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ABSTRACT Space debris detection is important in space situation awareness and space asset protection.

In this article, we propose a method to detect space debris using feature learning of candidate regions.

The acquired optical image sequences are first processed to remove hot pixels and flicker noise, and the

nonuniform background information is removed by the proposed one dimensional mean iteration method.

Then, the feature learning of candidate regions (FLCR) method is proposed to extract the candidate regions

and to detect space debris. The candidate regions of space debris are precisely extracted, and then classified

by a trained deep learning network. The feature learning model is trained using a large number of simulated

space debris with different signal to noise ratios (SNRs) and motion parameters, instead of using real space

debris, which make it difficult to extract a sufficient number of real space debris with diverse parameters in

optical image sequences. Finally, the candidate regions are precisely placed in the optical image sequences.

The experiment is performed using the simulated data and acquired image sequences. The results show that

the proposed method has good performance when estimating and removing background, and it can detect

low SNR space debris with high detection probability.

INDEX TERMS Space debris detection, background estimation, candidate region extraction, deep learning.

I. INTRODUCTION

Space debris refers to useless artificial debris in orbit, which

includes nonfunctional spacecraft, and abandoned space

vehicle stages [1]. The amount of space debris is growing

quickly, and its existence on a large scale poses a serious

threat to satellites in orbit, space stations, and other space

activities [2]. There was more than 139 million space debris

by 2019 [3]. If space debris collides with spacecraft, it will

cause equipment damage, mission failure, and so on. There-

fore, the movement of space debris must be monitored to

achieve an effective prediction of its activities and to avoid
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accidents. Space debris detection is a key step in monitoring

space debris.

Space debris are mainly in geosynchronous orbit. The

debris are far away from the sensor and the reflection area

is small. When debris images appear through charge-coupled

devices (CCD), the debris appears in the focal plane and spans

only a few pixels. The total number of pixels covered by the

debris is less than 0.15% of the 256 × 256 size image. At the

same time, the reflectivity of the debris is low and its distribu-

tion is sparse. The corresponding energy of the pixels is very

weak compared to the noise in the environment, and the SNR

can even equal to 1. Therefore, according to the definition of

SPIE, space debris consists of typical dim and small objects,

and it is difficult to detect space debris with an extremely

low SNR. A large number of classical methods have been

150864 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0003-2258-0993
https://orcid.org/0000-0003-2479-8195


J. Xi et al.: Space Debris Detection Using FLCR in Optical Image Sequences

proposed to detect such dim small objects. Mohanty [4]

proposed an algorithm to detect those objects based on the

maximum likelihood ratio. Reed et al. [5] proposed a method

that uses three-dimensional matched filtering to detect small

objects. It can deal with the low SNR situation well through

a group of filters to match the possible trajectories when

the velocity and direction are known. Barniv [6] proposed a

dynamic programming algorithm that uses speed and shape to

detect objects moving in a straight line under low SNR, and

this algorithmwas subsequently developed byBuzzi et al. [7].

There are two main kinds of dim and small objects: streak-

like, and point-like objects. They are acquired with differ-

ent integration times. As the integration time becomes long

compared with the velocity of the objects, the dim and small

objects become increasingly streak-like from point-like. The

current methods of space debris detection are manifested in

the following works:

(1) Steak-like object detection: Kouprianov [8] proposed

a point spread function (PSF) fitting method based on

a model profile of an extended trail; Tagawa et al. [9]

took the local sums of the streak along the moving

direction to archive steak-like object detection; Virta-

nen et al. [10] used area-based grayscale intensity estimation

and multiple-window shape analysis to implement an auto-

mated steak detection pipeline. The direction of the motion

needs to be known as a priori knowledge or to be estimated

with a complex fitting method. Blostein and Huang [11]

proposed a multistage hypothesis testing (MHT) method,

which can effectively search for dim and small objects at

every pixel in the image sequence. Demos [12] proposed

structured branch multistage hypothesis testing (SB-MHT)

using sizable computational savings. Blostein and Richard-

son [13] proposed multiple multistage hypothesis test track-

ing (MMHTT) to detect dim and small objects. These meth-

ods always have an excellent performance, but usually need

to search along a route or directions, which is also demanding

substantial time and computing resources.

(2) Point-like object detection: Yanagisawa et al. [14]

extracted low SNR objects using multiple, consecutive

images of objects and median filtering based on the a pri-

ori motion information of the objects, which is very sim-

ple but the detection probability still needs to be improved.

Nunez et al. [15] proposed an image deconvolution method

based on the Richardson-Lucy (R-L) algorithm, which is

based on the maximum likelihood solution but did not reach

the maximum. Sun and Zhao [16] and Sun et al. [17] imple-

mented a pipeline to detect dim objects by using median

filtering, mathematical morphology, and global threshold-

ing. These methods also require prior information of the

objects, and have difficulty to detect space debris without

the prior information. In recent years, some scholars have

proposed new methods to implement high efficiency and

low computation. Xi et al. proposed the three frame corre-

lation method [18], and used the particle filter method [19]

to detect space debris which can detect and track space

debris with median SNRs. Xi et al. [20] proposed an

effective method to detect space debris with low SNR in

optic image sequences by using the time-index filtering and

time-index multistage quasi-hypothesis-testing (TMQHT)

method. Ding et al. [21] proposed a detection method by

using the prior orbit information and the Hough line trans-

form. It can effectively detect small size space debris in the

low earth orbit. Metrailler et al. [22] proposed a difference

method to detect moving space debris by processing two

successive exposures. The method can detect faint debris

streaks down to peak SNR2 in less than 1 second of exe-

cution time. Diprima et al. [23] proposed a pipeline for

automatic near real-time detection of space debris in opti-

cal data by using GPU technology. It is based on morpho-

logical filtering andthe Hough transform for line detection.

Yang et al. [24] proposed an integration algorithm for the

detection of weak space debris using incoherent scatter radar.

Kong et al. [25] proposed an optical masking algorithm for

GEO space debris detection. Its detection probability reaches

94% and false-alarm rate is below 2%when the SNR is higher

than 3. Sun et al. [26] implemented a real-time detection

algorithm for space debris based on multicore DSP. It takes

approximately 600ms to detect objects on a 2048*2048 (gray

16bit) images. These recently proposed methods usually have

a good performance, but the computation load, depending on

the prior information, and the detection probability can still

be improved.

Machine learning methods can learn the extracted fea-

tures from different types of data to perform regression and

classification [27], [28]. Recently, researchers have tried to

introduce machine learning method into different research

areas such as doing cyclic capacity, or future prediction of

lithium-ion batteries [29], [30]. For images, deep learning

has gained great success in image and computer vision tasks.

Early in 1998, LeCun et al. [31] successfully used a convolu-

tional neural network to identify the characters in documents.

Recently, deep learning (DL) has been widely applied in

image classification tasks [32]–[34]. It has also been suc-

cessfully extended to object detection including two-step

and one-step models. Two-step object detection framework

is based on region proposals, classification and bounding

box regression. R-CNN [35] obtains candidate regions by

a selective search, and uses the CNN model to obtain the

classification results. Fast R-CNN [36] uses convolution lay-

ers to produce feature maps, and obtains the projection of

regions of interest (ROI). Faster R-CNN [37] uses region

proposal a network (RPN) with 9 different anchors to obtain

the candidate regions, and to speed up the process of object

detection. The one steps object detection framework is based

on global classification and bounding box regression. YOLO

[38] uses the topmost features to predict both classes and

obtains the bounding boxes by splitting the whole image into

S×S grids. SSD [39] is proposed using a set of anchor boxes

with different aspect ratios and scales to detect objects with

different sizes and motion directions. Recently, researchers

began to use image processing methods with deep learn-

ing models to detect dim and small objects. Hu et al. [40]
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proposed a method using the bilateral filtering method and

a long short term memory (LSTM) neural network to detect

and track dim and small objects in infrared sequential images.

Varela et al. [41] presented a streak detection method based

on YOLO. They demonstrated that this method is better

than the Hough transform and phase congruency transform.

Kong et al. [25] proposed an effect analysis of the optical

masking (EAOM) algorithm, which can detect GEO space

debris with a low SNR based on a top-hat transformation,

masking technique, and weighted algorithm. Jia et al. [42]

built an astronomical object detection and classification

pipeline based on the Faster R-CNN, ResNet-50 [43] and

Feature Pyramid Network [44]. These frameworks have a

strong ability to detect dim small targets with high accuracy.

However, none of these frameworks combined the advantage

of traditional methods and deep learning. It is challenging to

use deep learning for space debris detection. The reasons are

as follows: (1) Space debris is a dim and small object. The

intensity of space debris is similar to that of the background

noise, and space debris only have a few spatial features.

(2) There are a large number of stars in the astronomical

image sequences, and their energy distribution and patterns

are very similar to those of space debris. Therefore, it is

difficult to use deep learning models to classify or detect

space debris directly.

In this article, we propose a space debris detection method

using feature learning of candidate regions (FLCR) in optical

image sequences. The framework is shown in Figure 1. First,

image preprocessing methods are proposed to remove hot

pixels, flicker noise, and nonuniform background informa-

tion. Second, the space debris are detected using feature

learning of candidate regions, which includes two parts:

one is using the motion features among multiple sequential

images and an improved threshold segmentation to reduce

the amount of data and extract the candidate regions of

the space debris, and the other is using the deep learning

model SDdecNet to perform classification with the candidate

regions. Finally, the locations of the detected space debris

in the sequential images are computed using the weighted

centroid localization. Similar to the recently proposed dim

and small object detection method, which mainly uses tra-

ditional image processing or machine learning methods,

the above method has difficulties when using the spatial

features of dim and small objects sufficiently. The proposed

FLCR method can greatly reduce a large number of false

alarms caused by stars and noise, and reduce the computing

load using the candidate regions. Additional, it can detect

space debris more precisely and quickly by learning the

spatial features of the extracted candidate regions without

using exhaustive searching method to confirm the candidate

objects.

The paper is organized as follows: Section 2 discusses

the image preprocessing methods. Space debris detection

using feature learning of candidate regions is described in

Section 3. The experiments and results are given in Section 4.

In Section 5, the conclusions are provided.

II. IMAGE PREPROCESSING

A. HOTPIXELS AND FLICKER NOISE REMOVAL

The image background on a charge-couple device (CCD)

mainly includes moving targets, stars, starry sky background,

flicker noise, dark current noise and damaged pixels. Visible

light background images are subject to unevenness due to the

different gray levels of the different channels of the camera.

Therefore, we need to preprocess the image, to reduce the

negative impact of background and noise on object detection.

Damaged CCD pixels due to space radiation and other rea-

sons generally affect single pixels. The background is usually

distributed unevenly; therefore, we can use local thresholds

to detect the hot pixels in the image, and use the average of

the gray values of the surrounding four neighboring pixels to

replace it. The method is shown as follows:

1. Perform template matching detection. When the differ-

ence between gray value A and the gray value of the sur-

rounding 4 neighborhoods is greater than a certain threshold,

the pixel is initially determined as a thermal pixel, and the

average gray value m1 of the four neighborhood pixels is

calculated.

2. Within a certain range of surroundings, select four win-

dows, calculate the average gray value of the pixels in each

window, and then calculate the average gray value of the

pixels in all windows to obtain the local average m2.

3. If |m1 − m2| < b, (b can be easily obtained by

checking the mean uniform background using the acquired

images, which is related to the optical system design, and the

integrating time of the optical system.), this pixel is judged as

a thermal pixel, and the pixel is replacedwith the average gray

value of the surrounding 4 neighborhood pixels. Otherwise,

it is judged as a star and not a thermal pixel.

The flicker noise in the image appears as a single bright

spot in the image, with a size of one or two pixels (flicker

noise can occasionally appears, which can still be detected

and eliminated because the mean of 4 pixels is computed to

compare with the threshold), and its appearance is similar to

that of a thermal pixel. Flicker noise distinct from thermal

pixels because its position appears random and its position

changes with time. In the experiment, it is processed using

the same method that is applied to the thermal pixels.

B. NONUNIFORM BACKGROUND ESTIMATION AND

REMOVAL

As the stray light from a celestial body enters the image,

the system needs to estimate and subtract the nonuniform

background. At the same time, for the original observation

image, because the CCD sensor is actually composed of two

signal transmission channels, the images collected by the

two channels have a certain degree of nonuniformity. The

Gaussian mixture model (GMM) is usually a good method

for data modeling, but it is not suitable for this nonuniform

background estimation. We propose a one-dimensional mean

iteration method to estimate the multichannel nonuniform

background, and to be remove the background from the
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FIGURE 1. Diagram of space debris detection. First, the optical image sequences are preprocessed to remove hot pixels and flicker noise and to remove
the nonuniform background. Then, stars are detected and removed, and the candidate regions of the space debris are extracted. These regions are
classified by a trained deep learning model using a large number of simulated space debris with different SNRs and motion parameters, instead of using
real space debris. The advantage is that the model does not need to extract a sufficient number of real space debris with diverse parameters in the
optical image sequences. Finally, the correctly classified space debris are located precisely in the optical image sequences, and they are output together
with the detected stars.

images, which is important for space debris detection when

using threshold segmentation. Suppose the original image is

f0 (i, j), and the initial window size is W0. The window size

of the mth iteration is

Wm =

[
W0

m

]
+ C0 (1)

where [·] denotes rounding the number, and C0 is a constant

added to ensure that the size of the window is not reduced to

zero as the iteration is performed.

The background estimation for the first iteration is

B̂1(i, j) =
1

M

l=j+
N1−1

2∑

l=j−
W1−1

2

f0(i, l) (2)

Before the next iteration, the energy of the stars is reduced

by

fm = min
(
fm−1, B̂m + 2σn

)
(3)

where σn is the standard deviation of the image noise.

The background estimation after the mth iteration

is

B̂m(i, j) =
1

Wm

l=j+Wm−1
2∑

l=j−Wm−1
2

fm−1(i, j) (4)

For the image with two channels, the background estima-

tion is

B̂ = B̂L + B̂R (5)

where, B̂L , and B̂R are the background estimations of the left

and right channels of the image, respectively.

III. SPACE DEBRIS DETECTION WITH FEATURE LEARNING

OF CANDIDATE REGIONS USING DEEP LEARNING

The detailed space debris detection flow chart is shown

in Figure 2. This section includes three subsections. The

first subsection describes the proposed method for extracting

candidate regions of space debris including the star detection

and removal. The second subsection presents the SDdecNet

VOLUME 8, 2020 150867
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FIGURE 2. The flowchart of space debris detection.

for space debris classification, which is trained using a large

number of simulated space debris images. It can effectively

overcome the difficulty of segmenting enough real space

debris images with different SNRs and motion parameters.

Finally, the candidate regions of space debris are classified

and located precisely in the optical image sequences using

the subpixel location method.

A. CANDIDATE REGION ESTIMATION

The energy distribution of the stars is very similar to that of

space debris without motion blur. Therefore, the stars will

be removed first to reduce the number of candidate region

estimation of space debris. A maximum projection is used

to reduce the data from three dimensions to two dimensions,

and the median frame is used to perform star detection. The

maximum and median frames are computed as

fmax (i, j) = max
[
f̂ (i, j, k) , k ∈ [1,K ]

]
, (6)

fmed (i, j) = median
[
f̂ (i, j, k) , k ∈ [1,K ]

]
, (7)

where K is the number of images in an image sequence, and

K = 5 is chosen to assure that the dim and small space debris

are detected stably and effectively. The maximum frame

includes both the space debris and stars, and themedian frame

only contains stars. When the maximum frame is generated,

the time index image is obtained simultaneously as

t (i, j) = arg min
k∈[1,K ]

fmax (i, j) =

K∑

k=1

t0 (i, j, k) , (8)

where t (i, j) is the time index that records the frame numbers

of the maximum intensity at each pixel, and they can be

rewritten as a summation of the time indices of each frame

in an image sequence.

Most of the star intensity can be removed by

fres (i, j) = fmax (i, j) − αfmed (i, j) , (9)

where α is the intensity enhancement factor used to reduce

the intensity of bright stars to a large extent [20].

The intensity of the space debris is left in the residual frame

fres (i, j). Therefore, it can be used to extract the candidate

regions of space debris, and fmed (i, j). Then, the improved

adaptive threshold method is used to extract the candidate

regions of space debris, and detect stars.

First, the adaptive threshold method is used to compute the

threshold of the image as

Trough = µ0 + β0σ0, (10)

where µ0 and σ0 are the mean value and standard deviation

of the image, and β0 is a coefficient, which is usually chosen

from 3 to 5 [45] to assure that a large number of noise pixels

are eliminated according to the property of Gaussian distribu-

tion. With the rough threshold and supposing the image here

is f̂ (i, j), a corresponding binary mask is generated as

b (i, j) =

{
1, f̂ (i, j) ≥ Trough

0, f̂ (i, j) < T rough.
(11)

The exclusive mask is obtained by

e (i, j) = 1 − b (i, j) . (12)

Then, the precise threshold can be computed in the image

as

f̂noise (i, j) = f̂ (i, j) e (i, j) . (13)

The precise threshold is obtained by

Tprecise = µ1 + β1σ1, (14)

whereµ0 and σ0 are the mean value and standard deviation of

the image f̂noise (i, j), and β1 is a coefficient, which is usually

chosen from 3 to 5.
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With the improved adaptive threshold, the precise thresh-

olds and corresponding binary masks used to segment

the foreground and background can be obtained for both

fmax (i, j) and fmed (i, j), respectively, and they are denoted as

Tmax , Tmed ,, bmax (i, j), and bmed (i, j).

The candidate regions can be extracted using a mask that

only contains the candidate objects of the current frame. It is

generated using the time index image as follows:

bres (i, j, k) =

{
1, t (i, j) = k

0, t (i, j) 6= k.
(15)

The image that only contains the candidate regions of space

debris in the current frame is

fCR (i, j, k) = fresidual (i, j) bres (i, j, k) . (16)

The candidate regions can be extracted and located through

the following steps:

1. Binary morphological filtering. Through the combina-

tion of binary morphological corrosion and expansion opera-

tions, the isolated noise points in the binary image are filtered.

2. Connected region extraction. Extract the connected

region from the filtered binary image. Each connected area

corresponds to an object. We use the extracted connected

domain to mask the original image. The pixels of the can-

didate region are extracted and arranged in order to form an

n × 3 vector. The three dimensions store pixel gray value F,

abscissa i, and ordinate j.

3. Rough candidate centroid calculation: To simplify the

calculation and ensure sufficient positioning accuracy, we use

the vector obtained in step 2 to calculate the target centroid

position using the weighted centroid method:

x0 = ⌊

∑n
k=1 ik

n
⌋

y0 = ⌊

∑n
k=1 jk

n
⌋ (17)

where i is the abscissa of the pixel, j is the ordinate of the

pixel, n is the total number of pixels in the target mask area,

and (x0, y0) is the coordinate position integer of the object.

4. Clip the subimage from the clear image: We extend

16 pixels horizontally and vertically from the target position,

and select a 33 × 33 subimage as the candidate region.

B. DETECTION OF SPACE DEBRIS USING SPACE DEBRIS

DETECTION NEURAL NETWORK (SDdecNet)

1) ARCHITECTURE OF SDdecNet

The space debris recognition network is a convolutional neu-

ral network model based on the LeNet5 [31] architecture, and

is used to identify space debris. After the candidate regions

first extracted from the image sequences. A large number of

false alarms caused by stars can be eliminated. These candi-

date regions are then fed into the proposed SDdecNet to learn

the features of space debris efficiently and automatically. The

samples in the space debris detection task only include space

debris and noise. Their features mainly include low level

FIGURE 3. Architecture of the SDdecNet.

features such as edges and points. Two convolutional layers

are sufficient for this task. The network model structure is

shown in Figure 3. The input size of the network is 33×33×1.

The first convolution layer has 6 convolution kernels with

size 5 × 5. The convolution process uses zero padding to

keep the size of the output unchanged. The rectified lin-

ear units (ReLU) are chosen as the activation function to

effectively avoid the vanishing gradient problem [46]. This

function also has balanced performance on computation cost

and accuracy. A pooling layer that uses a 2 × 2 pooling

kernel is connected later, and the data are pooled in steps

of 2 × 2. The second convolution layer has 16 × 5 × 5

convolution kernels with zero padding to keep the size of the

output unchanged. The activation function is ReLU. A pool-

ing layer using a 2 × 2 pooling kernel is connected after

the convolution layer, and the data are pooled in steps of

2× 2. The convolution layer is followed by a fully connected

neural network classifier. First, a two dimensional matrix is

converted into a one-dimensional matrix using a flattening

layer. Later, a hidden layer containing 120 neurons is used,

and the activation function is ReLU. Then a hidden layer

containing 84 neurons is used, and the activation function is

also ReLU.

Dropout regularization is used for each fully connected

layer. It randomly turns off 50% neurons on the fully con-

nected layers during the training processing. This helps

prevent the model from being overfit and improve the per-

formance of the model. The output layer uses Softmax as the

activation function. Since the data is divided into space debris

and stars, two output neurons are used.
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2) TRAINING OF SDdecNet USING SIMULATED SPACE

DEBRIS

Although there is a large amount of space debris, only a

few debris can be observed in a single optical image. It is

difficult to obtain sufficient instances of space debris to train

the SDdecNet. The simulated space debris is introduced to

train the SDdecNet. The intensity distribution of the debris

without motion blur is

I (x, y) = I0



2J1

(√
x2 + y2

)

√
x2 + y2




2

(18)

where I0 is the central intensity of the debris, and J1 is the

1st order Bessel function. Supposing the motion is in the x

direction, then the point spread function of motion blur is:

PSFmx (x, y) = rect

(
x

dmx

)
δ (y) (19)

rect

(
x

dmx

)
=





1 |x| <
dmx

2
1

2
|x| =

dmx

2

0 |x| >
dmx

2

(20)

where dmx is the motion distance in the x direction on the

focal plane, and the motion in the y direction is the same

as that in the x direction, which is denoted as rect
(

x
dmy

)
.

The noise is simplified to Gaussian noise N (x, y) with back-

ground mean u1 and σ1, which are computed using the

improved adaptive threshold. Therefore, the simulated space

debris can be written as

Ssim (x, y) = I (x, y) ∗ PSFm (x, y) + N (x, y) (21)

PSFm (x, y) = PSFmx (x, y) ∗ PSFmy (x, y) (22)

After the discrete sampling of the intensity of the simulated

space debris with background noise, the training samples can

be obtained.

3) SUBPIXEL LOCATION OF SPACE DEBRIS AND STARS

The subpixel location of space debris and stars can be divided

into two steps:

1.The connective regions of classified space debris, and

stars extracted from the median frame image are obtained.

2. Subpixel object centroid calculation: To simplify the

calculation and ensure sufficient position accuracy, we use the

vector obtained in the candidate region estimation to calculate

centroid position of the object subpixel using the weighted

centroid method:

x1 =

∑n
k=1 F

2(ik , jk )ik∑n
k=1 F

2(ik , jk )

y1 =

∑n
k=1 F

2(ik , jk )jk∑n
k=1 F

2(ik , jk )
(23)

where i is the abscissa of the pixel, j is the ordinate of the

pixel, and F(i, j) is the gray value at (i, j). n is the total number

of pixels in the target mask area. (x1, y1) is the coordinate

position of the space debris centroid.

The basic location method for the location of stars, and

dim and small objects mainly utilizes (1) the interpolation

method and (2) the fitting method. The basic location method

for interpolation is the centroid method, also known as cen-

ter of mass method. In additional, the threshold centroid

method and weight centroid method are also commonly

used [47]. The fitting method includes the Gaussian surface

fitting method and paraboloid fitting [48]. Alexander ana-

lyzed the systematic error of the subpixel location in the

frequency domain [49], and Xi et al. used a phase transfer

function to compute the location of the stars in the frequency

domain [50]. The fitting method and frequency method usu-

ally have good location accuracy, but their computing require-

ment are demanding. The centroid method is very simple,

but the performance still needs to be improved. Considering

the balance between location accuracy and computing speed,

the weighted centroid is the proper method.

4) COMPUTATIONAL EFFORTS OF FLCR

The computational efforts of our designed feature learn-

ing methods mainly include three measures. The first

measure uses maximum projection, which reduces the

three-dimensional image sequences into two-dimensional

image. The second measure uses the candidate region extrac-

tion method based on the improved adaptive threshold

method, which eliminates most of the false alarms mainly

caused by stars. Therefore, the number of these candidate

regions is highly reduced, as is the computational load.

The third measure uses SDdecNet to recognize space debris

instead of using the exhaustive searching method to conform

the detection results of candidate space debris. The chosen

threshold depends on the requirement of the detection tasks

by setting β0 and β1.

IV. EXPERIMENT

The experimental hardware was an Intel CPU i7-8700K, and

the CPU memory was 32 GB.

A. SIMULATION OF SPACE DEBRIS AND STARS FOR

LEARNING

Space debris appears as a series of point-like or streak-like

objects depending on the different exposure times in the

image sequences. The simulated region of the space debris is

set to 33×33 pixels, and its motion direction is random from

(−45, 45). The moving direction is from the bottom to the

top on the images, which is based on the motion properties

of real space debris. The summation of all the gray levels

of the space debris is used with different SNRs to generate

simulated space debris, and the energy concentration is 80%

in the 2 × 2 window. The center offset is a random number

between 0 and 1 with an interval of 0.1, which indicates that

the centers of the space debris are at different pixel location.

The intensities are distributed based on the above settings. It is

difficult to acquire a large number of real space debris with
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different SNRs along different motion directions.Therefore,

we need to generate the simulated space debris to train the

detection network sufficiently. Considering the background

of the images, a Gaussian distribution with a mean equal to

313 and a standard deviation equal to 7.5 (which is computed

with the acquired real sequential images) is generated as a

simplified background for the simulated space debris. The

negative background samples were collected directly from

the optical image sequences.

1) TRAINING SET

The training set is composed of high SNR space debris sam-

ples, low SNR space debris samples and background samples.

High SNR space debris samples: The magnitude level

ranges are from M8 to M14 and the corresponding total

digital number value are 249530, 99339, 39548, 15744, 6268,

2495 and 993. The center of the space debris are changedwith

a small random offset with an interval of 0.1 from 0 to 1 in

the x and y directions. A total of 2000 space debris samples

of each level are generated and the dataset totally includes

14000 high SNR space debris samples.

Low SNR space debris samples: The SNR of space debris

is defined as follows:

SNR =

S
n1×n2√
S

n1×n2
+ B

(24)

where S is the total intensity of the space debris; n1 and n2
are the width and the height of the window, respectively; and

B is the background mean. The space debris with SNR = 6,

4, 3, 2.5, 2.0, 1.5, 1.3, 1.2, 1.0, 0.8, 0.5, 0.4, 0.3 are selected,

and for each SNR, 2000 space debris samples are generated.

Finally, a low SNR space debris dataset of 26000 samples

is generated. The space debris with different magnitudes or

SNRs are shown in Figure 4.

Background samples: It is much easier to obtain a large

number of training samples of background regions than those

of space debris. Therefore, 10000 background samples were

clipped from the image sequences directly instead of using

simulation. Then, data augmentation was used, and each sam-

ple was flipped horizontally, vertically and in both directions.

Finally, we obtain 40000 noise background samples, some of

which are shown in Figure 5. The total training set includes

80000 samples.

2) TEST SET

There are a group of test sets with different SNRs to evaluate

the classification performance. Each test set has 2000 samples

composed of 1000 samples of space debris and 1000 samples

of background.

a: SPACE DEBRIS SAMPLES

Space debris samples with different SNRs were generated

including 6, 4, 3, 2.5, 2.0, 1.5, 1.3, 1.2, 1.0, 0.8, 0.5, 0.4, and

0.3. There are 1000 test samples of space debris for each value

of the SNR.

FIGURE 4. The simulated dataset with different magnitudes and SNRs of
space debris. M denotes the magnitude. For better visibility, all displayed
samples have been stretched with contrast.

FIGURE 5. The dataset of background noise obtained from the real
image. For better visibility, all displayed samples have been stretched
with contrast.

FIGURE 6. Original image and hot pixels detection results. (a) Original
image, (b) Hot pixel.

b: BACKGROUND SAMPLES

A total of 1000 background samples were randomly clipped

from the image sequences and they never appeared in the

training set. These same 1000 background samples have dif-

ferent value of SNR.

B. IMAGE PREPROCESSING

The real astronomical image with a size of 1024 × 1024

pixels used in this experiment is shown in Figure 6 (a).
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FIGURE 7. Results of background estimation and background residual errors. (a)-(d) are the estimated background images using the mean, median,
top-hat, and proposed 1D mean iteration methods, respectively. (e)-(h) are the residual errors after using the mean, median, top-hat, and proposed 1D
mean iteration methods, respectively.

FIGURE 8. (a) Results of background residual errors in the 50th row and line using the mean, median, top-hat, and 1D mean iteration methods. (b) The
preprocessed image after hot pixel removal, and background removal using 1D mean iteration.

The background estimation results using the one-dimensional

mean iteration method are compared with those of the mean

filter (5 iterations), median filter, and top-hat methods. The

width and height are set to 100 pixels for the first three

methods, and the diameter of the disk structure element set

to 50 pixels for the top-hat method. The results are shown

in Figures 7, and 8 (a). Suppose the estimated background

is B̂(i, j). The image after removing the background is

f̃ (i, j) = f (i, j) − B̂(i, j) (25)

The elusive zone eB(i, j) computed using the improved

adaptive threshold can be used to obtain the residual image

R(i, j) = f̃ (i, j)eB(i, j) (26)
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TABLE 1. Residual errors of different background estimation methods.

and the residual errors are computed as shown

in Table 1.

It is observed that the proposed one dimensional mean

iteration method has the best background estimation results.

After removing hot pixels and nonuniform background,

the image in Figure 8 (b) shows the effectiveness of the

proposed image preprocessing method. After image registra-

tion, these images can be directly used in target detection

algorithms to detect space debris.

C. SPACE DEBRIS CLASSIFICATION PERFORMANCE WITH

DIFFERENT SNRs

The model training uses classification cross-entropy as the

loss function, and the Adam optimizer as the training method

with the training batch size equal to 500. The loss function is

shown below:

Loss = −
1

batch_size

batch_size∑

j=1

n∑

i=1

yji log ŷji (27)

where Lossmeans the loss value in the batch, yji is the sample

label and ŷji is the predicted result. The back-propagation

algorithm has been used to optimize the parameters by batch

samples.

The dataset is normalized to speed up the model conver-

gence. We normalized each image in the training set and the

test set with equation 28.

f ′
c =

fc − min (fc)

max (fc) − min (fc)
(28)

where fc is the instance with size 33 × 33. max (fc) and

min (fc) are the largest and smallest values in each instance,

respectively. The validation set (10% of the training set) is

used for early stopping and the maximum reaching time is set

to 10 iterations; namely, if the cross entropy loss value does

not decrease 10 consecutive iterations, the model training

process will be stopped. The model that corresponds to the

lowest cross-entropy loss value on the validation set was

chosen as the final model. The relevant training curves are

shown in Figure 9. The model converges after approximately

10 epochs. After that, the model overfit, and the accuracy in

the training set still increased as the epoch increased, but the

validation accuracy did not increase. Therefore, the weights

and biases at a training epoch of 10 were used for prediction.

Considering the stability of the proposed method,

the experiment uses five metrics to comprehensively access

the classification performance of the model:

1) ACCURACY

The proportion of correct classifications:

Acc =
TP+ TN

TP+ TN + FP+ FN
(29)

FIGURE 9. Accuracy and loss of SDdecNet.

TABLE 2. Comparisons of different sizes of convolutional kernels.

where TP, FP, TN , and FN represents numbers of true

positive, false positive, true negative, and false negative,

respectively.

2) RECALL

The proportion of true space debris that are correctly classi-

fied as space debris:

R =
TP

TP+ FN
(30)

3) PRECISION

The proportion of images classified as space debris that are

true space debris:

P =
TP

TP+ TN
(31)

4) F1-SCORE

It measures the performance of the binary classification

model, and takes into account the accuracy and recall of the

classification model:

F1 =
2PR

P+ R
(32)

5) AUC

The area under the receiving operating characteristic (ROC)

curve.

The values of the first threemetrics depend on the threshold

we choose. The default choice is to classify a candidate as

space debris if its predicted probability is above 0.5. Different

kernel sizes have been tested by the validation set, and the

evaluation results on entire test set are shown in Table 2.

It is observed that the accuracy, recall, and F1-score obtained

when a 5 × 5 kernels is used are better than those obtained

when a 3×3 kernel is used. The difference between 5×5 and

7×7 kernels is almost negligible. Considering the computing
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TABLE 3. Comparison of the metrices of different SNR.

FIGURE 10. The ROC curves of classification model using different SNRs.

time and the test performance, a kernel size of 5×5 is chosen.

The final classification accuracy of the obtained global test

set is 0.9745, and the classification time for a single sample

is 180 us. Table 3 shows the accuracy, recall, precision,

F1-score and AUC, of the test sets with SNR ≤ 1.2.

When the SNR ≥ 1.3, all the test samples are classified

correctly.

If the SNR is higher than 1.0, all five metrics are near 1.

When the SNR is lower, the metrics value decrease, and can

be as low as 0.3, with the recall value decreasing to 0.7560 and

the accuracy value decreasing to 0.869. The results show that

our model has excellent classification performance for space

debris.

Figure 10 shows an ROC curve with the convolutional

neural network with 6 different SNRs with the testing set.

The closer a curve is to the top left corner of the ROC

curve, the better the performance of the model is. Sometimes,

ROC curves may crossover with different SNRs, and it is

difficult to compare them with each other. The area under

the curve (AUC) can be used in such case. The area under

the curves is shown in Tabel 3 line 5. For each level, every

point on its curve corresponds to a different choice of clas-

sification threshold. The true positive rate (TPR) means the

proportion of the true space debris that is correctly classified

as space debris in all space debris samples, also denoted

by ‘‘Recall’’. The false positive rate (FPR) means that the

proportion of the true space debris that is correctly classified

as noise in all noisy samples. The curves of SNR1.2, SNR1.0,

and SNR0.8 were very steep and close to each other. The

FIGURE 11. The confusion matrices of the classification results with
different SNRs.

remaining curves decreased as the SNR decreased. The blue

curve (SNR = 0.3) has the lowest score.

Figure 11 shows the confusion matrix for the convolu-

tional architecture model with the six different SNR test

sets. In the confusion matrix, the horizontal axis represents

the predicted labels and the vertical axis means true labels.

The value 0 at the axis represent noise (negative sample)

and the value 1 represents space debris (positive sample).

Therefore, (0, 0), (0, 1), (1, 0) and (1, 1) represent TN,

FN, FP and TN, respectively. In the matrices, the number of

background noise samples which are misclassified as space

debris is 18. The result proves the stability of classification

with different SNRs. The number of space debris wrongly

classified as noise increased from 0, 2, 51, to 244. When the

SNR ≤ 0.5, many space debris were misclassified as back-

ground noise. The samples in Figure 4 (r), (s), and (t) are very

noisy; therefore, classifying these objects correctly is very

difficult.

The results in Table3, and Figures 10 and 11 show

that, for SNR ≥ 0.8, the proposed learning model has

excellent classification performance. If the SNR ≤ 0.3,

it is difficult to distinguish space debris and background

noise, and the model nearly losses its classification abil-

ity. For space debris, especially those with very low SNR,
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FIGURE 12. Detection results of space debris with different SNRs in acquired real images sequences (containing 20 simulated space debris, and 5 real
space debris).

TABLE 4. Detection results with different SNRs in the image sequences.

the model performance in extracting candidate regions is

another important factor for the final space debris detection

performance.

D. DETECTION PERFORMANCE OF SPACE DEBRIS IN

OPTICAL IMAGE SEQUENCES

In this experiment, we tested the performance of space debris

detection in optical images. There are 10 sequential images

used in the experiments, which were captured by the CCD

telescope; the size of each image is 1024 × 1024 pixels with

16 bits of gray scales. The optical system collects 80% of the

energy of the space debris and stars in a window with a size

of 2×2. Twenty space debris with SNRs 4, 3, 2.5, 2, 1.5, and

1.2 were generated and added to the 10 sequential images.

Each group of space debris is evenly spaced in the images.

In addition, there are also 5 pieces of real space debris in the

images.

TABLE 5. Detection results of different methods in the image sequences.

The detection results are shown in Fig. 12, and Table 4.

When the SNR is greater than or equal to 2, the detection

probability is 100%. When the SNR is 1.5, the detection

probability can still reach 85.5%. There are no false alarm

in the experiment when the SNR is higher than 2.5. This is

because a higher segmentation threshold is used. When the

SNR is less than or equal to 2.5, the number of false alarms

is slightly large. These false alarms can be easily removed

using the continuity of trajectory in the succeeding image

sequences [20]. Finally, the proposed method is compared

with the MHT method for streak-like dim and small object

detection [51] with SNR = 6, 3, 2, and 1.5. We also compared

thismethodwith the EAOMalgorithmwith SNR = 6, 3, [25].

The result is shown in Table 5, and it is observed that the

proposed method has a better detection performance than that

of the MHT and EAOM methods. Jia et al. [52] proposed

a method that uses a neural network for optical transient

object classification. This method can reach an accuracy

of 97.20% in streak-like objects with minimal SNR = 3.10.

Our proposed method can reach an accuracy of 100.00%with
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SNR ≥ 3, which means that our FLCR method has a better

performance.

V. CONCLUSION

Space debris detection is important in space asset protection.

In this article, we proposed a space debris detection method

using feature learning of candidate regions in astronomi-

cal optical image sequences. First, image preprocessing is

performed including hot pixels and flicker noise removal,

and nonuniform background estimation and removal. Second,

the feature learning of candidate regions method is proposed

to detect space debris, in which the stars are removed to

reduce the false alarm, the candidate regions are extracted,

and deep learning is utilized to learn the spatial features

to discriminate the space debris and the background. The

classification results show that space debris can be detected

and located in the image sequences. The experimental results

also show that the proposedmethod can detect low SNR space

debris effectively with high accuracy.
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