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Abstract. This paper examines several measures of space complexity
on variants of stack automata: non-erasing stack automata and check-
ing stack automata. These measures capture the minimum stack size
required to accept any word in a language (weak measure), the maxi-
mum stack size used in any accepting computation on any accepted word
(accept measure), and the maximum stack size used in any computation
(strong measure). We give a detailed characterization of the accept and
strong space complexity measures for checking stack automata. Exactly
one of three cases can occur: the complexity is either bounded by a con-
stant, behaves (up to small technicalities explained in the paper) like a
linear function, or it grows arbitrarily larger than the length of the input
word. However, this result does not hold for non-erasing stack automata;
we provide an example when the space complexity grows with the square
root of the input length. Furthermore, an investigation is done regarding
the best complexity of any machine accepting a given language, and on
decidability of space complexity properties.

Keywords: Checking stack automata · Stack automata · Pushdown
automata · Space complexity · Machine models

1 Introduction

When studying different machine models, it is common to study both time and
space complexity of a machine or an algorithm. In particular, the study of com-
plexity of Turing machines gave way to the area of computational complexity,
which has been one of the most well-studied areas of theoretical computer sci-
ence for the past 40 years [7]. The field of automata theory specializes in different
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machine models, often with more restricted types of data stores and operations.
Various models of automata differ in the languages that can be accepted by the
model, in the size of the machine (e.g. the number of states), in the algorithms
to decide various properties of a machine, and in the complexity of these algo-
rithms. Some of the well-studied automata models with more restricted power
than Turing machines are finite automata [5,9], pushdown automata [5,9], stack
automata [4], checking stack automata [4], visibly pushdown automata [1], and
many others.

For Turing machines, several different space complexity measures have been
studied. Some of these complexity measures are the following [13]:

– weak measure: for an input word w, the smallest tape size required for some
accepting computation on w;

– accept measure: for an input word w, the largest tape size required for any
accepting computation on w;

– strong measure: for an input word w, the largest tape size required for any
computation on w.

For any of these measures, the space complexity of a machine can be defined as
a function of an integer n as the maximum tape size required for any input word
of length n under these conditions. Finally, given a language, one can examine
the space complexity of different machines accepting this language. For many of
the more restricted automata models, some of these three complexity measures
have not been studied as extensively as for Turing machines1. This paper aims
to fill the gaps for several machine models.

We study the above complexity measures for machines and languages of one-
way stack automata, non-erasing stack automata, and checking stack automata.
One-way stack automata are, intuitively, pushdown automata with the additional
ability to read letters from inside the stack; but still only push to and pop from
the top of the stack. Non-erasing stack automata are stack automata without the
ability to erase (pop) letters from the stack. Finally, checking stack automata
are further restricted so that as soon as they read from inside of the stack, they
can no longer push new letters on the stack.

It is known that checking stack languages form a proper subset of non-erasing
stack languages, which form a proper subset of stack languages [4], and those in
turn form a proper subset of context-sensitive languages [8]. In terms of space
complexity, it is possible to study the three space complexity measures (weak,
accept, and strong) as the maximum stack size required for any input of length n.
It is already known that every stack language can be accepted by some stack
automaton which operates in linear space using the weak measure [8,12]. How-
ever, this does not imply that every stack automaton has this property. We prove
here that every checking stack automaton has this property. Further results are

1 We point out that, especially in the context of Turing machines, the weak measure,
corresponding to the minimal cost among all accepting computations on a given
input, if any, is by far the most commonly used.
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known relating one-way and two-way versions of these machines to other models,
and to space complexity classes of Turing machines, e.g. [3,10,12].

For checking stack automata, we give a complete characterization of the
possible accept and strong space measures. For both measures, exactly one of
the following three cases must occur for every checking stack automaton:

1. The complexity is O(1). Then the automaton accepts a regular language.
2. There is some word (accepted word for the accept measure) u which has com-

putations (accepting computations, respectively) that use arbitrarily large
stack space on u, and so the complexity is not O(f(n)) for any integer func-
tion f . The language accepted can be regular or not.

3. The complexity is O(n), but it is not o(n). The language accepted can be
regular or not.

The third case is essentially saying that the complexity is Θ(n), except for some
minor technicalities that will be discussed further in the paper. Therefore, there is
a “gap” in the possible asymptotical behaviors of space complexity. No checking
stack machine can have a space complexity between Θ(1) and Θ(n); or complex-
ity above Θ(n) (as long as there is some function which bounds the space). The
lower bound proof uses a method involving store languages of stack automata
(the language of all words occurring on the stack of an accepting computation).
We have not seen this technique used previously in the literature. Indeed, store
languages are used in multiple proofs of this paper.

For non-erasing stack automata, there are differences with checking stack
automata, as the complexity can be in o(n), though not constant. We present
an automaton with a weak and accept space complexity in Θ(

√
n).

We also consider the following problem: Given a language (accepted by one
of the stack automaton models) and one of the space complexity measures, what
are the space complexities of the machines accepting it? We show that there
is a checking stack language such that with the strong measure, every machine
accepting it can use arbitrarily larger stack space than the input size, and there-
fore it is not O(f(n)) for any function f . Lastly, decidability questions on space
complexity are addressed. It is shown that it is undecidable whether a checking
stack automaton operates in constant space using the weak measure, however
for both the strong and accept measures, it is decidable even for arbitrary stack
automata.

2 Preliminaries

This section introduces basic notation used in this paper, and defines the three
models of stack automata that we shall consider.

We assume that the reader is familiar with basics of formal language and
automata theory. Please see [9] for an introduction. An alphabet is a finite set of
letters. A word over an alphabet Σ = {a1, . . . , ak} is a finite sequence of letters
from Σ. The set of all words over Σ is denoted by Σ∗, which includes the empty
word, denoted by λ. A language L (over Σ) is any set of words L ⊆ Σ∗. The
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complement of L over Σ, denoted by L is equal to Σ∗ \L. Given a word w ∈ Σ∗,
the length of w is denoted by |w|, and the number of occurrences of a letter ai

in w by |w|ai
. The Parikh image of w is the vector ψ(w) = (|w|a1 , . . . , |w|ak

),
which is extended to a language L as ψ(L) = {ψ(w) | w ∈ L}. We do not define
the concept of semilinearity formally here, but it is known that a language L is
semilinear if and only if there is a regular language L′ with ψ(L) = ψ(L′) [5].
Given two words w, u ∈ Σ∗, we say that u is a prefix of w if w = uv for some
v ∈ Σ∗. The prefix closure of a language L, pref(L), is the set of all prefixes of
all words in L. It is known that if L is a regular language, then pref(L) is also
regular.

2.1 Automata Models

Next, we define the three types of stack automata models discussed in this paper.

Definition 1. A one-way nondeterministic stack automaton (SA for short) is
a 6-tuple M = (Q,Σ, Γ, δ, q0, F ), where:

– Q is the finite set of states.
– Σ and Γ are the input and stack alphabets, respectively.
– Γ contains symbols � and 	, which represent the bottom and top of the stack.

We denote by Γ0 the alphabet Γ \ {� , 	}.
– q0 ∈ Q and F ⊆ Q are the initial state and the set of final states, respectively.
– δ is the nondeterministic transition function from Q × (Σ ∪ {λ}) × Γ into

subsets of Q × {stay, push(x), pop,−1, 0,+1 | x ∈ Γ0}. We use the notation
(q, a, y) → (p, ι) to denote that (p, ι) ∈ δ(q, a, y).

A configuration c of an SA is a triple c = (q, w, γ), where q ∈ Q is the current
state, w ∈ Σ∗ is the remaining input to be read, and γ is the current stack tape.
The word γ either has to be of the form � Γ ∗

0

�

Γ ∗
0 	, or of the form �Γ ∗

0 	

�

.
The symbol denotes the position of the stack head, which is currently scanning
the symbol directly preceding it. We shall occasionally refer to the “pure” stack
content, that is, the word γ without the end markers and the head symbol. We
denote this word by γ̂. The stack size of c is ‖c‖Γ = |γ̂| = |γ| − 3.

We use two relations between configurations:

– The write relation: If (q, a, y) → (p, ι), where q, p ∈ Q, a ∈ Σ ∪ {λ}, y ∈
Γ0 ∪ {� }, and ι ∈ {stay, push(x), pop}; then for u ∈ Σ∗, γ ∈ Γ ∗, with
γy ∈ � Γ ∗

0 :
• (q, au, γy

�

	) �w (p, u, γy

�

	) if ι = stay,
• (q, au, γy

�

	) �w (p, u, γyx

�

	) if ι = push(x),
• (q, au, γy

�

	) �w (p, u, γ

�

	) if ι = pop and y 	= � .
Notice that the write relation is defined only if stay, push, and pop transitions
are performed when the stack head is scanning the topmost symbol of the
stack. If one of these operations is executed when the stack head is not on
the top of the stack, the machine halts and rejects.



Space Complexity of Stack Automata Models 141

– The read relation: If (q, a, y) → (p, ι), where q, p ∈ Q, a ∈ Σ ∪ {λ}, y ∈ Γ ,
and ι ∈ {−1, 0, 1}; then for u ∈ Σ∗, γ1, γ2 ∈ Γ ∗, with γ1yγ2 ∈ � Γ ∗

0 	:
• (q, au, γ1y

�

γ2) �r (p, u, γ1

�

yγ2) if ι = −1 and y 	= � ,
• (q, au, γ1y

�

γ2) �r (p, u, γ1y

�

γ2) if ι = 0,
• (q, au, γ1y

�

γ2) �r (p, u, γ1yx

�

γ′
2) if ι = +1, γ2 = xγ′

2 and x ∈ Γ .

The union of �w and �r is denoted by �. The transitive closures of �w, �r, and
� are denoted by �+

w , �+
r , and �+; and their transitive and reflexive closures by

�∗
w, �∗

r , and �∗, respectively.
A partial computation of the automaton M on an input word u is a sequence

of configurations

C :

c0
︷ ︸︸ ︷

(p0, u0, γ0) � · · · �
cn

︷ ︸︸ ︷

(pn, un, γn), (1)

where p0 = q0, u0 = u, γ0 = �

�

	. If also un = λ, we say that this is a com-
putation; and furthermore, if also pn ∈ F then it is an accepting computation.
The stack size of the (partial) computation C, denoted by ‖C‖Γ , is defined as
max{‖cj‖Γ | 0 ≤ j ≤ n}.

The language accepted by an SA M , denoted by L(M), is the set of words
w for which M has an accepting computation on w. The store language of M ,
S(M), is the set of state and stack contents that can appear in an accept-
ing computation: S(M) = {qγ | (q, u, γ) is a configuration in some accepting}
computation of M . Notice that these words contain both the state and the stack
head position. It is known that for every SA M , S(M) is a regular language [2,11].

The accepting computation in Eq. (1) can be written uniquely as

c0 �∗
w d1 �+

r c1 �+
w · · · �+

w dm �∗
r cm.

We call a sequence of transitions ci �∗
w di+1 a write phase, and a sequence of

transitions di �∗
r ci a read phase. By this definition, a computation always starts

with a write phase and ends with a read phase. For the purpose of this paper,
we can assume without loss of generality that both the first write phase and last
read phase are non-empty, by altering the machine to always start by writing
with a stay instruction, and to always read with a 0 instruction before finishing.

Furthermore, for any such SA M = (Q,Σ, Γ, δ, q0, F ) (with a non-empty
initial read phase and final write phase), we can construct an SA M ′ = (Qw ∪
Qr, Σ, Γ, δ′, q0w, F ′); where Qw and Qr are two distinct copies of the state set
Q of M , with the copied states denoted by the w and r subscripts, F ′ = {qr |
q ∈ F}, and where δ′ is a union of two transition functions:

– δw, which contains transitions (qw, a, y) → (pw, ι) and (qw, a, y) → (pr, ι);
where (q, a, y) → (p, ι) in δ, and ι ∈ {stay, push(x), pop}; and

– δr, which contains transitions (qr, a, y) → (pw, ι) and (qr, a, y) → (pr, ι);
where (q, a, y) → (p, ι) in δ, and ι ∈ {−1, 0, 1}.

We call transitions in δw write transitions, and transitions in δr read transitions.
Similarly, we call states in Qw (resp. Qr) write states (resp. read states). Observe
that the language accepted by M ′ is the same as the one accepted by M .
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Any stack machine that has states that can be partitioned into write and read
ones, such that write transitions can only be applied from write states, and read
transitions can only be applied from read states, is said to have partitioned states.
In such a machine, the current state in every configuration dictates whether the
next transition to be taken is a write or a read transition.

A stack automaton is called non-erasing (NESA) if it contains no transitions
to an element of Q × {pop}. A non-erasing stack automaton is called a checking
stack automaton (CSA) if it has partitioned states and it contains no transitions
from a read state to a write state. Every accepting computation of a checking
stack automaton therefore has a single write phase followed by a single read
phase.

We denote by L(SA),L(NESA), and L(CSA) the families of languages
accepted by the three types of devices.

3 Complexity Measures on Stack Automata

For an SA M = (Q,Σ, Γ, δ, q0, F ), one can consider three different space com-
plexity measures defined similarly as for Turing machines [13]. Consider an input
word u ∈ Σ∗ to M .

– weak measure:

σw
M (u) =

{

min {‖C‖Γ | C an accepting computation on u} , if u ∈ L(M),
0, otherwise.

– accept measure:

σa
M (u) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

max {‖C‖Γ | C an accepting computation on u} , if exists &
u ∈ L(M),

∞ if does not exist & u ∈ L(M),
0, u /∈ L(M).

– strong measure:

σs
M (u) =

{

max {‖C‖Γ | C is a partial computation on u} if it exists,
∞ otherwise.

Next, we are interested in studying stack sizes as a function of the length of
the input. Thus, for each z ∈ {w, a, s}, we define the functions,

σz
M (n) = max {σz

M (u) | u ∈ Σ∗ and |u| = n} ,

σ́z
M (n) = max {σz

M (u) | u ∈ Σ∗ and |u| ≤ n} .

The latter essentially forces the space complexity to be a non-decreasing function.
We leave off M if it is clear based on the context.
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Using this notation, we can now write σz(n) ∈ O(f(n)), o(f(n)), Ω(f(n)),
etc., for some function f(n) from N0 to N0, in the usual fashion.

Note that, if there is any single word u with σz(u) = ∞, with z ∈ {a, s}
(this occurs if there are infinitely many accepting computations of the word u
of arbitrarily large stack sizes), then σz(n) = ∞ for n = |u|, and σz(n) cannot
be in O(f(n)) for any integer function f . If there is such a word u, then we say
that M is z-unlimited, and z-limited otherwise.

Example 2. Consider the language

L = {ambk | m ≤ k,m divides m + k}.

This contains for example a3b6 because 3 divides 9. It contains ab4 because 1
divides 5, but there are no other words accepted of length 5 since 5 is prime.

An obvious CSA M accepting L copies am to the stack, then verifies that m
divides k by going back and forth on the checking stack while reading from the
input and checking that both the stack and input reach the ends of their tape
at the same time.

Here are some properties of M :

1. σs(n), σa(n), σw(n) are all O(n).
2. For every even n, σa(an/2bn/2) = n/2, and thus σa(n) ≥ n/2. Therefore,

σa(n) is not o(n).
3. Also σ́a(n) is Ω(f(n)) since σ́a(n) is non-decreasing.
4. For every prime number n, σa(n) = 1. Thus, σa(n) is not Ω(n). Further,

σa(n) is not Ω(f(n)) for any f(n) in ω(1) (i.e. f(n) is ω(1) if for any positive
constant c, there exists a constant k such that 0 ≤ c < f(n) for all n ≥ k).
So, if we use the function σa instead of the non-decreasing function σ́a, then
it is no longer at least linear.

4 Space Complexities of Stack Automata

In [8] it was shown that for every stack automaton M , there exists another stack
automaton M ′ such that L(M) = L(M ′) and σw

M ′(n) is O(n). Here we show the
stronger statement that for any checking checking stack automaton M , σw

M (n) is
in O(n) (i.e. it is true for M without converting to M ′). Furthermore, it is also
true for the accept (and strong) measures as well as long as they are a-limited
(s-limited).

The basic idea of the proof for the weak measure is the following: consider
some accepting computation C on some string u ∈ L(M). Consider the stack
at the end of this computation. We shall look for maximal sections of the write
phase whereby, from the start of pushing this section until the end of pushing
this section, only λ-transitions are applied; and then in later read phases, this
section of the stack is also only read on λ-transitions. Therefore, the behavior of
the automaton in this section of the stack does not depend on the input string.
We shall show that if this section of the stack is too large (larger than some
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constant z′), then we can find some smaller word that we can replace it with,
without altering this behavior. This means that for every accepted string u, we
can find an accepting computation in which each of these sections is at most z′

letters long. Since each of these sections of the stack are surrounded by cells
of the stack in which the automaton reads some input symbol, there can be at
most (|u|+2)z′ letters on the stack in this new computation. A similar argument
can be used for the accept and strong measures.

Proposition 3. Let M be a CSA. The following are true:

– σw
M (n) is in O(n);

– if σa
M (n) is a-limited, then σa(n) is O(n);

– if σs
M (n) is s-limited, then σs(n) is O(n).

Whether or not the result above holds for NESA and SA generally is an open
problem.

Notice that in the proposition above, it is not true that every CSA machine M
has σa(n) in O(n), because of the following more general fact:

Remark 4. Consider a CSA machine M accepting Σ∗ that nondeterministically
pushes any string onto the stack using λ-transitions, and then reads any input
and accepts. Here, M is not a-limited or s-limited and σa(n) is not O(f(n)) for
any function f .

Lower bounds on the space complexity functions can also be studied similarly
to upper bounds. The next proof starts with an accepting computation using
some stack word, and then finds a new accepting computation on some possibly
different input word that is roughly linear in the size of the stack. It then uses
the regularity of the store languages of stack automata in order to determine
that for every increase in some constant c, there’s at least one more input word
of that length that has a stack that is linear in the size of the input. That is
enough to show that the accept and strong space complexities cannot be o(n),
and if the non-decreasing function σ́z is used, then it is at least linear.

Lemma 5. Let z ∈ {a, s}. Let M be a CSA such that σz(n) /∈ O(1) and M is
z-limited. The following are true:

– there exist c, d, e such that, for every n ∈ N0, there is some input u ∈ Σ∗

(with u ∈ L(M) if z = a) where n ≤ |u| ≤ n + c and d|u| ≤ σz(u) ≤ e|u|,
– σz(n) cannot be o(n),
– σ́z(n) ∈ Ω(n).

Lemma 5 is the “best possible result” in that it is not always the case
that σa(n) ∈ Ω(n) since the space complexity can periodically go below lin-
ear infinitely often as demonstrated with Example 2. But what this lemma says
is that it returns to at least linear infinitely often as well. Furthermore, there is
a constant c such that it must return to at least linear for every increase of c in
the length of the input. Putting together all results for CSA so far, we get the
following complete characterization:
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Theorem 6. Let M be a CSA. For z ∈ {a, s}, exactly one of the following must
occur.

1. M is z-unlimited, and so there is no f such that σz(n) ∈ O(f(n)) (and L(M)
can be either regular or not);

2. M is z-limited, σz(n) ∈ O(1), and L(M) is regular;
3. M is z-limited, σz(n) ∈ O(n), σz /∈ o(n), and σ́z(n) ∈ Θ(n) (and L(M) can

be either regular or not).

Proof. Consider the case z = a. Either M is a-limited, or not. If it is not, then
L(M) can be either regular or not. Moreover, both are possible, as one can take
an arbitrary CSA M ′ (which can either be regular or not), and modify it to M ′′ by
starting by pushing an arbitrary word over a new stack letter x on λ-transitions,
then simulating M ′. Thus, L(M ′) = L(M ′′), and M ′′ is a-unlimited.

Assume that M is a-limited. And, assume that σa(n) is O(1). Then only a
bounded amount of the stack is used, and M can therefore be simulated by an
NFA, and hence L(M) is regular.

Assume σa(n) is not O(1). Then Lemma 5 applies, and the statement follows.
Also, it is possible for it to be non-regular (Example 2), or regular (by taking
a DFA and simulating it with a CSA that copies the input to the stack while
simulating the DFA). �

The question arises next of whether the lower bound is also true for NESA
and SA. We see that this is not true.

Proposition 7. There exists a NESA (and a SA) M that accepts a non-regular
language such that σa(n) and σw(n) are in Θ(

√
n), and σs(n) ∈ O(

√
n).

Proof. Consider the language L = {a1ba2b · · · arb | r ≥ 1}, and let L0 =
pref(L), which is not regular. Then L0 can be accepted as follows. Consider
the input al1bal2b · · · alrbal, r, l ≥ 0. M starts by reading and pushing a, then it
repeats the following: It reads b and pushes one a on the stack, moves to the
left end of the stack and matches the a’s on the stack to the next block of a’s
of the input. These steps are repeated until the end of the last section, that can
be (the only one) shorter than the word stored in the stack.

On an input of size n, there is one word accepted of this length and the
stack γ satisfies 1/2

√
n ≤ |γ| ≤ √

n. Thus, σa(n) and σw(n) are in Θ(
√

n). For
the strong measure, the stack is at most

√
n in size. �

It is possible to observe that there exists a NESA M that accepts a regular
language such that σa(n) ∈ Θ(

√
n) and σs(n) ∈ O(

√
n). Let us consider L0 ∪

{a, b}∗ = {a, b}∗. A machine M ′ can be built that either simulates M described
in the proof of Proposition 7, or it reads the input and accepts without using
the stack. Thus, σa

M (n) = σa
M ′(n) and σs

M (n) = σs
M ′(n).

In conclusion,
√

n ∈ o(n), and thus Lemma 5 cannot be generalized to NESA
or SA. Therefore, unlike CSA, there is not a complete gap between Θ(1) and Θ(n),
and the exact functions possible between them (besides

√
n) remains open.
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5 Space Complexities of Languages Accepted by Stack
Automata

Just as the space complexity of stack machines can be studied, it is also possible
to ask the question, given a language L ∈ L(CSA), what are the space com-
plexities of the machines in CSA accepting L? (and similarly for NESA,SA). It
follows from Proposition 3 that for every L ∈ L(CSA), there exists a machine
M ∈ CSA such that σw(n) is O(n). A similar result is also known to be true for
SA generally [8,12].

For the strong measure, we will see that there are languages where all the
machines that accept them are more complicated.

Example 8. Consider the language

Lcopy = {u$u�v$v | u, v ∈ {a, b}∗}.

Certainly, there is an M ∈ CSA that accepts L as follows: on input u′$u′′#v′$v′′,
M guesses two words u and v in advance on λ-transitions, and pushes u#v on
the stack; then M verifies that u = u′ = u′′, and v = v′ = v′′.

For the accept measure, σa
M (n) ∈ O(n), as all computations that accept have

a stack that is linear in the input. However, for the strong measure, because the
machine M starts by guessing and pushing both u and v on λ-transitions, M
could guess u and v that are substantially longer (arbitrarily longer) than u′

and v′. This machine M is therefore s-unlimited.

The question arises as to whether every machine that accepts Lcopy is s-
unlimited. We will see that this is indeed the case. To show this, we first prove
the following lemma, which again uses store languages

Lemma 9. Let M = (Q,Σ, Γ, δ, q0, F ) be a CSA with partitioned states Qw and
Qr. The language

Lw,M = {u | (q0, uv, �

�

	) �∗
w (q, v, γ) �∗

r (qf , λ, γ′), q ∈ Qr, qf ∈ F},

composed of all the input words scanned by M during the (complete) write phase
of each accepting computation, is a regular language.

This is useful towards the following proposition.

Proposition 10. For the language Lcopy ∈ L(CSA) from Example 8, for all M
accepting Lcopy, M is s-unlimited. Thus, for each such M accepting Lcopy, there
is no function f such that σs

M (n) is O(f(n)).

Proof. We show that for every CSA M accepting Lcopy, M can perform an
arbitrarily long sequence of λ-transitions that write (either push or stay) where
the size of the stack can grow arbitrarily without reading input letters. If there
is some sequence of λ-transitions that writes (that can be reached from the
initial configuration) that is bigger than the number of states of the machine
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multiplied by the stack alphabet, then M has a cycle in which only write λ-
transitions occur. Then as long as this cycle has at least one push transition in
it, the stack can grow arbitrarily. Hence, there exist infinitely many (possibly
rejecting) computations during which arbitrarily many letters are pushed on the
stack making the machine s-unlimited.

Let M = (Q,Σ, Γ, δ, q0, F ) be an arbitrary CSA accepting Lcopy. Assume,
by contradiction, that Lcopy is s-limited. Consider the language Lw,M from
Lemma 9, which is a regular language. Furthermore, let W = pref(Lw,M ) ∩
{a, b}∗${a, b}∗�, which must also be regular. Assume that W is infinite. Thus,
there exist infinitely many words in W that have an accepting computation
that does not enter the read phase until after #. But as W is regular, and
only contains words of the form u$u#, there must be some infinite subset of
{u$u# | u ∈ {a, b}∗} that is regular, a contradiction, by the pumping lemma.
Thus, W must be finite.

Let u be some word such that u$u# /∈ W . Thus, for all accepting computa-
tions on any word in Lcopy = {u$u�v′$v′′ | v′, v′′ ∈ {a, b}∗}, it must enter the
read phase before reaching the # symbol. Also, there must exist a constant c such
that for all of these accepting computations, the stack must grow to at most c|u|,
otherwise M could enter an infinite cycle on λ-transitions that push in the write
phase, and it would be s-unlimited. Consider some word u$u#v$v ∈ Lcopy where
|v| > |Q| · c · |u|, and consider some accepting computation (where it must enter
the read phase before hitting #). When scanning the second v, there must be
two configurations reached where M reaches the same state and stack position,
and at least one letter of Σ was read between them. Hence, u$u#v$v′ is also
accepted, v 	= v′, a contradiction. Hence, M is s-unlimited. �

For the accept measure, the situation is more complicated, and it is left open.
However, we have the following conjecture. Consider the language

L = {1k#v1# · · · #vm | vi ∈ {0, 1}∗, |{v1, . . . , vm}| ≤ k}.

This language can be accepted by a CSA machine that, for every 1 read, pushes a
nondeterministically guessed word over {0, 1}∗ on the stack so that its contents
is u1# · · · #uk. Then, for each vi on the input, it guesses some uj on the stack
and verifies that they are equal. However, this machine does not keep track of
whether each uj on the stack was matched to some vi (and it seems to have no
way of keeping track of this), and uj could be arbitrarily long. We conjecture
that every M ∈ CSA accepting L is a-unlimited. In fact, we conjecture that this
is true for every M ∈ SA.

6 Decidability Properties Regarding Space Complexity
of Stack Machines

It is an easy observation that when the space used by a checking stack automaton
is constant, the device is no more powerful than a finite automaton. Nevertheless,
given a checking stack automaton M , it is not possible to decide whether or not it



148 O. H. Ibarra et al.

accepts by using a constant amount of space with the weak measure. This result
can be derived by adapting the argument used in [14] for proving that, when the
weak measure is considered, it is not decidable whether or not a nondeterministic
pushdown automaton accepts by using a constant amount of pushdown store.
In that case, the authors used a technique introduced in [6], based on suitable
encodings of single-tape Turing machine computations and reducing the proof
of the decidability to the halting problem; this can be done here as well.

Proposition 11. It is undecidable whether a CSA M accepts in space σw(n) ∈
O(1) or not.

On the other hand, although it may seem counterintuitive, the same problem
is decidable for the accept and strong measures, even for stack automata.

Proposition 12. For z ∈ {a, s}, it is decidable whether an SA M satisfies
σz(M) ∈ O(1) or not.

Proof. For the accept measure, first, we construct a finite automaton M ′ accept-
ing the store language of M . We can then decide finiteness of L(M ′) since it is
regular, which is finite if and only if M operates in constant space.

For the strong measure, we can take M , and change it so that all states are
final, then calculate the store language, and decide finiteness. �

7 Conclusions and Future Directions

In this paper, we defined and studied the weak, accept, and strong space com-
plexity measures for variants of stack automata. For checking stack automata
with the accept or strong measures, there is “gap”, and no function is possible
between constant and linear, or above linear. For non-erasing stack automata,
there are machines with complexity between constant and linear. Then, it is
shown that for the strong measure, there is a checking stack language such that
every machine accepting it is s-unlimited (there is no function bounding the
strong space complexity). Lastly, it is shown that it is undecidable whether a
checking stack automaton has constant space complexity with the weak measure.
But, this is decidable for both the accept and strong measures even for stack
automata.

Many open problems remain. It is desirable to know whether there are any
gaps between constant and linear space for the weak space complexity measure
for checking stacks. Also, it is open whether all stack automata have linear weak
space complexity (it is known that every language has some machine that oper-
ates in linear space complexity). The exact accept and strong space complexity
functions possible for non-erasing and stack automata (besides constant, square
root, and linear) still need to be determined. It is also open whether there is
some stack language (or non-erasing stack language) such that every machine
accepting it is s-unlimited. Furthermore, for the accept measure, we conjecture
that there is a CSA language whereby every machine is a-unlimited, although
this is also an open problem. Answering these open questions would be of interest
to the automata theory community.
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