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Space division multiplexing chip-to-
chip quantum key distribution
Davide Bacco, Yunhong Ding  , Kjeld Dalgaard, Karsten Rottwitt & Leif Katsuo Oxenløwe  

Quantum cryptography is set to become a key technology for future secure communications. 

However, to get maximum benefit in communication networks, transmission links will need to be 
shared among several quantum keys for several independent users. Such links will enable switching 

in quantum network nodes of the quantum keys to their respective destinations. In this paper we 

present an experimental demonstration of a photonic integrated silicon chip quantum key distribution 

protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel 
and independent quantum keys are obtained, which are useful in crypto-systems and future quantum 

network.

In contemporary society, communication security has become increasingly important. �e security of the current 
cryptosystems, based on mathematical assumptions, are not guaranteed when quantum computers become availa-
ble. Quantum machines have already made indications that the current crypto codes can be easily eavesdropped1. 
�is has spurred investigations into new security technologies based on quantum physics. In order to exchange 
secure information between users, Quantum key Distribution (QKD), a branch of Quantum Communications 
(QCs), provides good prospects for ultimate security based on the laws of quantum mechanics2–4,6–8. In the last 30 
years both free-space and �ber based QKD experiments, have demonstrated the exploitation of di�erent physical 
principles. Furthermore, some cryptography companies are producing commercial devices that allow quantum 
security on a speci�c �ber link. However, most QKD systems are based on a point-to-point link, where the trans-
mitter (Alice), and the receiver (Bob), generate a quantum key between two speci�c parties. In a future scenario, 
where QCs become standard technology, and where infrastructures, like banks and government buildings, will 
be connected through a quantum network, new principles in terms of key generation are required. �e concept 
of a QKD network where customers need parallel independent keys, connecting multiple end-users and di�erent 
nodes, will be highly useful. Here we describe a possible scenario for a quantum metropolitan/local area net-
work (QMAN/QLAN), based on space division multiplexing (SDM) technique through a multicore �ber device. 
Singular properties of quantum physics, like entangled photons, can be exploited for quantum teleportation and 
entanglement swapping protocols, with the purpose of key generation in a point to multi-point network9. �ese 
networks, despite being very attractive from a security point of view, are problematic in terms of system require-
ments. Indeed, high rate entanglement sources, stable environments and a very low noise photon-detector are 
crucial for creating long distance links. Alternatively, in the case of high-capacity demand, other principles can 
be adopted. Weak coherent pulses (WCP), using an attenuated laser with a mean number photon per pulse lower 
than one, is the most implemented technique being used in present days QKD systems. In these cases, several net-
work schemes have been implemented and demonstrated. Usually, an active optical switch, is required in a point 
to multi-point implementation. Various switching dimension can be explored: wavelength division multiplexing 
(WDM), code division multiplexing (CDMA) and time division multiplexing (TDM) are useful for implemen-
tation10–16. However, all of these methods require extra devices on the line that introduces additional losses and 
cross-talk, which can compromise the �nal security. Seen from this perspective, the possibility of using new 
low-cross talk technologies like multicore �bers (MCFs), well known in classical optical communications, is very 
promising. A recent work already demonstrated how a multicore �ber may be used in a communication link, to 
increase the secret key rate17. Moreover, MCFs permit simultaneous transmission of classical and quantum chan-
nels with a very good signal-to-noise ratio (SNR) and isolation between cores, guaranteeing greater stability and 
robustness of the system, as well as allowing for strictly independent channels transmitted through the same �ber. 
In this paper we propose a solution for generating parallel and independent quantum keys using a silicon chip 
transmitter and exploiting the concept of space division multiplexing in a multicore �ber. By adopting a single 
laser source and two di�erent silicon chips, we realized a proof of concept (POC) experiment that demonstrates 
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the generation of multiple independent quantum keys through the decoy-state BB84 protocol. �is demonstrated 
functionality is a �rst step towards SDM quantum networks.

Experimental implementation
QKD protocol. �e protocol implemented in the current experiment is the well known BB84 (with decoy 
states). By using the spatial dimension as a degree of freedom, instead of the standard way of using polarization, 
we encode the qubits on multiple cores of the MCF in such a way that for every two cores (cores A and B and cores 
C and D and so on), two mutually unbiased bases can be generated. In particular, for cores A and B, the basis 1 
is de�ned as A B( ; ) and basis 1  as + −A B A B( ; ). Similarly for cores C and D the states ∈C D{ , } 2 
and + − ∈C D C D{ , } 2 . �e �nal secret key rate is established using3:

≥ −R I min I I( , ) (1)AB AE BE

IAB represents the classical mutual information between Alice and Bob (IXY = H(X) − H(X|Y)), with the marginal 
entropy is de�ned as = ∑ ∈H X p x logp x( ) ( ) ( )x X . �e right term of equation (1) min(IAE and IBE), is related to the 
quantum mutual information between Alice and Eve or Bob and Eve. Note that using the same chip structure a 
slightly di�erent implementation is possible, i.e. asymmetric BB84 with decoy-states18,19. �is protocol relies on 
two mutually unbiased bases, but does not use an equal probability for all quantum states. In other words, one of 
the two bases ( ), is chosen more o�en than the other () ≠p p

X Z
. In this way   is used for the key generation 

process and   for security check. It follows that this protocol is more e�cient compared to the standard BB84 
(e�ciency of 50%), and it allows a higher �nal secret key rate. In the current experiment we selected an equal 
probability both for the bases choice and for the state preparation, so the overall e�ciency.

Decoy-state weak coherent pulse generation. Most practical QKD systems today are implemented 
with weak coherent pulses (WCP), generated by an attenuated laser. �is scheme however, is not completely 
secure against particular kinds of attack, like photon-number splitting (PNS). In PNS attack, Eve blocks and 
discards all the single photon pulses while she only measures the multi-photon ones a�er the information rec-
onciliation process. In this way, Bob and Eve measure the same quantum state, and at the end of the process Eve 
shares the same key. �e decoy-state technique was introduced in order to overcome this problem. A controlled 
real-time �uctuation of the mean photon number per pulse (µ) is used, in order to ensure the complete security 
of the �nal secret key. �is technique is implemented in our experiment, where Alice’s silicon chip, constituted by 
multiple Mach-Zehnder interferometers (MZIs), allows a complete freedom in terms of photon per pulse. By tun-
ing the VOA 1 (variable optical attenuator) and the MZI 00 (the �rst index 0 represents the level of the MZI starting 
from le�, while the second index is related to the number of the cores of the �ber) with a speci�c voltage, di�erent 
values of µ can be obtained (see Fig. 1). In Table 1 we reported all the di�erent cases for a 2-keys example. �e 
MZI operates like a tunable ratio (transmittance/ re�ectance) beam-splitter where Alice randomly decides which 
values to use. In such a way, it is possible to create two independent quantum channels, which will generate two 
quantum keys. �e example can be easily extended to a generic case where N cores generate N/2 di�erent keys.

Generation of the quantum states. �e quantum states used in the current implementation are based 
on spatial encoding, exploiting di�erent cores of a MCF. As shown in Fig. 1, a 1550 nm continuous wave (CW) 
laser, has its light carved out to pulses by an intensity modulator at 5 kHz repetition rate and pulse width of 10 
ns, which is coupled through a vertical coupler into the transmitter silicon chip (Alice). �e quantum states are 
randomly prepared, by tuning the various MZIs, with a pseudorandom binary sequence (PRBS) sequence created 
by an FPGA board. Two PRBS seeds were used in order to create two parallel independent keys. In particular, by 
applying a di�erent voltage on the MZI in Alice chip is possible to control the outputs of the integrated interfer-
ometers. A�er a �rst characterization of Alice’s chip, we �xed a 0 V level corresponding to having light only in one 
output (upper or lower). Consequently, a Vπ V value determines a reverse exit and a value of Vπ/2 V represents 
the ��y-��y case with light in both outputs.

Moreover, a real-time individual decoy states value is prepared for each pulse. Di�erent voltages applied to 
the MZI00 correspond to a speci�c decoy value, as reported in Table 1. Subsequently to the preparation of the 
quantum states, we used a grating coupler array to couple from the silicon integrated circuit to a 7-cores �ber20,21.

By exploiting this technique, we obtained a negligible cross talk between cores, around −30 dB, and stable 
transmission can be achieved. �e insertion and coupling losses attributed to Alice’s chip are around 15 dB. In 
this way, we created two independent quantum channels based on the principle of space division multiplexing.

Detection. Once the quantum states are created and sent through the MCF, Bob measures the states in order 
to extract the quantum keys. In the experimental setup, two independent quantum keys, k1 and k2, as reported in 
Fig. 1, are generated and the keys can be extracted by creating interference between the cores at the output22,23. In 
particular, tuning MZI11 to MZI1N, on Bob’s side, it is possible to project the quantum states in di�erent bases. 
Separate MZIs are used to measure in the mutually unbiased bases. In this way the randomness is maintained on 
the measurement side. �e other MZIs (MZI01 to MZI0N), present on Bob’s chip are used for phase stabilization 
between cores. In Fig. 2 we show the tomography of the two independent MUBs measured with weak laser pulses, 
repetition rate of 10 kHz, and average mean photons number of 0.4. By using the classical de�nition of �delity 
(F(x, y) = ∑i(piqi)

1/2 with x and y random variables and qi and pi vectors of probability distribution) we measured 
93% and 96%. Another important parameter on the detection part is represented by the losses on the Bob’s side. 
�e insertion loss attributed to Bob’s chip are measured to be around 8 dB (from the output of the MCF, just 
before the facet, to the output of the chip). �is loss can be further decreased in future chips by introducing an Al 
mirror below the grating area24. �e four di�erent outputs are coupled using a grating coupler array to four 
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InGaAs single photon detectors, two ID230 and two ID220 respectively. In Fig. 3 we report the measured QBER 
for the two independent keys. Stable and low QBER well below the coherent attack limit are obtained for more 
than 12 minutes. �e two plots show the di�erent independent keys extracted in the experiment.

Secret key rate. A�er the measurement process it is possible to de�ne a bound on the �nal secret key rate. 
�is rate, given in Equation (1), depends on the strategy of the eavesdropper. We here included the case of collec-
tive attacks (CAs), where Eve can store the quantum states in her quantum memories and postpone the measure-
ment till same future time. Alice and Bob discard the unmatched bases measurements, and subsequently perform 
error correction and privacy ampli�cation, to extract the �nal key rate. In the case of decoy-state quantum key 
distribution it is possible to derive the following equation for the secret key rate:

≥ − + −R Q f E h E Q h e{ ( ) ( ) [1 ( )]} (2)sk u u u
1

2 2 1 2 1

Here 1/2 is the probability related to the bases choice, h2 is the binary Shannon information function, u denotes 
the intensity of the signal states, Qu is the gain of the signal states, Eu is the overall quantum bit error rate (QBER), 
e1 is the error rate of the single-photon states and f(x) is the bidirectional error correction e�ciency, usually upper 
bounded with the value of 1.22. �e parameter Qu and Eu can be measured directly from the experiment, while Q1 
and e1 can be estimated. Following the approach reported in Ma et al.4, it is possible to derive a secret key rate 
bound. To be noted that in a practical implementation of this system, a di�erent bound including the statistical 
�uctuation can be used5. In Fig. 4, a real time measurement of the decoy state gain is reported. An average value 
of = . ⋅ ± . ⋅

µ

− −Q 3 32 10 1 2 10
2 3

1

 and = . ⋅ ± . ⋅
µ

− −Q 1 67 10 0 1 10
2 3

2

 are measured on Bob’s side for the two 

independent keys, corresponding to a secret key rate generation of 113 bit/s for k1 and 60 for k2. Note that for a 
complete QKD system realization, where Eve cannot steal any information from the link, the gain value should be 
measured on Alice’s side. However, in the current chip realization an extra output to do this measurement was not 
available. Nonetheless, in order to prove the real-time decoy state technique, we characterized the chip before the 
transmission over the multicore �ber channel in order to estimate the expected values.

Figure 1. Scheme of the experiment. A continuous wave (CW) laser beam at 1550 nm is curved into pulses by 
an intensity modulator (IM) with a 5 kHz repetition rate and a 10 ns pulse width. �e variable optical attenuator 
(VOA) decreases the mean number of photons per pulse (µ) to be lower than one. On-chip Mach-Zehnder 
interferometers (MZIs), controlled by an FPGA, create the quantum states. A combination of VOA1 and MZI00 
enable a decoy state technique with multiple and di�erent numbers of photons per pulse. �e quantum states 
are then measured independently by Bob’s chip, creating an interference between pairs of cores. In this way 
parallel keys are generated between Alice and Bob. �e rectangle insets show Alice’s (9.5 × 2.5 mm) and Bob’s 
(10 × 2.5 mm) silicon chips.

key1 u1 u1 0 v1 u1 0 0 v1 v1

key2 u2 0 u2 u2 v2 0 v2 0 v2

Table 1. Example of a two user system with the complete set of two decoy-levels and signal states (u, v and a 
vacuum).
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Figure 2. Mutually unbiased bases characterization. (a) Simulated MUBs for key number 1; (b) Simulated 
MUBs for key number 2; (c) Experimental data for key number 1; (d) Experimental data for key number 2. Each 
column corresponds to 30 s of measurement with average µ of 0.4 photon/pulse. Measured classical �delity of 
0.933 for (c) matrix and 0.964 for (d) matrix.

Figure 3. Experimental bit error rate. QBER for 12 minutes of acquired data for key 1 and 2. �e gray lines 
represent the average QBER of the corresponding quantum keys (5.9% ± 8.4 ⋅ 10−3 and 4.7% ± 8.8 ⋅ 10−3 
respectively). Orange line highlights the value of coherent attack limit in case of one-way reconciliation process 
(11%). Average µ1 and µ2 are 0.5 ± 0.06 and 0.45 ± 0.054 photon/pulse respectively.
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Discussion
MCFs represent the new frontier of optical communication which can be used for long distance high capacity 
transmission25. As previously proved in Ding et al.17, this technology allows the creation of high-dimensional 
Hilbert space necessary in HD-QKD protocols. �is PoC experiment extends the concept on a more general 
scenario. As seen from Figs 2, 3, and 4, the proposed scheme in principle works well for several minutes of meas-
urement. In its present con�guration, the experimental setup is merely for proof of principle, and higher key rates 
and longer transmission distances are expected to be achievable with minor upgrades. As a matter of fact, we �xed 
Alice’s repetition rate to 5 kHz. �is choice was related to the transition time of the MZI. �e interferometers are 
controlled by heating, which is a very precise, stable and high contrast method (more than 30 dB extinction ratio 
can be achieved), but comes with long rise and fall times. �ere exist several other solutions, based on modifying 
the material compositions and structures of the interferometers26–28, which could be adapted to our scheme. 
InGaAs fast switches have recently been introduced and p-n junction can also be considered for silicon photonic 
devices. Once this technology gap will be resolved, the secret key rate and thereby the capacity of the QKD system 
will be improved29,30. Furthermore, our experiment was realized on an optical table with Alice and Bob being 
separated by only a few meters of multi-core �ber. �is is by no means a limit, as already shown by Cañas et al. 
in31, where �ber-caused changes to phase and polarization is alleviated using a phase stabilization setup. In addi-
tion, by using space division multiplexing another advantage is achieved compared to the polarization encoding 
scheme. In particular, by using a polarization based decoy-state BB84 protocol over four cores of the multicore 
�ber, an higher �nal secret key rate can be achieved. However, problems like polarization instability (due to tem-
perature and mechanical stress on the �ber) and polarization alignment (independent reference systems for each 
core) must be achieved during the communication process. In space division encoding the phase relation of the 
quantum states is slowly changing during the time, and a simple feedback loop will permit a stable long-distance 
QKD link32. Moreover, one of the main problems in the deployment of quantum technologies is the compatibility 
between standard and quantum systems. In particular, optical communication through �ber links is subjected to 
various e�ects. �e most critical one is represented by the Raman e�ect: inelastic scattering of photons by matter. 
In the case of high power monochromatic light propagating in an optical �bre, spontaneous Raman scattering 
transfers some of the photons to new frequencies. �is problem, usually handled with narrow �lters in classical 
optical communication, decreases the performance of the quantum systems by lowering the �nal key rate and the 
maximum distance. A solution is represented by the MCFs technology, where one of the cores (or more) can be 
used for classical light and the other ones as quantum channels12. In this context we would point out that the pre-
sented scheme, based on spatial division multiplexed, can play an important role on future QKD systems. In fact, 
optical networks based on SDM are implemented and used in classical optical communication. HD-QKD based 
on SDM, like Higher Order Modes (HOM) and Orbital Angular Momentum (OAM) states, permits the creation 
of very high dimension Hilbert space. In case of HD system, the maximum acceptable QBER value depends on 
the quantity N, the dimension of the space (e.g. individual attack limit of 25% for N = 4 and 2 MUBs). Regarding 
the �nal key rate, the number of bits that can be extracted scales with the equation R ≈ log2(N)[1 − exp(−η)] (with 
η = 10−α*l/10 and l the link distance). In the case of SDM instead, the key rate is linearly dependent with the num-
ber of cores involved, R ≈ (N/2)[1 − exp(−η)]. Furthermore, a comparison of the achievable rate, obtained with 
di�erent multiplexing techniques (WDM, TDM, CDMA), must be introduced. In the case of WDM setup, the 
�nal rate can be approximated to R ≈ (N)[1 − exp(−η)] where N in this case represents the di�erent wavelengths 
used in the system (assuming perfect �lters). To be noted, as already explained, that a WDM system requires N 
di�erent transmitters, and very good �lter in the receiver side, in order to avoid cross-talk between adjacent chan-
nels. �e �nal rate for TMD can be written as R ≈ (N)[1 − exp(−η/N)], assuming a N users and perfect splitter. 

Figure 4. Decoy state gain. Gain of two independent decoy state keys for 11 minutes of acquired data. Average gain 
values of = . ⋅ ± . ⋅

µ

− −Q 3 32 10 1 2 10
2 3

1

 and = . ⋅ ± . ⋅
µ

− −Q 1 67 10 0 1 10
2 3

2
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1
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− −Q 0 9 10 9 10v
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2
.
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Finally, considering the case of CDMA technique (optimal orthogonal codes), the key rate can be reported as R ≈ 
[(1 − w2)/Nc]

N − 1[1 − exp(−η/N)] with w de�ned as the weight of the implemented code and Nc the length of the 
code33. As a consequence, and as reported in Fig. 5, depending on the quality of the channel and on the setting 
in which the system is used (distance, noise, temperature instability, etc.), a choice between the HD-QKD and 
independent quantum keys is expected.

In conclusion, we proposed and demonstrated the use of multicore �bers used with SDM technique for QKD 
transmission. We successfully proved the principle by sending two separate quantum keys prepared by a silicon 
photonic chip through the same multicore �ber, and receiving the keys through a second silicon photonic chip. 
�e measured QBER con�rms the correct transmission and interpretation of the QKD scheme.

Methods
Device realization. Alice and Bob photonic integrated circuit (PICs) are formed by 250 nm of SOI silicon 
thickness and 1 µm of buried oxide layer (BOX) We used a single step process of e-beam lithography and induc-
tively coupled plasma (ICP). Subsequently 1.500 µm thick layer of SiO2 was deposited on top of the chip using 
plasma-enhanced chemical vapor deposition technique. A�er the polish process the layer of SiO2 was reduced to 
1 µ. In this way SiO2 works as a isolation layer between the silicon waveguide and the Titanium heaters fabricated 
on a second time to avoid potential optical losses. In this way by using e-beam lithography followed by metal 
deposition and li�o� process we created 100 nm thick of titanium heaters. As last step UV lithography technique, 
followed by metal deposition and li�o� process, was used to fabricate Au/Ti contact layer. �e chip was then 
cleaved and wire-bonded to a PCB board.

Electronic design. �e chip-to-chip parallel key QKD scheme, based on space-division multiplexing is fea-
sible thank to a real time control of the di�erent MZIs presented on the silicon chip. �ese MZIs, as reported 
above, are controlled by heaters: conductor material which change his property when a voltage is applied. In 
order to tune in real-time these MZIs, di�erent electrical signals are required in the transmitter and receiver side. 
An Altera FPGA board emits 8 digital parallel outputs every 0.2 ms, which are converted into analog voltages by 
8 digital-analog converters (DACs). �en, these analog signals are send to the transmitter and the receiver PCB 
board by �at cables.
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