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“Space-for-time” substitution is widely used in biodiversity model-
ing to infer past or future trajectories of ecological systems from
contemporary spatial patterns. However, the foundational assump-
tion—that drivers of spatial gradients of species composition also
drive temporal changes in diversity—rarely is tested. Here, we em-
pirically test the space-for-time assumption by constructing orthog-
onal datasets of compositional turnover of plant taxa and climatic
dissimilarity through time and across space from Late Quaternary
pollen records in eastern North America, then modeling climate-
driven compositional turnover. Predictions relying on space-for-time
substitution were ∼72% as accurate as “time-for-time” predictions.
However, space-for-time substitution performed poorly during the
Holocene when temporal variation in climate was small relative to
spatial variation and required subsampling to match the extent of
spatial and temporal climatic gradients. Despite this caution, our
results generally support the judicious use of space-for-time substi-
tution in modeling community responses to climate change.
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Viewed broadly, space-for-time substitution encompasses ana-
lyses in which contemporary spatial phenomena are used to

understand and model temporal processes that are otherwise
unobservable, most notably past and future events. Many fields
have developed and debated methods relying on space-for-time
substitution, such as ecological chronosequences to study long-
term nutrient cycling and plant succession (1–3) and transfer
functions for inferring past environmental changes from geo-
logical proxies (4, 5). The assumption of space-for-time sub-
stitutability has been queried and debated most closely in
chronosequence studies, with conclusions ranging from strong
support (6) to strong rejection (2) of space-for-time substitution.
Increasingly, space-for-time substitution is being applied in bio-
diversity modeling to project climate-driven changes in species
distributions, species richness, and compositional turnover (7–11).
Examination of transferability of models for individual species has
exposed concerns regarding the projection of these spatial models
across time (12–15), and it has been suggested that models based
on collective biodiversity properties might be more robust (9, 16,
17). However, the fundamental assumption that spatial relation-
ships between climate and biodiversity can be used to project tem-
poral trajectories of biodiversity under changing climates remains
largely untested (but see refs. 16 and 18).
The turnover of species among communities is particularly

well suited for testing space-for-time substitution because it can
be quantified independently across space or through time and
because compositional turnover strongly correlates to climate
variations in both space and time (19–21). However, other fac-
tors, such as species history, site history, and species interactions,
also influence compositional turnover, independently or inter-
acting with climate (22–24). Even when climate is the main de-
terminant of community composition, certain aspects of climate
(e.g., temporal variability, covariance among critical variables)
may be fundamentally more different across space than through
time (25, 26). Understanding the extent to which compositional

turnover is related to climate, and whether these relationships
are the same across space and time, is essential to evaluating the
accuracy of projections of compositional turnover with future
climate change.
Here, we test whether the environmental influences on com-

positional turnover across space are the same as those through
time, by constructing orthogonal spatial and temporal datasets of
compositional turnover, then using these datasets to assess the
predictive skill of models relying on “space-for-time” vs. “time-
for-time” substitution (Fig. S1; see Materials and Methods and SI
Materials and Methods for details). These datasets were con-
structed from fossil pollen assemblages from the Neotoma Pa-
leoecology Database (www.neotomadb.org) and paleoclimate
simulations from the National Center for Atmospheric Research
Community Climate System Model version 3 (CCSM3) (27) for
the past 21,000 y (i.e., the Late Quaternary) in eastern North
America. In the spatial dataset, the compositional dissimilarities
between all site pairs across space were calculated for a single
time period then pooled with spatial comparisons from all other
1,000-y time slices over the past 21,000 y (Fig. 1A). In the tem-
poral dataset, the compositional dissimilarities between all sample
pairs at a single site through time were calculated then pooled
with temporal comparisons for all other sites in eastern North
America (Fig. 1B).
We calibrated generalized dissimilarity models (28) using

these spatial and temporal dissimilarities then predicted com-
positional dissimilarity through time (temporal turnover) using
either a spatial model (space-for-time) or a temporal model
(time-for-time) (Fig. S1). Three expectations emerge if climate
affects compositional turnover similarly across space and time:
(i) predictions using space-for-time substitution should be as
reliable as time-for-time predictions, (ii) the same environmental
factors should emerge in explaining compositional turnover
across space and time, and (iii) the rates and magnitudes of
compositional turnover along environmental gradients should be
similar across space and time.

Results and Discussion
Predictions of temporal turnover were comparable between the
space-for-time and time-for-time analyses [reduced major axis
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(RMA) R2 = 0.7116; Fig. 1C and Table S1]. The relationship
between temporal turnover predicted by the spatial model (i.e.,
using space-for-time substitution) and observed temporal turn-
over was moderately strong [model-to-observation comparison,
ordinary least-squares (OLS) R2 = 0.3432; Fig. 1D and Table S2],
particularly in comparison with the strength of the time-for-time
predictions (model-to-observation comparison, OLS R2 = 0.4773;
Fig. 1E and Table S2). Overall, the predictive skill of models re-
lying on space-for-time substitution was 72% as strong as models
using time-for-time substitution, and space-for-time substitution
resulted in only a small loss of predictive skill. This suggests that
community and climate relationships across space may be applied
to model compositional turnover over time.
However, some differences in the fitted spatial and temporal

models underlying the predictions warrant further exploration.
Although climatic factors alone explained a significant portion of
the deviance in compositional turnover across both space and
time (46.8% in the temporal model, 39.6% in the spatial model;
SI Materials and Methods, Table S3), the remaining deviance in
compositional turnover was not related only to climate (or at
least to the specific climate variables used in this study). More-
over, the fitted relationships for individual climate gradients
differed (Fig. 1F). In the temporal model, all seven environ-
mental variables were significant predictors of variation in
compositional turnover and no variable dominated (Fig. 1F). In

contrast, two variables—summer temperature and precipitation
seasonality—dominated the spatial model, with minor contribu-
tions from winter precipitation and temperature (Fig. 1F). Three
variables are important through time but not across space: summer
precipitation, temperature seasonality, and CO2 concentration
(which varies across time but not space). Even when the same
variable is important across both space and time, the modeled
rates and magnitudes of compositional turnover along environ-
mental gradients differ markedly for some variables (Fig. 1F).
One likely reason for these differences is that this study en-

compasses two contrasting periods in earth history: the last gla-
cial maximum (LGM) and deglaciation (i.e., the Late Pleistocene,
21,000–11,700 calibrated years B.P.), characterized by colder-than-
present temperatures interspersed with periods of rapid warming
and cooling, and the Holocene (11.7–0 kyBP), characterized by
relatively stable temperatures but changing precipitation and
temperature seasonality (29, 30). To explore the robustness of
space-for-time predictions and diagnose the differences between
fitted spatial and temporal models, we divided the datasets into
their Late Pleistocene (21–11 kyBP) and Holocene (10–0 kyBP)
subsets. We then repeated model training and prediction within
each time period.
Space-for-time predictive skill and concordance between the

influential variables of the temporal and spatial models improved
for the Late Pleistocene but worsened for the Holocene (Table S2
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Fig. 1. Spatial (A) and temporal (B) dataset construction, resulting predictions of temporal turnover (C–E), and fitted functions (F) for the Late Quaternary
datasets (21–0 kyBP). In all cases, the red lines indicate spatial datasets, blue lines indicate temporal datasets, and dashed lines indicate the 1:1 line. (C) RMA
regression between temporal turnover predicted by the temporal model and by the spatial model. (D) OLS regression between observed temporal turnover
and temporal turnover predicted by the spatial model (space-for-time substitution). (E) OLS regression between observed temporal turnover and temporal
turnover predicted by the temporal model (time-for-time substitution). (F) The fitted functions for each variable. b, Intercept of the regression line; cv,
coefficient of variation; m, slope of the regression line; R2, goodness of fit.
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and Fig. 2). For the Late Pleistocene, predictions of temporal
turnover were similar between models (RMA R2 = 0.8329; Fig.
2A and Table S1). The model-to-observation regressions weak-
ened relative to the Late Quaternary datasets for both the space-
for-time predictions (OLS R2 = 0.2363; Fig. 2B and Table S2)
and time-for-time predictions (OLS R2 = 0.2839; Fig. 2C and
Table S2), but the overall predictive skill of space-for-time sub-
stitution increased to 83% (Table S2). Climate explained a sim-
ilar amount of deviance in compositional turnover in the spatial
and temporal models (28.2% and 32.2%, respectively; Table S3)
and produced similar rates and magnitudes of turnover along
individual environmental gradients (Fig. 2D).
However, space-for-time substitution performed poorly during

the Holocene. The association between temporal turnover pre-
dictions from the spatial and temporal models was weak (RMA
R2 = 0.199; Fig. 2E and Table S1). Regressions between ob-
served and predicted temporal turnover were even weaker (OLS

R2 = 0.0287 for predictions from the spatial model, Fig. 2F; OLS
R2 = 0.1984 for predictions from the temporal model, Fig. 2G),
and the predictive skill of space-for-time substitution relative to
time-for-time substitution dropped to 14% (Table S2). The
amount of deviance explained by climate in each model differed
substantially (44.1% for the spatial model and 21.7% for the
temporal model; Table S3), and differences remained in the
fitted functions comprising the spatial and temporal Holocene
models (Fig. 2H).
The poor performance of space-for-time substitution in the

Holocene is surprising because the spatial configuration of Ho-
locene climates and communities is generally similar to that of the
present. However, during the Holocene, the magnitude of climate
change through time at millennial time steps is small relative to
the spatial differences in climate between sites (Fig. 3 F and I).
Although the spatial datasets (Fig. 3 A and F) always encompass
a wider range of climate dissimilarities than the temporal datasets
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Fig. 2. Predictions and fitted functions for the Late Pleistocene (21–11 kyBP) (A–D) and the Holocene (10–0 kyBP) (E–H). In all cases, the red lines indicate
spatial datasets, blue lines indicate temporal datasets, and dashed lines indicate the 1:1 line. (A and E) Model-to-model RMA regression between temporal
turnover predicted from the temporal model and from the spatial model. (B and F) Space-for-time OLS regression between observed temporal turnover and
temporal turnover predicted from the spatial model. (C and G) Time-for-time OLS regression between observed temporal turnover and temporal turnover
predicted from the temporal model. (D and H) Fitted functions for the spatial and temporal models. Abbreviations are as in Fig. 1.
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(Fig. 3 D and I) throughout the Late Quaternary, the discrepancy
is particularly acute for the Holocene. This discrepancy mirrors
that found by Adler and Levine (18) in their test of space-for-time
substitution on much shorter time scales. Additionally, environ-
mental gradients generally spanned a smaller range of values in
the Holocene (see truncation along the x-axes in Fig. 2 H vs. D).
Thus, although the fitted functions underlying the Holocene spa-
tial model explain much of the deviance in the spatial relationship
between climate and compositional turnover, the model is geared
toward predicting large magnitudes of turnover and poorly pre-
dicts turnover given relatively small climatic changes during the
Holocene. Conversely, the larger magnitudes of climate change
through the Late Pleistocene better match the spatial gradients
in climate.
By resampling the datasets so that the spatial and temporal

models encompassed similar climate dissimilarities, we improved
space-for-time substitution of compositional turnover during the
Holocene (predictive skill increased from 14% to 47%) and did
not affect space-for-time substitution detrimentally during the
Late Pleistocene (Fig. 3, SI Materials and Methods, and Table

S2). The Holocene improvement principally is the result of
changes in the spatial model and greater concordance between
the fitted spatial and temporal models (Fig. S2 E and F and
Table S3) and predictions (Fig. 3 G, H, and J and Tables S1 and
S2). However, although the Holocene model improved with sub-
sampling based on climate, overall predictive skill was still lower
than the Late Quaternary and Late Pleistocene analyses, sug-
gesting that climatic factors not studied here [e.g., decadal- to
centennial-scale hydrological variability (31)] or nonclimatic fac-
tors such as increasing human influence or altered biotic inter-
actions (32, 33) may have played a role. Note that the well-known
“no-analog” problem (26) does not quite apply in this analysis
because the spatial and temporal datasets are drawn from the
same population of climates and fossil assemblages. Insofar as
there is a no-analog problem, it applies instead to time-for-space
substitution during the Holocene (Fig. S3 and Tables S1 and S2),
when the range of climatic and community dissimilarity over time
is smaller than over space.
The success of space-for-time substitution in this study is

partly a consequence of the strong interdependence among the
processes by which climate governs species distributions and
diversity across space and time. Compositional differences
through time at a given point in space emerge from population-
scale responses to climate change, manifested as abundance
increases and decreases. Changes in abundance are the result of
direct and indirect effects of climate on recruitment and mor-
tality, with the rate of change influenced by the generation time
(e.g., on the order of decades for the dominant pollen taxa in the
assemblages) (25). Indirect effects emerge from climate-mediated
shifts in species interactions and disturbance regime (33). Addi-
tionally, variations in atmospheric CO2 may influence pollen pro-
ductivity and relative abundance through time (e.g., refs. 34 and
35). Temporal turnover thus captures a cross-section of composi-
tional differences through time for a single site and is influenced
mainly by these population-scale processes, although spatial pro-
cesses (see below) also may influence temporal turnover because
they affect the timing of species arrival at individual sites.
Spatial shifts in species distributions due to climate change occur

when climate favors abundance increases in one geographic region
(including both increases within the historic range and the dis-
persal and successful establishment of populations outside the
former range), with or without decreases (e.g., mortality and/or
recruitment delays) in other parts of the range (36). Spatial pro-
cesses such as dispersal limitation may slow range shifts at range
margins and even within species range boundaries as climate
change causes populations to shift between relatively favorable and
marginal environments (37, 38). Hence, spatial gradients in species
distributions and diversity ultimately emerge from the temporal
responses of populations to climate change at individual sites, but
also are affected by an additional overlay of spatial processes.
At shorter time scales (e.g., years to decades) or higher spatial

resolutions (e.g., kilometers and less), factors such as dispersal
limitation, stochastic processes, and semirandom processes, such
as disturbance, may make space-for-time substitution less valid.
However, this study compares temporal turnover over thousands
of years with regional spatial processes, because fossil pollen
integrates processes across whole landscapes (tens of kilometers)
rather than at single sites. Thus, at the spatial and temporal scales
of this study, compositional differences across space or through
time are influenced by a similar set of biological processes.
In summary, these tests suggest that the climatic drivers of

compositional turnover across space are similar to those that
drive compositional turnover through time, at the spatiotempo-
ral scales analyzed in this study. Although space-for-time sub-
stitution has been discussed and debated widely by ecologists
studying chronosequences (2, 3, 6), it has been examined less
closely in other contexts. Hence, this study provides an important
and rare test of space-for-time substitution, and the methods
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Fig. 3. Range of climate dissimilarity and model predictions for the Late
Pleistocene (21–11 kyBP) (A–E) and Holocene (10–0 kyBP) (F–J). Light gray
indicates the unsampled datasets, red indicates the climate-subsampled
spatial datasets, and blue indicates the climate-subsampled temporal data-
sets. (A and F) Euclidean climate dissimilarity for the spatial datasets. (D and
I) Euclidean climate dissimilarity for the temporal datasets. (B and G) Space-
for-time OLS regression between observed temporal turnover and temporal
turnover predicted by the spatial model. (E and J) Time-for-time OLS re-
gression between observed temporal turnover and temporal turnover pre-
dicted by the temporal model. (C and H) Model-to-model RMA regression
between temporal turnover predicted by the temporal model and by the
spatial model for the climate-subsampled dataset (dark gray) and the
unsampled dataset. Regression statistics for analyses based on the climate-
subsampled datasets are indicated for each scatter plot. Abbreviations are as
in Fig. 1.
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developed here are applicable to other systems with rich
spatiotemporal datasets of compositional turnover. However,
this study also highlights the problem of scale mismatch; predictive
skill in space-for-time substitution is reduced when the magnitude
and nature of climate variability strongly differ between the spatial
and temporal domains. This adds to recent results showing that
predictive ability through time decreased for spatial models of
turnover as the magnitude of climate change increased (39). There
are other good reasons to exercise caution when applying empir-
ically calibrated models to project biodiversity responses to 21st
century climate change, including the prospect of shifting realized
niches and emergent species interactions, the challenge of ex-
trapolating models to no-analog climates, and the overarching
question of whether ecological systems are computationally ir-
reducible (15, 24, 26, 40). Nevertheless, this study complements
studies that have focused on modeling changes in species rich-
ness (16, 18) and adds support to the prospect of projecting
impacts to biodiversity as a result of climate change.

Materials and Methods
Fossil Pollen Data. Fossil pollen data are based on those used in ref. 39. Briefly,
fossil pollen sites from eastern North America from 21 kyBP to the present
were drawn from the Neotoma Paleoecology Database (www.neotomadb.
org) and represent genus-level pollen relative abundances for a suite of 106
genera across eastern North America. Age models were updated, recali-
brated, and standardized across sites (41). The fossil pollen assemblage at
each site thus consists of the relative abundances of pollen types in each
sample, calculated relative to the sum of all upland pollen types. The fossil
pollen taxonomy was standardized across sites, and only taxa identified to
genus or better are included, except for closely related and palynologically
indistinguishable genera such as Ostrya/Carpinus. If taxa were identified to
a finer taxonomic resolution, they were binned into their constituent genus.
The paleoclimate simulations are available at a 0.5 × 0.5° grid (∼50 × 50 km)
(Paleoclimate Simulations); if more than one fossil pollen site occupied
a climate grid cell, the relative abundance of each taxon across all sites
within the cell was averaged. The final dataset encompasses 527 sites oc-
cupying 336 grid cells in eastern North America. Previous work with fossil
pollen data has established that generalized dissimilarity modeling (GDM) is
robust to variation in taxonomic level, sample size differences through time,
climate models, and different methods of weighting the relative abundance
of sites within climate grid cells (39).

Paleoclimate Simulations. We paired the fossil pollen data with transient
paleoclimate simulations from the National Center for Atmospheric Research
CCSM3 (27). These data were debiased and downscaled to a 0.5 × 0.5° grid
(∼50 × 50 km) and processed to infer seasonal temperatures and precipitation
every 1,000 y since the LGM 21 kyBP (15). Downscaled paleoclimate simu-
lations are available publicly through the University of Wisconsin Center for
Climatic Research (http://purl.org/climate). We also included atmospheric
CO2 concentration as a predictor (42, 43), because this is an important in-
fluence on plant physiology and vegetation composition (44) that has varied
through time and will continue to change in the future (45). CO2 data were
drawn from EPICA Dome C (42), an 800,000-y composite CO2 record from
East Antarctica on which the CO2 data for 22–0 kyBP are based (46). The
chronology was updated to EDC3_gas_a, the official chronology (47).
Overall, final predictor variables used to construct models included six cli-
matic predictors—mean precipitation and mean temperature for winter
(December to February) and summer (June to August), plus indices of tem-
perature seasonality and precipitation seasonality [equivalent to bioclimatic
variables 4 and 15 in WorldClim (48)]—and CO2. We tested the influence of
CO2 by removing this variable and refitting all models without CO2.

The pollen and climate datasets were used previously to model the re-
lationship between climate and compositional dissimilarity across space using
GDM and to investigate the temporal stability of these spatial relationships
(39). This prior work showed that the differences in fossil pollen assemblage
composition across space were robust to choice of paleoclimate simulation
(39), so here we use only the CCSM3 simulations.

GDM. We used GDM to explore space-for-time substitution in fossil pollen
assemblages from the past 21,000 y in eastern North America. GDM fits
compositional dissimilarity as a function of environmental and/or geographic
separation (28) and allows inference of the relative contribution of each
environmental variable to overall compositional dissimilarity. Fitted functions

for each variable indicate the rate of compositional turnover along the
environmental gradient, and the maximum height attained on the y-axis
indicates the relative importance of the variable to overall compositional
dissimilarity.

We pooled data across all times for the spatial dataset and across all sites
for the temporal dataset (Fig. 1 and Fig. S1). This approach pools community
and climate data across multiple time periods and thus integrates across
shifting niches, no-analog climates, and other factors to capture multiple
realizations of community–climate relationships (49). Pooling also creates
large datasets (383,287 pairwise dissimilarities in the spatial dataset and
18,584 in the temporal dataset), which increases analytical power. Finally,
pooling controls for potential sources of bias and error; i.e., climate models
may be inaccurate (50) and pollen data represent a biased sample of fossil
plant taxa (51), but there is no reason to expect that these issues are dif-
ferential in space vs. time.

To build and evaluate models, we split each dataset into training and
evaluation partitions by randomly assigning 70% of the sample pairs from
each dataset to a training partition to build the models and the remaining
30% of the sample pairs to an evaluation partition for testing model pre-
dictions. We used GDM to fit models of compositional dissimilarity in the
training datasets (Fig. S1 and Table S3). All models in the main paper are
fitted with environmental variables only (as opposed to environment plus
geographic or temporal distance) to focus on the substitutability of envi-
ronment-based models. Each model then was used to predict both spatial
and temporal compositional dissimilarity in each of the evaluation datasets.
When making predictions to the evaluation datasets, we reset the intercept
to zero within the parameter file output for each model. Mantel tests can-
not be used to assess significance owing to the nonindependence of each
point (the same sample may be involved in many different pairwise com-
parisons, thus the individual points are not independent), the structure of
the datasets (each dissimilarity matrix for an individual time or individual
site was aggregated with the matrices for other sites or times; Fig. 1), and
the sampling procedure for dividing the datasets into training and evalua-
tion partitions, which was based on pairs of sites rather than single sites.
Instead, we evaluated how well the predictions correlate to each other (model-
to-model comparisons) using RMA regression, because there was no a priori ex-
pectation for independent vs. dependent variables and both predictions should
have similar uncertainty. We used OLS regression to compare the predictions
with observed compositional dissimilarity (model-to-observation comparisons), be-
cause here there is a clear dependence of predictions on observations. We
report only the slope, intercept, and R2 value for each model and not the
significance level. We also quantify the “predictive skill” of space-for-time
substitution as the performance of space-for-time substitution relative to
time-for-time substitution, based on the R2 values of the respective corre-
lation tests (i.e., Table S2; predictive skill = R2space-for-time/R

2
time-for-time). To focus

on the space-for-time transferability of climate-based models, we report
only results of space-for-time substitution in the main paper. Time-for-space sub-
stitution results and sensitivity tests using different predictor variables are re-
ported in SI Materials and Methods, Tables S1–S3, and Figs. S2–S6. We used
a new version of the GDM software for R developed by Glenn Manion and
Simon Ferrier to build models and make predictions to new data (GDM4Tables,
version 1.0, available at http://purl.org/gdm). All other analyses also were done
in R, version 2.15.1 (52).

Climate Subsampling. We processed the Late Quaternary (21–0 kyBP), Late
Pleistocene (21–11 kyBP), and Holocene (10–0 kyBP) training and evaluation
datasets using coarsened exact matching with the R package MatchIt (53,
54). MatchIt considers the pairwise differences in each climate variable and
extracts sets of sites in both the spatial and temporal datasets such that the
underlying climate dissimilarities match as closely as possible. We did not
include CO2 in the set of variables to use for matching, because this variable
varies across time only and not space. In effect, we preprocessed the datasets
based only on their climate variables to give GDM the best chance possible
at building models that are substitutable. This processing substantially re-
duced the size of the datasets [after processing, the spatial dataset included
3,086 dissimilarities for the Late Pleistocene (14.6% of the original dataset)
and 15,441 (6.2% of the original dataset) for the Holocene, whereas the
temporal dataset was reduced to 724 pairwise comparisons for the Late
Pleistocene (72.4% of the original dataset) and 7,960 comparisons during the
Holocene (99.3% of the original dataset)], and the resulting range of climate
differences was comparable between the datasets (Fig. 3 and Fig. S6). We
then refit models to each training dataset and predicted spatial and temporal
dissimilarity of the subsampled evaluation datasets (Tables S1–S3 and Fig. S2).
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