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ABSTRACT

Equations are developed which determine the space-charge limits for a

generalized linear accelerator. A single parameter k, the ratio of space

charge to restoring forces, is the only unknown parameter. Experience and

computer simulations indicate that k ̂  0.5.
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I. THE GENERAL FORMULATION

The field in a sphere of charge is given by*

•* N z e •*'
(1)

where we assume a uniform density distribution of N particles of charge ze.

r0 is the radius of the sphere.

We assume that there are linear restoring (focusing) forces E = E r,

which keep the ball of charge together.

The equations of motion for each of the three dimensions give the

results; i ;

X = Xo sin cut,

X = a)X0 cos cut,

where

ez E' (1-k)

and

The maximum normalized emittance is given by

= r2 ̂o c " M (2)

Now the maximum electric field is E m a x = E r0, so we canvvri

*See Appendix for notation and

3/2 /0 V
definitions.
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If we keep CN and E,nax fixed, there will be a limiting number of

particles in the ball for some maximum value of k. Therefore, we obtain the

following expression for the space-charge limit:

.2 \l/3

(4)
ez

U-k)

k

173 \z max
m c

e

I f we were to view th i s ba l l of charge moving by wi th ve loc i t y Be, the space-

charge- l imi ted maximum current would be given by

k 3TTE C lm_

max

1/3
A \ 2/3 2/3

eN ''max (5)

II. LONGITUDINAL SPACE-CHARGE LIMITS

Now it is appropriate to. consider the longitudinal motion separately.

If we suppose a linac with stable phase angle <J>s, frequency f, and

electric field Ep, the average accelerating field is E: = Ep sin *s. The

longitudinal or "synchrotron" frequency is- given by

E cot <j.s 27tf ez (1-k) (6)

The "phase" radius of the bunch is given by

li 6C
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Then

E cot ez

NT) AV
(7)

ing E"max = E cot $s $ 0, and substituting into Eq. (5), we obtain

2—
= 1.2 x 106 k ̂  6_E cot (8)

Typical values are $0 ^2-n/lO and cot <j>s ^ 1 ,

2_
1maxL

 = 4 - 7 3 x (9)

The average linac current, assuming all the buckets are filled, is given

by the relation: i

i = I N ̂  " 0il333 \ '

III. TRANSVERSE SPACE-CHARGE LIMITS

Now we can consider the;transverse current limit by considering a

quadrupole-focusing system. For our purposes here, we will consider

electrostatic quadrupoles. We will formulate the space-charge limit in terms

of the pole-trip field "EQ . This can be converted to an equivalent

magnetic channel byline relationship: ,

xmax

max
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Now we define a focusing cell as two drift tubes, each containing one quad.

We can write the acceptance as a function of the phase shift by noting

"cell-f

where f is tf linac frequency and n is the number of half wavelengths per

quad, i . e . , n = 1 for &X/2, n = 2 for 3X , etc. Then we can write

2 f u
ENT = ro

Mcell
en (10)

The phase advance/cell is related to the zero space-charge advance by the

following re lat ion:

"ce l l =% V U-k) 1 / 2 .

Now if we describe the channel in thin-lens approximation, we have a simple

relationship for the phase advance.

We use two parameters to describe the lattice. The length of each quad

is In = k4 Bc/f. : The radius of the quads is given by r0 = k3 Bc/f.

Since the quad must fit in the drift tube, we have typically k ^

0.25n. k3 cannot be very large or the transit time factor will be too

small. Typical values for k3 might be^0.1.

Using the thin-lens approximation for the transport matrices gives a

simple expression for the phase shift/cell in^terms of the linac parameters.

We obtain

k.
6.26 fAe

/ z
(11)
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Similarly, the acceptance can be determined in terms of these parameters.

eNT
1/2

(12)

where n = rmx/r to account for the fluctuation of the e function

inside the transport system, -n is a weak function of y 0 and for typical

values of u0 ̂  1, n ̂  0.707.

Now we can obtain an expression for the maximum current that can be

transported due to transverse considerations*:

k p2 .2 4/3k n

(13)

For typical values, MO.> 1.5, k'3 ^ 0 . 1 , n = 0.707, we get

i m a v = 3.3 x 10max
5 k A

(14)

Note that the current limit given by Eq. (13) does not depend upon the

linac parameters. If we interpret k3 in terms of the ratio of; quadrupole

radius to focusing cell length we get a maximum current limit for any trans-

port system, since k^ cannot become greater than a few tenths, and y0 will

not be greater than M . 5 . The'correction for a cylinder of beam, rather than

a ball, js a factor of 2/3. ;

*The Y ^ term nas been added to make the expression relativistically correct.
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The current l im i t for any quadrupole-focusing systerrt, then, is

* ( B Y ) 3
(14a)

IV. OPTIMIZING SIX-DIMENSIONAL PHASE-SPACE DENSITY

Now comparing the transverse and longitudinal current limits, we can

equate them to arrive at the maximum brightness condition. We have

1.2 x
F cot <f> 7 k u0

s 5- = 2.34 x 10' — - ,

Strictly speaking, the space-charge factors k for the longitudinal and
2

transverse cases need i>':c be equal. Putting $02 = k

n , 2 4/30.5 n n fA

x (2TT )2s we get

Typical values for y0 are ̂  1.5, n^0.707. For a Wideroe, typically n = 1.

Then, =

t COt <t>s r-^ ,.— *

Recalling (11) arid putting in typipal values: "'

k3 = 0 .1 , k4 = 0.25 n,

we have

r _ 3j|75 fAe
Q * fZ Tymax n -

\\"
U
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Therefore E ^ 0.2 EQ is the condition for getting the maximum

density in 6-D phase space. Also, e ^ ^ e^j-

The expression for the 6-D phase-space density is given by the following

expression:

(16)i/fez
P6D = 2

eNL eNT

where

!£i
3 ir max

Using the previously derived relation for i and

obtain

^ P , ± A • :
P6D ' n3 z ,

we

(17)

This indicates to us that if we want a super-bright beam we should start with

an injection energy as low as is practicabT&T into a linac with as hiqh a

frequency as possible.

... V. SINGLE-BUNCH SPACE-CHARGE LIMITS

These same methods can be used to obtain the space-charge limit of an

induction accelerator. If we assume a parabolic distribution of charge, the

space charge electric field gradient is given by

(18)
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The restoring force applied by.the induction linac voltage slope can be

described in terms of a tilt coefficient, ky, where the restoring field

gradient is r.

E = hi

Here, E = average accelerating field. Then we obtain

= i3/2.
eNL

, • /e3z kT E (l-k)

(19)

Substituting into (18), we obtain

4.44 x 1014 k (kT

sc (l-k) 2/3
.4/3'

(20)

If we' apply the same methods to> a single bunch (nonrelativjstic) circ-

ulating in an accumulator ring, we can derive an expression for the space-

charge limit of a bunch. We obtain

N
1.88 x 10J k

sc (T-k)3/4
A\

3 / 4 ,3/2 / Vf
LNL sYR

Caution must be taken in applying this formula. That is because er!L =

[(AP/P) lo]Sy
 F o r fixed EJVJL, one might be tempted to increase the

space-charge limit by increasing Vj or f, say. However, this wil^generally

increase Ap/p. A value.,of Ap/p much greater than .about 1% is usually a limit
': , . ••"' - •• |! ' • ,, s v Li •• •

for'practical reasons associated wfth the accumulator. ,



For a single bunch in a linac, the longitudinal charge limit for a single

bunch is

N
sc

= 4.5 x 1Q
z

3

(1-k) 3/4

,3/4 / E cop *s f
Vl/4

ENL '

It is interesting to note that if E and f remain fixed, the space-charge limit

decreases with increasing energy. If the linac was limited at injection, then

we will get an increase of £|\|L such as to maintain,Nsc as constant.

Another caveat. In attempting to design for a certain space-charge

limit, one is not free to increase £[.)[_. For a given E, f, and 8,

eN(-max ^s readily computed. This can easily be seen by substituting

(7) into (22). =>

1.58 x 1024 3 F
E cot *s ̂ 2

The l i f f i i t s of $0 t y p i c a l l y are1 ̂  TT/5.

APPENDIX

The normalized emittances, e'L, and e ^ , are defined as follows:

(AX Am p c = (X X
1) 3 Y Am p c

Am p c .(AEAt) = e N L A

The units used throughout are mks, with E in volts/meter and B in tesla.
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