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Space-efficient binary optimization for variational quantum
computing
Adam Glos 1✉, Aleksandra Krawiec1 and Zoltán Zimborás 2,3

In the era of Noisy Intermediate-Scale Quantum (NISQ) computers it is crucial to design quantum algorithms which do not require
many qubits or deep circuits. Unfortunately, most of the well-known quantum algorithms are too demanding to be run on currently
available quantum devices. Moreover, even the state-of-the-art algorithms developed for the NISQ era often suffer from high space
complexity requirements for particular problem classes. In this paper, we show that it is possible to greatly reduce the number of
qubits needed for the Travelling Salesman Problem (TSP), a paradigmatic optimization task, at the cost of having deeper variational
circuits. While the focus is on this particular problem, we claim that the approach can be generalized for other problems where the
standard bit-encoding is highly inefficient. Finally, we also propose encoding schemes which smoothly interpolate between the
qubit-efficient and the circuit depth-efficient models. All the proposed encodings have the same volume up to polylogarithmic
factors and remain efficient to implement within the Quantum Approximate Optimization Algorithm framework.
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INTRODUCTION
During the past few decades, a wealth of quantum algorithms
have been designed for various problems, many of which offered
a speedup over their classical equivalents1–4. The theoretical
developments have also been complemented by progress on the
experimental side. Indeed, the demonstration of quantum
supremacy by Google5 indicates that in the near future useful
quantum technology may be available. However, current Noisy
Intermediate-Scale Quantum (NISQ) devices are too small and too
noisy to implement complicated algorithms like Shor’s factoriza-
tion algorithm2 or Grover-search-based optimizers6,7. This resulted
in a new field of quantum computation that focuses on designing
new algorithms requiring significantly less noisy qubits.
Optimization is a problem that seems to be particularly

suitable for current NISQ devices. In particular, the Variational
Quantum Eigensolver (VQE)8–10 seems to be the state-of-the-art
algorithm for solving molecule Hamiltonians. Although it can
solve optimization problems defined over discrete spaces, so-
called combinatorial optimization problems, quantum annealing
and Quantum Approximate Optimization Algorithm (QAOA)11

are considered to be more suitable.
For all of these algorithms, the original combinatorial optimiza-

tion problem has to be transformed into the Ising model. Typically,
one starts with a high-level description, like the Max-Cut problem,
where nodes in the graph G= (V, E) have to be colored either red
or black, so that certain function is minimized. Then, one has to
transform it to a pseudo-Boolean polynomial

P
fu;vg2Eðbu � bvÞ2.

Each binary variable (bit) bv denotes the color of the node v in the
graph. For example we can choose bv= 1 for red color, and bv= 0
for black color. For quantum algorithms it is convenient to change
the representation into Ising model via transformation bv← (1−
Zv)/2. Here Zv is a Pauli operator acting on a qubit corresponding
to the node v. By transforming the original objective function into
Hamiltonian, we also change the domain of the problem into the
space of quantum states.

Quantum optimization algorithms differ in the way how they
solve the problem. Variational Quantum Eigensolver (VQE) is a
heuristic algorithm in which the quantum circuit is optimized
using classical procedure. More precisely, we are given an ansatz
U(θ) which, after fixing the parameter θ, produces a state
θj i ¼Qk�1

i¼0 UiðθiÞ 0j i. The vector θ is optimized using classical
optimization procedure like gradient descent, simultaneous
perturbation stochastic approximation (SPSA), and other12,13,
so that θj i will be localized at high-quality answer. Due to its
generality, VQE is commonly used for molecule Hamiltonians,
however its usability to the classical optimization problems may
be limited.
Quantum annealing theoretically can also be applied for

chemistry Hamiltonians, however current machines restrict their
usability to combinatorial optimization problems. The algorithm
turns the ground state of initial Hamiltonian Hmix= ∑iXi into a
ground state of objective Hamiltonian H through adiabatic
evolution g(t)Hmix+ (1− g(t))H. Adiabatic theorem provides a
good premise for high-quality solutions of the problem. Further-
more, while available D-Wave’s annealers have thousands of
qubits, the topology restrictions may limit the size of tractable
problems to cases solvable by classical procedures14,15.
Quantum Approximate Optimization Algorithm (QAOA) is a

mixture of the methods described above11. While quantum
annealing is a continuous process, QAOA interchangeably applies
both Hmix and H for some time. The evolution time is a parameter
of the evolution, and as it was in the case of VQE, they are
adjusted by external classical procedure. Here the resulting state
takes the form

θj i ¼
Yr�1

i¼0

expð�iθmix;iHmixÞ expð�iθobj;iHÞ þj i; (1)

where r is the number of levels. The algorithm can be
implemented as long as both mixing and objective Hamiltonians
can be implemented, which in particular allows for applying it to
combinatorial problems. Many studies have been performed to
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characterize properties of QAOA algorithms, including both
rigorous proofs of computational power and reachability proper-
ties16–19 as well as characterization through heuristics and
numerical experiments and extensions of the algorithm20–24.
While the proposed quantum algorithms can theoretically

solve arbitrary combinatorial optimization problems, not all
pseudo-Boolean polynomials can be natively considered for
current quantum devices. A general pseudo-Boolean polynomial
takes the form

HðbÞ ¼
X

I�f0;¼ ;n�1g
αI
Y
i2I

bi;

where αI 2 R defines the optimization problem. The problem of
finding optimum of such function is called Higher-Order Binary
Optimization (HOBO). An order of such Hamiltonian is a maximum
size of S for which αS is nonzero. Current D-Wave machines are
restricted to polynomials of order 2, hence if one would like to
solve Hamiltonians of higher order, first a quadratization
procedure has to be applied, in general at cost of extra qubits25.
Note that optimization of quadratic polynomials, Quadratic
Unconstrained Binary Optimization (QUBO) is NP-complete, hence
it encapsulates most of the relevant problems.
The objective Hamiltonian for Max-Cut requires n qubits for

graph of order n. Hence it can encode 2n solutions, which is equal
to the number of all possible colorings. However, this is not the
case in general. For example for Traveling Salesman Problem (TSP)
over N cities, the QUBO requires N2 bits26. However, to store N!
permutations only dlog2ðN!Þe � N logN bits are needed. We
consider this as a waste of computational resources. Unfortu-
nately, in general polynomials with optimal number of qubits have
order larger than two, thus we are actually dealing with higher-
order binary optimization, which is currently not possible using
D-Wave machines.
The idea of using higher-order terms is not new. In fact, in the

original work of Farhi et al.11, the authors have not restricted the
model to two-local model. Furthermore, Hamiltonian of order 4
was used for variational quantum factoring27, while Hamiltonian
of order l was constructed for Max-l-SAT problem20. Since the
terms of arbitrary order can be implemented efficiently, QAOA for
the problem can reduce the number of required logical qubits. In
general, if objective polynomial is of constant order α, then the

circuit of depth O
�� n

α

�
log α

�
implements the objective Hamil-

tonian exactly. While the number may be large, it is still
polynomial, which makes the implementation tractable. However,
even for slowly growing α (say Oðlog nÞ), in general the number of
terms grows exponentially, which could be the case for l→∞ in
Max-l-SAT. Note that even an encoding that requires only
logarithmic number of qubits has been introduced28, however,
the minimizer of this encoding does not necessarily map to the
minimizer of the original problem.
Furthermore, when dealing with unbounded order, one has

to be careful when transforming QUBO into the Ising model.
Let us consider a polynomial 2n

Qn�1
i¼0 bi . Default transformation

bi← (1− Zi)/2 will produce Hamiltonian
P

I⊆{0,…, n−1}(−1)∣I∣
Q

i2I Zi ,
which consists of 2n terms29. For this example, one can easily
find a better Hamiltonian �Pn�1

i¼0 Zi , that shares the same global
minimizer, however, in general finding such a transformation
requires a higher-level understanding of the problem. Note that
this is not an issue for constant-order polynomials, as the number
of terms is guaranteed to be polynomial even in the worst case
scenario.
Despite the potential issues coming from utilizing unbounded-

order polynomials, we present a polynomial (encoding) for TSP
problem with unbounded order, which can be efficiently
implemented using approximately optimal number of qubits.
Furthermore, our model requires fewer measurements for

estimating energy. We also developed a transition encoding,
where one can adjust the improvement in the required number of
qubits and circuit’s depth. Finally, QAOA optimizes our encoding
with similar or better efficiency compared to the state-of-the-art
QUBO encoding of TSP.
Current state-of-the-art encoding of TSP problem can be found

in the paper by Lucas26. Let us consider the Traveling Salesman
Problem (TSP) over N cities. Let W be a cost matrix, and bti be a
binary variable such that bti= 1 iff the i-th city is visited at time t.
The QUBO encoding takes the form26

HQUBOðbÞ ¼ A1
PN�1

t¼0
1� PN�1

i¼0
bti

� �2

þ A2
PN�1

i¼0
1� PN�1

t¼0
bti

� �2

þ B
PN�1

i;j¼0
i≠j

Wij

PN�1

t¼0

btibtþ1;j :

Here A1;A2 > Bmaxi≠j Wij are parameters that have to be adjusted
during the optimization. We also assume N→ 0 simplification for
the indices. Note that any route can be represented in N different
ways, depending on which city is visited at time t= 0. Such
redundancy can be solved by fixing that the first city should be
visited at time t= 0. Thanks to that, n= (N−1)2 (qu)bits in total are
required.
In the scope of this paper we will take advantage of various

quality measures of encodings. First, since the Hamiltonian has to
be implemented directly, we prefer encodings with possibly small
depth. In this manner, QUBO can be simulated with a circuit of
depth OðnÞ using round-robin scheduling, see Fig. 2.
However, QUBO encoding for TSP is inefficient in the number

of qubits. Using Stirling formula one can show that dlogðN!Þe ¼
N logðNÞ � N logðeÞ þ ΘðlogðNÞÞ qubits are sufficient to encode
all possible routes, which is significantly smaller than N2. Note
that the number of qubits also has an impact on the volume
of the circuit, defined as a product of the number of qubits and
the circuit’s depth. In case of this encoding, the volume is of
order OðN3Þ.
In the paper we also consider the required number of measure-

ments to estimate the energy within constant additive error. Instead
of estimating each term of the Hamiltonian independently, which has
to be done for VQE, we consider the measurement’s output as a
single sample. This way, using Hoeffding’s theorem, QUBO encoding
requires OðN3Þ measurements.
Finally, we would also like to mention some other approaches of

reducing the number of qubits required for optimization problems.
The authors of30 proposed a similar approach of changing the
numeric system, however, they have not considered its applica-
tions to combinatorial problems, and particularly focused on
qudits. The authors of Fuchs et al.31 independently considered
Max-K-Cut, which is adealing with unbounded order, one has to be
generalization of Max-Cut with K-partitions of the graph. They
obtained a similar reduction from NK to � N log K qubits, however,
they did not provide a transition model which provides a trade-off
between the circuit depth and the required number of qubits.
Finally, there are known QAOA versions in which one reduces the
size of infeasible space for TSP problems based on the general-
ization of QAOA20, however, they still require N2 number of qubits,
which is the same as for the state-of-the-art encoding32.

RESULTS
Preliminaries
Travelling Salesman Problem is natively defined over the
permutations of {0,…, N− 1}. A simple encoding can be defined
as follows. We make a partition of all bits into N collections bt,
where each collection encodes a city visited in a particular time.
Then, for each collection we choose a number encoding that
represents the city.
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QUBO is an example of such an encoding, where each city is
represented by an one-hot vector, see Fig. 1. Instead, each city can
be encoded as a number using binary numbering system. Using
binary numbering system is a state-of-the-art way to encode
inequalities26, however, it is new in the context of encoding
elements of a feasible space.
The Hamiltonian takes the form

HðbÞ ¼ A1
PN�1

t¼0
HvalidðbtÞ þ A2

PN�1

t¼0

PN�1

t0¼tþ1
H≠ðbt; bt0 Þ

þ B
PN�1

i;j¼0
i≠j

Wij
PN�1

t¼0
Hδðbt; iÞHδðbtþ1; jÞ:

(2)

Hamiltonian Hvalid checks whether a vector of bits bt encodes a
valid city. For example, for QUBO it checks whether exactly one bit
is equal to 1.
Hamiltonian H≠ verifies whether two collections encode the

same city. Note that QUBO encoding falls into this representation
by choosing

HQUBO
≠ ðbt; bt0 Þ ¼ 2

PN�1

i¼0
btibt0 i � 1

N�1

PN�1

i¼0
bti þ

PN�1

i¼0
bt0 i þ 2

� �

Hamiltonian Hδ plays a similar role as H≠. If the inputs
are different, then both Hδ and H≠ give zeros. If the inputs are
the same, then the outputs are nonzero and moreover we
expect that the Hamiltonian Hδ outputs 1. This is in order to
preserve the costs of routes. In case of QUBO we took Hδ(bt, i)=
bti. Note that in particular, Hδ= H≠ may be a good choice,
however, later we will show that choosing different H≠ may be
beneficial.

Simple HOBO encoding
The simplest encoding is the one in which each collection bt
encodes a city in a binary system, see Fig. 1. In this case, for each
time we need K :¼ dlogNe qubits. In total we need �N logðNÞ
qubits, which match the lower bound. Moreover, we have to
design Hvalid in such a way that bt represents the number at
most N− 1.
Following Eq. (2), it is easy to note that HOBO defined in a way

described above, is of polynomial size. Note that the sum of

Hamiltonians H≠ produces at most
�N
2

�
22K elements.

Furthermore, the terms introduced by HHOBO
valid and HHOBO

δ are
already present in HHOBO

≠ . Hence in total, we have OðN4Þ terms,
which implies the polynomial size and depth, and thus volume.
Let us now present an exemplary encoding. Suppose ~bK�1 ¼ ~b0

is a binary representation of N− 1. Suppose k0∈ K0 are such
indices that ~bk0 ¼ 0. Then one can show that

HHOBO
valid ðbtÞ :¼

X
k02K0

bt;k0
YK�1

k¼k0þ1

1� ðbt;k � ~bkÞ2
� �

validates whether the encoding number is at most N− 1. A
detailed proof can be found in Supplementary Methods, here let
us consider an example. Suppose N− 1= 1001012. All the
numbers larger than N− 1 are of the form 11????2, 101???2 or
10011?2, where ‘?’ denotes an arbitrary bit value. The polynomial

bt5bt4 þ bt5ð1� bt4Þbt3 þ bt5ð1� bt4Þð1� bt3Þbt2bt1 (3)

punishes all these forms. At the same time, one can verify that
numbers smaller than N− 1 are not punished by the Hamiltonian.
Here, we will consider HHOBO

≠ � HHOBO
δ , hence it is enough to

define the latter only. Hamiltonian HHOBO
δ can be defined as

HHOBO
δ ðb; b0Þ :¼

YK�1

k¼0

1� ðbk � b0kÞ2
� �

:

Note that if b0 is a fixed number like it is in the case of objective
function implementation in Eq. (2), then we simply take
consecutive bits from binary representation. After transforming
the polynomial above into Ising model, one can see that
ðbk � b0kÞ2 ¼ 1

4 ðZ0
k � ZkÞ2 ¼ 1

2 ð1� Z0
kZkÞ. This means that all the

Pauli terms are of the form where spins are in pairs with the same
index k. This allows reducing the initial estimate OðN4Þ of number
of Pauli terms into OðN3Þ.
Let us estimate the cost of this encoding. As it was previously

stated, the number of factors is of order OðN3Þ. Using round-robin
technique for distributing gates and Gray code for ordering the
applications of Pauli ZZ…Z operators, see Figs. 2 and 3, one can
show that the depth of the circuit is OðN2Þ, which gives us the
volume OðN3 logðNÞÞ, which is almost the same as it was for
QUBO. Note that the Gray code scheduling requires additional
⌊N/2⌋ qubits, which does not change the final result. Finally, in
order to achieve a similar quality of energy measurements, we
need OðN2Þ measurements.

Fig. 1 Visualization of QUBO encoding and encodings introduced in the paper for TSP problem. a exemplary solution for TSP problem. On
the right there are assignments of the exemplary solution using respectively b QUBO, c HOBO, d naïve mixed, and e mixed encodings.
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One can expect that Higher-Order Binary Optimization may lead
to difficult landscapes, harder to investigate for optimization
algorithm. We have investigated TSP encodings with W≡ 0 and
random W matrices. The results are presented in Fig. 4. One can
see that with the same number of Hamiltonians applied, the
results are either similar or in favor for higher-order encodings.

Mixed QUBO-HOBO approach
While QUBO encoding requires significantly more qubits com-
pared to HOBO, the latter produces much deeper circuits. It is not
clear whether the number of qubits or the depth of the circuit will
be more challenging, and in fact we claim that both may produce
significant difficulties when designing quantum computers.
One can consider a simple mixing of the proposed QUBO and

HOBO approaches in the following way: let R ∈ {1,…, N− 1} be a
free parameter of our model. Exactly R of collections bt will be
encoded as one-hot vectors (in QUBO’s fashion), while the
remaining N− R collections will be encoded using the binary
representation, see Fig. 1d).
Unfortunately, this approach combines flaws of both models

introduced before. For R=Ω(N), the mixed approach requires Θ
(N2) qubits. On the other hand, for R ¼ OðNÞ the depth of the
circuit is the same as in the HOBO approach due to numerous
HOBO-encoded bt.
Instead, we propose another encoding. Suppose N= (2K− 1)L

for suitable integers K and L. Each bt consists of KL qubits of the
form btlk. The cities are encoded as follows. First K qubits (first
bunch) decodes numbers 0,…, 2K− 2. The second bunch decodes
2K− 1,…, 2 ⋅ 2K− 3, and so on. Note that QUBO and HOBO

encodings introduced before are special instances with L= N and
L= 1 respectively.
We add the following assumptions, which also define Hvalid. All

bits being zero is an invalid assignment, which is equivalent to ∑k,
lbtlk ≥ 1. This can be forced by using standard techniques for
transforming inequalities to QUBO26. Secondly, if in some bunch
there are nonzero bits, then in all other bunches bits have to be
zeros. Note that this assumption is equivalent to the fact that for
all l0= 0,…, L− 1 we have that either

P
kbtl0k is zero orP

l≠l0

P
kbtlk is zero. The Hamiltonian HMIX

valid takes the form

HMIX
validðbtÞ :¼ �PL�1

l¼0

PK�1

k¼0
btlk þ 1þ PdlogðKLÞe

i¼0
2iξt;i

 !2

þ PL�1

l¼0

PK�1

k¼0
btlk

� � PL�1

l0¼0
l0≠l

PK�1

k¼0
btl0k

0
B@

1
CA:

Here ξi are additional bits for encoding the first assumption. In
total, there will be additional N logðKLÞ � N logðNÞ qubits.
Now let us define HMIX

≠ Hamiltonian. Since due to HMIX
valid there

exist two indices l0; l
0
0 such that btl0 and bt0 l00 are nonzero, we only

have to check for consecutive bunches l= 0,…, L− 1 if there
exists l such that bt,l are nonzero and identical. The Hamiltonian
HMIX
≠ takes the form

HMIX
≠ ðbt; bt0 Þ :¼

PL�1

l¼0

PK�1

k¼0
ðbtlk þ bt0;l;kÞ

� � QK�1

k¼0
1� ðbt;l;k � bt0;l;kÞ2
� �

:

Note that the first factor checks whether the bunches are nonzero,
while the latter is the Kronecker delta implementation as before.

Fig. 2 Round-robin schedule for binary vectors b0,…, b4. A description of the schedule can be found in40. We assumed that each bi is
defined over 3 qubits. Each gate defined over a pair bi, bj is an implementation of the Hamiltonian defined over these variables.

Fig. 3 Decompositions of 3-local Pauli operator ZZZ and higher-local Ising model with and without ancilla. On the left, two
decompositions of expðitZ1Z2Z3Þ, a without auxiliary qubit41 (p.30), and b with auxiliary qubit42 (p.210). On the right, an example of
simplifying circuit for ∑I⊆{1, 2, 3}αI∏i∈IZi using Gray codes ordering for applications of ∏i∈IZi gates, c using Z operations only, and d with CNOTs
and single-qubit gates only. In all the figures blue gates are a k-local Z operations.
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Finally, let us define HMIX
δ . Let l : f0; ¼ ;N � 1g ! f0; ¼ ; L� 1g

be a function that outputs a bunch index denoting the i-th city. Then
it is enough to apply the Kronecker delta on lðiÞ-th bunch. Hence
HMIX
δ will take the form

HMIX
δ ðbt; iÞ :¼

YK�1

k¼0

1� ðbt0;lðiÞ;k � bikÞ
2

� �
;

where bik is k-th bit of binary representation of i.
Let us now calculate the efficiency of the encoding. We will

consider only the scenario k ¼ α logðNÞ for α∈ (0, 1). First we note
that L ¼ N

2K�1
¼ ΘðN1�αÞ. For the proposed mixed encoding, we

need NKLþ N logðKLÞ ¼ ΘðN2�α logðNÞÞ qubits. Hamiltonian can
be encoded in a circuits of depth OðN1þαlog2ðNÞÞ. This finally
gives us the volume OðN3log3ðNÞÞ. All these parameters show a
perfect, up to poly-log factors, transition between HOBO and
QUBO approaches. Finally, to achieve constant error of energy
estimation, we require OðN3�α logNÞmaxi≠j Wij runs of the circuit.

Optimal encoding
So far we assumed that all binary variables are split into collections
of binary variables, such that each collection defines a particular
time point. We heavily used this assumption, so that the encoding
was particularly simple. Therefore, it was implementable on a
quantum computer, which is necessary for QAOA. Nevertheless,
dropping this assumption can save us from even more qubits.
Let H be a diagonal Hamiltonian. Then ψh jH ψj i ¼P
b2f0;1gnEbj bjψh ij2, where Ei is the energy value corresponding

to the bit string i. Hence, the statistics from the measurements are
sufficient to estimate the energy.
Suppose we are given a general combinatorial optimization

problem of function f : A ! R, where A is a natural feasible
space for the problem. In the case of TSP, A would be a collection
of all permutations of some fixed order. Let g : A ! B � f0; 1gn
be a bijection function where n ¼ dlogðjAjÞe. Let ~ginvðbÞ be an
extension of g−1 such that it maps some penalty energy
Epen>mina2A f ðaÞ, i.e. ginvðbÞ ¼ g�1ðbÞδb2B þ Epenδb∉B . Then pro-
vided that ginv can be efficiently computed, we can use it to
estimate the expected energy directly from the measurement’s
statistics. Since converting binary representation into numbers
takes negligible time, it is enough to provide a procedure for
numbering elements of A.

We can incorporate this technique to TSP problem as well. In
this case, the simplest way is to use a factorial numbering
system in which i-th digit starting from the least significant
one can be any number between 0 and i− 1. In general
ðdk ¼ d0Þ! �

Pk
i¼0 d0 � i!. The opposite transformation can be

done by computing the modulo by consecutive natural numbers.
Then such representation can be transformed to permutation via
Lehmer codes which, starting with the most significant factoradic
digit, takes (k+ 1)-th digit of the sequence (0, 1,…, k). The used
digit is removed and the procedure repeats for next digit. The
taken digits in given order directly encodes a permutation.
Since the procedure described above maps consecutive natural

numbers to routes, we require only dlogðN!Þe qubits, which is
optimal for each N. Since arbitrary pseudo-Boolean function can
be transformed to pseudo-Boolean polynomial, it is as well the
case for f∘ginv. Hence there exists a diagonal Hamiltonian
representing the same optimization problem. However, in general
such encoding may require exponential number of terms, which
makes it intractable for QAOA. Hence, for such an approach VQE is
at the moment the preferable quantum algorithm. The numbers
of required measurements will in general depend on the choice of
Epen, however, they can be equal to the length of any route, or
Nmaxi≠j Wij . By this we can show that the number of measure-
ments is approximately OðNÞ rangeðWÞ, which is significantly
smaller than for any encoding described before.

DISCUSSION
The presented results, summarized in Table 1, show that it is
possible to significantly reduce the number of required qubits at
the cost of having deeper circuits. Since reducing both the depth
and the number of qubits are challenging tasks, we claim that it is
necessary to provide alternative representation allowing trade-
offs between the different measures. Our numerical results hint
that the increase of the depth might not be that significant for
larger system sizes, as one needs fewer levels in the space-
efficient embedded version. Thus, it would be interesting to
investigate how many fewer levels one needs in the space-
efficient encoding scheme.
Note that the approach cannot be applied for general problems.

For example, the state-of-the-art representation of the Max-Cut
problem over a graph of order N requires exactly N qubits. Since
the natural space in general is of order 2N, it seems unlikely to
further reduce the number of qubits. However, one can expect

Fig. 4 The dependence between the probability of measuring the state in feasible space and the number of levels for Travelling
Salesman Problem. Analysis was done for a 3 cities, b 4 cities, c 5 cities for W≡ 0, and d 3 cities, e 4 cities, f 5 cities for randomly chosen W. For
most cases HOBO and QUBO present similar quality, while HOBO clearly outperforms QUBO approach for random W for 4 cities. Vertical line
denotes the change of optimization method. For 5 cities with random W we were only capable of estimating up to 10 levels applied due to
convergence issues. The area describes the range between the worst and the best cases of the best probabilities over all TSP instances.
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similar improvements for other permutation-based problems like
max-k-coloring problem.
On top of that, while arbitrary HOBO can be turned into QUBO

by automatic quadratization techniques, it remains an open
question whether there are simple techniques that reduce the
number of qubits at the cost of additional Pauli terms. This is due
to the fact that quadratization is well-defined: if H : BX ! R is a
general pseudo-Boolean function, then quadratic pseudo-Boolean
function H0 : BX ´BY ! R is its quadratization iff for all x 2 BX

HðxÞ ¼ min
y2BY

H0ðx; yÞ: (4)

Note that y does not have any meaning in the context of original
problem H. However, when removing qubits from binary
function, we may not be able to reproduce the original solution.
Thus, such (automatic) procedure requires context of the
problem being solved.
One could consider recent results showing that QAOA with

polynomial depth is exposed to the negative side-effect induced
by the noisy system33,34. This threatens the possible application of
QAOA not only to this model, but also to the state-of-the-art
model. However, if we want to compare the efficiency of QAOA
with QUBO against HOBO or mixed encoding, we should take into
account that smaller systems would likely give more faithful
results. This effect is in fact already observed in the current
quantum devices: e.g., when comparing superconducting qubits
and trapped ion technologies, one can note that while for the
former it is much easier to construct larger computers, the latter
technology allows us to run deep quantum algorithms with much
higher fidelity as long as the memory resources are significantly
smaller. Thus, the applicability of our results against the state-of-
the-art model may depend on how the current technologies will
evolve in the nearest future, and it is difficult to estimate whether
small-depth large-width computation will be more plausible than
large-depth short-width ones.
Finally, using 2-complete linear swap network presented in

O’Gorman et al.35 we can implement HOBO on Linear Nearest
Neighbour (LNN) topology with the same depth up to polylog
overhead, by swapping whole registers bt instead of single qubits.
This comes from the fact that swapping two neighboring registers
of size � logN requires only �OðlogNÞ depth. Furthermore, by
using decomposition from Fig. 3a and proper reordering of qubits,
one can implement up to �2 logN-local Pauli operators with only
extra OðlogNÞ depth. On the other hand, swap network presented
in35 guarantees only depth proportional to the number of qubits
for QUBO. For this reason for the QUBO formulation considered in
this paper, it gives only OðN2Þ depth. This in fact is optimal, as one
cannot construct swap network achieving depth N2−ε for any ε > 0.
One can show it as follows: if we take any initial arrangement on
the LNN network for QUBO, then all of the spins which interact
should be with distance N2−ε. However, all spins presented in the
formulation have to interact with the spins interacting with the
first spin (in other words, graph of spin interactions has radius 2

for any node). This would mean that all spins have to be within
distance N2−ε from the first spin, which is not possible since there
are N2 of them. Hence we see that Θ(N2) depth is the best
achievable for TSP. Hence for such LNN topology HOBO depth is
larger only by poly-logarithmic factors, while having significant
reduction on qubits.

METHODS
The analysis of circuits’ depths
Let us begin with HOBO and mixed approaches. According to Eq. (2) we
can split all the terms into those defined over pairs ðbt ; bt0 Þ for t≠t0 . For
pairwise different t0, t1, t2, t3, if we have polynomials defined over bt0 ; bt1 ,
and bt2 ; bt3 , then we can implement them independently. Using round-

robin schedule, we can implement those
�N
2

�
polynomials in N− 1 (N)

steps for even (odd) N, as it is described in Fig. 2.
Let H be a general Hamiltonian defined over K bits. If we implemented

each term independently, then it would require
PK

k¼1 2i
� K
i

�
Θð2KKÞ ¼

2KK � 1 controlled NOTs according to the decomposition presented in
Fig. 3a. Adding single auxiliary qubit and using the decomposition from
Fig. 3b, and ordering terms according to Gray code, we can do it using 2K

qubits. Following the reasoning from previous paragraph we can apply
only dN2e Hamiltonians at once. We have an additional cost of dN2e qubits,
however reducing the depth cost by K ¼ ΘðlogNÞ for both mixed and
simple HOBO approaches.
For HHOBO

≠ all terms are formed of pair of spins Zt;kZt0 ;k . Here we can
again use the Gray code schedule, however each wire in Fig. 3c has a
meaning of the presented pair of spins. This means that each application
of Pauli term will results in 2 new controlled NOTs, instead of a single one
as in Fig. 3d. The situation for mixed formulation is much more
complicated, as there are terms which consist of the mentioned pairs of
spins plus one spin w/o match, hence the application of Gray code is not
straightforward. Hence we did not assume any CNOT simplification.
As far as QUBO is concerned, we have to make separate analysis, since

only 2-local terms are present. Note that 1-local terms Zti can be
implemented with circuit of depth 1. Moreover, for each 0 ≤ t < N, terms
{ZtiZtj: 0 ≤ i < j < N} can be implemented with a circuit of depth ≈ N using
round-robin schedule. We can similarly implement fZtiZt0 i : 0 � t<t0<Ng,
which implement first two addends of HQUBO. For the last addend we have
to implement for each 0 ≤ t < N terms Zt ¼ fZtiZtþ1;j : i ≠ jg. For even N,
note that we can first implement them for even t, then for odd t, which
doubles the depth of the circuit for single t. For odd N we have to include
extra layer for t= N− 1, which will only increase the depth by 3/2. Finally,
note that Zt ¼

SN�1
k¼0 Zt;k , where each Zt;k ¼ fZtiZtþ1;iþk : 0 � i<Ng can be

implemented with circuit of depth 1. Eventually, the depth of Hamiltonian
HQUBO is of order Θ(N).
The detailed analysis for each encoding can be found in Supplementary

Methods.

Numerical analysis
Below we describe the optimization algorithm used to generate the result
presented in Fig. 4. We have emulated the quantum evolution and take an
exact expectation energy of the state during the optimization. As a
classical subroutine we used a L-BFGS algorithm implemented in Julia’s

Table 1. Upperbounds on resources required for various Hamiltonian encodings.

QUBO HQUBO HOBO HHOBO Mixed HMIX Enumerating HVQE

No. of qubits N2 N log N α
C N

2�α logN NdlogðN!Þe
No. of terms 2N3 (C2− C/2)N3 α

2N
3 logN Exponential

Circuit depth 12N (4C2+ 3C)N2 2α2CN1þαlog2N Exponential

Circuit volume 12N3 ð4C2 þ 3CÞN3 logN 2α3N3log3N Exponential

No. of measurements OðN3Þmaxi≠j Wij OðN2Þmaxi≠j Wij OðN3�α logNÞmaxi≠j Wij OðNÞrange ðWÞ
Only leading terms are written, for more exact bounds see Supplementary Methods. The Oð�Þ does not depend on the choice of W. We assumed B= 1 and
A1; A2 ¼ Oðmaxi≠j WijÞ. Note that HMIX scales up to poly-logarithmic factor between HQUBO and HHOBO. The constant C∈ (1, 2) for HOBO and mixed Hamiltonians
depends on α and N. For depth, only terms for even N are present, for odd N terms can be found in the Supplementary Methods.
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Optim package36. Independently of the instance of algorithm, we assume
that the parameters θmix for mixing Hamiltonian could be from the interval
[0, π]. For objective Hamiltonian we assumed the parameter θobj will be
from [0, R]. For both we assume periodic domain, mainly if π+ ε or
respectively R+ ε was encountered, the parameter was changed to ε,
which changed the hypercube domain to hypertorus.
Let r be the number of levels of the circuit. For r < 5, each run was

started from randomly chosen vector within range of the parameters. For
r ≥ 5, we used a trajectories method similar to the one proposed in37. First,
we optimized the algorithm for r= 5, as described in previous paragraph.

Then, for each r ≥ 5 we took the optimized parameter vectors θ
!ðrÞ

mix , θ
!ðrÞ

obj of

length r, and constructed new vectors θ
!ðrþ1Þ

mix , θ
!ðrþ1Þ

obj of length r+ 1 by
copying the last element at the end. We took these vectors as initial points
for r+ 1. Therefore, we obtained a trajectory of length 11 (6 for Fig. 4f) of
locally optimal parameter vectors, one for each r ≥ 5.
Sometimes the algorithm has not converged to the local optimum in

reasonable time. We claim that the reason came from periodicity of the
domain, which for general TSP breaks the smoothness of the Hamiltonian
landscape. We only accepted runs for which: for r < 5 the gradient was
below 10−5; for r ≥ 5, for each parameters vector from the trajectory, the
gradient was supposed to be below 10−5.
Since the energy values for both QUBO and HOBO are incomparable, we

decided to present the probability of measuring the feasible solution, i.e.
the solution describing a valid route.
Figures a, b, c from Fig. 4 were generated as follows. We took QUBO and

HOBO encodings of TSP with W≡ 0 for QAOA algorithm. One can consider
it as a Hamiltonian problem on a complete graph. We took A1= A2= 1 for
both encodings, and R= π (R= 2π) for QUBO (HOBO). For each r= 1,…, 15
we generated 100 locally optimal parameter vectors, and for each r we
chose the maximum probability.
Subfigures d,e,f from Fig. 4 were generated as follows. We generated

100 matrices W to be W= X+ X⊤, where X is a random matrix with i. i. d.
elements from the uniform distribution over [0, 1]. For each TSP instance
we repeated the procedure as in W≡ 0 case, however, generating
40 samples for each r. For each TSP instance we chose the maximal
probability of measuring the state in the feasible space. The line describes
the mean of the best probabilities over all TSP instances. The area
describes the range between the worst and the best cases of the best
probabilities over all TSP instances.

The number of measurements
For estimating the number of measurements we applied the Hoeffding’s
inequality. Let X ¼ 1

M

PM
i¼1 Xi be the mean of i.i.d. random variables such

that Xi∈ [a, b]. Then

PðjX �EXj 	 tÞ � 2 exp � 2Mt2

b� a

� �
: (5)

In our case X is the energy estimation of the energy samples Xi. Provided
that we expect both probability error and estimation error to be constant,
we require M=Ω(b− a).
The values of a, b depend not only on the cost matrix W, but also on the

form of the encoding and the values of constants A1, A2, B in Eq. (2). For
simplicity, we take the following assumptions when estimating the
samples number. First, w.l.o.g. we assume B= 1. Furthermore, we assumed
Cmaxi≠j Wij � Ai � C0 maxi≠j Wij where C; C0 do not depend on N and W.
This matches the minimal requirement for QUBO. While various measures
on W could be considered, we presented the results in the form
f ðNÞmaxi 6¼j Wi;j , where f does not depend on W. Furthermore, our analysis
for each model is tight in N assuming that maxi≠j Wij ;mini≠j Wij ¼ Θð1Þ
independently on N. Note that using this assumption, a 	 Nmini≠j Wij is
valid for any correctly chosen A1, A2.
Furthermore, Hamiltonians H≠ and Hvalid are integer-valued, and the

spectral gap is of constant order. For QUBO, the spectral gap is at most
two, which can be generated by adding superfluous one-bit to any valid
encoding. For HOBO, it can be generated by choosing the same number
for different bt; bt0 . Finally, for the mixed approach we can generate
incorrect assignments to slack ξt,i variables. Theoretically, there is no upper-
bound for A1, A2. However, in general it is not encouraged to make them
too large, as classical optimization algorithm may focus too much on
pushing the quantum state to feasible state instead of optimizing over
feasible space. For this reason and to make the presentation of our results
simpler, we assumed that Ai are of order maxi≠j Wi;j .

During the optimization, one could expect that the quantum states will
finally have large, expectedly 1− o(1) overlap with the feasible space.
Thus, one could expect that the estimated energy will be of typical, and
later close to minimal, route. Thus, for these points one could expect that
OðNÞ rangeðWÞ samples would be enough to estimate the energy
accurately. We agree that it is a valid approach, especially when the
gradient is calculated using (f(θ0+ ε)− f(θ0− ε))/(2ε) formula. However,
recently a huge and justified effort has been made on analytical gradient
estimation, which is calculated based on θ parameters that are far from
the current θ0 point38,39. In this scenario, we can no longer assume that
the energy will be of the order of the typical route. Thus we believe that
our approach for number of measurements estimation is justified.
The detailed analysis for each encoding can be found in the

Supplementary Methods.
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