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Abstract—The recent development of the massive multiple- elements, along with the increasing signal sources, $patia
input multiple-output (MIMO) paradigm, has been extensivdy  correlation increases as well, thereby inducing a saturati
based on the pursuit offavorable propagation: in the asymptotic j the gpatial diversity benefits. This observation moteat

limit, the channel vectors become nearly orthogonal and irer- tud hether the f bl Hi h Esisti
user interference tends to zero[[f]. In this context, previas stud- a study on whether the lavorable propagation characesist

ies have considered fixed inter-antenna distance, which inies an hold for the case of space-constrained massive arrays.
increasing array aperture as the number of elements increaes. In line with the above, in this paper we study the sta-
Here, we focus on a practical, space-constrained topologwhere istica| properties of the inner product of channel vectors
an increase in the numlber of antenna.elements in a.flxed for a system equipped with a massive uniform linear array
total space imposes an inversely proportional decrease inhé ; - .
inter-antenna distance. Our analysis shows that, contraryto (ULA) of fixed total space, where the inter-antenna distance
existing studies, inter-user interference does not vanisiin the is inversely proportional to the number of elements and the
massive MIMO regime, thereby creating a saturation effect @ antenna correlation is directly dependent on the number of
the achievable rate. antennas. In contrast t6][4].1[5], where the sum rates were
Index Terms—Antenna arrays, favorable propagation, massive derived for particular precoding schemes, here we elaborat
MIMO. on the fundamental statistical properties of the massivel®I|
channel for a space-constrained antenna deploym@at.
l. INTRODUCTION analysis shows that the inner product of two distinct channe
Massive multiple-input-multiple-output (MIMO) systemsvectors, which intimately represents inter-user intenfiee,
with hundreds of antennas are envisaged for the next genaranverges to a non-zero value; this causes a saturatioreof th
tion of base stations (BSs) to meet the ever increasingtguakchievable sum rates under MRT with an increasing numbers
of service (QoS) demands in a power efficient manfér [1¢f antennas. In fact, it is analytically shown that the finstla
[2]. Existing studies have shown that a key characteristic second-order moments of this inner product converge to non-
massive MIMO is that the inner product of two distinct channeanishing values which depend on the total physical space
vectors between the BS and the mobile users tends to zeramfishe BS array. Note that the findings under this scenario
the number of BS antennas increasés [1], [3]. In other wordgand in fundamental contrast with thosel[df [L], [3], [6],ieth
the multi-user spatial streams become asymptoticallyyisér demonstrated that inter-user interference converges thiyoo
orthogonal. Under this condition, coinefdvorable propa- to zero for physically unconstrained antenna arrays.
gation low-complexity precoding/detection (e.g. maximum-
ratio-transmission (MRT)/maximum-ratio-combining (MRC
can achieve near-optimal performance [1]. Il. SYSTEM MODEL AND ACHIEVABLE SUM RATE
A major obstacle towards increasing the numbers of anten-
nas in practical systems is the limited available physipate A channel Model
in both BSs and mobile devices. The placement of antenna
elements at more than half a wavelength apart is, in generalConsider a downlink multiuser MIMO system with -
considered to secure minimal correlation between the comnantenna BS and< single antenna receivers with. > K.
nication channels, allowing the exploitation of the fulssym The physical space for the antenna array at the transmstter i
spatial diversity. On the other hand, a dense deploymentgnstrained taly\, where) is the carrier wavelength, ant)
antenna elements increases the spatial correlation, bherg the arbitrary physical constraint in units of wavelersgffhe
deteriorating the system performance [4]] [5]. Accordynglchannel is assumed to experience frequency flat fading, such
for a fixed total physical space, this introduces a tradeoff that the received signal at thieth terminal reads as
the spatial diversity. With an increasing number of antenna
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the inter-antenna separation is giveﬂ as where [9) has been obtained by applying Jensen’s inequality
on the convex function of the forrwg, (14 1). The above
d= @/\. (2) expression illustrates that the inner produ&‘[hj, between
N two distinct channel vectors determines the resulting-inger

The generic channel model using steering vector repregmmtainterference and, consequently, the achievable rate dfi eac

can be expressed as terminal. In the following, we will investigate the staiéstl
I properties of this inner product and show that, in the asymp-
totic limit as N — oo, its first two moments converge to
h;, = Oko0) + 0 3 '
k= Br,08(0k,0) ;Bk,@g( ) () on-zero values.
where the first term models the line-of-sight (LOS) compdnen
with path gainjy,o and the second term accounts for the I11. N ON-FAVORABLE PROPAGATION CONDITIONS
multipath components with path gair ¢, ¢ € [1,L]. The
steering vectorg;, are modeled as In this section, we derive exact and asymptotic expressions

- for the first and second-order moments of the inner product
g(Or0) = [1, e 1274 sin Oke . e—i2m(N—1){ sin 91«/5} (4) h/'h;, which determine the inter-user interference power. We
begin with the exact analysis, which holds for any finite
where (-)T denotes the matrix transpose2 /—1 and ¢, and present the following proposition:

is the angle of departure (AoD) for theth terminal. In line

with [3], [6] we focus on the uniform random LOS channe[ 2PO0M, ™ To" FEYSEa orBines Do I B 100
with B0 = 1 and B, = 0 for all £ # 0, for which we have P v ’

inner producth/ h; are equal to

o do . _vdo o T
hy, = |:1,€ 127 sm@k’“.’e 27 (N—1) 32 51n9k:| ) (5)

N-1

) E{thhj} = Z sinc? (am) (20)
It can be seen that now the channel response and the resulting =
antenna correlation are a function of the number of antennas N—1l N—1
N. We assume that all terminals are randomly distributed var{thhj = Z Z sinc? (a(my — my))
within a circle-shaped cell with radiuB. Following [3], [6], m1=0 ma—0
sinf, k = 1,..., K are assumed to be uniformly distributed N_1 2
within the interval[—1, 1]. _ (Z sinc? (am)> (11)

m=0

B. Achievable Sum Rate wherea = 27r% for brevity andvar(-) returns the variance

To keep our analysis insightful, we assume that both the B$ 3 random variable.
and users have perfect channel state information. Accgrdin
to (@), the achievable ergodic rate of theth user can be Proof: Let us defineu; < sin ). Then, we have
expressed as

N-1
Ry = E {log,(1 + SINR,)} (6) B{bfn;} = Y B{e2¥meul q2)
m=0

where E{-} denotes the expectation operator and ) , . ) ,
from which, for a uniformly distributedu; in the interval

SINR, 2 plhHwy|? @) [—1,1], it can be seen that
k = 174 I .
1 + pzjzl-,j#k |hk W7| E{ iQﬁd_Omuk} 1 /1 i2ﬂ-ﬂmzd Sln(27r%m)
N = — N = —
Considering MRT where the precoding vector is given as ¢ 2 ) ¢ v 271'%m

wy = hy/V/N, the achievable ergodic rate of tieth user
can be rewritten as The desired results il (1L0)-(11) follow trivially after sem

~ basic algebraic manipulations and noting that
P
Ry =F {log2 <1 + y74 ) } (8) 2
L+ & 2200 i hy 2 var{hf'h; } = £ {|nffn;|"} - ’E {hfh;} ‘ . (13)

1
> log, <1+ )ﬁRL m

L+ (K —1)E{<:|hfh;2 . . .

o~ ( JE {§zInihy[?} ) We now turn our attention to the massive MIMO regime,
by letting N — oo. Under these conditions, we obtain some

very important insights.

INote that, depending on the specific ULA configuration, thialtepace

P . Lo d, .
may be split in\V' —1 equal separations, giving = = A. For notational - prqngsition 2. For physically constrained ULAs with a total
convenience we herein considlt such separations, assumidg2 additional

space at each end of the array, which for laiyewill give a negligible Space_Ode in the LOS channel, the first two Sclaled moments
difference between the two models. of the inner produch h; and the square scaled inner product
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Fig. 1. Mean channel vector inner prodLEt{ thth} vs. N, for massive

MIMO with limited/unlimited physical space.

IV. NUMERICAL RESULTS

IhZh;|? tend asymptoticallyy — co) to This section iIIustrateg the gnalytical performance and re
sults of Monte-Carlo simulations for the massive MIMO
1 1 1 scenario under study in comparison with the case of massive
E{ Nthhj} - IN + 1d, (14)  MIMO with unlimited physical space. The simulations assume
1 1 a linear antenna array at the B&,= 10 users and the steering
E {_2|thhj|2} - — —¢ (15) vector channel model oB}.
N 2do Figure[D shows the simulated and analytical mean inner
var{ithhj} L1 (1 1 1 ) __1 __ product[D of the channel vectors for an increasing number
2dp 4N? of antennasV, along with the theoretical limit off@). The
(16) cases forl, = 4 andd, = 10 are shown and it can be seen that
L, (10 yields an exact match to simulation. More importantly,
wheree = 5= >, w is a correction term. it is evident that, unlike the case of unlimited physical@na
0 ) for the space-constrained deployment the inner product doe
Proof: See AppendixI. ®  not converge to zero, but tgl- as shown in our analysis.
The above results indicate that the channel vectors do mafis implies that interference is not completely nulled jatth
become pairwise orthogonal in the massive MIMO limitmgkes MRT precoding non-optimal for this scenario.
Instead, their mean inner product converges to a non-zeran Fig.[Xa), the simulated and analytical mean inner product
value that is inversely proportional to the total physiq@®e of the channel vectors is shown for an increasing total ULA
of the array. In other words, the smaller the physical lerdth spaced,. The mean inner product is also shown for the ULA
the BS array, the more we deviate from favorable propagatigaployment without space constraints for reference. A non-
conditions. Yet, ifdy grows analogously withV, the mean negligible deviation between the two models can be seen,
inner product will converge smoothly to zero, as predicted ivhich becomes significant as the total spdgelecreases.

2N 8dy

(1], [3], [6]. In Fig.(b), the simulated and asymptotic variance of the
From [€6, Eg. (18)—(19)], we know that for the case oinner product of the channel vectors is shown for am increpsi
unlimited physical array space, total ULA spacedy. The analytical asymptotic limit illustrates
expression [I6), which yields excellent tightness with the
E{ithhj} 0 17) simulation resglts even for small,. Again, the case of ULA

deployment without space constraints is shown for refexrenc

1.y 1 1 and a deviation between the two models can be seen.
Var{ﬁhk hj} - N N2 (18) Finally, Fig.Billustrates the effect of the above observations

on the achievable sum rate of the system under MRT, for a
Comparing[(I#) and{16) with (17)-(118), we can infer that thigansmit SNR ofp = 10dB where we have accounted for
corresponding expressions coincideljf = % in which case additional shadowing and propagation losses of 30dB. The
both moments will converge smoothly to zero. On the confradensen’s lower bound if®) can be easily evaluated in closed-
if the physical array space is fixed (i.e. it does not grow witform using the results of Proposition 1; unfortunatdly, is
N), the mean and variance of the inner product, which indicatelatively loose for the channel model considered heréites
the level of inter-user interference, will converge to rmare var{ﬁ|h,{?hj|2} is much higher compared, for example, to
constant values that are inversely proportionadi§o the Rayleigh fading case considered [B]. [The achievable



20 APPENDIXII
Simulated PROOF OFPROPOSITIONZ
e e B d=NI2 / The proof of [[@ follows trivially by recalling {0 and

Lemma 1, where the condition on holds for large V.
Regarding the square inner prodLEt{\h,fhj\Q}, this can
be expanded as follows:

N—-1 N-1

E{‘thhj 2} = Z Z sinc? (a(my —ms))

m1=0m2=0
-1 N-1

Z 1 —cos(2a(my — my2))

Achievable Sum Rate

dy=4 2a2(my — mo)?
0 m1=0 mqy = ( 1 2)
0 1 1 1 1 1 1 1 1 1 m2 # ml
50 100 150 200 250 300 350 400 450 500 N—-1 N—-1
Number of BS antennas (N) 1 1
=N+ 9,2 2 : § : (o — )2
2a ) o (my1 — ma)
. . . . . . mi= mo =
Fig. 3. Achievable sum rate for massive MIMO with limitedifumted m;# my

physical space. N1

N—-1
1 cos(2a(my —ma))
- — . 21
2 2 (mm)? 21)
m1=0 mao = 0
sum rates are shown for the casigs= 4, 10 and compared to ma # my
the deployment over unlimited physical space. Contrarye tafter some tedious but straightforward manipulations,dh ¢
latter case, a saturation in the sum rates can be observéfeforye shown that, folV — oo, the first sum inZI) converges to
space-constrained deployment, where, as expected, thegcei Ne1 N
of the achievable sum rate starts diminishing with incregsi Z Z 1
total spacel.

2 =1
SoNE N1 22
2 2, Ty e
ma # ma

CONCLUSION Likewise, the second sum ifZ]) converges to

The favorable propagation characteristics of massive MIMO .~ |
have been examined under space-constrained antenna deplo 3 cos(2a(my —ma))
ments. Contrary to current understanding, it was shown tha;m_0 0 (mq —mg)?
when increasing the numbers of antennas that are deployed in m227£ my
fixed total space, the inner product of the channel vectoidste 9 )

. I : 9 T cos(2ka)

to a non-zero value. This phenomenon implies that inter-use —2N (a” —7ma+ — | — Z — (23)
interference does not vanish in the massive MIMO regime, 6 k=1

thereby making MRT non-optimal. The above discussion posggmbining PI)-@3) and simplifying, yields the desired re-
a fundamental divergence from existing intuition and W&t  git. Finally, the asymptotic result for the variance of thieer

a further study of the resulting space-constrained depit& product is a direct combination did), (I8 with (3.
and the development of suitable transmission schemes.
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