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ABSTRACT

Equations are developed which determine the space-charge limits for a
generalized linear accelerator. A single parameter k, the ratio of space
charge to restoring forces, is the anly unknown parameter. Experience and

computer simulations indicate that k % 0.5.
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I. THE GENERAL FORMULATION

‘The field in a sphere of charge is given by*

- E z e " > Y (1)

where we assume a uniform density distribution of N particles of charge ze. .

ro is the radius of the sphere.
" : > ->

We assume that theré are linear resforing {focusing) forces £ =E r,
which keep the ball of charge together.

The equations of motion for each of the three dimensions give the

results: )
X'= X, sin wt, i ' R L
X = wXy cos at, - 
~ where - © T , : ’
o = / ez E;ﬁfl-k! ; | | e .
: P :
and | :

The maximum normalized emittance is given by =

it

_ 2w o
N~ "o c (2)
- ‘ L= =i Nl
Now the maximum electric field is Epax = E'ﬁo, S0 we can Wite
L3 [z By (1K) o
N "o v 2 (3)
] Am_ ¢ §

p

. ‘ B
*See Appendix for notation andjdefinitions.

t) = X o
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If we keep €y and Eﬁax fixed, there will be a limiting number of
particles in the ball for some maximum value of k. Therefore, we obtain the
following expression for the space-cha#ée limit:

: 2T 1/3
ez N dne k (A)1/3 o3 Y3 (Tp ) | "

= o £
T {1—k)1/3 z N, "max

If we'were to view this bhall of charge moving by with velocity £c, the space-

charQe-]imited maximum current would be given by

2\ /3 173 7
k 3mec (mp c ) (A 2/3
e

'|' = 2/3 F

o

IT. LONGITUDINAL SQACE-CHARGE LIMITS
Now it is appropriafe“tn,consider éheﬂ10ngitudina1 motion separéte]y.
‘ 1f we suppose a liﬁac with stab]e phase ang]é ¢, frequency f, énaﬁ
~electric fie]d-fp, the average accé]erating fie?d*ig‘E = Ep sin 4. The

Tongitudinal or “synchrotron" frequency‘iﬁlgiven by

. £ cot ¢ 2uf ez (1-k) L  (e)
S ‘ Am_ gc “ ¥

The "phase” radius of the bunch is given by

I ) ) ) o
- _ ZTIf ro 9 ) o

S




Then

3/2 E cot ¢ (1-k) ez .

- [ BcC 2 S ‘

CSNL <2ﬂf) %\/ 2 : (7)
Am o :

J

Using Epay = E cot ¢S.¢0, and substituting into Eq. (5), we obtain

. _ -6, 28°E
1maxL = 1.2 x 10" k ¢, = cot b - (8)
Typical values are ¢o~27/10 and cot ¢5 v 1,
,
; - 5, BE
1maxL =4.73 x 10” k 5 a ” (9)

The average linac current, assuming all the buckets are filled, is given

!

by the relation: S i

b . Vo °
B Tmax - 0:1333 1ma%L
|

I11. TRANSVERSE ~SPACE-CHARGE LIMITS
Now we can consider the:stransverse current Timit by considering a

quadrupole-focusing system. For our purposes here, we will consider

electrostatic gquadrupoles. We will formulate the space-charge 1fhit’in tekms:

of the pole-trip field‘EQmax. This can bgwconverted to an equivalent

magnetic channel by, the rélatﬁonship;

. 3
P N B - Qma X h.
o Qmax ae




Now we define a focusing cell as two drift tubes, each containing one quad.

We can write the acceptance ‘as a function of the phase shift by noting

Heell = F »

where f is tf linac frequency and n'is the number of half wavelengths'pery‘

quad, i.e., n=1 for sA/Zf/h = 2 for Br, etc. Then we can write

fu
= __cell ~

The phase advance/cell is related to the zero space-charge advance by the

following relation:

Yeell =Y (1 k)l/z

Now if Wé describe the channel in thin-lens approximatign, we have a simple
relationship for the phase advance. k |

“We use two parameters to descr1be the ]att1ce. The “length of each quaq
is lQ kg Bc/f.; The radvus of the quads is given by ry = k3 Bc/f._ .

. Since the quad must fit in the drift tube we have typically k4
0. 25n. k3 cannot be very large or the transit: time factor will be” too
small. Typical values for k3 m1ght be'vO 1.

Using the th1n-1ens approx1mat1on for the transport matr1ces g1ves a

simple expression-for the phase: rhlft/ceH in=terms of the 11nac parameters.

We obtain R ) = . i g
E. - = | E(ﬁ . 6.26 fAs 7( 11'5
& Unax 0ky m ‘Z - o
) R ‘/ \\ o i
- 4 - 4 ‘\\ \\j
= . . \4'7* R
§ | . v“Ez Y




Similarly, the acceptance can be determined in terms of these parameters.

\

S " 1/2] .2
- n? kS <2 (1-k) 2 (12)

=hi

ENT

1

where n = rpax/r to account for the fluctuation of the g function
inside the transport system. 1 is a weak function of ug and for typical
values of ¥, ™ 1, nn0,707,

Now we can obtain an expression fur the maximum current that can be

transported due to transverse cdnsiderations*'

2 2 4/3
"o 3

nZ

. L7 |k
gy, = 234 x 10"

7 ()% (13)

For typical values, u, " 1.5, k3 eﬂO.l, n = 0.707, we get

fax, ™ 33 % 105 %% (s )3\ ‘5’ (14)
Note that the earrent ]1mit;gtyen by Eq. (13) dqes not deﬁend upon'the
linac parameters. If we interpret k3 in terms of the ratio oftquadrupcle‘
radius to focusing cell length we get a maximum current 11m1t for any trans-
port system, ‘since k3 cannot -become greater than a few tenths, and pg will
not be greater than ~1.5. The’ correctvon for a cy11nder of beam rather than

a ball, is a factor of 2/3. -

)

*The v3 term has been added t .make the expression relativistically correct.

s I | =
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The cu}rént limit for any quadrupole-focuSing system, then, is

— 5 A 3 -
max ¥ 11 % 10° 3 (av)° (14a)

V. OPTIMIZING SIX-DIMgNSIONAL PHASE-SPACE DENSITY
Now comparing the transverse and longitudinal curréﬁ%,]imits, we can

equate them to arrive at the maximum brightness condition. We have

\
\

. 6. 2 ‘é E cot ¢ ” 7 k ug‘kg o3 & 3
1.2x107 k- g" —— =28 x 0" ——— T8
- 0 f O nt b4
: /

Strictly speaking, the space-charge factors k for the ibﬁgifudinal and

: , 2
transverse cases nced: 7t be equal. Putting ¢02 = k3 x (2n)2, we get

0.5 u§n4/3

= _ fA ., .
E cot ¢s = ——;E——f J »37 8 = | (15)

Typical values for ug are ~ 1.5, n~0.707. ‘Forva Wideroé; typically n= 1,

Then, , -

Foot g, - 0002 e \
n- : '

Recalling (11) and putting in tyﬁigal vafues:”

we have

a

vl



Therefore £~ 0.2 EQmax is the condition for getting the maximum
density in 6-D phase space. Also, ENL ey

The expression for the 6-D phase space dens1ty is given hy the follow1ng

express1on
_ i/fez
F’GD"' .2 (16)
ENL SNT
where W
’:'__?__O_ .
U537 Tmax
Using the previously derived relation for 7 and ey, EnT
obtain
N
6D B3 z

- (17)

This indicates to us that if we want a super-bright beam we should start with
an injection energy as low as is practicablef:ihto a linac with as high a
frequency as possible.

V. SINGLE-BUNCH SPACE-CHARGE LIMITS | o

These Same ethods can be used to-obtain the Space-eharge limit of an
induction accelerator.

If we assume a parabo11c d15tr1but10n of charge the:

Space charge electric f1e]d grad1ent 1s g1ven by

Gema(a2) 3femt)- B e
. ] o .

&)



The‘restoring force applied by. the induction linac voltage slbpe can be
described in terms of a tilt coefficiént, kT, where the restoring field:

gradient 1is

E
K
E =

Here, E= average accelerating field.'(Thén we obtaih

fezk B
- 3/2_\/Ta Z Xy .
gy = 1 ‘ . ) (19)
R mcZ o -

P

Substituting into (18), we obtain

-1/3 .

U3 23 |
_a.aax ot Kl B AT A3 (20)
€ (1+2m2) P PPN o

If we apply the same\ﬁethbdsrto\a:singTe bunch (nonreTatiyjstig) circ-
ulating in an accumulator ring, we can derive an expression for the space-
charge 1imit of a bunch. We obtain

e x 103 : (&)3/‘4 372 (ﬂ_)lM
sc <1 t2m bz (¥t oAz L AsvR :

2

Caution must be taken in app1y1ng th1S formula. That is because ENL =

C{ap/p) 1olay. For fixedenis one m1ght be  tempted to increase the :

" space-charge Timit by 1ncrrds1ng V or f, say. .However, this wil¥ genera]]y

increase Ap/p. A value, of ap/p murh greater than _about 1% is usually a limit

fof?praCticai reasons assoc1ated W th the accumu]ator. o




_ The units used throughout are mks, with E in volts/meter and B in tesla.

~  For a 51hg1e‘bunch in a linac, the longitudinal charge limit for a single

bunch is \

o . e 2
o N - 8.5 1013 K (_)3/4 (E cot o f 32 - (2'1)

It is interesting to note that if T and f remain fixed, the space-charge limit

decreases with ihcreasing erergy.’ vathe?1inac was limited at injection, then™

we will get an increase of €y such as to maintain Ngc as constant.

Another caveat. 'In attempting to design for a certéin space-charge

Timit, one_is not freedto increase. ey| . Fdr a given E, f, and g;
ENLmax 1S readily computedi This can easily be seen bj substituting

i

(7) into (22). 5 S
24 f -
_1.58 x 10 3 = & )
Nee . 5 k,¢° E cot ¢, Z . ?
P .

The limits of ¢o typically arein /5.

APPENDIX = |

‘The norma]ized”émittances, ENL and ENT? are ‘defined as follows:

i
fl

(8%.8p) = ey Amp € = (XX1) oy Amy -
: y s IR | ; G- a
R , \ i uj} - AE * ET
. (“AE At)ﬂ ENL Amp ¢ (D 10> By Amp c.

o

NI

b ‘ ' R

&

i



