
 Open access  Book Chapter  DOI:10.1007/978-3-540-30551-4_49

Space-Efficient and fast algorithms for multidimensional dominance reporting and
counting — Source link 

Joseph JaJa, Christian W. Mortensen, Qingmin Shi

Institutions: University of Maryland, College Park, IT University of Copenhagen

Published on: 20 Dec 2004 - International Symposium on Algorithms and Computation

Related papers:

 New data structures for orthogonal range searching

 Lower bounds for 2-dimensional range counting

 Functional approach to data structures and its use in multidimensional searching

 Multidimensional divide-and-conquer

 Orthogonal range searching on the RAM, revisited

Share this paper:    

View more about this paper here: https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-
1q0e27wwsz

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-30551-4_49
https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-1q0e27wwsz
https://typeset.io/authors/joseph-jaja-4v0nult61l
https://typeset.io/authors/christian-w-mortensen-ocj6iw5ggb
https://typeset.io/authors/qingmin-shi-2ok3tmhjk4
https://typeset.io/institutions/university-of-maryland-college-park-1t055gc1
https://typeset.io/institutions/it-university-of-copenhagen-1nw8f3wn
https://typeset.io/conferences/international-symposium-on-algorithms-and-computation-3kxkx2vx
https://typeset.io/papers/new-data-structures-for-orthogonal-range-searching-we7tuklv75
https://typeset.io/papers/lower-bounds-for-2-dimensional-range-counting-5c1di8pzi3
https://typeset.io/papers/functional-approach-to-data-structures-and-its-use-in-44udykfx69
https://typeset.io/papers/multidimensional-divide-and-conquer-4y6f2hfycl
https://typeset.io/papers/orthogonal-range-searching-on-the-ram-revisited-1dyqz2ey73
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-1q0e27wwsz
https://twitter.com/intent/tweet?text=Space-Efficient%20and%20fast%20algorithms%20for%20multidimensional%20dominance%20reporting%20and%20counting&url=https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-1q0e27wwsz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-1q0e27wwsz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-1q0e27wwsz
https://typeset.io/papers/space-efficient-and-fast-algorithms-for-multidimensional-1q0e27wwsz


Space-Efficient and Fast Algorithms for

Multidimensional Dominance Reporting and

Counting

Joseph JaJa1, Christian W. Mortensen2⋆, and Qingmin Shi1

1 Institute of Advanced Computer Studies, University of Maryland, College Park,
MD 20742, USA {joseph,qshi}@umiacs.umd.edu

2 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 København S, Denmark
cworm@itu.dk.

Abstract. We present linear-space sub-logarithmic algorithms for han-
dling the 3-dimensional dominance reporting and the 2-dimensional dom-
inance counting problems. Under the RAM model as described in [M. L.
Fredman and D. E. Willard. “Surpassing the information theoretic bound
with fusion trees”, Journal of Computer and System Sciences, 47:424–
436, 1993], our algorithms achieve O(log n/ log log n + f) query time for
the 3-dimensional dominance reporting problem, where f is the output
size, and O(log n/ log log n) query time for the 2-dimensional dominance
counting problem. We extend these results to any constant dimension d ≥
3, achieving O(n(log n/ log log n)d−3) space and O((log n/ log log n)d−2+
f) query time for the reporting case and O(n(log n/ log log n)d−2) space
and O((log n/ log log n)d−1) query time for the counting case.

1 Introduction

The d-dimensional dominance reporting (resp. counting) problem for a set S of
d-dimensional points is to store S in a data structure such that given a query
point q the points in S that dominate q can be reported (resp. counted) quickly.
A point p = (p1, p2, . . . , pd) dominates a point q = (q1, q2, . . . , qd) if pi ≥ qi for
all i = 1, . . . , d. A number of geometric retrieval problems involving iso-oriented
objects can be reduced to these problems (see for example [EO82]). For the rest
of the introduction we let n denote the number of points in S, f denote the
number of points reported by a dominance reporting query, and ǫ > 0 be an
arbitrary small constant. The results of this paper can be summarized by the
following two theorems.

Theorem 1. For any constant d ≥ 3 there exists a data structure for the d-
dimensional dominance reporting problem using O(n(log n/ log log n)d−3) space

such that queries can be answered in O((log n/ log log n)d−2 + f) time.

⋆ Part of this work was done while the author was visiting the Max-Planck-Institut
für Informatik, Saarbrücken, as a Marie Curie doctoral fellow.



Theorem 2. For any constant d ≥ 2 there exists a data structure for the d-
dimensional dominance counting problem using O(n(log n/ log log n)d−2) space

such that queries can be answered in O((log n/ log log n)d−1) time.

Note that a d-dimensional range counting query (in which each coordinate
of a point to be reported is bounded from two sides instead of one as in domi-
nance counting) can be handled by combining the results of a constant number
(depending on d) of dominance counting queries of the same dimension. Hence
the results in Theorem 2 are valid for range counting queries as well.

In this paper, we assume the RAM model as described by Fredman and
Willard in [FW93], which allows the construction of q-heaps [FW94] (to be
discussed in Section 2). In both Theorems 1 and 2 we assume coordinates of
points are integer valued. But for d ≥ 4 in Theorem 1 and d ≥ 3 in Theorem 2
our results actually hold for real-valued coordinates.

Our success in proving the above theorems is based on a novel generalization
of the concept of dimensions. This definition, given in Section 2, allows a k-
dimensional point (k ≤ d) in the standard sense to be appended with d − k
“special” coordinates, each of which can take only ⌈logǫ n⌉ different values. Our
approach is based on the fact that we can prove stronger results for k-dimensional
reporting (see Lemma 1) and counting queries (see Lemma 4) than what has been
done before. That is, in addition to the constraints on the first k coordinates
specified by a standard dominance query, our solutions satisfy the additional
constraints on the d− k “special” coordinates. These results will in turn lead to
efficient extensions to higher dimensions.

1.1 Relation to Prior Work

In [CE87], Chazelle and Edelsbrunner proposed two linear-space algorithms for
the 3-dimensional dominance reporting problem. The first achieves O(log n +
f log n) query time and the second achieves O(log2 n + f) query time. These
two algorithms were later improved by Makris and Tsakalidis [MT98] to yield
O((log log U)2 log log log U + f log log U) query time for a special case where
coordinates of the points are integers from a bounded universe [0, . . . , U ] and
O(log n+f) query time for the general case. The previous best linear-space algo-
rithm for the 2-dimensional dominance counting problem is due to Chazelle [Cha88]
and achieves O(log n) query time. An external version of Chazelle’s scheme was
proposed by Govindarajan, Arge, and Agarwal [GAA03], which achieves lin-
ear space and O(logB n) I/Os (B being the disk block size) for handling range
counting queries in R2. They also extended their algorithm to handle higher
dimensional range counting queries, introducing a factor of O(logB n) to both
the space and the query complexity for each additional dimension.

In [SJ03a], Shi and JaJa achieved O(log n/ log log n + f) query time for the
reporting case and O(log n/ log log n) query time for the counting case, but at
the expense of increasing the space cost in both cases by a factor of logǫ n. Like
our solution, these solutions require coordinates of points to be integers.



It follows that, compared with previous solutions that require linear space
and, for the reporting case, constant time per reported point, our results improve
the query time by a factor of log log n. Further, the standard techniques for
extending the structures into higher dimensions either require a log n factor on
both the query time and the space usage for each dimension [Ben80] or a log1+ǫ n
factor on the space usage and a log n/ log log n factor on the query time for each
dimension [ABR00] (while still only using constant time for each reported point).
In this paper, we improve the cost of extensions to higher dimensions to a factor
of log n/ log log n per dimension for both query time and space usage.

1.2 Paper Outline

We start with preliminaries in Section 2. In Section 3 we give a solution to a
slightly generalized 3-dimensional dominance reporting problem, thus proving
Theorem 1 for d = 3. In Section 4 we give a solution to a slightly generalized
2-dimensional dominance counting problem and prove Theorem 2 for d = 2.
Finally, we extend our results to higher dimensions in Section 5.

2 Preliminaries

If an array A is indexed by a set M we will use the notation A[m] for the element
of A at index m ∈ M . For integers i and j we let [i..j] denote the set of integers
k for which i ≤ k ≤ j. If M is a set and k ≥ 0 is an integer we let Mk denote
the set M × · · · × M where M is repeated k times. When stating theorems, we
define i/0 = ∞ when i > 0.

For the rest of this paper, we assume n is the number of points for the
dominance reporting or counting structure we are ultimately designing. While
developing the ultimate structures, we will construct structures with fewer than
n points. We will assume we can use time O(n) to precompute a constant number
of tables with size O(n) which only depend on the word size and on n.

We say a point p = (p1, . . . , pd) has dimension (d′, d, ǫ) if pd′+1, . . . pd ∈
[1..⌈logǫ n⌉]. Here we assume 1 ≤ d′ ≤ d and 0 < ǫ < 1 are all constants. We
refer to pi, 1 ≤ i ≤ d, as the i-coordinate of p. We say a set S has dimension
(d′, d, ǫ) if all the elements of S are (d′, d, ǫ)-dimensional points. When creating
a data structure containing a set S with dimension (d′, d, ǫ), we assume that no
two different points in S share any of their first d′ coordinates. That is, if p =
(p1, . . . , pd) ∈ S and r = (r1, . . . , rd) ∈ S and p 6= r then p1 6= r1, . . . , pd′ 6= rd′ .
We define the i-successor of an integer s as the point p = (p1, . . . , pd) ∈ S such
that pi ≥ s and pi is minimized. We define the i-rank of an integer s as the
number of points (p1, . . . , pd) ∈ S for which pi ≤ s, and the i-rank of a point in
S as the i-rank of its i-coordinate. We say that i-coordinate is in rank space if
for all points p = (p1, . . . , pd) ∈ S the i-rank of pi is equal to pi.

We will use the q-heap data structure of Fredman and Willard [FW94]. A

q-heap allows a set S of words where S has cardinality O(log1/4 n) to be stored
such that elements can be inserted in and deleted from S in constant time and



such that given a query integer q the largest element of S smaller than q can be
identified in constant time. The q-heap requires a precomputed table with size
O(n) computable in O(n) time. Note that the size of this table only depends
on the word size and on n. Further, the q-heap requires an msb operation as
discussed in Section ??.

3 Three-dimensional Dominance Reporting

The goal of this section is to design a data structure to solve the dominance
reporting problem for a set with dimension (3, d, ǫ) for d ≥ 3, in particular
proving Theorem 1 for d = 3. We give this structure in Section 3.2. First, we
give, in Section 3.1, a solution to a variant of the dominance reporting problem
for a set with dimension (2, d, ǫ), where d ≥ 2.

3.1 (2, d, ǫ)-dimensional 3-sided Reporting

We define the 3-sided reporting problem for a set S with dimension (2, d, ǫ) as a
generalization of the dominance reporting problem as follows. A query must have
the form ((q1, q

′
1), q2, . . . , qd) where q1 ≤ q′1. The answer to such a query is the set

of points p = (p1, . . . , pd) ∈ S for which q1 ≤ p1 ≤ q′1 and p2 ≥ q2, . . . , pq ≥ qd.
We have:

Lemma 1. Let d ≥ 2 and 0 < ǫ < 1/(d−2) be constants and let S be a (2, d, ǫ)-
dimensional point set of size m ≤ n, where the 1-coordinate is in rank space.

Then there exists a solution to the 3-sided reporting problem for S using O(m)
space such that queries reporting f points can be answered in O(1 + f) time.

For d = 2 this problem is well studied (see for example the survey by Alstrup
et al. [AGKR02]). We show the lemma for any d ≥ 2 by using an extension of
a technique mentioned in [AGKR02]. Actually, we show Lemma 1 as a corollary
to Lemma 2:

Lemma 2. Under the assumptions of Lemma 1, we can create a structure using

O(m) space such that, given a query ((q1, q
′
1), q3, . . . qd), we can, in constant time,

either find the point (p1, . . . , pd) ∈ S with q1 ≤ p1 ≤ q′1 and p3 ≥ q3, . . . , pd ≥ qd

such that p2 is maximized, or determine that no such point exists.

We obtain Lemma 1 from Lemma 2 as follows. Suppose we are given a query
((q1, q

′
1), q2, . . . qd) in Lemma 1. We then ask the query ((q1, q

′
1), q3, . . . qd) in

Lemma 2. If we do not get a point we stop, else let p = (p1, . . . , pd) ∈ S be the
point we get. If p2 < q2 we stop. Otherwise, we report p and recursively ask the
two queries ((q1, p1 − 1), q3, . . . , qd) and ((p1 + 1, q′1), q3, . . . , qd) in Lemma 2.

The rest of this section is devoted to the proof of Lemma 2. We assume m is
a power of two and define c = ⌈logǫ n⌉. We sort the points in increasing order by
their 1-coordinates and group them into blocks each with cd−2 log m elements.
We define for each block b a 1-range [b.l..b.r], where b.l (resp. b.r) is the smallest



(resp. largest) 1-coordinate of a point in b. We create a binary tree T built on
the blocks b sorted in increasing order by b.l. We associate with each leaf v of T
two arrays v.left and v.right, both indexed by [0.. log m]× [1..c]d−2. Let u be the
ancestor of v whose height is h (the height of a leaf is 0). Then v.left[h, q3, . . . qd]
(resp. v.right[h, q3, . . . qd]) stores the point p = (p1, . . . , pd) such that (i) p belongs
to a block corresponding to a leaf between v and the leftmost (resp. rightmost)
leaf node of the subtree rooted at u; (ii) p3 ≥ q3, . . . pd ≥ qd; and (iii) p2 is
maximized, provided that such a point p exists. We note that, since each of
the O(m/(cd−2 log m)) leaves of T contains two arrays both with O(cd−2 log m)
elements, the total space used so far is O(m).

The data structure we just described has already enabled us to answer a
query ((q1, q

′
1), q3, . . . qd) where q1 = b.l and q′1 = b′.r for two blocks b 6= b′.

We first locate, in constant time, the nearest common ancestor u of the two
leaves corresponding to b and b′. This can be done in constant time using the
msb operation or table lookup. Let h be the height of u. Then the point that
satisfies the query (if any) must be in either b.right[h−1, q3, . . . , qd] or b′.left[h−
1, q3, . . . , qd].

In order to be able to answer general queries where the range [q1, q
′
1] may

partially intersect the 1-ranges of some blocks, we create an extra structure
for each block b as follows. We build a constant-height tree b.T with degree
Θ(logδ n), for a constant δ > 0 to be determined later, over the points of b
sorted in increasing order by their 1-coordinates. At each internal node v ∈ b.T
we keep for each pair (v1, v2) of its children, where v1 is to the left of v2, an array
v.R(v1,v2) indexed by [1..c]d−2. The entry (q3, . . . , qd) of this array identifies the
point p = (p1, . . . , pd) in b such that (i) p is in a leaf below a child of v between v1

and v2; (ii) p3 ≥ q3, . . . , pd ≥ qd; and (iii) p2 is maximized, provided that such a
point exists. Since within b a point can be uniquely identified using O(log log n)
bits, the total bit-cost of each internal node of v.T is O(cd−2 log log n log2δ n).
It follows that an internal node fits into a single word (and thus the total space
usage will be linear), if 2δ + (d − 2)ǫ < 1, which can be satisfied by choosing
δ = (1 − (d − 2)ǫ)/3.

We now describe how to answer a query of the form ((q1, q
′
1), q3, . . . , qd) where

q1, q
′
1 ∈ [b.l..b.r] for some block b. Let u be the nearest common ancestor of the

leaves in b.T corresponding to q1 and q′1, and let Π1 and Π2 be respectively the
paths from u to these two leaves. The answer to the query can be chosen from a
constant number of “candidate points”, each picked at a node on Π1 or Π2 from
one of its associated arrays. For example, without loss of generality, consider the
node u. Suppose its ith and jth children are respectively on paths Π1 and Π2,
and assume i < j − 1. Then the candidate point contributed by u can be found
in constant time at u.R(v1,v2)[q3, . . . , qd], where v1 and v2 are respectively the
(i + 1)th and (j − 1)th children of u.

Finally suppose we are given a query ((q1, q
′
1), q3, . . . , qd) where q1 ∈ [b.l..b.r]

and q′1 ∈ [b′.l..b′.r] for two different blocks b and b′, which can be easily identi-
fied in constant time. The output of the query is then one of the three points



returned by the queries ((q1, b.r), q2, . . . , qd), ((b′.l, q′1), q2, . . . , qd), and (b.r +
1, b′.l − 1, q2, . . . , qd), the handling of which has already been described.

3.2 (3, d, ǫ)-dimensional Dominance Reporting

In this section we show the following lemma:

Lemma 3. Let d ≥ 3 and 0 < ǫ < min(1/4, 1/(d− 2)) be constants and assume

S is a (3, d, ǫ)-dimensional point set of size m ≤ n. Then there exists a solution

to the dominance reporting problem for S using O(m) space such that a query

reporting f points can be answered in O(log m/ log log n + f) time.

We say a point p = (p1, . . . , pd) 2-dominates a point q = (q1, . . . , qd) if pi ≥ qi,
for 1 ≤ i ≤ 2. We say a subset M of a point set P is 2-maximal if p ∈ M , q ∈ P
and p 6= q implies that p does not 2-dominate q.

We build a search tree T with degree c = ⌈logǫ n⌉ and height O(log m/ log log n)
over the points from S sorted in increasing order by their 3-coordinates. At each
internal node v ∈ T we store the keys to guide the search in T in a q-heap. For
each internal or leaf node v ∈ T we define M(v) to be the largest 2-maximal set
of the points stored in the leaves of the subtree rooted at v, excluding those in
M(v′) for any ancestor v′ of v. We keep each point (p1, . . . , pd) ∈ M(v) as the
(2, d − 1, ǫ)-dimensional point (p1, p3, p4, . . . , pd) in the 3-sided reporting struc-
ture D(v) of Lemma 1. For the moment we ignore the requirement in Lemma 1
that the 1-coordinate must be in rank space. At each internal node v, we also
store another data structure G(v) containing the points in M(v′) for all the chil-
dren v′ of v. A point (p1, . . . , pd) from the ith child of v (counted from the left)
is stored in G(v) as the (2, d, ǫ)-dimensional point (p1, p2, i, p4, . . . , pd). G(v) is
also a 3-sided reporting structure of Lemma 1, again ignoring the rank space
requirement.

Now suppose we are given a query q = (q1, . . . , qd). We first identify the path
Π in T from the root to the leaf corresponding to the 3-successor of q3. We
can find Π in time O(log m/ log log n) by using the q-heaps associated with the
nodes of T . We then visit the root of T as described in the following. Actually,
we will describe how to visit an arbitrary node v ∈ T . We first report the points
from M(v) which dominate q by performing a query q′ = ((q1, q

′
1), q3, q4, . . . , qd)

in D(v), where q′1 is the 1-coordinate of the 2-successor of q2 in M(v) (we will
explain later how to find this 2-successor in constant time). The points returned
by this query are exactly the points in M(v) that dominate q. This is due to the
fact that for any two points r = (r1, r2, . . . , rd) and s = (s1, s2, . . . , sd) in M(v),
r1 > s1 if and only if r2 < s2 (see [MT98] for more details). Next, suppose the
kth child of v is on Π (we set k = 0 if v is not on Π). We then perform the
query q′′ = ((q1,∞), q2, k + 1, q3, . . . , qd) in G(v). If the answer to q′′ contains a
point (p1, p2, i, p4, . . . , pd), we recursively visit the ith child of v. If v has a child
on Π we also recursively visit that child (such child exists if and only if v is an
internal node on Π).

We now address the issue that the 1-coordinate of the points in M(v) and
G(v) for a node v in T has to be in rank space in order for Lemma 1 to be



applicable, and that the 2-successor of q2 in M(v) has to be identified in constant
time. The first issue is resolved by replacing the 1-coordinate of each point in
M(v) (resp. G(v)) with its 1-rank with respect to M(v) (resp. G(v)). Accordingly,
before the query q′ (resp. q′′) is applied to M(v) (resp. G(v)) we replace q1 with
its 1-rank in M(v) (resp. G(v)) (and, in the case of query q′, replace q′1 with
the 1-rank of the 2-successor of q2). Computing the 1-rank and the 2-successor
of an integer in M(v) and G(v) for each node visited is exactly the iterative

search problem defined in [CG86], which can be handled in O(1) time if v is
not the root of T and in O(log m/ log log n) time if v is the root, using the fast
fractional cascading technique of [SJ03b], which requires O(m) space. (Notice
that the standard fractional cascading technique described in [CG86] will not
work here because the degree of T is not a constant.)

Note that a point in S is stored at most twice, once in D(v) for a node v
and once in G(u), where u is the parent of v. The data structures of types D
and G are all linear-space data structures. Therefore the overall space usage
is O(m). Further, it is easy to see that the number of nodes of T visited is
O(log m/ log log n + f) and that searching D(v) and G(v) at each such node v
takes O(1) time per reported point, hence the claimed querying complexity.

4 Two-dimensional Dominance Counting

The goal of this section is to design a data structure to solve the dominance
counting problem for a set with dimension (2, d, ǫ) for d ≥ 2, thus proving The-
orem 2 for d = 2. We give this structure in Section 4.2. But first, we give,
in Section 4.1, a solution with sub-linear space usage for a set with dimension
(1, d, ǫ), for d ≥ 1, where the 1-coordinate is in rank space.

4.1 (1, d, ǫ)-dimensional Dominance Counting

This section is devoted to the proof of the following lemma:

Lemma 4. Let d ≥ 1 and 0 < ǫ < 1/(d − 1) be constants and assume S is an

(1, d, ǫ)-dimensional point set of size m ≤ n, where the 1-coordinate is in rank

space. Then there exists a solution to the dominance counting problem for S
using O(m log log n) bits of space such that queries can be answered in constant

time.

We assume m is a power of two and define c = ⌈logǫ n⌉. We sort the points
in increasing order by their 1-coordinates and group them into blocks each with
cd−1 log m elements. Further, we partition each block into subblocks each with
cd−1 elements. We label each block (resp. subblock) with the largest 1-coordinate
of a point in that block (resp. subblock). For each block or subblock b we keep an
array b.count indexed by [1..c]d−1. For each block b we set b.count[q2, . . . , qd] to
be the number of points in S dominating (i+1, q2, . . . , qd) where i is the label of
b. For each subblock b′ of a block b we set b′.count[q2, . . . , qd] to be the number
of points in b dominating (i + 1, q2, . . . , qd) where i is the label of b′. Finally,



we encode the points of a subblock b′ in O(cd−1 log c) = o(log n) bits which we
keep in a single word. This is possible since each of the cd−1 points in b′ can be
encoded in O(log c) bits.

Suppose we are given a query q = (q1, . . . , qd). We first identify, in constant
time, the block (resp. subblock) b (resp. b′) with the smallest label greater than
or equal to q1. We now describe how to find the number e of points in b′ that
dominate q. Notice that a query q with respect to a subblock can be described
in O(log log n) bits. To compute e in constant time, all we need is to append q to
the description of b′ and use the result to look up a global table, which requires
O(n) words since O(cd−1 log c log log n) = o(log n). The answer to the query q is
then e + b.count(q2, . . . , qd) + b′.count(q2, . . . , qd).

We now analyze the space usage of the structure. Each array of the m/(cd−1

log m) blocks contains cd−1 elements each of log m bits. It follows that the space
used by these arrays is O(m) bits. Each array of the m/cd−1 subblocks also
contains cd−1 elements but each element is at most cd−1 log m. It follows that
each element can be represented by O(log log n) bits so the total space used
by the arrays associated with the subblocks is O(m log log n) bits. Finally, each
point of a subblock can be represented by O(log log n) bits and it follows that
the total space usage becomes O(m log log n) as claimed.

4.2 (2, d, ǫ)-dimensional Dominance Counting

In this section we show:

Lemma 5. Let d ≥ 2 and 0 < ǫ < min(1/4, 1/(d − 1)) be constants and let S
be a (2, d, ǫ)-dimensional point set of size m ≤ n. Then there exists a solution to

the dominance counting problem for S using O(m) space such that queries can

be answered in O(log m/ log log n) time.

We will prove the lemma under the assumption that the first coordinate is
in rank space. Since the targeted query time is O(log m/ log log n) time, we can
easily remove this assumption by transforming the 1-coordinates of the points
in S as well as the 1-coordinate of the query point into rank space by creating a
search tree with degree (logδ n) on the 1-coordinates of the points, where δ < 1/4,
and storing the keys at each node of this tree in a q-heap.

We create a search tree T with degree c = ⌈logǫ n⌉ and height O(log m/ log log n)
over the points from S sorted in increasing order by their 2-coordinates. At each
internal node v ∈ T we store the keys to guide the search in v in a q-heap.
We define G(v) to be the set of points stored in the subtree rooted at v. Let
p = (p1, . . . , pd) ∈ G(v) be a point stored at a leaf descendant of the jth child
of v, and let i be the 1-rank of p in G(v). Then we store p as (i, j, p3, . . . , pd) in
a structure v.D of Lemma 4 with dimension (1, d, ǫ).

Now assume that we are given a query q = (q1, . . . , qd). We first identify the
path Π in T from the root to the leaf storing the 2-successor of q2. We can find
Π in time O(log m/ log log n) by using the q-heaps stored at the nodes of T . The
answer to q is the sum of the answers to Θ(log m/ log log n) (1, d, ǫ)-dimensional
dominance counting queries, each applied to the structure v.D for a node v on



Π. For the root w, suppose the jth child of w is also on Π. Then the query
applied to w.D is (q1, j + 1, q3, . . . , qd). For the leaf that is on Π, we check the
point stored there directly. Now consider a non-root internal node v on Π. Let
u be its parent. (Note that u is also on Π.) Suppose the jth child of v is also on
Π. Note that we already know the 1-rank r1(u) of q1 in G(u) (r1(w) = q1). The
query applied to v.D is (r1(v), j + 1, q3, . . . , qd), where r1(v) is the 1-rank of q1

in G(v). The value of r1(v) can be computed by performing a constant number
of (1, d, ǫ)-dimensional dominance queries in u.D. In fact, let G>(v) denote the
union of G(v′) for all the right siblings v′ of v, and let G≥(v) = G(v) ∪ G>(v).
Then r1(v) is the difference between the 1-rank of q1 in G≥(v) and the 1-rank
of q1 in G>(v). The 1-rank of q1 in G≥(v) is |G≥(v)| − k≥(v) + 1, where k≥(v)
is the number of points in G≥(v) whose 1-coordinate is greater than or equal
to q1. |G≥(v)| can be computed by performing the query (0, j, q3, . . . , qd) in u.D
and k≥(v) can be computed by performing the query (r1(u), j, q3, . . . , qd) in u.D.
The 1-rank of q1 in G>(v) can be computed similarly.

Since we only use constant time at each node of Π, the overall query time is
O(log m/ log log n). Furthermore, we store each of the m points of S in O(log m/
log log n) structures, each of which uses O(log log n) bits. Therefore the total
space usage becomes O(m) as claimed.

5 Higher Dimensional Dominance Reporting and

Counting

In this section we give a general construction in Lemma 6 which can be used
to obtain a structure for a (d, d, 0)-dimensional point set from a structure for a
(d′, d, ǫ)-dimensional point set, where d′ < d. We then use this construction to
prove Theorem 1 and 2 from Lemma 3 and 5 respectively. A similar construction
was given in [Mor03] for orthogonal range reporting for a dynamic set of points.

Let (G, +) be a semi-group and let S be a set with dimension (d′, d, ǫ).
Assume each point p ∈ S has an associated semigroup element g(p) ∈ G. The
(d′, d, ǫ)-dimensional dominance semigroup problem is defined as follows. Given a
(d′, d, ǫ)-dimensional query point q, find the semigroup sum

∑
p∈S:p dominates q g(p).

We will show:

Lemma 6. Assume 2 ≤ d′ ≤ d and 0 < ǫ < 1/4 are constants. Assume we

have a data structure structure D′ for a (d′ − 1, d, ǫ)-dimensional dominance

semigroup problem of size m′ for any m′ ≤ n. Then, we can derive a structure

D for the (d′, d, ǫ)-dimensional dominance semigroup problem of size m ≤ n.

Further:

1. For every point in D we store O(log m/ log log n) points in structures of type

D′.

2. Given a query in D we can answer it by performing O(log m/ log log n)
queries in the structures of type D′ and return the semigroup sum as the

result.



The space usage besides the space usage in item 1 is O(n) and the queries to be

performed in item 2 can be determined in constant time per query.

The dominance reporting problem can be seen as a special case of the domi-
nance semigroup problem if we define the elements in G as point sets, g(p) = {p},
and select + to be the union operator on sets. Theorem 1 then follows by apply-
ing Lemma 6 d−3 times to Lemma 3. Similarly, the dominance counting problem
can be seen as a special case of the dominance semigroup problem, where the
elements in G are non-negative integers, g(p) = 1, and + is the integer addition.
Theorem 2 then follows by applying Lemma 6 d − 2 times to Lemma 5.

We now prove Lemma 6. Let S be a set of m (d′, d, ǫ)-dimensional points.
We build a tree T with degree c = ⌈logǫ m⌉ over the points in S sorted by their
d′-coordinates. At each internal node v ∈ T we keep a dominance semigroup
structure v.D′ with dimension (d′ − 1, d, ǫ) containing the points stored in the
subtree rooted at v. A point p = (p1, . . . , pd) from the ith child of v is stored in
v.D′ as p′ = (p1, . . . , pd′−1, i, pd′+1, . . . , pd) with g(p′) = g(p). Suppose now we
are given a query q = (q1, . . . , qd) in D with dimension (d′, d, ǫ). We first identify
the path Π in T from the root to the leaf corresponding to the d′-successor
of qd′ , which can be found in time O(log n/ log log n) using the q-heaps in the
nodes of T . For each internal node v ∈ Π, assume that the jvth child of v is also
on Π. The answer to the query in D is then the semigroup sum of the queries
(q1, . . . , qd′−1, jv + 1, qd′+1, . . . , qd) in v.D′ for every v ∈ Π. This finishes the
proof of Lemma 6.
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