
Space Bounded Computations:

Review And New Separation Results∗

Desh Ranjan Richard Chang Juris Hartmanis

Computer Science Department

Cornell University

December 20, 1989

Abstract

In this paper we review the key results about space bounded complexity

classes, discuss the central open problems and outline the prominent proof

techniques. We show that, for a slightly modified Turing machine model, low

level deterministic and nondeterministic space bounded complexity classes are

different. Furthermore, for this computation model, we show that Savitch’s

theorem and the Immerman-Szelepcsényi theorem do not hold in the range

lg lg n to lg n. We also present other changes in the computation model which

bring out and clarify the importance of space constructibility. We conclude by

enumerating open problems which arise out of the discussion.

1 Introduction

Computational complexity theory is the study of the quantitative laws governing
computing. The two most important complexity measures in this study are time and
space (or memory) needed for the computation.

The central structural concept in complexity theory is the complexity class, which
consists of all the languages recognizable within a given resource bound. Some of
the hardest open problems in computer science are questions about containments be-
tween various complexity classes defined by different resource bounds. Among these
problems, the most notorious are the open questions about the differences between de-
terministic and nondeterministic time and space bounded computations. The classic
open problems are

SPACE [lg n]
?
= NSPACE [lg n]

?
= P

?
= NP

?
= PSPACE

∗This research was supported by NSF Research Grants DCR-85-20597 and CCR-88-23053.

1

among which , clearly P
?
= NP is the most famous and important. More recently,

similar questions have been posed about the relationship between sequential and
parallel computational complexity classes. The most well-known of these are

NSPACE [lg n]
?
= NC

?
= P .

Finally, we point out that the oldest problem of this type is the classic problem
about linear-bounded automata [10, 6].

SPACE [n]
?
= NSPACE [n].

In this paper we concentrate on space bounded computations for two main rea-
sons. First, there have been some exciting recent developments in the study of space
bounded computations, to which we add new separation results. Second, we are en-
couraged by the recent developments and believe that a much deeper understanding
of space bounded computations can be obtained with a heroic attack on these prob-
lems. So, this paper should be viewed, partially, as a call to arms for an all-out attack
on these classic open problems.

2 Space-Bounded Computations

In this section, we review what is known about space bounded computations. In
particular we will show how the structure of low-level space bounded computations
relates to the structure of higher-level space bounded computations.

We consider the Turing machine model with a two-way, read-only input tape and a
separate two-way, read-write worktape. This model was introduced in 1965 [15, 7] to
study the rich set of computations requiring less than linear space. Let SPACE [S(n)]
and NSPACE [S(n)] denote respectively the classes of languages recognizable by de-
terministic and nondeterministic Turing machines using no more than S(n) worktape
on any input of length n.

From early work [15], we know that the recognition of non-regular sets requires
at least lg lg n space, and that all context-free languages can be recognized in space
(lg n)2 [11].

Theorem 1

1. There exist non-regular sets in SPACE [lg lg n].

2. If a non-regular set A is in SPACE [S(n)], then

sup
n→∞

S(n)/ lg lg n > 0.

2

The proof of this theorem shows that our Turing machine model is “physically”
incapable of using an unbounded amount of space if the space bound does not exceed
c lg lg n for some c > 0. For example, no machine can mark off

√
lg lg n space on its

worktape, using no more than
√

lg lg n space.

Definition 1 A function S(n) is fully space constructible if there exists a Turing
machine which for all inputs of length n marks off S(n) space, using no more than
S(n) space.

It has been shown that no monotone unbounded function below lg n is fully space
constructible by deterministic Turing machines [2, 13]. For example, lg lg n cannot
be so constructed, because given any SPACE [lg lg n] machine M and sufficiently
large n, M on input $1n$ does not have enough configurations to traverse the input
tape from left to right without going into a cycle—i.e., repeating the same worktape
configuration and machine state. Note that the machine’s configuration at the end of
the traversal depends only on the length of input modulo the length of this cycle. Since
the length of the cycle must be less than n, the machine reaches the same configuration
at the right end for inputs $1n$ and $1n+n!$. So, in a left-to-right traversal of the
input tape, M cannot distinguish $1n$ from $1n+n!$. By repeating this argument,
one can show that the machine’s behaviour is the same on both inputs. In particular,
M uses the same number of tape cells. Thus, M fails to mark off lg lg(n + n!) space
on input $1n+n!$, and so lg lg n is not fully space constructible.

We will refer to this argument as the n → n + n! trick [15]. This same technique
can be used to show that no monotone unbounded function below lg n is fully-space
constructible by deterministic machines. In Section 4 we consider constructibility by
nondeterministic machines.

Another reason for the study of space bounded computations is that it offers a
classic example of a resource bounded hierarchy [15].

Theorem 2 (Space Hierarchy Theorem)
For fully space constructible S(n),

inf
n→∞

R(n)/S(n) = 0 =⇒ SPACE [R(n)] ⊂ SPACE [S(n)].

The theorem above shows that every additional amount of space allows Turing
machines to recognize more languages. On the other hand, we do not know if the
addition of nondeterminism is as useful a resource as space. The best result relating
nondeterminism and space as resources was discovered in 1970 [12]. It showed that the
difference between deterministic and nondeterministic space is quadratically bounded.
In contrast, an analogous result for time bounded computations would imply that
P = NP .

Theorem 3 (Savitch)
For S(n) ≥ lg n, NSPACE [S(n)] ⊆ SPACE [S(n)2].

3

We do not know whether this relationship holds for space bounds below lg n. In
fact, we show in Section 4 that Savitch’s theorem fails below lg n for certain TM
models.

Recently, Immerman and Szelepcsényi showed independently and by a very elegant
proof that nondeterministic space is closed under complementation [8, 16].

Theorem 4 (Immerman-Szelepcsényi)
For S(n) ≥ lg n, NSPACE [S(n)] = co-NSPACE [S(n)].

Again, an analogous result for time bounded computations would imply that NP =
co-NP and that the Polynomial Hierarchy collapses. In Section 4, we will investigate
whether the Immerman-Szelepcsényi theorem holds below lg n.

As an additional bonus, the Immerman-Szelepcsényi result permits an easy proof
of the hierarchy theorem for nondeterministic space bounded computations. (Closure
under complementation implies that a larger nondeterministic machine can simulate
a smaller nondeterministic machine and decide if the smaller machine rejects. Hence
the larger machine can diagonalize against the smaller one.) Without the Immerman-
Szelepcsényi theorem, the proof of Theorem 5 can be very cumbersome. See [7] for
an example.

Theorem 5 For fully space constructible S(n) ≥ lg n,

inf
n→∞

R(n)/S(n) = 0 =⇒ NSPACE [R(n)] ⊂ NSPACE [S(n)].

Finally, we want to point out that under relativization space bounded computa-
tions behave radically differently from time bounded computations [19, 20] .

Theorem 6 If SPACE [lg n] = NSPACE [lg n], then for all oracles A

SPACEA[lg n] = NSPACEA[lg n].

On the other hand, even if P = NP , we know that there exists A such that
PA 6= NPA [1]. In general, we believe that problems with contradictory relativiza-

tions, such as P
?
= NP , P

?
= PSPACE etc. are inherently hard and may require

new proof techniques for their solution. In this light, the above result may indicate

that the SPACE [lg n]
?
= NSPACE [lg n] problem, which does not have contradictory

relativizations (if they are equal), might be solved using known techniques. For a
detailed discussion of relativization of space bounded computations see [5].

4

3 Low Level Tape Bounded Computations

The unsuccessful struggle to solve the classic separation problems has convinced many
that we do not yet understand computation well enough for a direct attack on these
problems and should therefore concentrate on simpler models of computation. In
this vein, the study of circuit complexity is vigorously pursued with the hope that
insights gained from understanding these apparently simpler models can be used to
solve the classic separation problems. In the same spirit, we will now concentrate
on lg lg n space bounded computations—the lowest level of interesting space bounded
computations.

Before we review the results on lg lg n space computations, we prove the following
lemma about the distribution of primes. This lemma will be used throughout the rest
of the paper.

Lemma 1
(∀m) 22m−1 ≤

∏

pi≤2m

pi ≤ 22m+1
, where pi denotes the i-th prime.

Proof:

1.
∏

pi≤2m pi ≤ 22m+1
. The inequality is easy to check for m = 1, 2, 3, 4. Let π(x)

denote the number of primes less than or equal to x. Then, by a theorem due
to Rosser and Schoenfield,

(∀x) (x ≥ 17) x/ ln x ≤ π(x) ≤ 1.23x/ lnx.

Then,
∏

pi≤2m pi ≤ (2m)π(2m). However, m > 4, so

π(2m) ≤ 1.23(2m) lg e/m or π(2m) ≤ 2m+1/m.

Therefore
∏

pi≤2m pi ≤ (2m)2m+1/m ≤ 22m+1
.

2.
∏

pi≤2m pi ≥ 22m−1
. This is a well-known inequality which also follows trivially

from the Rosser-Schoenfield theorem by induction.

Very roughly, the above result asserts that the product of the first k primes is
about 2pk. We can use this lemma to show that there is a SPACE [lg lg n] machine M
which marks off Θ(lg lg n) tape cells infinitely often on unary input. On input 1n, M
looks for the first prime number pk which does not divide n. M simply checks each
successive prime number pi to see if pi divides n and stops when it finds pk. Since it
takes only |pi| space to check for primality, M uses |pk| tape cells. The lemma says
that |pk| will always be bounded by lg lg n, because if p1, p2, . . . , pk−1 divide n, then
the product p1p2 · · · pk−1 divides n. So, n must be larger than this product, which

5

is in turn bounded below by 2pk. Moreover, for infinitely many n’s (for example,
n = p1p2 · · · pk−1 for any k) |pk| is Θ(lg lg n).

We can use this same routine to prove that if SPACE [lg lg n] = NSPACE [lg lg n],
then all higher deterministic and nondeterministic space classes are equal. This result
has been part of the complexity theory folklore for some time, but the first formal
proof appeared in [18]. This result establishes the importance of even the lowest level
of space bounded computations.

Theorem 7
If SPACE [lg lg n] = NSPACE [lg lg n] then SPACE [lg n] = NSPACE [lg n].

Proof: Suppose SPACE [lg lg n] = NSPACE [lg lg n]. Let A be any language in
NSPACE [lg n]. We will construct a SPACE [lg n] algorithm for A. Define A′, the
padded version of A, by

A′ = {x#N | N = p1p2 · · · pkt, pi is the ith prime, |pk| ≥ lg |x|,
pk+1 does not divide t, and x ∈ A}.

A′ ∈ NSPACE [lg lg n], because an NSPACE [lg lg n] machine can use the routine
described above to mark off lg lg N space. If N is sufficiently large, |pk| ≥ lg |x|.
Then, the NSPACE [lg lg n] machine has enough space to simulate the NSPACE [lg n]
acceptor for A on input x.

By hypothesis, SPACE [lg lg n] = NSPACE [lg lg n], so some SPACE [lg lg n] ma-
chine M must accept A′. We can use M to construct a SPACE [lg n] machine M ′ that
recognizes A. M ′ simulates M on input x until M tries to leave the input and enter
the (non-existent) #N part. Then, M ′ determines which configuration M will be in
when it returns to the x region of the input. This yields a deterministic lg n space
algorithm for A, and hence SPACE [lg n] = NSPACE [lg n].

For any S(n) ≥ lg n, it is trivial to show that

SPACE [S(n)] = co-SPACE [S(n)].

However, the trivial proof does not extend to space bounds below S(n), because it is
possible for a machine to reject by cycling—i.e., loop forever through configurations
that will never reach any accepting state. For S(n) ≥ lg n, this cycling does not
create any problems because we can always force the machine to halt by making
it count the number of configurations. For S(n) < lg n, the number of machine
configurations will still be at least n, because the input head can be in n different
positions. However, with less than lg n bits, the machine cannot count up to n. So,
the standard configuration counting argument does not work. Nevertheless, Sipser
showed by an elegant argument that all deterministic space bounded classes are indeed
closed under complementation [14]. We state a special case of Sipser’s theorem.

Theorem 8 SPACE [lg lg n] = co-SPACE [lg lg n].

6

Proof: (Sketch). For a detailed proof see [14] . The proof of this theorem is based
on the observation that the SPACE [lg lg n] machine accepts if and only if there is
a “backwards” path from the unique accepting configuration to the unique initial
configuration. (By “backwards”, we mean that the path begins with the accepting
configuration and follows the transition table in reverse.) In addition, no “backward”
path containing the accepting configuration can cycle because the accepting configura-
tion itself cannot be in a cycle and because the “fork” in the backwards path entering
a cycle would constitute a forward nondeterministic move by the SPACE [lg lg n] ma-
chine. Thus, a depth first search algorithm can detect if there is a backwards path
from the accepting configuration to the initial configuration. Carefully implemented,
the depth-first-search algorithm needs only as much space as the original machine.
(The algorithm must determine how much space the original machine uses without
cycling itself. This is accomplished by a similar depth first search algorithm. This
algorithm looks for a “backwards” path that leads from a configuration where the
machine is adding an extra worktape cell to the initial configuration.) So, every
SPACE [lg lg n] machine can be replaced by an equivalent machine that always halts.
Finally, these equivalent machines can be easily complemented by exchanging the
accepting and rejecting configurations.

4 The Dot Model

We have shown that lg lg n is not fully space constructible by deterministic machines.
In this section, we consider constructibility by nondeterministic machines.

Definition 2 A function S(n) is fully space constructible nondeterministically, if
there is a nondeterministic Turing machine which is S(n) space bounded and uses
exactly S(n) space on at least one computation path on every input of length n.

We do not know if lg lg n is fully space constructible by a nondeterministic ma-
chine. If so, then

SPACE [lg lg n] 6= NSPACE [lg lg n],

because the language A = {anbm | n 6= m} would be in NSPACE [lg lg n] but not
SPACE [lg lg n]. First, A ∈ NSPACE [lg lg n] because given any two numbers n and
m, n 6= m if and only if there is a prime pi, |pi| ≤ lg lg(n + m), such that n 6= m
(mod pi). (See [3] for a related theorem proved with this technique.) On the other
hand, A 6∈ SPACE [lg lg n] by the n → n + n! trick. For sufficiently large n, if
a SPACE [lg lg n] machine correctly rejects anbn, then it must also reject anbn+n!.
However, anbn+n! ∈ A, so A is not recognized by any SPACE [lg lg n] machine.

We now introduce a slightly modified computational model for which we will
show a strong separation of deterministic and nondeterministic complexity classes.
The separation result will be based on the difference in tape bound constructibility
by deterministic and nondeterministic versions of our model.

7

Definition 3 A 1-inkdot Turing machine is a standard Turing machine with the
additional power of marking 1 tape-cell on the input (with an inkdot!). This tape-cell
is marked once and for all (no erasing !!) and no more than one dot of ink is available.
The action of the machine depends on the current state, the currently scanned input
and worktape symbols and the presence of the inkdot on the currently scanned tape-
cell. The action consists of moving the heads and making appropriate changes on
worktape cells (using the finite control). In addition, the inkdot may be used to mark
the currently scanned cell on the input tape if it has not been used already.

We now establish the following theorem.

Theorem 9 There is a 1-inkdot S(n) space bounded nondeterministic Turing ma-
chine N , which on input 1n marks off S(n) worktape cells on some computation path,
where

⌊lg⌊lg n⌋⌋ ≤ S(n) ≤ ⌊lg⌊lg n⌋⌋ + 2.

Hence, lg lg n is fully space constructible by nondeterministic 1-inkdot Turing ma-
chines.

Proof: N on any input x first checks if x is of the form 1n. If so, N , nondeterminis-
tically places the inkdot somewhere on the input. Now N pretends that the inkdot is
the right endmarker of the input tape. In other words, if N places the inkdot on the
kth position on the input, N pretends it is reading 1k. From this point on N behaves
deterministically. N repeatedly checks if k is divisible by each prime 2, 3, 5 . . . and
halts when it finds the first prime which does not divide k.

We claim that N is the desired machine. Let $1n$ be any input to N . Choose m so
22m ≤ n < 22m+1

. First, we show that there is a computation path on which N marks
off m = ⌊lg⌊lg n⌋⌋ worktape cells. Let k =

∏
pi≤2m−1 pi. By Lemma 1, k ≤ 22m

< n,
so some computation path will place the inkdot at position k. But the first prime
which does not divide k has size m. (Recall that for any c there is a prime between
c and 2c). Thus, N uses exactly m worktape cells on this computation path.

Next, we show that N uses no more than m + 2 = ⌊lg⌊lg n⌋⌋ + 2 worktape cells
on any computation path. Suppose N places the inkdot at position k of the input.
Then the first prime that does not divide k must have size less than or equal to m+2,
because by Lemma 1,

∏
pi≤2m+2 pi ≥ 22m+1

> n ≥ k. Thus, some prime of size up to
m+2 does not divide k. So, N uses no more than ⌊lg⌊lg n⌋⌋+2 worktape cells.

We can now exploit this space constructibility result to obtain a separation result.

Definition 4

SPACE ∗[S(n)] = {L | L is accepted by an S(n) space bounded deterministic
1-inkdot Turing machine },

NSPACE ∗[S(n)] = {L | L is accepted by an S(n) space bounded nondeterministic
1-inkdot Turing machine }.

8

Theorem 10 SPACE ∗[lg lg n] ⊂ NSPACE ∗[lg lg n].

Proof: Since lg lg n is fully space constructible by a nondeterministic dot machine,
we know that {anbm | n 6= m} ∈ NSPACE ∗[lg lg n]. But {anbm | n 6= m} is not in
SPACE ∗[lg lg n] . To see this, let n be sufficiently large and anbn be rejected by M∗.
Then M∗ will place the dot in either the an or the bn part. Without loss of generality,
assume that the dot is placed in the an part of the input. Then by the standard
n → n + n! trick, we know that M∗ will also reject anbn+n! which should be accepted.
Thus {anbm | n 6= m} ∈ NSPACE ∗[lg lg n] − SPACE ∗[lg lg n].

The proof actually shows that {anbm | n 6= m} is not in any SPACE ∗[S(n)] with
limn→∞ S(n)/ lg n = 0. This implies that Savitch’s theorem does not hold for the
dot computation model in the range below

√
lg n space bounds. (Recall that it is

not known if Savitch’s theorem holds in this range for the standard space bounded
models.)

Similarly, the Immerman-Szelepcsényi theorem does not hold for the dot model
in the low space bound range. To see this, simply verify that {anbn | n ≥ 1} 6∈
NSPACE ∗[lg lg n] because, for sufficiently large n, if anbn is accepted then there is
an accepting computation for anbn+n!. Again, it is not known if the Immerman-
Szelepcsényi result hold for the standard space bounded models below lg n. The
results established here are similar to those proved in [9].

Next, we show that deterministic machines do not gain any additional computa-
tional power from the dot capability. We state just a special case of this result.

Theorem 11 SPACE ∗[lg lg n] = SPACE [lg lg n].

Proof (outline): Let M be a lg lg n dot machine. M ′ is a standard lg lg n machine
which will simulate M without using the inkdot. The simulation of M by M ′ is
straightforward until the dot is placed on the input tape by M . At this time, M ′

records the configuration of the worktape, state of M and symbol being scanned on
the input tape. Note that M ′ cannot remember where the dot was placed on the
input tape, if it is forced to move away from the dot. In the following simulation the
dot’s position will be recomputed again and again.

After the placement of the dot by M , the forward simulation by M ′ continues until
M scans an input tape symbol that could have a dot mark. In this case, M ′ records
the current machine and worktape configuration of M and retrieves the configuration
it saved when M used the inkdot. Then, M ′ runs a depth-first, backwards search
to determine if it is possible to back M up from this configuration to the initial
configuration. If this is possible, then M ′ simulates M forward until M reaches the
dot writing operation—now the input head is back on the cell with the dot. Then M ′

switches to the stored configuration of M and continues the forward simulation of M .
If it is not possible to back up to the initial configuration, then the depth first search

9

will halt with head in the original position. So, M ′ can continue the simulation of M
knowing that M did not place the inkdot on the current cell.

Thus, M ′ can simulate M without using any inkdots. Therefore, L(M) = L(M ′)
and SPACE ∗[lg lg n] = SPACE [lg lg n].

Corollary 1 SPACE ∗[lg lg n] = co-SPACE ∗[lg lg n].

The above result leaves us with a fascinating question :

NSPACE ∗[lg lg n]
?
= NSPACE [lg lg n].

Should this be the case, we have a major separation result,

NSPACE [lg lg n] 6= SPACE [lg lg n].

5 Space Constructibility And Demon Machines

To emphasize the importance of the constructibility of tape bounds, we consider
Turing machine models where the worktape is automatically marked off by a demon.

Definition 5 A demon S(n) machine is a Turing machine with a two-way, read-only
input tape and a two-way, read-write worktape enclosed in endmarkers S(n) apart for
inputs of length n.

Even though a lg lg n demon machine cannot count up to the n, {anbn | n ≥ 1} can
be accepted by a lg lg n demon machine. Furthermore, this much space is required.

Theorem 12

1. {anbn | n ≥ 1} ∈ DEMONSPACE [lg lg n].

2. if S(n) is monotone increasing and supn→∞ S(n)/ lg lg n = 0 then

{anbn | n ≥ 1} 6∈ DEMONSPACE [S(n)].

Proof:

1. To see this, recall that m 6= n ⇐⇒ (∃pi) m 6= n (mod pi), pi a prime, and
|pi| ≤ lg lg(m+n). Once the lg lg(m+n) worktape is marked off (automatically),
the demon machine can test if m 6= n (mod pi) for some prime that can be
written on the available tape. If no such prime is found, then m = n.

10

2. For each input tape position k, we define the crossing sequence of a machine M
to be the sequence of configurations that M reaches when the input head is at
position k. We use a counting argument on the number of crossing sequences
to show that for any S(n) spaced bounded demon machine M , where S(n) is
o(lg lg n), there exist r and n, such that r < n and M accepts arbn. The crossing
sequence argument will show that not only will M repeat configurations (as in
the n → n + n! trick) but entire sequences of configurations as well.

Choose a large n where M accepts anbn. For some constant c, the total number
of unique configurations that M can reach on inputs of length 2n is less than
cS(n). Since M accepts anbn, it cannot repeat any configuration at any input
position (otherwise M will loop and reject). So, every crossing sequence is at
most cS(n) long. Thus, the total number of unique crossing sequences is bounded
by (cS(n))cS(n)

. However, S(n) is o(lg lg n), so for sufficiently large n, this upper
bound is less than n. Thus, there must be two input positions, k1 and k2,
k1 < k2 < n, where M repeats the same crossing sequence. If we delete the
symbols in the input string between positions k1 and k2, we would not change
M ’s accepting behaviour. Thus, M must accept an−(k2−k1)bn. Therefore, M
does not recognize {anbn | n ≥ 1}.

{anbn | n ≥ 1} is a rather curious language—especially when it is compared to
{w#w | w ∈ (a+b)∗}. In the standard Turing machine model, the space complexity of
both languages is Θ(lg n). However, w#w is harder than anbn in the sense that a one-
tape Turing machine requires Ω(n2) time to recognize w#w, but can recognize anbn in
O(n lg n) time. We prove a similar result using demon machines. We show that lg lg n
space bounded demon machines can recognize {anbn | n ≥ 1}, but not {w#w | w ∈
(a + b)∗}. The latter requires Ω(lg n) space. Thus, the Ω(lg n) lower bound (for
standard Turing machines) for the space complexity of {anbn | n ≥ 1} is due to space
constructibility properties, whereas the same lower bound for {w#w | w ∈ (a + b)∗}
is independent of any constructibility property.

Theorem 13 If S(n) is monotone increasing and supn→∞ S(n)/ lg n = 0 then

{w#w | w ∈ (a + b)∗} 6∈ DEMONSPACE [S(n)].

Proof: There are 2n strings of form w#w, |w| = n. For any S(n) space bounded
demon machine M , the number of configurations that M can reach on inputs of
length 2n is bounded by cS(n), for some constant c. As before, choose an n where M
accepts w#w, for all w, |w| = n. Again, the number of possible crossing sequences

is bounded by (cS(n))cS(n)
. However, S(n) is o(lg n), so, for sufficiently large n, the

number of crossing sequences is less than 2n. So, there must be two strings w1 and w2,
w1 6= w2, such that, when M accepts w1#w1 and w2#w2, M has the same crossing
sequence at the # symbol. This implies that M must also accept w1#w2. So, M
does not recognize {w#w | w ∈ (a + b)∗}.

11

6 Pebble Machines

In the previous section we showed the importance of space constructibility for ma-
chines restricted to o(lg n) space. We know that, if supn→∞ S(n)/ lg n = 0, then S(n)
can not be constructed fully by deterministic Turing machines. In this section we
introduce a natural model which can construct such functions. Similar models have
been studied before [7] .

Theorem 11 showed that deterministic lg lg n machines do not gain any additional
power from the use of one inkdot. This theorem is similar to the well-known result
[7] that two-way finite automata do not gain any computing power from the use of
a “pebble”—a movable marker placed on the input tape. The situation changes,
however, if the pebble machine is given a worktape.

Definition 6 A pebble machine is a Turing machine with a two-way, read-only input
tape, a two-way, read-write worktape and one pebble which can be placed on and
removed from the input tape. The action of the Turing machine depends on the
current state, the currently scanned input and worktape symbols, and the presence of
the pebble on the currently scanned input tape cell. The action consists of changing
the symbol on the worktape, moving the input and worktape heads, and picking up or
placing (or neither) the pebble on the currently scanned input tape cell according to
its finite control.

We assume that the machine aborts if it ever tries to use more than one pebble.

Definition 7

PEBBLESPACE [S(n)] = {L | L is accepted by a pebble machine
which is S(n) space bounded },

NPEBBLESPACE [S(n)] = {L | L is accepted by a nondeterministic pebble
machine which is S(n) space bounded }.

It is easy to see that if S(n) ≥ lg n then PEBBLESPACE [S(n)] = SPACE [S(n)].
We now show that the pebble does give the lg lg n space bounded machine additional
computing power.

Theorem 14 SPACE [lg lg n] ⊂ PEBBLESPACE [lg lg n].

Proof: We show that {anbn | n ≥ 1} ∈ PEBBLESPACE [S(n)] by showing that
lg lg n is constructible by the pebble machines. To construct lg lg n, M on 1n places
the pebble at position k and finds the first prime which does not divide k. It repeats
this procedure for k = 1, 2, . . . , n. Then, by the proof of Theorem 11, M uses Θ(lg lg n)
space. Thus, {anbn | n ≥ 1} ∈ PEBBLESPACE [lg lg n]}.

12

Finally, as a side note, we point out that deterministic pebble machines are closed
under complementation. The proof uses Sipser’s trick and follows the same lines as
the proof of Theorem 11.

PEBBLESPACE [S(n)] = co-PEBBLESPACE [S(n)].

7 Open Problems

The preceding discussion leaves us with a rich set of open problems. We list some of
them here.

1. Is lg lg n (or any monotone unbounded S(n) with supn→∞ S(n)/ lg n = 0) fully
space constructible by nondeterministic Turing machines ? A positive answer
to this question would imply that SPACE [lg lg n] ⊂ NSPACE [lg lg n]. This was
observed by [17] and the proof is similar to the proof of Theorem 10.

2. Is NSPACE ∗[lg lg n] = NSPACE [lg lg n] ?

This would similarly separate NSPACE [lg lg n] and SPACE [lg lg n].

3. DEMONSPACE [lg lg n]
?
= NDEMONSPACE [lg lg n].

PEBBLESPACE [lg lg n]
?
= NPEBBLESPACE [lg lg n].

4. Are there any space bounds below lg lg n that are fully space constructible by
a pebble machine ?

5. What are the relationships between the various deterministic and nondetermin-
istic complexity classes defined by space, dot, demon and pebble machines?

6. For which of the above classes are Immerman-Szelepcsényi and Savitch’s theo-
rems valid ?

8 Conclusion

In this paper we discussed space bounded computations and showed that for the
dot model of space bounded computation lg lg n is strongly space constructible by
nondeterministic Turing machines but not by deterministic Turing machines. This
was achieved by exploiting the n → n + n! method. This lead to the separation
of SPACE ∗[lg lg n] and NSPACE ∗[lg lg n]. We also showed that Savitch’s theorem
and the Immerman-Szelepcényi theorem do not hold for this computation model in
the low complexity range. We then discussed other useful models for space classes
below SPACE [lg n] and proved some results for these models which demonstrate the
importance of space constructibility for low-level complexity classes. These results

13

suggest new open problems and focus some attention on the old open problems. We
hope that this work will encourage a systematic attack on the open problems about
space bounded computations. We believe that considerable progress can be made
at these problems and that there is hope for solving the general deterministic and
nondeterministic space problem, especially in the low complexity range.

9 Acknowledgements

We would like to thank Ken Regan, Wei Li and Alessandro Panconesi for active
participation in interesting discussions and providing several bits of oracular advice.
The first author would like to thank the students of the Spring 1989 class of CS782
at Cornell University for listening to some of the ideas presented in this paper and
providing constructive criticism about them.

10 Update

In a paper submitted to ICALP ’90, Viliam Geffert from University of P. J. Šafárik,
Czechoslovakia has a proof which shows that no monotone unbounded function below
lg n is space constructible even via nondeterministic Turing machines [4]. This settles
the first two questions posed in the section on Open Problems. Note that this does
not rule out the possibility of separating nondeterministic and deterministic space
classes using space constructibility results. In fact, if S(n) is any space bound con-
structible by nondeterministic machines but not by deterministic Turing machines
then NSPACE [S(n)] 6= SPACE [S(n)]. The language {0k1n | k ≤ S(n)} is the desired
witness in this case. In fact, whether there are functions that are space constructible
by nondeterministic Turing machines but not by deterministic Turing machines is an
interesting question by itself.

References

[1] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM
Journal on Computing, 4(4):431–442, December 1975.

[2] A. R. Freedman and R. E. Ladner. Space bounds for processing counterless
inputs. Journal of Computer and System Sciences, 11:118–128, 1975.

[3] R. Freivalds. On the worktime of deterministic and non-deterministic turing
machines. Latvijskij Matematiceskij Eshegodnik, 23:158–165, 1979.

[4] V. Geffert. Nondeterministic computations in sublogarithmic space and space
constructibility. To appear in ICALP ’90.

14

[5] J. Hartmanis, R. Chang, J. Kadin, and S. Mitchell. Some observations about
space bounded computations. Bulletin of the EATCS, 35:82–92, June 1988.

[6] J. Hartmanis and H. H. Hunt. On the LBA problem and its importance in the
theory of computation. SIAM-AMS, 7:1–26, 1974.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automats Theory, Languages
and Computation. Addison-Wesley Publishing Company, 1979.

[8] Neil Immerman. Nondeterministic space is closed under complement. In Proceed-
ings of Structure in Complexity Theory Third Annual Conference, pages 112–115.
Computer Society of IEEE, 1988.

[9] R. Kannan. Alternation and the power of nondeterminism. In ACM Symposium
on Theory of Computing, pages 344–346, 1983.

[10] S. Y. Kuroda. Classes of languages and linearly-bounded automata. Information
and Control, 7:207–223, 1964.

[11] P. M. Lewis II, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition
of context-free and context-sensitive languages. In IEEE Conference Record on
Switching Circuit Theory and Logic Design, pages 191–202, 1965.

[12] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177–192, 1970.

[13] J. Seiferas. A note on notions of tape constructibility. Technical Report CSD-TR
187, Pennsylvania State University, 1976.

[14] M. Sipser. Halting space-bounded computations. Theoretical Computer Science,
10:335–338, 1980.

[15] R. E. Stearns, J. Hartmanis, and P. M. Lewis II. Hierarchies of memory limited
computations. In 1965 IEEE Conference Record on Switching Circuit Theory
and Logical Design, pages 179–190, 1965.

[16] R. Szelepcsényi. The method of forcing for nondeterministic automata. The
Bulletin of the European Association for Theoretical Computer Science, 33:96–
100, October 1987.

[17] A. Szepietowski. Some notes on strong and weak log log n space complexity.
Technical report, Mathematical Department, Technical University of Gdańsk,
Majakowskiego 11/12, PL-80-952 Gdańsk, Poland, 1988.

[18] A. Szepietowski. If deterministic and nondeterministic space complexity are equal
for log log n then they are equal for log n. In STACS ’89, pages 251–255, 1989.
Springer-Verlag Lecture Notes in Computer Science #349.

15

[19] C. B. Wilson. Relativized circuit complexity. Journal of Computer and System
Sciences, 31:169–181, 1985.

[20] C. B. Wilson. Parallel computation and the NC hierarchy relativized. In Struc-
ture in Complexity Theory, volume 223, pages 362–382, 1986. Springer-Verlag
Lecture Notes in Computer Science # 223.

16

