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T
he case for increasing the level of autonomy and
automation for space exploration is well known. Strin-
gent communications constraints are present, includ-

ing limited communication windows, long communication
latencies, and limited bandwidth. Additionally, limited
access and availability of operators, limited crew availability,
system complexity, and many other factors often preclude
direct human oversight of many functions. In fact, it can be
said that almost all spacecraft require some level of autono-
my, if only as a backup when communications with humans
are not available or fail for some reason.
Increasing the levels of autonomy and automation using

techniques from artiOcial intelligence allows for a wider vari-
ety of space missions and also frees humans to focus on tasks
for which they are better suited. In some cases autonomy and
automation are critical to the success of the mission. For
example, deep space exploration may require more autono-
my in the spacecraft, as communication with ground opera-
tors is sufOciently infrequent to preclude continuous human
monitoring for potentially hazardous situations.
Space applications of AI can also be divided in terms of

three kinds of operations they support: predictable, unpre-
dictable, and real time (Jónsson et al. 2007). Even predictable
operations can be extremely complex — enabling artiOcial
intelligence to play a key role in automation to manage com-
plexity or to assist human decision making. Unpredictability
of the operating environment increases requirements on the
AI system to appropriately respond in a wide range of situa-
tions. Real-time requirements may impose limitations on the
amount of reasoning performed by the AI system.
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n We are pleased to introduce the space

application issue articles in this issue of

AI Magazine. The exploration of space

is a testament to human curiosity and

the desire to understand the universe

that we inhabit. As many space agen-

cies around the world design and deploy

missions, it is apparent that there is a

need for intelligent, exploring systems

that can make decisions on their own in

remote, potentially hostile environ-

ments. At the same time, the monetary

cost of operating missions, combined

with the growing complexity of the

instruments and vehicles being

deployed, make it apparent that sub-

stantial improvements can be made by

the judicious use of automation in mis-

sion operations.
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Of course, deploying large numbers of integrated
intelligent agents, each utilizing multiple AI tech-
nologies, is the end vision of space AI technologists.
The Orst major step toward this vision was the remote
agent experiment (RAX) (Muscettola et al. 1998,
Bernard et al. 2000). RAX controlled the Deep Space
1 spacecraft for two periods totaling approximately
48 hours in 1999. RAX included three AI technolo-
gies: a deliberative, batch planner-scheduler, a robust
task executive, and a model-based mode identiOca-
tion and reconOguration system. 
More recently, the autonomous sciencecraft has

controlled the Earth Observing-1 mission for almost
10 years as this article goes to press. This run of oper-
ations includes more than 50,000 images acquired
and hundreds of thousands of operations goals. The
autonomous sciencecraft (Chien et al. 2005a)
includes three types of AI technologies: a model-
based, deliberative, continuous planner-scheduler
(Tran et al. 2004, Rabideau et al. 2004), a robust task
executive, and onboard instrument data interpreta-
tion including support vector machine-learning
derived classiOers (Castano et al. 2006, Mandrake et
al. 2012) and sophisticated instrument data analysis
(see Ogure 1) (Thompson et al. 2013b). 
Many individual AI technologies have also found

their way into operational use. Flight operations such
as science observation activities, navigation, and
communication must be planned well in advance.
AI-based automated planning has found a natural
role to manage these highly constrained, complex
operations. Early successes in this area include the
ground processing scheduling system (Deale et al.

1994) for NASA space shuttle refurbishment and the
SPIKE system used to schedule Hubble Space Tele-
scope operations (Johnston and Miller 1994). SPIKE
enabled a 30 percent increase in observation utiliza-
tion (Johnston et al. 1993) for Hubble, a major
impact for a multibillion dollar mission. Also impres-
sive is that SPIKE or components of SPIKE have been
or are being used for the FUSE, Chandra, Subaru, and
Spitzer missions. AI-based planning and scheduling
are also in use on the European Space Agency’s Mars
express and other missions. For a more complete sur-
vey of automated planning and scheduling for space
missions see Chien et al. (2012a).
In this issue, the article by Mark D. Johnston,

Daniel Tran, Belinda Arroyo, Sugi Sorensen, Peter Tay,
Butch Carruth, Adam Coffman, and Mike Wallace
describes the deep space network ( DSN ) scheduling
engine (DSE) component of a new scheduling system
that provides core automation functionality for
scheduling of NASA’s deep space network, supporting
scores of missions with hundreds of tracks every
week. The article by Russell Knight, Caroline
Chouinard, Grailing Jones, and Daniel Tran describes
the application and adaptation of the ASPEN (auto-
mated scheduling and planning environment)
framework for operations of the Orbital Express (OE)
mission.
Because space missions produce enormous petas-

cale data sets, machine learning, data analysis, and
event recognition for science and engineering pur-
poses has been another fertile area for application of
AI techniques to space applications (Fayyad, Haus-
sler, and Stolorz 1996). An early success was the use
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Figure 1. Onboard Spectral Analysis of Imaging Spectroscopy Data During  2011–2012 Demonstrated on EO-1.

Onboard software performed spectral endmember detection and mapping, enabling automatic abundance mapping to reduce data volume

by orders of magnitude (Thompson et al 2013). These onboard automatically derived  compositional maps (at left) were consistent with

prior expert human interpretations (at right).
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of the decision tree machine-learning techniques in
SkiCat (Fayyad, Weir, and Djorgovski 1993) to semi-
automatically classify the second Mount Palomar Sky
Survey, enabling classiOcation of an order of magni-
tude greater sky objects than by manual means.
Another early advance was the use of Bayesian clus-
tering in the AutoclassAutoClass system (Cheeseman
and Stutz 1996) to classify infrared astronomical
satellite (IRAS) data. From these beginnings has
emerged a plethora of subsequent applications
including automatic classiOcation and detection of
features of interest in earth (Mazzoni et al. 2007a,
2007b) and planetary (Burl et al. 1998, Wagstaff et al.
2012) remote-sensing imagery. More recently, these
techniques are also being applied to radio science sig-
nal interpretation (Thompson et al. 2013a).
In this issue the article by José Martínez Heras and

Alessandro Donati studies the problem of telemetry
monitoring and describes a system for anomaly
detection that has been deployed on several Euro-
pean Space Agency (ESA) missions.
Surface missions, such as Mars PathOnder, Mars

Exploration Rovers (MER), and the Mars Science Lab-
oratory (MSL), also present a unique opportunity and
challenge for AI. The MER mission uses several AI-
related systems: The MAPGEN (Ai-Chang et al. 2004,
Bresina et al. 2005) constraint-based planning system
for tactical activity planning, the WATCH (Castano
et al. 2008) system (used operationally to search for
dust devil activity and to summarize information on
clouds on Mars.), and the AEGIS system (Estlin et al.
2012) (used for end-of-sol targeted remote sensing to
enhance MER science).
Many rover operations, such as long- and short-

range traverse on a remote surface; sensing;
approaching an object of interest to place tools in
contact with it; drilling, coring, sampling, assem-
bling structures in space, are characterized by a high
degree of uncertainty resulting from the interaction
with an environment that is at best only partially
known. These factors present unique challenges to AI
systems. 
In this issue, the article by David Wettergreen,

Greydon Foil, Michael Furlong, and David R. Thomp-
son addresses the use of onboard rover autonomy to
improve the quality of the science data returned
through better sample selection, data validation, and
data reduction.
Another challenge for autonomy is to scale up to

multiple assets. While in an Earth-observing context
multiple satellites are already autonomously coordi-
nated to track volcanoes, wildOres, and Pooding
(Chien et al. 2005b, Chien et al. 2012b), these sys-
tems are carefully engineered and coordinate assets
in rigid, predeOned patterns. In contrast, in this issue,
the article by Logan Yliniemi, Adrian K. Agogino, and
Kagan Tumer tackles the problem of multirobot coor-
dination for surface exploration through the use of
coordinated reinforcement learning: rather than

being programmed what to do, the rovers iteratively
learn through trial and error to take actions that lead
to high overall system return. 
The signiOcant role of AI in space is documented in

three long-standing technical meetings focused on
the use of AI in space. The oldest, the International
Symposium on ArtiOcial Intelligence, Robotics, and
Automation for Space (i-SAIRAS) covers both AI and
robotics. I-SAIRAS occurs roughly every other year
since 1990 and alternates among Asia, North Ameri-
ca, and Europe1with 12 meetings to date. Second, the
International Workshop on Planning and Scheduling
for Space occurs roughly every other year with the
Orst meeting2 in 1997 with eight workshops thus far.
Finally, the IJCAI3 workshop on AI and space has
occurred at each IJCAI conference beginning in 2007
with four workshops to date.
We hope that readers will Ond this introduction

and special issue an intriguing sample of the incredi-
ble diversity of AI problems presented by space explo-
ration. The broad spectrum of AI techniques, includ-
ing but not limited to machine learning and data
mining, automated planning and scheduling, multi-
objective optimization, and multiagent, present
tremendously fertile ground for both AI researchers
and practitioners.
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Notes
1. See robotics.estec.esa.int/i-SAIRAS.

2. See robotics.estec.esa.int/IWPSS.

3. See ijcai.org.
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