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Abstract—This paper is concerned with a satellite sensor 

network, which applies the concept of terrestrial wireless 

sensor networks to space. 1,2 Constellation design and 

enabling technologies for picosatellite constellations such as 

distributed computing and intersatellite communication are 

discussed. The research, carried out at the Surrey Space 

Centre, is aimed at space weather missions in low Earth 

orbit (LEO). Distributed satellite system scenarios based on 

the flower constellation set are introduced. Communication 

issues of a space based wireless sensor network (SB-WSN) 

in reference to the Open Systems Interconnection (OSI) 

networking scheme are discussed. A system-on-a-chip 

computing platform and agent middleware for SB-WSNs 

are presented. The system-on-a-chip architecture centred 

around the LEON3 soft processor core is aimed at efficient 

hardware support of collaborative processing in SB-WSNs, 

providing a number of intellectual property cores such as a 

hardware accelerated Wi-Fi MAC and transceiver core and 

a Java co-processor. A new configurable intersatellite 

communications module for picosatellites is outlined. 
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1. INTRODUCTION 

This paper is concerned with space-based wireless sensor 

networks (SB-WSNs) consisting of very small satellite 

nodes flying in close formations. The main idea of SB-

WSNs is that rather than having a single large expensive 

satellite to achieve the goals of a mission, a large number of  
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inexpensive (mass producible) satellite nodes are deployed 

in a formation to achieve the same goals. 

There are some important astro-dynamics and engineering 

research challenges to enable formations in low Earth orbit 

(LEO). Perturbations have been shown to reduce the 

lifetime of local satellite clusters and constellations, so an 

implementation of the recent Flower constellation model [1] 

has been investigated and adapted for a LEO mission 

scenario. Secular drift can be mitigated by using a more 

equatorial inclination and atmospheric drag can be mitigated 

via a higher eccentricity. Geometric shapes can be formed to 

produce ‘flower’ shapes with the ‘petals’ giving angular 

requirements of each satellite position. Current simulations 

envision that a LEO distributed mission is feasible using the 

Flower constellation model. Scenarios have been explored 

where picosatellite constellations drift in and out of inter-

satellite link (ISL) length between a range of 400 km and 

100 km, presenting a dynamic and often ‘disconnected’ 

environment. The need for an ad-hoc and autonomous 

distributed computing platform to enable collaboration via 

ISLs is obvious in this environment for enabling future 

distributed satellite missions. 

Future spacecraft are envisioned as autonomous, miniature, 

intelligent and massively distributed space systems. The 

concept of satellite sensor networks can be applied to many 

space missions [2, 3]. Some examples include: 

• realising co-orbiting assistants/ inspectors of larger 

mother ships; 

• providing continuous Earth coverage for multipoint 

remote sensing, monitoring or communications at low 

cost in LEO; 

• providing continuous communications for multiple low-

powered surface vehicles around the Moon, Mars and 

other planets or asteroids. 

 

Space weather is associated with many of the anomalies 

detected on spacecraft [4, 5, 6]. In LEO spacecraft is 

particularly vulnerable when it passes the poles - home to 

the auroral ionized belts and the South Atlantic Anomaly 

(SAA), where ionized particles come very low into the 

atmosphere. Service outages of the satellite navigation 

system due to solar storms are a cause of great concern [7]. 

Distributed networked small satellite missions could be used 

to study the impact of solar storms on Earth’s 

magnetosphere and ionosphere increasing the spatial and 
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temporal resolution and providing continuous in-situ 

measurements. Replacing a group of sensing satellites, 

which operate separately in their own local vicinity, by 

networked satellites operating in a distributed fashion will 

also increase the science return per dollar ($) as envisioned 

in DARPA’s F6 project [8]. 

This paper is organized as follows. Section 2 introduces the 

distributed satellite system constellation scenario based on 

the flower constellation. Section 3 focuses on the design 

issues of a space based wireless sensor network in reference 

to the OSI layer stack. Section 4 details a system-on-a-chip 

computing platform and agent middleware for distributed 

processing in SB-WSNs. A new configurable ISL 

communications module for picosatellites is outlined in 

Section 5. Section 6 concludes the paper. 

2. MISSION CONSTELLATION SCENARIO 

A distributed satellite system requiring intersatellite links 

could be formed for a number of missions. For each 

mission, specific orbits would be required to meet the 

mission goals, taking advantages of intersatellite links. 

These missions are summarized in Table 1. 

Table 1. Constellation Orbital Characteristics and 

Applications 

Const. Characteristics Applications 

String-

of-Pearl 

Polar/ sun-

synchronous orbits 

Predictable 

connection periods 

Limited mobility 

1. Earth/ space 

observation                 

2. Communication      

3. Global positioning/ 

navigation                   

4. Science 

Flower Elliptical orbits 

Predictable 

connection periods 

Known mobility 

patterns 

1. Multi-point 

atmospheric/ space 

weather monitoring     

2. Distress beacon 

monitoring                  

3. Experimental orbits 

for Earth observation, 

communication and 

positioning 

Cluster Similar orbits 

Unpredictable 

connection periods 

Medium/ high 

mobility. Unknown 

patterns 

1. Hardware 

Fractionation              

2. Multi-point 

atmospheric/ space 

weather monitoring     

3. Earth observation, 

communication and 

positioning 

 

Table 1 highlights some of the orbit characteristics for each 

of three constellation designs – string-of-pearl, Flower 

constellation and satellite cluster. Depending on the mission 

needs and orbital characteristics, parameters of the 

intersatellite communication, whether for brief or long 

periods, can be predicted. 

2.1. The Flower Constellation 

The Flower constellation set provides stable orbital 

configurations, which are suitable for micro- and nano-

satellite missions. Applications proposed and initially 

investigated include GPS missions, reconnaissance, two-

way orbits, multiple science missions and planetary 

exploration [9]. Upon closer investigation, there are some 

distinct features including [1]: 

• The constellation’s axis of symmetry coincides with the 

spin axis of the Earth. 

• Each satellite has the same orbit shape (anomalistic 

period, argument of perigee, height of perigee and 

inclination). 

• Satellites are equally displaced along the equatorial 

plane to complete the constellation using the right 

ascension of the ascending node (RAAN), true anomaly 

or mean anomaly. 

 

 

Figure 1. Flower Constellation 

Previous research applied the Flower constellation to low 

Earth orbit (LEO) for a set of 9 picosatellites giving 

constant and predictable ranges from 100 km to 400 km 

between neighbouring satellites [10]. Unlike polar orbit 

constellation scenarios, the Flower constellation with a more 

equatorial inclination ensures that the satellites will drift 

together along the Earth’s equator; keeping them in 

formation for a much longer without the need for orbit 

maintenance. The proposed Flower constellation in the 

equatorial plane is particularly promising for the launch of 

picosatellites (mass < 1 kg) or nanosatellites (mass < 10kg). 

Simulations were carried out using AGI’s High Precision 

Orbital Propagator (HPOP) in Satellite Toolkit (STK) [11]. 

Figure 1 provides an image of the Flower constellation of 9 

picosatellites and Table 2 describes the design parameters 

used. 
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Table 2. Satellite and Orbital Properties for the Flower 

Constellation 

Satellite Properties Value 

Mass, m 1 kg (picosatellite) 

Volume 10 cm3 

Cross sectional area, a  20 cm2 (tumbling) 

Co-efficient of drag, 

CD 

2.2 (flat plate model) 

Atmospheric density, ρ 2.961 x 10-13 kg/m3 

Ballistic co-efficient, B 
ρ

m

a
CB D

2

1
= = 5.92 x 10-16 

Orbit Properties Value 

Apogee altitude, ha 1598 km 

Perigee altitude, hp 686 km 

Inclination, i 165 ° 

Right ascension of the 

ascending node, Ω 

Satellites 1-9: 0, 40, 80, 120, 

160, 200, 240, 280, 320 ° 

True anomaly, θ Satellites 1-9: 0, 53.54, 98.12, 

134.1, 165.2, 194.8, 225.9, 

261.88, 306.46 ° 

 

2.2. Flower Constellation Design Issues 

When looking at any mission aiming to use intersatellite 

links, important orbital factors to consider are relative 

range/ speeds between satellites, the ISL access opportunity, 

and the ground-link access opportunity. The access time 

between each satellite is proposed as the best metric to 

predict distributed collaboration. The access time is the time 

for two picosatellites to communicate between each other 

dependent on a set range. The communication range of 400 

km is chosen in this modelling study, which is assumed to 

give sufficient collaborative opportunity. Figure 2 shows the 

access time for the constellation in Figure 1 showing 

picosatellites drifting in and out of range at different times. 

 

Figure 2. Flower Constellation Access Times for Nine 

Picosatellites 

Access times between picosatellites range between 3 days to 

14 days dependent on the main sink satellite. The sink 

picosatellite is the master satellite that communicates to 

ground and can be used for controlling distributed 

operations.  

 

Figure 3. Groundstation Access Times for the Flower 

Constellation 

The sink satellite needs to be chosen because if all satellites 

tried to communicate to ground, the link would be over-

subscribed (assuming one operational frequency). For 

example, Figure 3 shows that between 3 to the maximum 9 

satellites could be in view at any one given time. The 

simulations presented in Figure 2 and 3 suggest predictable 

and repeating patterns for both intersatellite and groundlink 

connection periods. However, it has to be noted that the 

simulation results are as close to the true orbits as good the 

force models for predicting the orbits are. 

In order to achieve the initial conditions of the Flower 

constellation the satellites must be positioned in a certain 

way during or after deployment. Intersatellite 

communication capability could help to overcome 

difficulties in identifying positions of individual satellites 

and predicting their orbits after deployment.  

3. NETWORK DESIGN ISSUES 

As discussed in Section 2.2, spacecraft crosslink 

communications are affected by orbital dynamics, which 

impose a number of difficulties and restrictions such as 

variable inter-satellite ranges and speeds, variable ISL 

access for distributed operations, etc.. To investigate these 

problems we use the Open Systems Interconnection (OSI) 

networking scheme [12]. The functionality of the OSI layers 

can be implemented in hardware or software, as shown in 

Figure 4. This section will discuss the different design 

issues that are found at each layer. 
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Figure 4. OSI Layers and Implementation Methods 

 

3.1. Physical Layer 

Radiation is one of the primary environmental hazards in 

space affecting on-board electronic components and 

propagation of communication signals [13, 14]. 

Ground communications in picosatellite designs are in the 

VHF and UHF bands. VHF frequencies in the range of 30 

to 300 MHz normally pass through the ionosphere with 

effects such as scintillation, fading and Faraday rotation etc. 

However in times of intense solar cycles, VHF signals can 

be reflected back causing multi-path effects. Cases observed 

during peaks of cycle in 1957-58, Cycle 21 in 1980, and 

Cycle 22 in 1990 [14]. VHF signals can also get reflected 

by auroral strips in the extreme solar activity. Between 300 

MHz and 3GHz, in which S and L band lie, severe 

disruptions are possible during a solar storm [7] which 

could affect intersatellite link communications.  

Global positioning signals (GPS) are deemed to be an 

essential tool for orbit determination and navigation on 

board constellation satellites. Solar storms are known to 

cause synchronization and phase lock errors in GPS 

receivers [7].  

3.1.1. Radiation Effects: Communications Channel 

The Appleton-Lassen formula is a well known propagation 

model for ionospheric propagation, which describes the 

complex refractive index of the medium. If the magnetic 

field is ignored then the real part of the refractive index ∂  is 

given as [15]: 
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where k = 80.5 is a constant, N is the electron density per 

cubic metre and f is the operating frequency in Hertz. The 

critical frequency of plasma is denoted as fN.  

It is important to note that N varies and its average value is 

105 for altitudes up to 1000 km during daytime. The change 

in electron density affects the critical frequency and has 

been known to have caused reflections in frequencies above 

the critical frequency [15]. Since electron density is 

variable, a configurable and robust communications system 

is essential. 

Other critical parameters affecting propagating waves at a 

given electron density are: 

• Varying group velocity as well as phase propagation 

delay. 

• Attenuation, caused by electron-neutron collisions. 

• Refraction due to varying plasma density, causing 

multi-path effects. 

 

3.1.2. Antenna Pointing and Power 

Given the limited power resources on board picosatellites, 

adaptive techniques could be used to optimize power 

utilization. The relative velocity between satellites in 

different orbits varies with time. This results in a time-

varying azimuth and elevation, and in addition places 

constraints on the antenna steering. Analytical modelling of 

ISLs for circular orbits is presented in [16, 17]. It is shown 

that the variation of the elevation is small, whereas the 

azimuth varies significantly [16]. The following is an 

expression for evaluation of the azimuth , ψ, [17]: 
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where θ is the angle of separation between orbits, ω is the 

angular elongation, α1 and α2 represent the latitude of two 

neighbouring satellites 1 and 2, and α is the sum of α1 and 

α2.  

An expression of the ISL length as a function of the azimuth 

is derived in which the expression for the azimuth in (2) 

above is substituted. A mathematical model for the power of 

the receiving antenna as a function of latitude is then 

developed substituting the ISL length expression in the Friis 

free space equation. Figure 5 shows calculated power 

variation of the receiving antenna for intersatellite 

communication in LEO circular polar orbits using that 

model. 

APPLICATION Layer 

PRESENTATION 

Layer

SESSION Layer 

NETWORK Layer 

PHYSICAL Layer 

Software 

Hardware

Hardware or SoftwareDATA LINK Layer 

TRANSPORT Layer 
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Figure 5. Power Variation with respect to the Latitude 

in the Southern hemisphere 

It can be seen from the graph in Figure 5 that the power of 

the receiving antenna varies within 58 dB having a 

minimum at the equator and a maximum at the poles. This 

can be exploited for implementation of adaptive power 

control on board to reduce the power consumption varying 

the transmitter’s antenna gain based on pre-calculated 

azimuth or latitude values.  

3.2. Data Link Layer 

Due to bandwidth scarcity in wireless networks, a common 

approach is to use a multiple access scheme to share the 

bandwidth of a communication link between several nodes. 

The link layer delimits groups of bits to form frames, and 

switches are used to dispatch frames to the correct node. A 

control mechanism called Medium Access Control (MAC) 

is used to manage the communication link. The MAC layer 

ensures that frames are delivered error-free, and adds 

addressing information to the transmitted frames. 

Existing commercial lower layer protocols and their 

suitability for intersatellite communication in autonomous 

constellations are discussed in [18]. It is concluded that long 

propagation delays, appropriate data rates, and forward 

error correction mechanisms are features required for 

reliable space communications. 

It has been shown that the terrestrial IEEE 802.11 wireless 

network standard can been adopted for intersatellite link 

design [2]. In the IEEE 802.11 protocol carrier sense 

multiple access is used by nodes to monitor when the 

communication channel is free. Before a station is allowed 

to initiate a transmission, it senses the channel to verify 

whether it is free for a predefined minimum period called 

Distributed Inter Frame Space (DIFS). If the channel is 

busy, a random backoff interval is calculated to determine 

the waiting time before the sending station tries to access 

the channel again.  

IEEE 802.11 is a terrestrial communication protocol with 

ranges in the order of a few hundred metres, however it 

could be scaled up for communications range of a few 

hundred kilometres in space [19]. It is proposed to extend 

the range by redefining the MAC layer’s distributed inter-

frame space [16]. Although suitable for environments where 

the nodes are fixed, in a mobile environment, such as LEO, 

the proposed solution is not sufficient. Two scenarios are 

calculated for DIFS settings corresponding to 

communications range of 15 km and 100 km, as shown in 

Table 3. It can be seen that if the nodes are 100 km apart 

(DIFS=355 µs), the throughput drops by a factor of 3 

compared with the DIFS setting for a range of 15 km. This 

suggests that an adaptive determination of the DIFS value is 

better suited to the needs of SB-WSNs, requiring that the 

ISL range is known in advance, or some form of range 

prediction is implemented. 

Table 3. Throughput vs. DIFS Settings 

Range (km) DIFS (µs) Throughput (Mbps) 

15 75 3 

100 355 0.94 

 

3.3. Network and Application Layers 

In SB-WSNs the extreme mobility and intermittent 

connectivity will affect the network topology requiring that 

the network is capable of reconfiguration. Routing 

optimisation based on minimising the transmission power 

and associated delays is proposed in [20]. It is concluded 

that satellite network requirements include: 

• Ad-hoc intersatellite networking capabilities for initial 

topology formation such as IEEE 802.11 (WiFi) or 

802.15.4 (ZigBee). 

• Adaptable and redundant ground-link communication 

schemes, i.e. main ‘sink’ to ground. 

• Proactive and reactive topology schemes to  account for 

any mobility or node loss. 

 

3.3.1. Middleware 

Distributed computing is typically enabled by middleware, a 

software layer offering services to connect software 

components across a network for integration or sharing 

computing resources.  The same connectivity issues affect 

the quality of service (QoS) for different middleware 

functions. For example, when two nodes connect using 

CORBA [21] or Java [22], they often register their services 

for resource sharing functions. But if they shortly 

disconnect and reconnect, there are often naming errors in 

the service registration that could cause an exception 

crashing the software system. Additionally, in a client/ 

server communication scheme, the most typical distributed 

computing paradigm, when a server or sink satellite fails 

then the network operations are lost. The chosen 

middleware must be autonomous and tolerant to satellite 
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node failures, intermittent connectivity, changing 

connection topologies, and registration errors; analogous to 

an extreme case of mobile ad-hoc networks (MANET). 

The application layer is mission and payload dependent, 

involving store and forward data transmissions with varying 

data sizes, which may require different communication 

schemes [10]. Higher rate data, such as payload data are 

suited to the Client/ Server communication scheme, while 

lower rate data would benefit from using the Peer-to-Peer 

(P2P) communication scheme. This can be telemetry, 

location or velocity changes such as “byte” size payload 

data (GPS, science payload measurements) & network 

management data (e.g. pinging). Future needs and 

applications for distributed operations, autonomy and 

artificial intelligence should be considered too based on 

current terrestrial software systems. Ideally, the 

management and payload data sizes transmitted across any 

channel (either the ground link or ISL) should be minimized 

as much as possible to reduce the power overhead of 

communicating. 

4. DISTRIBUTED COMPUTING PLATFORM DESIGN 

The work presented in this section is related to the 

computing support for data processing and communication 

at the SB-WSN node level. The implementation approach is 

based on hardware acceleration in the form of intellectual 

property (IP) cores for a system-on-a-chip (SoC) design 

[23]. The SoC uses the SPARC V8 LEON3 processor [24] 

and the AMBA2 bus [25]. Details are given about the 

development of two hardware accelerators - a WiFi 

transceiver and Java processor, and dedicated agent 

middleware. 

4.1. Wireless Transceiver Core 

The WiFi transceiver [26] is intended to operate in a mobile 

environment in which an adaptive DIFS will be used for 

range extension. Some of the IEEE 802.11 MAC layer 

functionality requires strict timing constraints. For instance, 

when a node receives a control signal, such as CTS, the data 

packet should be sent within a period of 10 µs called short 

inter-frame spacing (SIFS). Therefore, the MAC layer 

timing-critical functionality is implemented in hardware. 

However for ease of reconfiguration, a key function being 

considered is the communication range prediction via 

software which will implement the programming of the 

DIFS. Thus a hybrid hardware/software approach is 

employed to comply with the timing constraints. 

The MAC is implemented as a hardware accelerator and the 

LEON3 processor is used to run software applications, 

interfacing the upper layers of the communication stack 

with the IEEE 802.11 protocol. The hardware accelerator 

implements a WiFi transceiver written in VHDL which 

contains functions such as ‘byte by byte’ processing in both 

receive and transmit directions, CRC generation for error 

detection purposes, signals to indicate successful 

transmissions, and reception. 

Due to the asynchronous nature of communications in 

IEEE802.11 based networks, a mechanism for direct write 

from the receiver to the memory is required. As a result a 

direct memory access (DMA) core capable of controlling 

data transfer between the memory and the wireless 

transceiver is added to the design, shown in Figure 6. The 

DMA core has 32 channels to support up to 32 peripherals, 

and each channel has a number of registers allocated in the 

memory-mapped IO.  An arbiter is placed within the DMA 

to give access to the component with highest priority. The 

registers are configured via the APB bus and are used to 

provide a set of functionalities to each component 

connected to the DMA. The registers allow to store 

information such as start addresses of the memory and the 

peripheral that require exchanging data, the data transfer 

size, byte counter. In transmission mode, the processor 

sends a signal to initiate data transfer using a register in the 

DMA; this involves moving data from the memory to the 

IEEE physical layer. In receiving mode a request signal is 

sent from the transceiver to the DMA to transfer data to the 

memory by bypassing the processor. Also when there is an 

error in the transmission a register is used to signal to the 

processor the type of error.  

 

 

Figure 6. Wireless Transceiver Core Architecture 

The MAC layer is divided in two parts. The transmitter state 

machine selects the correct sequence of packet type (control 

or data) and is responsible for CRC generation and 

forwarding data byte by byte to the physical layer. The 

receiver state machine monitors the carrier, collects data 

byte by byte, performs CRC and transfers data to the 

memory. The MAC interacts with the physical layer through 

an interface as shown in Figure 7. 
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DMA Core 

AHB Master 
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Configuration 

Registers

WiFi Transceiver 

AHB Slave 
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AHB 
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Request 
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Figure 7. MAC layer 's Interface with Physical Layer 

The MAC-Physical interface appends information such as 

preambles for packet detection, the data rate, modulation 

type and duration of data transfer. In order for the 

transceiver to meet IEEE 802.11 specifications and transmit 

data in continuous stream, the interface initially aggregates 

the bytes into larger groups. In our design the data rate is set 

at 6 Mbps, as a result the physical layer receives data in 

groups of 24 bits which are stored in a buffer for 

processing.  Secondly the DMA latency cannot exceed 1.6 

µs. This is achievable even in a heavy loaded platform 

where the processor is constantly in demand. However as 

synchronization is necessary between the DMA and the 

MAC layer’s operation, a buffer of 4 bytes was chosen.  

This also means that a handshake mechanism is required to 

allow seamless operation between the layers. 

4.2. Java Co-Processor 

To enable future capabilities towards distributed computing 

and IP based networking functions in SB-WSNs, the Java 

optimized processor (JOP) is integrated as an AHB Master 

as shown in Figure 8. This new Java co-processor 

architecture is defined by the memory sharing scheme in 

place between cores for access to external RAM and is 

achieved using the AMBA2 bus from ARM [25]. This 

design operates like a hybrid multiple instruction stream, 

multiple data stream (MIMD) architecture where each 

processor fetches its own instructions and data. Essentially, 

it operates thread level parallelism allowing many tasks to 

be performed simultaneously. 

To add JOP as a non-heterogeneous Java based network 

processor, several issues were resolved: 

• JOP Interface: JOP uses the SimpCon bus scheme [27] 

whilst the LEON3 uses the ARM AMBA2 bus. JOP 

needs to be added on the shared bus using an interface 

between the SimpCon and AMBA bus. 

• Exceptions: JOP, like any JVM, has exceptions that 

could cause the processor to stall or exit from operation. 

These need to be handled to allow for restart of JOP and 

applications under differing modes and for increased 

fault tolerance. 

• Bootloading: Both the LEON3 and JOP require off chip 

memory areas, typically in PROMs or FLASH, to hold 

the software bootloaders. These interfaces must be 

available to both cores so they can run separately from 

each other. As JOP avoids dynamic class loading, all 

required classes must be loaded on startup with known 

start addresses. 

Therefore, integration of the JOP processor has included 1) 

an AHB Bus Master wrapped for interfacing purposes and 

connections to the LEON3, 2) an APB slave for 

communication with the memory controller, and 3) 

hardware exception handling for automatic recovery as 

shown in Figure 8. 

JOP itself operates 4 pipeline stages: microcode fetch, 

decode and execute and an additional translation stage 

bytecode fetch [28]. The core itself uses additional 

interfaces to find initial start addresses and special pointer 

addresses. Connections to external components are achieved 

using the memory core and the extension core. The memory 

core provides an interface between the main memory and 

the CPU whilst the extension core provides some extended 

functionalities including a multiplier unit, control signals for 

memory and I/O, and a multiplexer for read data to load to 

the top of the stack.  

 

Figure 8. JOP IP Core Wrapper 

The original I/O module has been replaced by AMBA 

interfaces. The AMBA interfaces are an AHB Master 

interface and an APB Slave Interface where both contain 
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configuration information that is initially sent to the AHB 

arbiter. 

The AHB interface has an additional direct memory access 

(DMA) interface to perform read and write operations. The 

APB has some configurable control registers to set start and 

output addresses of the core as well as feedback for 

exceptions and debugging DMA signals. The LEON3, with 

both master and slave functions, is able to request (as a 

master) and serve (as a slave) to other cores on the AHB bus 

whereas JOP can only request as a master. 

Exception handling has been problematic in fault tolerant 

systems. Some relevant examples are discussed by H. Hecht 

[29] including examples of catastrophic failures with an 

Ariane-5 launcher and the Mars Polar Lander. For a SoC 

design, there are two types of failures: global failure, where 

many functional areas of the device are affected requiring a 

device reset, and a recoverable failure, where processes in 

hardware and software can cause functional errors in exact 

areas of the device. To deal with these recoverable errors, 

there are several main hardware and software exceptions 

that occur in the Java processor. Hardware exceptions 

include: 

1. Stack Overflow – where the stack becomes full, 

typically due to a large number of classes 

2. Null Pointer – an address which has elements undefined 

or is out of the memory scope 

3. Array Out of Bounds – access to an array element 

which may not be accessible 

Whilst software exceptions include: 

1. Network Exceptions – timing constraints not met or 

unhandled protocol exceptions 

2. Application Specific Exceptions 

 

Each of these hardware exceptions typically results in the 

stalling of the processor and a hard reset is required. The 

hardware errors are typically due to overloading of the 

processor or corrupt software whilst the software exceptions 

occur due to poor network connectivity or programming 

errors. Therefore, hardware exceptions will all cause an 

automatic reset and so operationally the processor can be 

brought back online in the shortest time possible and a 

register bank is utilized allowing other AHB cores to assess 

JOP’s operational status. 

The JOP Java application is first compiled to bytecode, then 

to microcode, before finally linking with class files. To 

facilitate the symmetric multiprocessing (SMP) architecture 

of this design with two heterogeneous processor cores, 

compilation of each core’s application must be stored 

together in the same image. There are two methods that can 

be employed to overcome this problem: 

1. Embedding the required instructions in a C program 

and storing them in memory. 

2. Compiling each application separately and 

concatenating using SRecord tools  [30] or similar 

object copy programs at the required addresses. 

 

The LEON3 application has its code (.text segment) 

typically stored in a PROM at 0x00000000, and data (.data 

and .bss) in RAM at 0x40000000. At start-up, the .data 

segment is copied from the PROM to the RAM; linked to 

start from address 0x0. The data segment for JOP is, by 

default, linked at 0x4000000 also but can be changed by 

giving offset arguments; which is the technique used to set 

JOP’s application. JOP’s application is aimed at starting at 

address 0x41000000 and outputting to 0x42000000, away 

from the LEON3 memory area. These start addresses can be 

set in a C program by the LEON3 or hard-coded in the JOP 

IP core wrapper component. 

4.3. Agent Middleware 

An agent based middleware with instance management is 

designed for distributed operations in SB-WSNs. Code 

migration, parallel behaviours and data distribution services 

are also supported. Both the TCP/IP and the UDP 

communication protocols are used. The UDP protocol is 

better suited for ‘store-and-forward’ communications as a 

dropped UDP packet, in this case, is preferred to a TCP 

delayed packet [31]. Use of the protocols depends on the 

type of data transmission tasks as below: 

• ‘High Priority Data’ tasks use the TCP/IP protocol for 

reliable and secure point-to-point communication. 

• ‘Low Priority Data’ tasks use the UDP protocol for fast, 

broadcast/multicasting of small information to groups 

of satellites employing the publish/subscribe or peer-to-

peer communication scheme. 

 

Both types of tasks can take advantage of existing Agent 

Communication Languages (ACL) [32] for workflow 

control, acknowledgements and finally support for packet 

broadcast and multicasting. 

There are various agent middleware options available to 

develop the embedded agent middleware; with the majority 

using a derivative of JADE [33] or FIPA-OS [34]. But each 

agent platform has dependencies based on a particular Java 

revision environment (JRE). For example, JADE can be 

implemented based on JRE 1.4 or as JADE-LEAP using 

JRE 1.2. JADE-LEAP can then be configured under J2ME, 

PersonalJava (or pjava) now superseded by the Connection 

Devices Configuration (CDC Spec.) [35] and the Mobile 

Information Device Profile (MIDP) stack which uses the 

Connection Limited Device Configuration (CLDC Spec.) 

[36]. FIPA-OS is also considered along with Micro FIPA-

OS, targeted for mobile phones. 

An in depth comparison of the middleware footprints, RAM 

usage, and startup time was carried out using a new method 

probe [37] developed using Eclipse’s Probekit from the Test 

& Performance Tools Platform (TPTP) Project [38] to log 

RAM measurements at method entry. The key results from 
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[37] concluded that the JADE-LEAP-pjava is to be used for 

the final configuration with low RAM and memory 

footprint as well as a fast startup time. This software 

configuration offers: 

• The CDC stack of standard Java methods usable for 

networking applications at JRE 1.1.8; either offered by 

JOP in hardware or in open-source software for 

emulation. 

• The lowest memory consumption when compared to 

other competing systems. 

• Agent functionality through JADE-LEAP with cloning 

capabilities. 

 

This configuration has been taken forward for development 

and its footprint reduced to 305 KB using ProGuard [39], an 

open source Java software tool. ProGuard is employed for 

shrinking, optimisation, and obfuscation, keeping only the 

core classes required for the middleware operation and 

communication. Shrinking analyzes the main application 

and removes unused classes, fields, and methods. 

Optimizations include removing debug and logging codes, 

making classes static and final, and a reduction of variable 

allocation (mostly coding optimizations). Obfuscation is the 

replacement of naming in the classes, fields, and methods 

with simple characters and values. Despite being used to 

ensure code cannot be reverse-engineered for greater 

security when the final agent middleware is deployed, it also 

compacts the code. When compared to previous middleware 

solutions, this method achieves a reduction of 72% of the 

existing JADE-LEAP-pjava solution and 64% of a CORBA 

solution [40], resulting in a very small agent middleware 

solution is for networked embedded systems. 

4.3.1. Middleware Instance Manager  

The optimized agent middleware, JADE-LEAP-pjava, needs 

functionality for autonomous recovery from exceptions. 

This is achieved using a software wrapper to run JADE-

LEAP-pjava as its own manageable thread. An Instance 

Manager algorithm is developed which manages instances 

of the JADE-LEAP-pjava agent middleware. As a result the 

JADE-FT (fault-tolerant) middleware is completed, where 

agents are considered services accessible in the network.  

Software exceptions can often be problematic leading to 

programming errors, incompatible client (or peer) code and 

resource failures. Instead of exiting the program and 

performing a complete hardware reset, controlled exception 

exit codes are utilised to restart the thread under a safe 

profile configuration taking advantage of multiple CDC 

Java profiles. Once started, the middleware operates in 

nominal conditions. But if JADE-LEAP-pjava crashes due 

to an unforeseeable exception, the thread is stopped and not 

the JVM. 

In the event of an exception at loading the middleware 

instance or during normal operations, it is important to 

know if the exception a) can be handled and b) if it is 

expected. An example of an expected exception would be if 

the satellite node knows that is running out of power or 

drifting away from the network and a previous profile can 

be found to recover network services as quick as possible 

using the CDC Profile N = N – 1 loop. An example of an 

unexpected exception would be if a failure has occurred due 

to single event upset (SEU) or singe even latchup (SEL). In 

this case, all satellite nodes return to a safe mode where 

CDC Profile N = 0. The safe mode has the standard agents 

services and attempts to find nearby connections from a 

reset network connection table.  

A key area of interest is when an ad-hoc network consisting 

of mobile nodes performs topology reconfiguration and a 

new master ‘sink’ node is assigned. The method probe was 

used again to find out the overhead of disconnecting and 

reconnecting middleware instances and performing soft 

resets of the middleware, as shown in Figure 9, which 

displays a log of the memory utilisation when a node 

successfully connects with another node. Correct operation 

of the middleware is confirmed by testing unexpected 

connections and disconnections. If a node suddenly errors 

out, time is needed for the replicated named agents to be 

removed from the main node lists before reconnection so all 

nodes connecting to the main node have an additional delay 

before connecting. From this point, any node can then use 

relative position/speeds (or other properties) for topology 

reconfiguration.  

 

Scalability is a key issue here and as the number of 

networked nodes increases by 1, the memory consumption 

also increases which is shown in Point 1 of Figure 9. Upon 

reconfiguration, however, at Point 2, the instance is 

destroyed and restarted under new conditions, in this case, 

as a backup node where messaging and control is not as 

centralised. From Point 2, it is also observed that double the 

methods are called for one more additional networked 

middleware instance to be discovered and added. 

These three middleware instances are connected using some 

key classes: the runtime instance, properties assignments, 

and profile implementations. The profile implementation 

interface allows the Instance Manager to set a number of 

key variables as to how to configure the runtime. These 

variables will determine if the satellite node is configured as 

the main node (sink), a backup node (if the sink is 

removed), or a normal peer. The runtime and profile classes 

then load an agent container and relevant agents based on 

the chosen profile. This routine is repeated after the 

proactive reaction time which provides another layer of 

abstracted control for autonomy and fault-tolerance to the 

distributed satellite systems software. These methods hold 

information on the Agent location and registrations at a cost 

of approximately 200 KB per Agent platform plus an 

original 600 KB for the first instance. 
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Figure 9. Instance Manager Thread Performing Soft 

Resets 

5. CONFIGURABLE INTERSATELLITE 

COMMUNICATIONS MODULE 

In view of the dynamic mobility and communications 

channel characteristics in SB-WSNs, there is a need to 

develop a configurable communications module (a) to 

support intersatellite links, (b) to provide longer 

reconfigurable ISLs, and lastly, (c) to provide relative 

distance and bearing measurements. This includes very low 

data rates, and changing operational frequencies.  

A prototype ISL communications module is specified aimed 

at system level testing of distributed processing in the 

context of a crosslinked constellation mission scenario. 

Commercial-of-the-shelf (COTS) components will be used 

for the design. Industrial Scientific and Medical (ISM) 

frequencies will be employed as operational frequencies. A 

software defined radio (SDR) based design architecture will 

be utilised. The ISL module shall satisfy the following key 

requirements: 

• adhere to CubeSat design specifications (PC-104 form 

factor) 

• provide intersatellite communications link at variable 

data rates and configurable waveforms (adapting to 

channel characteristics), 

• provide ground communications link, 

• provide an independent beacon signal generator 

• generate localisation information (distance and bearing 

angles) 

• support IEEE 802.11 specifications (IP already 

developed) 

 

In addition, the same hardware is to act as an integral entity 

in the SB-WSN test bed, which is under development [2]. A 

similar test bed is being developed at the Jet Propulsion 

laboratory and is known as Formation Flying Test Bed 

[41]..  

The functional block diagram is presented in Figure 10. The 

reconfigurable ISL communications module incorporates 

S-band (2.4 GHz) as well as 434/144 MHz radio front ends, 

interfaced to a single reconfigurable modem. A high end 

AD9861 ADC/DAC [42] is selected for the 2.4 GHz radio 

front end for a Maxim 2830 radio [43]. A low end high 

resolution AD7731 ADC/DAC [44] is selected for the 

434/144 MHz front end for an Alinco DJC-7E radio [45]. In 

addition, current sensors and temperature sensors and a 16-

bit microcontroller for housekeeping purposes are 

incorporated in the design. Initial software development is 

to be carried out on Infineon TriCore TC 1775, 32-bit 

microcontroller [46]. 

At present the module design is being validated via 

prototyping at sub-system level. The RF front-end and the 

ADC/DAC are being evaluated for a combined system level 

noise figure and bit error rate under normal room 

temperatures and extended temperature up to 70 degrees 

Celsius. 

The beacon signal generator is independent from all other 

sub-systems on the board, but has been designed with data 

and control interfaces with both the baseband processor and 

housekeeping controller. It is to provide beacon Morse code 

encoded at variable rates of 5 wpm to 15 wpm at 

configurable timing intervals from a default 120 seconds. It 

is designed to operate as soon as the solar panels generate 

power and will be the first sub-system to start after 

confirmation of antenna deployment. 

The baseband modem selected is a multi-carrier orthogonal 

frequency division modulator (OFDM). A Matlab based 

OFDM transceiver has been implemented for 128 point 

IFFT, with a 32 point guard band. An advantage of OFDM 

is that the base bandwidth depends on the sampling 

frequency of the digital to analogue converter (DAC). 

Therefore the same modem can operate when sampled at 8 

KHz in the audio band (< 4 KHz for the Alinco Radio) and 

at 20 MHz as a wideband system (< 10 MHz for MAX2830 

radio). This would therefore eliminate the need for different 

modems for different operating basebands. A hardware 

implementation of the modem is in progress. 

6. CONCLUSIONS 

With the advances in satellite manufacturing, the concept of 

space based wireless sensor networks is now becoming 

possible. In particular, a key target environment for 

SB-WSNs is LEO to investigate space weather phenomena. 

Future applications utilizing multiple picosatellites in the 

context of the flower constellation are discussed. A number 

of orbital and network problems that need to be addressed 

are outlined in reference to the layers of the OSI networking 

scheme.  

 

A distributed computing platform for SB-WSNs is proposed 

that employs several configurable IP cores within a system-

on-a-chip design. These include a hardware accelerated 

WiFi transmitter and a Java co-processor for efficient and 

adaptable communications. The platform supports an agent 

based middleware for fault-tolerant networking 

1            2 
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applications, which enables a hard real-time Java 

environment when combined with the JOP processor. A 

new agent middleware configuration with instance 

management functionality for topology reconfiguration is 

developed, which is more compact than previous 

comparable designs. Code migration, parallel behaviours, 

and data distribution services are also included in the small 

305 kB footprint. Under test, it consumes 600 kB RAM 

with 200 kB for each networked agent middleware instance. 

 

To cater for distributed picosatellite missions, the design of 

a new configurable intersatellite link communication 

module is proposed aiming at a low power and low cost 

implementaion. 

 

 
Figure 10. Intersatellite Communications Module 

Functional Block Diagram 
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