fully parallel LISP2 compactor in Apache Harmony. LISP2 compactor
is one of the best-known GC algorithms thus we demonstrated the effectiveness of the
proposed algorithms in LISP2. Note that the proposed algorithms are generic enough
to be implemented in other GC designs that involve only two or three phases as well.
Our design thus consists of following four phases for a collection:

Phase 1: Live object marking. It traces the heap from root set and marks all the live
objects;

Phase 2: Object relocating. It computes the new address of every live object, and
installs the value into the object header;

Phase 3: Reference fixing. It adjusts all the reference values in the live objects to
point to the referenced objects’ new locations;

Phase 4: Object moving. It copies the live objects to their new locations.

Although we parallelized all four phases, we only discuss the parallelization of
phase 2 and 4, which are most related to our proposed design. The object relocating
phase, or phase 2, computes the objects’ target locations, without really moving the
objects. In this phase, the dependency tree is constructed in a similar manner as the
dependency list building process. The tree building process is bottom-up, from the
leaf nodes to the root. To achieve this, source blocks are used for synchronization
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control such that collectors atomically grab source blocks in heap address order. That
is, a compactor thread grabs a source block and a target block. For each live object in
the source block, the collector computes its target address in the target block. When the
target block has not enough space, the collector grabs the next target block. Then the
collector adds the source block identifier into the target block’s source block list, or
dependency list. Since a source block in one list can be the target block in another list,
at the end of this phase, the interconnections of the dependency lists form a depen-
dency tree, which would be traversed in phase 4. When the source block has no more
live objects, the collector grabs another source block until all the blocks have been
visited. In this phase, two atomic operations are needed for one block to eliminate data
races: one for taking the ownership of the source block, and the other for taking the
ownership of the target block.

In the object moving phase, or phase 4, the collectors traverse the dependency tree to
move objects. The traversal process is top-down, from the root to the leaf nodes. When
a collector has a sub-tree whose root block is ready to be filled with data, the collector
simply traverses the sub-tree in a breadth-first order, copying data from child blocks
to the parent block. The exact copying address of every object is installed in the object
header as the forwarding pointer in phase 2. Once a root block finishes its filling, it is
removed from the dependence tree, and its original child blocks become new roots. The
algorithm continues recursively and finishes when reaching the leaf blocks. Any block
that is the child of other block is not eligible as an initial root block. It is only picked
up by the collector when all its parent blocks are removed from the dependence tree.

4.4 The Load Balance Algorithm

In the previous sections we have described parallel compaction algorithms for both
LOS and non-LOS. These parallel compaction algorithms would achieve high per-
formance if and only if the workload for each thread is balanced. But in our baseline
design, load imbalance can occur. As shown in Fig. 7, if there are two threads working
on large object compaction, the work load of thread 1 would be much higher than that
of thread 2 due to the existence of a long dependency list. In this case, thread 2 has to
wait until thread 1 finishes its task.

assigned to thread 1

assigned to thread 2

Dependency Lists

Fig. 7 Load imbalance in dependency lists
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To maximize parallelism for high performance, we introduce the load balance
algorithms in this section. First, we have implemented a heuristics that counts the
total number of dependency lists and divides them into N (number of threads) chunks
and then collapses each chunk into a dependency list/tree. We call this approach Task
Collapse, the main advantage of this approach is its simplicity. It simply counts the
number of dependency lists and divide the dependency lists equally among all collec-
tor threads. Thus, it does not have to traverse all dependence lists/trees to count the
number of blocks. However, the disadvantage of this design is that if the dependency
lists/trees are highly imbalanced, Task Collapse may not perform well because it may
collapse several long lists into one list and several short lists into another.

In cases where the dependency lists/trees are highly imbalanced. We can use a
more sophisticated Task Pushing load balance approach [20]. For instance, when a
dependency list gets too long or when there are always one or two disjoint sub-trees
generated after the root block is filled, the work load between threads would be still
imbalanced. Our Task Pushing design can solve this problem by using virtual target
blocks. To break long lists, we can use a virtual target block for one of the blocks in the
middle of the list, and thus this virtual target block breaks the long list into two halves.
The virtual target block also serves as the new root of the newly created dependency
list.

To implement this virtual target block, we move the source block to a reserved
region (the virtual block) such that the source block no longer depends on another
block and becomes a root block. Then after compaction finishes, this block in the
reserved region (the virtual block) can be thrashed. This algorithm can be applied to
dependency tree as well, but instead of breaking a long dependency list, we break a
dependency tree into sub-trees and assign each sub-tree to a thread. The pseudo-code
of this algorithm is shown in Fig. 8, where Wi is the local working set of collector

Fig. 8 Algorithm of load balance in parallel compaction
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Ci. This algorithm applies the idea of Task Pushing, such that a collector pushes its
excessive tasks to other idle collectors (line 17). When all the collectors have no more
tasks, the execution finishes. Otherwise, the collectors will loop back to check if other
collectors have pushed new tasks to their local working sets.

5 Experiments and Results

We implemented the proposed algorithms in Apache Harmony. The evaluation of
the design and implementation was done with SPECjbb2005 [17] and Dacapo [7]
benchmark suites on an 8-core platform with Intel Core 2 2.8 GHz processors. Both
benchmark suites represent data-intensive applications. Specifically, SPECjbb2005 is
a large commercial server benchmark that allocates a large amount of non-LOS object.
Thus it is suitable for the evaluation non-LOS garbage collection. On the other hand,
the xalan benchmark in Dacapo is large-object-intensive, and it can be used for the
evaluation of large object compaction. We used a 256 MB heap by default.

5.1 The Space Tuner

First we evaluated the performance of the Space Tuner. In real applications, the object
size distribution varies from one application to another and from one execution phase
to next even in one application. For instance, xalan is an XSLT processor for trans-
forming XML documents, it is large-object-intensive thus it requires a large LOS; on
the other hand, SPECjbb2005 allocates a very small number of large objects, and it
requires a large non-LOS. In addition, SPECjbb2005 actually allocates all the large
objects at the beginning of its execution and very few large objects afterwards. Thus
in different phases of its execution, it requires different sizes for LOS. In this experi-
ment, for SPECjbb2005 we ran eight warehouses, and for Dacapo we set size to large
configuration.

As shown in Table 1, we compared three configurations, “tuner” denotes the uti-
lization of our Space Tuner algorithm; “4M LOS” denotes the utilization of a static
partitioning with 4 MB LOS; and “40M LOS” denotes the utilization of a static par-
titioning with 40 MB LOS. Column “num_collect” denotes the number of major col-
lections triggered; and “wasted_frac” denotes the fraction of total heap space wasted
when collection was triggered. The first observation from Table 1 is that static partition-
ing is highly inefficient. In several cases, including xalan-4M-LOS, luindex-4M-LOS,
and chart-4M-LOS, the programs were not able to finish execution due to an out-of-
memory exception, which was caused by inappropriate heap partitioning such that
LOS is too small in these cases. With the Space Tuner, the space utilization became
highly efficient, except in SPECjbb2005, all other benchmarks only required less than
5 major collections during their executions. Xalan allocated a lot of large objects, it
required 1060 major collections even when LOS size was 40M, and on average, it
wasted 53% of the total heap size when collection happened. Nevertheless, with the
Space Tuner, major collection was only triggered once during its execution. For most
of the Dacapo benchmarks, a 40M LOS was large enough to hold all the large objects,
thus only one major collection was triggered in the cases of luindex, chart, and bloat.
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Table 1 Performance of the Space Tuner

num_collect wasted_frac num_collect wasted_frac

SPECjbb tuner 19 0.12 jython Tuner 1 0.91

4M LOS 43 0.3 4M LOS 467 0.74

40M LOS 37 0.16 40M LOS 21 0.43

Bloat tuner 1 0.91 luindex tuner 1 0.96

4M LOS 71 0.81 4M LOS* 1∗ 0.96∗
40M LOS 1 0.47 40M LOS 1 0.47

Chart tuner 1 0.91 pmd tuner 2 0.63

4M LOS* 33∗ 0.91∗ 4M LOS 1170 0.86

40M LOS 1 0.47 40M LOS 18 0.45

Hsqldb tuner 4 0.325 xalan tuner 1 0.91

4M LOS 50 0.69 4M LOS* 44∗ 0.89∗
40M LOS 6 0.37 40M LOS 1060 0.53

The rows with a star * denote that the execution is not able to finish due to out-of-memory exception,
meaning that the static partitioning is not suitable for the program behavior
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Fig. 9 Runtime behavior of the Space Tuner on SPECjbb2005

Note that the wasted fraction was high when the Space Tuner was used. Recall that the
wasted fraction is defined as the fraction of heap space wasted when major collection
happens. In most cases with the Space Tuner, major collection actually happened once.
Thus, the high wasted fraction was actually caused by the improper heap partitioning
set previously. When the Space Tuner detected this situation, it immediately adjusted
the partitioning such that no further major collection was necessary.

Figure 9 shows the detailed runtime behavior of the Space Tuner running with
SPECjbb2005. The x-axis shows the number of major collections and the y-axis shows
the fraction of heap size wasted when collection happens. We compared the Space
Tuner, static partitioning with a 4M LOS, static partitioning with a 40M LOS, and
static partitioning with a 150M LOS. It clearly shows that with the Space Tuner, the
heap partitioning stabilized after 4 collections. When further collections happened,
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the wasted fraction was less than 5%. On the other hand, the one with 150M static
LOS failed to complete due to an out-of-memory exception, caused by insufficient
non-LOS. Note that in the case of 4M static LOS, the wasted fraction decreased from
50% to about 5%. This demonstrated the dynamic object allocation behavior of SPEC-
jbb2005: at the beginning of execution, SPECjbb2005 allocated a large amount of large
objects, requiring a large LOS; later in execution, few large objects were allocated.
The results in this section demonstrate that the Space Tuner greatly improved space
utilization, and this optimization also brought time efficiency by reducing the number
of collections.

Besides the LOS/non-LOS partitioning, we were also interested in how well the
Space Tuner works with a generational copying collector. In this case we implemented
a Space Tuner for NOS and MOS boundary adjustment and the results are shown in
Fig. 10. In this case, NOS was collected by a copying collector, and MOS was col-
lected by a compacting collector. The x-axis shows the number of warehouses used in
the experiment, the y-axis shows the normalized score (a higher score implies higher
performance), and we compared a 8, a 16, a 32, a 64 MB, and an adaptive NOS size.
Figure 7 clearly demonstrates that NOS size adaptation with the Space Tuner can
achieve much better performance than all of other fixed NOS size settings. Specif-
ically, the performance is almost 5x better than that of the 8 MB NOS. This result
demonstrates that the Space Tuner algorithm not only works for the space adjustment
between LOS and non-LOS, but it can also be applied to any case that involves the
partitioning of a space into multiple spaces.

In one of our recent experiments, we found that more accurate live object size
estimation can be achieved by first estimating the survivor ratio of each block and
then computing the total survivor size by adding up all survivor sizes in all blocks.
Specifically, we can record the block survivor ratio in block headers or a specific
block-indexed array, and then after collection is done we can get the live object size
of the whole heap by adding up the live object sizes in all blocks. The key observation
is that we can get more accurate estimation of the total survivor size by estimating the
survivor size of each block. This is reasonable because as the granularity of estimation
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Fig. 11 Survivor ratio estimation at the block level

is reduced, e.g. from the heap level to block level, we utilize more detailed information
about the allocation behavior and thus are able to make more accurate estimations. For
instance, Fig. 11 shows the block-level survivor behavior of SPECjbb 2005, where the
x-axis shows the block age counted as the number of collections, whereas the y-axis
shows the survivor size in units of bytes. This Figure is an overlay of the survivor
behaviors of all blocks in SPECjbb 2005, and it demonstrates that the survivor behav-
ior is highly predictable. Furthermore, we found out that when the heap is not very
large (e.g. 512 MB), the block-level survivor size estimation does not introduce a high
overhead. Thus, the implication is that we may use block-level survivor estimation
techniques in our Space Tuner to further improve space utilization. We will leave this
optimization as our future work.

5.2 The non-LOS Parallel Compaction

In order to evaluate the effect of our parallel compaction algorithm on non-LOS, we
implemented a fully parallel LISP2 compactor in Apache Harmony. In this experiment
we ran SPECjbb2005 on an Intel 8-core machine. We first checked the scalability of
this algorithm. We examined the time spent in different phases as shown in Fig. 12.
The parallel compactor ran with 1, 2, 4, and 8 collectors. It clearly demonstrates that all
four phases in our parallel LISP2 design achieved significant speedups. On average,
the speedups of the four phases were 1.4x, 2.3x, and 3.7x respectively with 2, 4, 8
collectors. This result indicates that all four phases of our design are scalable. In other
words, no individual phase would become the bottleneck of overall performance.

Figure 13 shows the impact of the parallel compaction algorithm on the overall GC
performance. The metric we use here is GC pause time in units of milliseconds, which
is the y-axis of Fig. 13. The results indicate that the overall normalized pause time had
been reduced steadily from 100 to 70%, 43 and 27% of its original value as 1 thread,
2 threads, 4 threads, and 8 threads were used, respectively.

5.3 The LOS Parallel Compaction

To demonstrate the effect of the parallel LOS compaction algorithm, we modified the
Apache Harmony GC with separate allocation spaces to incorporate this algorithm
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for LOS compaction. We focused on the xalan benchmark because it is large-object-
intensive. Figure 14 shows the scalability of this algorithm on xalan, pmd, and bloat.
Besides xalan, the other two benchmarks are not large-object-intensive. We included
them to demonstrate that the algorithm is still scalable even though the number of
large objects is limited. The metric we use here is the normalized LOS compaction
time. On average, the speedups of the parallel large object compaction were 1.56x,
2.10x, and 2.64x respectively with 2, 3, 4 collectors.

Then we studied how this parallel LOS compaction algorithm would impact the
performance of the overall program execution. To get this data, we ran the respective
benchmarks with 1, 2, 3, and 4 large object compaction threads and measured the total
execution time. The results are organized in Fig. 15. It shows that when we ran xalan
with 4 parallel compaction threads, a performance gain of about 3% was achieved.
Although this seems to be a small performance gain, but since garbage collection only
takes less than 10% of the total execution time, this result is actually a great improve-
ment on GC performance. Note that other benchmarks, such as pmd, hsqldb, and bloat
did not show significant performance gain or any trend of performance improvement.
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This is because these benchmarks are not large-object-intensive, thus optimizations
on large object compaction can induce little impact on the overall performance.

5.4 The Need for Load Balance

The proposed parallel compaction algorithms would achieve high performance only
if the workload for each thread is balanced. In our study on LOS load balance with
xalan, we found that the max length of a dependency list was 48, while the majority
(78%) of dependency lists contained only one moving task (only one source block and
one target block). This result has two implications: First, without optimization, the
dependency lists were highly imbalanced such that there were several long lists and a
large amount of short lists, and the long lists became the performance bottleneck since
they could only be executed sequentially. Second, it required an atomic operation to
fetch a dependency list, when the list contained only one block, then the performance
gain could be very low. Actually, we found out that this overhead was 38%, that is,
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if the task takes 100 cycles to move a block, then the synchronization overhead to
fetch this task is 38 cycles on average. In another study on non-LOS load balance with
SPECjbb2005 benchmark, we found out that the maximum depth of a dependence tree
was 353 while the average depth was only 22.3. Also, the maximum number of child
nodes for each node was 20 while the average was 1.5. This implies the possibility of
the existence of some huge trees that contained a large number of nodes, along with
some small trees that contained only few nodes.

To address these problems, in Sect. 4.4 we have introduced two load balance algo-
rithms Task Collapse and Task Pushing. Task Collapse introduces a low overhead but
it does not guarantee perfect load balance, whereas Task Pushing introduces a higher
overhead but meanwhile guaranteeing perfect load balance. In our experiments, we
found that Task Collapse is sufficed for most benchmark programs. As demonstrated
in Figs. 12 and 15, good speedups can be achieved with Task Collapse load bal-
ance techniques. Since Task Pushing needs to go through all dependency lists/trees,
it introduces a fairly high overhead. It would bring performance gain only when its
overhead can be significantly amortized. Therefore, Task Pushing is suitable for large
server applications that require a large heap size (∼ 10 GB). We will leave it as our
future work to test the Task Pushing load balance algorithm in another setting, namely,
high-end commercial servers with a large heap.

6 Conclusions

As multithreaded server applications prevail, Garbage collection (GC) technology has
become essential in managed runtime systems. Space and time efficiency are the two
most important design goals in garbage collector design. In this paper, we have pro-
posed a complete algorithmic framework to improve both the space and time efficiency
in parallel compacting GC design. This framework includes the Space Tuner, which
dynamically adjusts the heap partitioning to maximize space utilization; the parallel
compaction algorithm, which aims to fully parallelize the compaction process in both
the large object space (LOS) and non-large object space (non-LOS) in order to achieve
time efficiency.

We have evaluated the effectiveness of these mechanisms. The results show that
the Space Tuner is able to largely improve the heap space utilization; this also leads
to a certain performance improvement because the number of garbage collections has
also been reduced. Further, we have demonstrated that our parallel compaction algo-
rithm was scalable in both non-LOS and LOS. To test its effectiveness in non-LOS,
we utilized this parallel compaction algorithm to produce a novel parallel version of
the conventional LISP2 compactor and the results are encouraging. This algorithm
offers an elegant and new solution to the well-known problem of parallel compaction
in large object space.

Although we have proven our algorithms on a parallel compacting GC from Apache
Harmony, these algorithms are by nature generic and have much broader applications.
For the Space Tuner, we have demonstrated their effectiveness for both NOS/MOS
boundary adjustment and for LOS/non-LOS boundary adjustment. It can indeed be
extended to any design with multiple allocation spaces. For the parallel compaction
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algorithms, we have demonstrated their effectiveness in both LOS and non-LOS
design. These algorithms can be extended to any design that involves object move-
ments, such as those GC designs with two or three phases.

Our ongoing work is to apply the optimization techniques to the proposed algo-
rithms. First, we plan to utilize block-size survivor size estimation in Space Tuner
to further improve space utilization. Specifically, we need to evaluate the overhead
introduced by this approach and determine under what situation it is suitable to utilize
this optimization technique. Second, we plan to test the proposed parallel compaction
algorithms on high-end commercial servers that consist of tens of cores and >10 GB
of memory. A key challenge in this new setting is to maintain the scalability of these
algorithms, thus one essential component is the load balance algorithm, such as Task
Pushing.
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