

 1

Space-Based Wireless Sensor Networks: Design Issues
Tanya Vladimirova, Christopher P. Bridges, Jean R. Paul, Saad A. Malik and Martin N. Sweeting

Surrey Space Centre
Department of Electronic Engineering

University of Surrey
Guildford, Surrey.
+44 1483 300800

{t.vladimirova, c.p.bridges, j.paul, s.malik, m.sweeting}@surrey.ac.uk

Abstract—This paper is concerned with a satellite sensor

network, which applies the concept of terrestrial wireless

sensor networks to space. 1,2 Constellation design and

enabling technologies for picosatellite constellations such as

distributed computing and intersatellite communication are

discussed. The research, carried out at the Surrey Space

Centre, is aimed at space weather missions in low Earth

orbit (LEO). Distributed satellite system scenarios based on

the flower constellation set are introduced. Communication

issues of a space based wireless sensor network (SB-WSN)

in reference to the Open Systems Interconnection (OSI)

networking scheme are discussed. A system-on-a-chip

computing platform and agent middleware for SB-WSNs

are presented. The system-on-a-chip architecture centred

around the LEON3 soft processor core is aimed at efficient

hardware support of collaborative processing in SB-WSNs,

providing a number of intellectual property cores such as a

hardware accelerated Wi-Fi MAC and transceiver core and

a Java co-processor. A new configurable intersatellite

communications module for picosatellites is outlined.

TABLE OF CONTENTS

1. INTRODUCTION...1

2. MISSION CONSTELLATION SCENARIO2

3. NETWORK DESIGN ISSUES ...3

4. DISTRIBUTED COMPUTING PLATFORM DESIGN6

5. CONFIGURABLE INTERSATELLITE COMMUNICATIONS

MODULE ...10

6. CONCLUSIONS ..10

ACKNOWLEDGEMENTS ..11

REFERENCES ..11

BIOGRAPHY ..13

1. INTRODUCTION

This paper is concerned with space-based wireless sensor

networks (SB-WSNs) consisting of very small satellite

nodes flying in close formations. The main idea of SB-

WSNs is that rather than having a single large expensive

satellite to achieve the goals of a mission, a large number of

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1498, Version 1, Updated 2009:11:01

inexpensive (mass producible) satellite nodes are deployed

in a formation to achieve the same goals.

There are some important astro-dynamics and engineering

research challenges to enable formations in low Earth orbit

(LEO). Perturbations have been shown to reduce the

lifetime of local satellite clusters and constellations, so an

implementation of the recent Flower constellation model [1]

has been investigated and adapted for a LEO mission

scenario. Secular drift can be mitigated by using a more

equatorial inclination and atmospheric drag can be mitigated

via a higher eccentricity. Geometric shapes can be formed to

produce ‘flower’ shapes with the ‘petals’ giving angular

requirements of each satellite position. Current simulations

envision that a LEO distributed mission is feasible using the

Flower constellation model. Scenarios have been explored

where picosatellite constellations drift in and out of inter-

satellite link (ISL) length between a range of 400 km and

100 km, presenting a dynamic and often ‘disconnected’

environment. The need for an ad-hoc and autonomous

distributed computing platform to enable collaboration via

ISLs is obvious in this environment for enabling future

distributed satellite missions.

Future spacecraft are envisioned as autonomous, miniature,

intelligent and massively distributed space systems. The

concept of satellite sensor networks can be applied to many

space missions [2, 3]. Some examples include:

• realising co-orbiting assistants/ inspectors of larger

mother ships;

• providing continuous Earth coverage for multipoint

remote sensing, monitoring or communications at low

cost in LEO;

• providing continuous communications for multiple low-

powered surface vehicles around the Moon, Mars and

other planets or asteroids.

Space weather is associated with many of the anomalies

detected on spacecraft [4, 5, 6]. In LEO spacecraft is

particularly vulnerable when it passes the poles - home to

the auroral ionized belts and the South Atlantic Anomaly

(SAA), where ionized particles come very low into the

atmosphere. Service outages of the satellite navigation

system due to solar storms are a cause of great concern [7].

Distributed networked small satellite missions could be used

to study the impact of solar storms on Earth’s

magnetosphere and ionosphere increasing the spatial and

 2

temporal resolution and providing continuous in-situ

measurements. Replacing a group of sensing satellites,

which operate separately in their own local vicinity, by

networked satellites operating in a distributed fashion will

also increase the science return per dollar ($) as envisioned

in DARPA’s F6 project [8].

This paper is organized as follows. Section 2 introduces the

distributed satellite system constellation scenario based on

the flower constellation. Section 3 focuses on the design

issues of a space based wireless sensor network in reference

to the OSI layer stack. Section 4 details a system-on-a-chip

computing platform and agent middleware for distributed

processing in SB-WSNs. A new configurable ISL

communications module for picosatellites is outlined in

Section 5. Section 6 concludes the paper.

2. MISSION CONSTELLATION SCENARIO

A distributed satellite system requiring intersatellite links

could be formed for a number of missions. For each

mission, specific orbits would be required to meet the

mission goals, taking advantages of intersatellite links.

These missions are summarized in Table 1.

Table 1. Constellation Orbital Characteristics and

Applications

Const. Characteristics Applications

String-

of-Pearl

Polar/ sun-

synchronous orbits

Predictable

connection periods

Limited mobility

1. Earth/ space

observation

2. Communication

3. Global positioning/

navigation

4. Science

Flower Elliptical orbits

Predictable

connection periods

Known mobility

patterns

1. Multi-point

atmospheric/ space

weather monitoring

2. Distress beacon

monitoring

3. Experimental orbits

for Earth observation,

communication and

positioning

Cluster Similar orbits

Unpredictable

connection periods

Medium/ high

mobility. Unknown

patterns

1. Hardware

Fractionation

2. Multi-point

atmospheric/ space

weather monitoring

3. Earth observation,

communication and

positioning

Table 1 highlights some of the orbit characteristics for each

of three constellation designs – string-of-pearl, Flower

constellation and satellite cluster. Depending on the mission

needs and orbital characteristics, parameters of the

intersatellite communication, whether for brief or long

periods, can be predicted.

2.1. The Flower Constellation

The Flower constellation set provides stable orbital

configurations, which are suitable for micro- and nano-

satellite missions. Applications proposed and initially

investigated include GPS missions, reconnaissance, two-

way orbits, multiple science missions and planetary

exploration [9]. Upon closer investigation, there are some

distinct features including [1]:

• The constellation’s axis of symmetry coincides with the

spin axis of the Earth.

• Each satellite has the same orbit shape (anomalistic

period, argument of perigee, height of perigee and

inclination).

• Satellites are equally displaced along the equatorial

plane to complete the constellation using the right

ascension of the ascending node (RAAN), true anomaly

or mean anomaly.

Figure 1. Flower Constellation

Previous research applied the Flower constellation to low

Earth orbit (LEO) for a set of 9 picosatellites giving

constant and predictable ranges from 100 km to 400 km

between neighbouring satellites [10]. Unlike polar orbit

constellation scenarios, the Flower constellation with a more

equatorial inclination ensures that the satellites will drift

together along the Earth’s equator; keeping them in

formation for a much longer without the need for orbit

maintenance. The proposed Flower constellation in the

equatorial plane is particularly promising for the launch of

picosatellites (mass < 1 kg) or nanosatellites (mass < 10kg).

Simulations were carried out using AGI’s High Precision

Orbital Propagator (HPOP) in Satellite Toolkit (STK) [11].

Figure 1 provides an image of the Flower constellation of 9

picosatellites and Table 2 describes the design parameters

used.

 3

Table 2. Satellite and Orbital Properties for the Flower

Constellation

Satellite Properties Value

Mass, m 1 kg (picosatellite)

Volume 10 cm3

Cross sectional area, a 20 cm2 (tumbling)

Co-efficient of drag,

CD

2.2 (flat plate model)

Atmospheric density, ρ 2.961 x 10-13 kg/m3

Ballistic co-efficient, B
ρ

m

a
CB D

2

1
= = 5.92 x 10-16

Orbit Properties Value

Apogee altitude, ha 1598 km

Perigee altitude, hp 686 km

Inclination, i 165 °

Right ascension of the

ascending node, Ω

Satellites 1-9: 0, 40, 80, 120,

160, 200, 240, 280, 320 °

True anomaly, θ Satellites 1-9: 0, 53.54, 98.12,

134.1, 165.2, 194.8, 225.9,

261.88, 306.46 °

2.2. Flower Constellation Design Issues

When looking at any mission aiming to use intersatellite

links, important orbital factors to consider are relative

range/ speeds between satellites, the ISL access opportunity,

and the ground-link access opportunity. The access time

between each satellite is proposed as the best metric to

predict distributed collaboration. The access time is the time

for two picosatellites to communicate between each other

dependent on a set range. The communication range of 400

km is chosen in this modelling study, which is assumed to

give sufficient collaborative opportunity. Figure 2 shows the

access time for the constellation in Figure 1 showing

picosatellites drifting in and out of range at different times.

Figure 2. Flower Constellation Access Times for Nine

Picosatellites

Access times between picosatellites range between 3 days to

14 days dependent on the main sink satellite. The sink

picosatellite is the master satellite that communicates to

ground and can be used for controlling distributed

operations.

Figure 3. Groundstation Access Times for the Flower

Constellation

The sink satellite needs to be chosen because if all satellites

tried to communicate to ground, the link would be over-

subscribed (assuming one operational frequency). For

example, Figure 3 shows that between 3 to the maximum 9

satellites could be in view at any one given time. The

simulations presented in Figure 2 and 3 suggest predictable

and repeating patterns for both intersatellite and groundlink

connection periods. However, it has to be noted that the

simulation results are as close to the true orbits as good the

force models for predicting the orbits are.

In order to achieve the initial conditions of the Flower

constellation the satellites must be positioned in a certain

way during or after deployment. Intersatellite

communication capability could help to overcome

difficulties in identifying positions of individual satellites

and predicting their orbits after deployment.

3. NETWORK DESIGN ISSUES

As discussed in Section 2.2, spacecraft crosslink

communications are affected by orbital dynamics, which

impose a number of difficulties and restrictions such as

variable inter-satellite ranges and speeds, variable ISL

access for distributed operations, etc.. To investigate these

problems we use the Open Systems Interconnection (OSI)

networking scheme [12]. The functionality of the OSI layers

can be implemented in hardware or software, as shown in

Figure 4. This section will discuss the different design

issues that are found at each layer.

 4

Figure 4. OSI Layers and Implementation Methods

3.1. Physical Layer

Radiation is one of the primary environmental hazards in

space affecting on-board electronic components and

propagation of communication signals [13, 14].

Ground communications in picosatellite designs are in the

VHF and UHF bands. VHF frequencies in the range of 30

to 300 MHz normally pass through the ionosphere with

effects such as scintillation, fading and Faraday rotation etc.

However in times of intense solar cycles, VHF signals can

be reflected back causing multi-path effects. Cases observed

during peaks of cycle in 1957-58, Cycle 21 in 1980, and

Cycle 22 in 1990 [14]. VHF signals can also get reflected

by auroral strips in the extreme solar activity. Between 300

MHz and 3GHz, in which S and L band lie, severe

disruptions are possible during a solar storm [7] which

could affect intersatellite link communications.

Global positioning signals (GPS) are deemed to be an

essential tool for orbit determination and navigation on

board constellation satellites. Solar storms are known to

cause synchronization and phase lock errors in GPS

receivers [7].

3.1.1. Radiation Effects: Communications Channel

The Appleton-Lassen formula is a well known propagation

model for ionospheric propagation, which describes the

complex refractive index of the medium. If the magnetic

field is ignored then the real part of the refractive index ∂ is

given as [15]:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∂

2

2

2 11
f

N
k

f

f N
(1)

where k = 80.5 is a constant, N is the electron density per

cubic metre and f is the operating frequency in Hertz. The

critical frequency of plasma is denoted as fN.

It is important to note that N varies and its average value is

105 for altitudes up to 1000 km during daytime. The change

in electron density affects the critical frequency and has

been known to have caused reflections in frequencies above

the critical frequency [15]. Since electron density is

variable, a configurable and robust communications system

is essential.

Other critical parameters affecting propagating waves at a

given electron density are:

• Varying group velocity as well as phase propagation

delay.

• Attenuation, caused by electron-neutron collisions.

• Refraction due to varying plasma density, causing

multi-path effects.

3.1.2. Antenna Pointing and Power

Given the limited power resources on board picosatellites,

adaptive techniques could be used to optimize power

utilization. The relative velocity between satellites in

different orbits varies with time. This results in a time-

varying azimuth and elevation, and in addition places

constraints on the antenna steering. Analytical modelling of

ISLs for circular orbits is presented in [16, 17]. It is shown

that the variation of the elevation is small, whereas the

azimuth varies significantly [16]. The following is an

expression for evaluation of the azimuth , ψ, [17]:

() ()
⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

−−+⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−+

=

12

22

2

sin
2

cos2sin
2

sin

2
sinsin

)(tan

αα
θ

παω
θ

π
αωθ

ψ

t

t

t

 (2)

where θ is the angle of separation between orbits, ω is the

angular elongation, α1 and α2 represent the latitude of two

neighbouring satellites 1 and 2, and α is the sum of α1 and

α2.

An expression of the ISL length as a function of the azimuth

is derived in which the expression for the azimuth in (2)

above is substituted. A mathematical model for the power of

the receiving antenna as a function of latitude is then

developed substituting the ISL length expression in the Friis

free space equation. Figure 5 shows calculated power

variation of the receiving antenna for intersatellite

communication in LEO circular polar orbits using that

model.

APPLICATION Layer

PRESENTATION

Layer

SESSION Layer

NETWORK Layer

PHYSICAL Layer

Software

Hardware

Hardware or SoftwareDATA LINK Layer

TRANSPORT Layer

 5

Figure 5. Power Variation with respect to the Latitude

in the Southern hemisphere

It can be seen from the graph in Figure 5 that the power of

the receiving antenna varies within 58 dB having a

minimum at the equator and a maximum at the poles. This

can be exploited for implementation of adaptive power

control on board to reduce the power consumption varying

the transmitter’s antenna gain based on pre-calculated

azimuth or latitude values.

3.2. Data Link Layer

Due to bandwidth scarcity in wireless networks, a common

approach is to use a multiple access scheme to share the

bandwidth of a communication link between several nodes.

The link layer delimits groups of bits to form frames, and

switches are used to dispatch frames to the correct node. A

control mechanism called Medium Access Control (MAC)

is used to manage the communication link. The MAC layer

ensures that frames are delivered error-free, and adds

addressing information to the transmitted frames.

Existing commercial lower layer protocols and their

suitability for intersatellite communication in autonomous

constellations are discussed in [18]. It is concluded that long

propagation delays, appropriate data rates, and forward

error correction mechanisms are features required for

reliable space communications.

It has been shown that the terrestrial IEEE 802.11 wireless

network standard can been adopted for intersatellite link

design [2]. In the IEEE 802.11 protocol carrier sense

multiple access is used by nodes to monitor when the

communication channel is free. Before a station is allowed

to initiate a transmission, it senses the channel to verify

whether it is free for a predefined minimum period called

Distributed Inter Frame Space (DIFS). If the channel is

busy, a random backoff interval is calculated to determine

the waiting time before the sending station tries to access

the channel again.

IEEE 802.11 is a terrestrial communication protocol with

ranges in the order of a few hundred metres, however it

could be scaled up for communications range of a few

hundred kilometres in space [19]. It is proposed to extend

the range by redefining the MAC layer’s distributed inter-

frame space [16]. Although suitable for environments where

the nodes are fixed, in a mobile environment, such as LEO,

the proposed solution is not sufficient. Two scenarios are

calculated for DIFS settings corresponding to

communications range of 15 km and 100 km, as shown in

Table 3. It can be seen that if the nodes are 100 km apart

(DIFS=355 µs), the throughput drops by a factor of 3

compared with the DIFS setting for a range of 15 km. This

suggests that an adaptive determination of the DIFS value is

better suited to the needs of SB-WSNs, requiring that the

ISL range is known in advance, or some form of range

prediction is implemented.

Table 3. Throughput vs. DIFS Settings

Range (km) DIFS (µs) Throughput (Mbps)

15 75 3

100 355 0.94

3.3. Network and Application Layers

In SB-WSNs the extreme mobility and intermittent

connectivity will affect the network topology requiring that

the network is capable of reconfiguration. Routing

optimisation based on minimising the transmission power

and associated delays is proposed in [20]. It is concluded

that satellite network requirements include:

• Ad-hoc intersatellite networking capabilities for initial

topology formation such as IEEE 802.11 (WiFi) or

802.15.4 (ZigBee).

• Adaptable and redundant ground-link communication

schemes, i.e. main ‘sink’ to ground.

• Proactive and reactive topology schemes to account for

any mobility or node loss.

3.3.1. Middleware

Distributed computing is typically enabled by middleware, a

software layer offering services to connect software

components across a network for integration or sharing

computing resources. The same connectivity issues affect

the quality of service (QoS) for different middleware

functions. For example, when two nodes connect using

CORBA [21] or Java [22], they often register their services

for resource sharing functions. But if they shortly

disconnect and reconnect, there are often naming errors in

the service registration that could cause an exception

crashing the software system. Additionally, in a client/

server communication scheme, the most typical distributed

computing paradigm, when a server or sink satellite fails

then the network operations are lost. The chosen

middleware must be autonomous and tolerant to satellite

 6

node failures, intermittent connectivity, changing

connection topologies, and registration errors; analogous to

an extreme case of mobile ad-hoc networks (MANET).

The application layer is mission and payload dependent,

involving store and forward data transmissions with varying

data sizes, which may require different communication

schemes [10]. Higher rate data, such as payload data are

suited to the Client/ Server communication scheme, while

lower rate data would benefit from using the Peer-to-Peer

(P2P) communication scheme. This can be telemetry,

location or velocity changes such as “byte” size payload

data (GPS, science payload measurements) & network

management data (e.g. pinging). Future needs and

applications for distributed operations, autonomy and

artificial intelligence should be considered too based on

current terrestrial software systems. Ideally, the

management and payload data sizes transmitted across any

channel (either the ground link or ISL) should be minimized

as much as possible to reduce the power overhead of

communicating.

4. DISTRIBUTED COMPUTING PLATFORM DESIGN

The work presented in this section is related to the

computing support for data processing and communication

at the SB-WSN node level. The implementation approach is

based on hardware acceleration in the form of intellectual

property (IP) cores for a system-on-a-chip (SoC) design

[23]. The SoC uses the SPARC V8 LEON3 processor [24]

and the AMBA2 bus [25]. Details are given about the

development of two hardware accelerators - a WiFi

transceiver and Java processor, and dedicated agent

middleware.

4.1. Wireless Transceiver Core

The WiFi transceiver [26] is intended to operate in a mobile

environment in which an adaptive DIFS will be used for

range extension. Some of the IEEE 802.11 MAC layer

functionality requires strict timing constraints. For instance,

when a node receives a control signal, such as CTS, the data

packet should be sent within a period of 10 µs called short

inter-frame spacing (SIFS). Therefore, the MAC layer

timing-critical functionality is implemented in hardware.

However for ease of reconfiguration, a key function being

considered is the communication range prediction via

software which will implement the programming of the

DIFS. Thus a hybrid hardware/software approach is

employed to comply with the timing constraints.

The MAC is implemented as a hardware accelerator and the

LEON3 processor is used to run software applications,

interfacing the upper layers of the communication stack

with the IEEE 802.11 protocol. The hardware accelerator

implements a WiFi transceiver written in VHDL which

contains functions such as ‘byte by byte’ processing in both

receive and transmit directions, CRC generation for error

detection purposes, signals to indicate successful

transmissions, and reception.

Due to the asynchronous nature of communications in

IEEE802.11 based networks, a mechanism for direct write

from the receiver to the memory is required. As a result a

direct memory access (DMA) core capable of controlling

data transfer between the memory and the wireless

transceiver is added to the design, shown in Figure 6. The

DMA core has 32 channels to support up to 32 peripherals,

and each channel has a number of registers allocated in the

memory-mapped IO. An arbiter is placed within the DMA

to give access to the component with highest priority. The

registers are configured via the APB bus and are used to

provide a set of functionalities to each component

connected to the DMA. The registers allow to store

information such as start addresses of the memory and the

peripheral that require exchanging data, the data transfer

size, byte counter. In transmission mode, the processor

sends a signal to initiate data transfer using a register in the

DMA; this involves moving data from the memory to the

IEEE physical layer. In receiving mode a request signal is

sent from the transceiver to the DMA to transfer data to the

memory by bypassing the processor. Also when there is an

error in the transmission a register is used to signal to the

processor the type of error.

Figure 6. Wireless Transceiver Core Architecture

The MAC layer is divided in two parts. The transmitter state

machine selects the correct sequence of packet type (control

or data) and is responsible for CRC generation and

forwarding data byte by byte to the physical layer. The

receiver state machine monitors the carrier, collects data

byte by byte, performs CRC and transfers data to the

memory. The MAC interacts with the physical layer through

an interface as shown in Figure 7.

LEON 3 Processor

DMA Core

AHB Master

Interface

Channel

Configuration

Registers

WiFi Transceiver

AHB Slave

Interface

AHB

APB

Request

 7

Figure 7. MAC layer 's Interface with Physical Layer

The MAC-Physical interface appends information such as

preambles for packet detection, the data rate, modulation

type and duration of data transfer. In order for the

transceiver to meet IEEE 802.11 specifications and transmit

data in continuous stream, the interface initially aggregates

the bytes into larger groups. In our design the data rate is set

at 6 Mbps, as a result the physical layer receives data in

groups of 24 bits which are stored in a buffer for

processing. Secondly the DMA latency cannot exceed 1.6

µs. This is achievable even in a heavy loaded platform

where the processor is constantly in demand. However as

synchronization is necessary between the DMA and the

MAC layer’s operation, a buffer of 4 bytes was chosen.

This also means that a handshake mechanism is required to

allow seamless operation between the layers.

4.2. Java Co-Processor

To enable future capabilities towards distributed computing

and IP based networking functions in SB-WSNs, the Java

optimized processor (JOP) is integrated as an AHB Master

as shown in Figure 8. This new Java co-processor

architecture is defined by the memory sharing scheme in

place between cores for access to external RAM and is

achieved using the AMBA2 bus from ARM [25]. This

design operates like a hybrid multiple instruction stream,

multiple data stream (MIMD) architecture where each

processor fetches its own instructions and data. Essentially,

it operates thread level parallelism allowing many tasks to

be performed simultaneously.

To add JOP as a non-heterogeneous Java based network

processor, several issues were resolved:

• JOP Interface: JOP uses the SimpCon bus scheme [27]

whilst the LEON3 uses the ARM AMBA2 bus. JOP

needs to be added on the shared bus using an interface

between the SimpCon and AMBA bus.

• Exceptions: JOP, like any JVM, has exceptions that

could cause the processor to stall or exit from operation.

These need to be handled to allow for restart of JOP and

applications under differing modes and for increased

fault tolerance.

• Bootloading: Both the LEON3 and JOP require off chip

memory areas, typically in PROMs or FLASH, to hold

the software bootloaders. These interfaces must be

available to both cores so they can run separately from

each other. As JOP avoids dynamic class loading, all

required classes must be loaded on startup with known

start addresses.

Therefore, integration of the JOP processor has included 1)

an AHB Bus Master wrapped for interfacing purposes and

connections to the LEON3, 2) an APB slave for

communication with the memory controller, and 3)

hardware exception handling for automatic recovery as

shown in Figure 8.

JOP itself operates 4 pipeline stages: microcode fetch,

decode and execute and an additional translation stage

bytecode fetch [28]. The core itself uses additional

interfaces to find initial start addresses and special pointer

addresses. Connections to external components are achieved

using the memory core and the extension core. The memory

core provides an interface between the main memory and

the CPU whilst the extension core provides some extended

functionalities including a multiplier unit, control signals for

memory and I/O, and a multiplexer for read data to load to

the top of the stack.

Figure 8. JOP IP Core Wrapper

The original I/O module has been replaced by AMBA

interfaces. The AMBA interfaces are an AHB Master

interface and an APB Slave Interface where both contain

Physical Layer Architecture MAC Layer

Architecture

TX State

Machine

RX State

Machine

Buffer

byte

byte

MAC-PHY

Layers

Interface

Physical

Layer

Baseband

 8

configuration information that is initially sent to the AHB

arbiter.

The AHB interface has an additional direct memory access

(DMA) interface to perform read and write operations. The

APB has some configurable control registers to set start and

output addresses of the core as well as feedback for

exceptions and debugging DMA signals. The LEON3, with

both master and slave functions, is able to request (as a

master) and serve (as a slave) to other cores on the AHB bus

whereas JOP can only request as a master.

Exception handling has been problematic in fault tolerant

systems. Some relevant examples are discussed by H. Hecht

[29] including examples of catastrophic failures with an

Ariane-5 launcher and the Mars Polar Lander. For a SoC

design, there are two types of failures: global failure, where

many functional areas of the device are affected requiring a

device reset, and a recoverable failure, where processes in

hardware and software can cause functional errors in exact

areas of the device. To deal with these recoverable errors,

there are several main hardware and software exceptions

that occur in the Java processor. Hardware exceptions

include:

1. Stack Overflow – where the stack becomes full,

typically due to a large number of classes

2. Null Pointer – an address which has elements undefined

or is out of the memory scope

3. Array Out of Bounds – access to an array element

which may not be accessible

Whilst software exceptions include:

1. Network Exceptions – timing constraints not met or

unhandled protocol exceptions

2. Application Specific Exceptions

Each of these hardware exceptions typically results in the

stalling of the processor and a hard reset is required. The

hardware errors are typically due to overloading of the

processor or corrupt software whilst the software exceptions

occur due to poor network connectivity or programming

errors. Therefore, hardware exceptions will all cause an

automatic reset and so operationally the processor can be

brought back online in the shortest time possible and a

register bank is utilized allowing other AHB cores to assess

JOP’s operational status.

The JOP Java application is first compiled to bytecode, then

to microcode, before finally linking with class files. To

facilitate the symmetric multiprocessing (SMP) architecture

of this design with two heterogeneous processor cores,

compilation of each core’s application must be stored

together in the same image. There are two methods that can

be employed to overcome this problem:

1. Embedding the required instructions in a C program

and storing them in memory.

2. Compiling each application separately and

concatenating using SRecord tools [30] or similar

object copy programs at the required addresses.

The LEON3 application has its code (.text segment)

typically stored in a PROM at 0x00000000, and data (.data

and .bss) in RAM at 0x40000000. At start-up, the .data

segment is copied from the PROM to the RAM; linked to

start from address 0x0. The data segment for JOP is, by

default, linked at 0x4000000 also but can be changed by

giving offset arguments; which is the technique used to set

JOP’s application. JOP’s application is aimed at starting at

address 0x41000000 and outputting to 0x42000000, away

from the LEON3 memory area. These start addresses can be

set in a C program by the LEON3 or hard-coded in the JOP

IP core wrapper component.

4.3. Agent Middleware

An agent based middleware with instance management is

designed for distributed operations in SB-WSNs. Code

migration, parallel behaviours and data distribution services

are also supported. Both the TCP/IP and the UDP

communication protocols are used. The UDP protocol is

better suited for ‘store-and-forward’ communications as a

dropped UDP packet, in this case, is preferred to a TCP

delayed packet [31]. Use of the protocols depends on the

type of data transmission tasks as below:

• ‘High Priority Data’ tasks use the TCP/IP protocol for

reliable and secure point-to-point communication.

• ‘Low Priority Data’ tasks use the UDP protocol for fast,

broadcast/multicasting of small information to groups

of satellites employing the publish/subscribe or peer-to-

peer communication scheme.

Both types of tasks can take advantage of existing Agent

Communication Languages (ACL) [32] for workflow

control, acknowledgements and finally support for packet

broadcast and multicasting.

There are various agent middleware options available to

develop the embedded agent middleware; with the majority

using a derivative of JADE [33] or FIPA-OS [34]. But each

agent platform has dependencies based on a particular Java

revision environment (JRE). For example, JADE can be

implemented based on JRE 1.4 or as JADE-LEAP using

JRE 1.2. JADE-LEAP can then be configured under J2ME,

PersonalJava (or pjava) now superseded by the Connection

Devices Configuration (CDC Spec.) [35] and the Mobile

Information Device Profile (MIDP) stack which uses the

Connection Limited Device Configuration (CLDC Spec.)

[36]. FIPA-OS is also considered along with Micro FIPA-

OS, targeted for mobile phones.

An in depth comparison of the middleware footprints, RAM

usage, and startup time was carried out using a new method

probe [37] developed using Eclipse’s Probekit from the Test

& Performance Tools Platform (TPTP) Project [38] to log

RAM measurements at method entry. The key results from

 9

[37] concluded that the JADE-LEAP-pjava is to be used for

the final configuration with low RAM and memory

footprint as well as a fast startup time. This software

configuration offers:

• The CDC stack of standard Java methods usable for

networking applications at JRE 1.1.8; either offered by

JOP in hardware or in open-source software for

emulation.

• The lowest memory consumption when compared to

other competing systems.

• Agent functionality through JADE-LEAP with cloning

capabilities.

This configuration has been taken forward for development

and its footprint reduced to 305 KB using ProGuard [39], an

open source Java software tool. ProGuard is employed for

shrinking, optimisation, and obfuscation, keeping only the

core classes required for the middleware operation and

communication. Shrinking analyzes the main application

and removes unused classes, fields, and methods.

Optimizations include removing debug and logging codes,

making classes static and final, and a reduction of variable

allocation (mostly coding optimizations). Obfuscation is the

replacement of naming in the classes, fields, and methods

with simple characters and values. Despite being used to

ensure code cannot be reverse-engineered for greater

security when the final agent middleware is deployed, it also

compacts the code. When compared to previous middleware

solutions, this method achieves a reduction of 72% of the

existing JADE-LEAP-pjava solution and 64% of a CORBA

solution [40], resulting in a very small agent middleware

solution is for networked embedded systems.

4.3.1. Middleware Instance Manager

The optimized agent middleware, JADE-LEAP-pjava, needs

functionality for autonomous recovery from exceptions.

This is achieved using a software wrapper to run JADE-

LEAP-pjava as its own manageable thread. An Instance

Manager algorithm is developed which manages instances

of the JADE-LEAP-pjava agent middleware. As a result the

JADE-FT (fault-tolerant) middleware is completed, where

agents are considered services accessible in the network.

Software exceptions can often be problematic leading to

programming errors, incompatible client (or peer) code and

resource failures. Instead of exiting the program and

performing a complete hardware reset, controlled exception

exit codes are utilised to restart the thread under a safe

profile configuration taking advantage of multiple CDC

Java profiles. Once started, the middleware operates in

nominal conditions. But if JADE-LEAP-pjava crashes due

to an unforeseeable exception, the thread is stopped and not

the JVM.

In the event of an exception at loading the middleware

instance or during normal operations, it is important to

know if the exception a) can be handled and b) if it is

expected. An example of an expected exception would be if

the satellite node knows that is running out of power or

drifting away from the network and a previous profile can

be found to recover network services as quick as possible

using the CDC Profile N = N – 1 loop. An example of an

unexpected exception would be if a failure has occurred due

to single event upset (SEU) or singe even latchup (SEL). In

this case, all satellite nodes return to a safe mode where

CDC Profile N = 0. The safe mode has the standard agents

services and attempts to find nearby connections from a

reset network connection table.

A key area of interest is when an ad-hoc network consisting

of mobile nodes performs topology reconfiguration and a

new master ‘sink’ node is assigned. The method probe was

used again to find out the overhead of disconnecting and

reconnecting middleware instances and performing soft

resets of the middleware, as shown in Figure 9, which

displays a log of the memory utilisation when a node

successfully connects with another node. Correct operation

of the middleware is confirmed by testing unexpected

connections and disconnections. If a node suddenly errors

out, time is needed for the replicated named agents to be

removed from the main node lists before reconnection so all

nodes connecting to the main node have an additional delay

before connecting. From this point, any node can then use

relative position/speeds (or other properties) for topology

reconfiguration.

Scalability is a key issue here and as the number of

networked nodes increases by 1, the memory consumption

also increases which is shown in Point 1 of Figure 9. Upon

reconfiguration, however, at Point 2, the instance is

destroyed and restarted under new conditions, in this case,

as a backup node where messaging and control is not as

centralised. From Point 2, it is also observed that double the

methods are called for one more additional networked

middleware instance to be discovered and added.

These three middleware instances are connected using some

key classes: the runtime instance, properties assignments,

and profile implementations. The profile implementation

interface allows the Instance Manager to set a number of

key variables as to how to configure the runtime. These

variables will determine if the satellite node is configured as

the main node (sink), a backup node (if the sink is

removed), or a normal peer. The runtime and profile classes

then load an agent container and relevant agents based on

the chosen profile. This routine is repeated after the

proactive reaction time which provides another layer of

abstracted control for autonomy and fault-tolerance to the

distributed satellite systems software. These methods hold

information on the Agent location and registrations at a cost

of approximately 200 KB per Agent platform plus an

original 600 KB for the first instance.

 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2500 5000 7500 10000 12500 15000

Probe No. (at entry to JADE-LEAP Method)

R
A

M
 M

e
m

o
ry

 U
s
a
g

e
 (

K
B

)

Figure 9. Instance Manager Thread Performing Soft

Resets

5. CONFIGURABLE INTERSATELLITE

COMMUNICATIONS MODULE

In view of the dynamic mobility and communications

channel characteristics in SB-WSNs, there is a need to

develop a configurable communications module (a) to

support intersatellite links, (b) to provide longer

reconfigurable ISLs, and lastly, (c) to provide relative

distance and bearing measurements. This includes very low

data rates, and changing operational frequencies.

A prototype ISL communications module is specified aimed

at system level testing of distributed processing in the

context of a crosslinked constellation mission scenario.

Commercial-of-the-shelf (COTS) components will be used

for the design. Industrial Scientific and Medical (ISM)

frequencies will be employed as operational frequencies. A

software defined radio (SDR) based design architecture will

be utilised. The ISL module shall satisfy the following key

requirements:

• adhere to CubeSat design specifications (PC-104 form

factor)

• provide intersatellite communications link at variable

data rates and configurable waveforms (adapting to

channel characteristics),

• provide ground communications link,

• provide an independent beacon signal generator

• generate localisation information (distance and bearing

angles)

• support IEEE 802.11 specifications (IP already

developed)

In addition, the same hardware is to act as an integral entity

in the SB-WSN test bed, which is under development [2]. A

similar test bed is being developed at the Jet Propulsion

laboratory and is known as Formation Flying Test Bed

[41]..

The functional block diagram is presented in Figure 10. The

reconfigurable ISL communications module incorporates

S-band (2.4 GHz) as well as 434/144 MHz radio front ends,

interfaced to a single reconfigurable modem. A high end

AD9861 ADC/DAC [42] is selected for the 2.4 GHz radio

front end for a Maxim 2830 radio [43]. A low end high

resolution AD7731 ADC/DAC [44] is selected for the

434/144 MHz front end for an Alinco DJC-7E radio [45]. In

addition, current sensors and temperature sensors and a 16-

bit microcontroller for housekeeping purposes are

incorporated in the design. Initial software development is

to be carried out on Infineon TriCore TC 1775, 32-bit

microcontroller [46].

At present the module design is being validated via

prototyping at sub-system level. The RF front-end and the

ADC/DAC are being evaluated for a combined system level

noise figure and bit error rate under normal room

temperatures and extended temperature up to 70 degrees

Celsius.

The beacon signal generator is independent from all other

sub-systems on the board, but has been designed with data

and control interfaces with both the baseband processor and

housekeeping controller. It is to provide beacon Morse code

encoded at variable rates of 5 wpm to 15 wpm at

configurable timing intervals from a default 120 seconds. It

is designed to operate as soon as the solar panels generate

power and will be the first sub-system to start after

confirmation of antenna deployment.

The baseband modem selected is a multi-carrier orthogonal

frequency division modulator (OFDM). A Matlab based

OFDM transceiver has been implemented for 128 point

IFFT, with a 32 point guard band. An advantage of OFDM

is that the base bandwidth depends on the sampling

frequency of the digital to analogue converter (DAC).

Therefore the same modem can operate when sampled at 8

KHz in the audio band (< 4 KHz for the Alinco Radio) and

at 20 MHz as a wideband system (< 10 MHz for MAX2830

radio). This would therefore eliminate the need for different

modems for different operating basebands. A hardware

implementation of the modem is in progress.

6. CONCLUSIONS

With the advances in satellite manufacturing, the concept of

space based wireless sensor networks is now becoming

possible. In particular, a key target environment for

SB-WSNs is LEO to investigate space weather phenomena.

Future applications utilizing multiple picosatellites in the

context of the flower constellation are discussed. A number

of orbital and network problems that need to be addressed

are outlined in reference to the layers of the OSI networking

scheme.

A distributed computing platform for SB-WSNs is proposed

that employs several configurable IP cores within a system-

on-a-chip design. These include a hardware accelerated

WiFi transmitter and a Java co-processor for efficient and

adaptable communications. The platform supports an agent

based middleware for fault-tolerant networking

1 2

 11

applications, which enables a hard real-time Java

environment when combined with the JOP processor. A

new agent middleware configuration with instance

management functionality for topology reconfiguration is

developed, which is more compact than previous

comparable designs. Code migration, parallel behaviours,

and data distribution services are also included in the small

305 kB footprint. Under test, it consumes 600 kB RAM

with 200 kB for each networked agent middleware instance.

To cater for distributed picosatellite missions, the design of

a new configurable intersatellite link communication

module is proposed aiming at a low power and low cost

implementaion.

Figure 10. Intersatellite Communications Module

Functional Block Diagram

ACKNOWLEDGEMENTS

Research funding from the Engineering and Physical

Sciences Research Council (EPSRC), UK, under grant

EP/C546318/01 is gratefully acknowledged.

REFERENCES

[1] M. Wilkins, C. Bruccoleri and D. Mortari, “Constellation

Design using Flower Constellations”, Paper AAS 04-208

of the 2004 Space Flight Mechanics Meeting Conference,

Maui, Hawaii, 9-13 February 2004.

[2] T. Vladimirova, X. Wu and C. P. Bridges, “Development

of a Satellite Sensor Network for Future Space Missions”,

Proc. of IEEE Aerospace Conference 2008, Big Sky, USA

(IEEEAC'08).

[3] T. Vladimirova and D.J. Barnhart. Toward Space Based

Wireless Sensor Networks – in “Small Satellites: Past,

Present, and Future”, H. Helvajian and S. W. Janson

(Eds.), 2008, pp. 595-634, The Aerospace Press, CA, US,

876 p.

[4] N. Iucci, L.I. Dorman, A.E. Levitin, A.V. Belov, E.A.

Eroshenko, N.G. Ptitsyna, G. Villoresi, G.V. Chizhenkov,

L.I. Gromova, M. Parisi, M.I. Tyasto, V.G. Yanke,

“Spacecraft operational anomalies and space weather

impact hazards”, Advances in Space Research, Vol. 37,

Issue 1, The Moon and Near-Earth Objects, 2006, pp.

184-190.

[5] N.W. Green and J.R. Dennison, “Deep dielectric charging

of Spacecraft Polymers by Energetic Protons”, IEEE

Transactions on PLASMA Science, Vol. 36, No.5,

October 2008.

[6] K.A. Ryden, P. A. Morris, A. Ford, A.D.P. Hands, C.S.

Dyer, B. Taylor, C. I. Underwood, D.J. Rodgers, G.

Mandorlo, G. Gatti, Hugh D.R. Evans and E. J. Dally,

“Observations of internal charging currents in medium

Earth Orbit”, IEEE Transactions on PLASMA Science,

Vol. 36, No.5, October 2008.

[7] E.L. Afraimovich, V.V. Demyanov, A.B. Ishin, G.Ya.

Smolkov, “Powerful solar radio bursts as a global and free

tool for testing satellite broadband radio systems,

including GPS-GLONASS-GALILEO”, Journal of

Atmospheric and Solar-Terrestrial Physics, Volume 70,

2008.

[8] Defence Agency Research Projects Agency, “DARPA

Awards Contracts for Fractionates Spacecraft Program”,

News Release, 26th February 2008

[9] T. Henderson and D. Mortari, “Uni-Flower: A Novel

Proposal for University-Built Nanosatellites in Flower

Constellations”, in Proc. of 2006 AAS Space Flight

Mechanics Meeting Conference, Tampa, FL, January 22-

26, 2006.

 12

[10] C. P. Bridges and T. Vladimirova, “Agent Computing for

Distributed Satellite Systems”, in Proc. of 59th

International Astronautical Congress 2008, (IAC ’08),

Glasgow, UK, October 2008.

[11] Analytical Graphics, Inc. (AGI), Satellite Tool Kit,

Website [Online], www.stk.com (last accessed:

08.07.2009)

[12] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed

Systems – Concepts and Design” 3rd ed., Section 3.4.

Network Principles - Protocols, pp. 76-79

[13] The NASA ASIC Guide: Assuring ASICS for Space,

http://parts.jpl.nasa.gov/asic/title.page.html

[14] IPS team, IPS radio and space services a guide to space

radiation, IPS radio and space services webpages,

http://www.ips.gov.au/Educational/1/2, last visited 2009-

10-27.

[15] L. Barclay, “Propagation of Radiowaves”, The Institute

of Electrical Engineers, London, UK, 2nd ed, 2003.

[16] K. Sidibeh, T. Vladimirova:”

IEEE 802.11 Optimisation

Techniques for Inter-Satellite Links in LEO Networks”,

Proc. of 8th international conference on Advanced

Communication Technology, 2006, ICACT 2006, Vol. 2,

20-22 Feb. 2006, pp. 1177 – 1182.

[17] A.H. Ballard; ”Rosette Constellations Of Earth

Satellites”, IEEE Transactions on Aerospace and

Electronic Systems, Volume 16, Issue 5, September 1980,

pp 656-673.

[18] A.Houyou, R.Holzer, H.de Meer and M.Heidl:

“Performance of Transport Layer Protocols in LEO Pico-

satellite constellations” Technical report, University of

Passau, www.fmi.uni-passau.de/forschung/mip-

berichte/MIP-0502.ps.

[19] K. Sidibeh, “Adaptation of the IEEE 802.11 Protocol foe

Inter-Satellite Links in LEO Satellite Networks” PhD

Thesis, Surrey Space Centre, University of Surrey, UK

[20] X. Wu, T. Vladimirova, and K. Sidibeh, “Signal Routing

in a Satellite Sensor Network Using Optimised

Algorithms”, Proc. of 2008 IEEE Aerospace Conference,

2008, Big Sky, USA (IEEEAC'08).

[21] CORBA, Website [Online], http://www.corba.org/ (last

accessed: 17.06.2009)

 [22] Sun Microsystems Inc., Java, Website [Online],

http://java.sun.com/ (last accessed: 17.06.2009)

[23] H.Tiggeler, T.Vladimirova, J.Gaisler. Designing a

System-on-a-chip for Small Satellite Data Processing and

Control, IIE Magazine on Engine ering Technology, vol.

4, N 6, June 2001, pp. 38-42

[24] Gaisler Research, SPARC V8 32-bit Processor

LEON3/LEON3-FT CompanionCore Data Sheet, Website

[Online]. Available: www.actel.com/ipdocs/leon3_ds.pdf

(last accessed: 17.06.2009).

[25] Advanced RISC Machines Ltd. (ARM), AMBA

Specification Rev 2.0, Specification, 1999.

[26] T. Vladimirova and J. R. Paul. Implementation of an

IEEE802.11a Transmitter Module for a Reconfigurable

System-on-a-Chip Design - Proceedings of 4th

NASA/ESA Conference on Adaptive Hardware and

Systems (AHS-2009), July 29 – August 1, 2009, San

Francisco, California, USA, pp. 305-312

[27] OpenCores, “SimpCon – A Simple SoC Interconnect”,

Wesbite,[Online].Available:http://www.opencores.org/pro

jects.cgi/web/simpcon/overview (last

accessed:07.07.2009)

[28] M. Schoeberl, “A Java processor architecture for

embedded real-time systems”, Journal of Systems

Architecture, 54/1-2, pp. 265--286, 2008

[29] H. Hecht, “Requirements for Software Exception

Handling”, in Proc. of 2008 IEEE Aerospace Conference

(IEEEAC ’08), 1-8 March 2008, Big Sky, Montana, USA,

pp. 1-7

[30] SRecord 1.49, Website [Online]. Available:

srecord.sourceforge.net (last accessed: 09.07.2009)

[31] L. Wood, C. Peoples, G. Parr, B. Scotney, and A. Moore,

“TCP’s protocol radius: the distance where timers prevent

communication,”, in Proc. of 3rd International Workshop

on Satellite and Space Communications (IWSSC ’07) ,

Salzburg, Austria, 13-14 September 2007

[32] FIPA Agent Message Transport Service Specification,

Website [Online]. Available:

www.fipa.org/specs/fipa00067/SC00067F.pdf (last

accessed: 17.06.2009)

[33] JADE – Java Agent Development Framework, Front

Page, Website [Online], jade.tilab.com/ (last accessed:

17.06.2009)

[34] FIPA-OS at Sourceforge, Website [Online],

sourceforge.net/projects/fipa-os/ (last accessed:

17.06.2009)

 13

[35] Java ME Website Connected Configuration (CDC),

Website [Online], java.sun.com/products/cdc/ (last

accessed: 17.06.2009)

[36] Sun Microsystems Inc., Java ME Website Connected

Limited Device Configuration (CLDC), Website [Online],

http://java.sun.com/products/cldc/ (last accessed:

17.06.2009)

[37] C. P. Bridges and T. Vladimirova, “Agent Computing

Applications in Distributed Satellite Systems”, in Proc. of

International Symposium for Autonomous Decentralised

Systems, Athens, Greece, 22-25 March 2009.

[38] Eclipse Test & Performance Tools Platform Project,

Website [Online]. Available: www.eclipse.org/tptp/ (last

accessed 05.05.2009)

[39] ProGuard, Version 4.3, Website [Online]. Available:

proguard.sourceforge.net/ (last accessed: 02.07.2009)

[40] T. Vladimirova, X. Wu, A. H. Jallad and C. P. Bridges,

“Distributed Computing in Reconfigurable Picosatellite

Networks”, in Proc. of 2nd NASA/ ESA Conference on

Adaptive Hardware and Systems, 2007, pp. 682-692

[41] J. Y. Tien, G. H. Purcell, L. R. Amaro, L.E. Young, M.

Aung, J. M. Srinivasan, E. D. Archer, A. M. Vozoff, Y.

Chong, “Technology Validation of the Autonomous

Formation Flying sensor for Precision Formation Flying”,

Proc. of 2003 IEEE Aerospace Conference, 2003, Vol. 1,

March 8-15, 2003.

[42] AD 9861, 10-Bit Mixed-Signal Front-End Processor,

Datasheet [Online]. Available:

http://www.analog.com/static/imported-

files/data_sheets/AD9861.pdf (last accessed: 01.11.2009).

[43] MAX2830 2.4 GHz to 2.5 GHz 802.11 g/b RF

Transceiver with PA and Rx/Tx/Diversity Switch,

Webpage [Online]. Available: http://www.maxim-

ic.com/quick_view2.cfm/qv_pk/5367 (last accessed

01.11.2009).

[44] AD7731 Low Noise, High Throughput 24-Bit Sigma-

Delta ADC, Datasheet [Online]. Available:

http://www.analog.com/static/imported-

files/data_sheets/AD7731.pdf (last accessed: 01.11.2009).

[45] Alinco DJC7T/E Specifications, Webpage [Online].

Available: http://www.alinco.com/Products/DJC7/ (last

accessed: 01.11.2009).

[46] Infineon Technologies, “TC 1775 Highly Integrated 32-

Bit TriCore TM-based Microcontroller for Automotive

Applications”, Datasheet [Online]. Available:

http://www.infineon.com/dgdl/TC1775_pb_V3.pdf (last

accessed: 01.11.2009)

BIOGRAPHY

Tanya Vladimirova, MEng, MSc,

PhD, CEng, MIET, MEEE, received

the M.Sc. degree from the Technical

University of Sofia, Bulgaria, the

MEng and the Ph.D. degrees from the

St. Petersburg Electro-Technical

University (LETI), Russia. She is

currently a Reader in the Department of

Electronic Engineering at the

University of Surrey and leads the VLSI Design and

Embedded Systems research group at the Surrey Space

Centre. Her research interests are in the areas of low-power

on-board integrated circuit design, image processing,

intelligent embedded systems and space-based wireless

sensor networks. She acted as a co-chair of the Military and

Aerospace Applications of Programmable Logic Devices

(MAPLD) confererence from 2000 to 2006.

Christopher P. Bridges, BEng, PhD in

the VLSI Design and Embedded

Systems research group at

Surrey Space Centre, UK, between

2006-2009 and is now a Researcher at

Surrey Space Centre. His research

interests are distributed computing,

software agents, satellite systems, and

multi-core design for FPGAs.

Jean R. Paul, BEng

Telecommuncations Engineering

(2006), is a PhD student in the VLSI

Design and Embedded Systems research

group at Surrey Space Centre, UK his

research interests include intersatellite

communications, cross-layer adaptation

in wireless networks, signal processing,

FPGA development for embedded

systems and computing.

Saad A. Malik, BEng, MSc, is

currently a research student at the

Surrey Space Centre, University of

Surrey, UK. He has three years of

design experience in embedded systems

development for secure wireless

systems and another two years of

technical management of core (switch),

local loop and Hybrid Fiber Coaxial network from its design

to roll out phase. His research interests are in the wireless

communications for localization challenges in space based

Ad-hoc networks of very small satellites.

 14

Professor Sir Martin N. Sweeting,

B.Sc.Hons., PhD (Surrey), FRS,

FREng., FIET, FRAeS, FBIS,

SMIEEE, SMAIAA, MBIM, MIAA

has pioneered the concept of advanced

microsatellites utilizing modern

commercial-off-the-shelf (COTS)

devices for ‘affordable access to

space.’ After completing BSc & PhD

degrees at the University of Surrey, in 1985 he formed a

spin-off University company (SSTL - Surrey Satellite

Technology Ltd) which has designed, built, launched and

operates in orbit a total of 34 nano, micro, and mini-

satellites - making SSTL the world's leading microsatellite

company. As Chief Executive of SSTL, he has been

responsible for the leadership and management of the

Company which by 2006 has grown to 210 commercial staff

and achieved a total export sales of over £110M. Sir Martin

is also Director of the Surrey Space Centre, leading a team

of 80 faculty and doctoral researchers investigating

advanced small satellite concepts and techniques. Sir Martin

was knighted by HM The Queen in the 2002 British New

Year Honours for services to the small satellite industry.

