
RETROSPECTIVE:

Space Efficient Conservative Garbage Collection

Hans-J. Boehm

HP Laboratories
1501 Page Mill Rd. MS 1138
Palo Alto, CA, 94304, USA
Hans.Boehm@hp.com

ABSTRACT

Both type-accurate and conservative garbage collectors have gained

in importance since the original paper was written. Managing un-

necessary retention by conservative collectors continues to be an

important problem. There appear to be few reimplementations of

the techniques we described, but significantly refined descendents

of the original implementation are alive and well inside a large

number of applications.

There has been later work both on quantifying space retention

by conservative collectors, and on theoretical bounds for such re-

tention.

1. INTRODUCTION
Conservative garbage collectors can automatically reclaim memory

in the presence of missing or incomplete information about the lo-

cation of pointers. This is nearly essential for automatic memory

management of programs written, at least partially, in languages

such as C, where it is difficult for the compiler to precisely identify

all pointer-containing locations.

For implementations of languages such as Java, it can still sig-

nificantly simplify the implementation and allow for much easier

interoperability with C programs, though potentially at some cost.

A number of Java Virtual machines, including the original Sun Java

Virtual Machine and some of IBMs implementations, use partially

conservative collectors. Some others, e.g. Sun’s HotSpot or Mi-

crosoft’s implementation, do not.

For conservative garbage collectors, both the blacklisting and

stack clearing techniques described in the paper remain useful.

2. IMPLEMENTATIONS
Two descendents of the garbage collectors described in the paper

are actively maintained and regularly enhanced, and appear to be

receiving increasing use. Geodesic Systems enhanced a version

of the collector as part of their Geodesic Runtime product, which

is marketed as a tool for diagnosing and automatically repairing

program errors, including memory leaks [12]. It has now diverged

significantly from the original.

The original stand-alone collector continues to be developed as

an open source project [1]. It is widely used, both in runtime sys-

tems for garbage collected languages, and to support specific C or

C++ applications. It has grown debugging facilities[10], parallel

collection support[2], performance enhancements[3], better sup-

port for explicit type information, and support for many platforms,

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

all with the help of several dozen outside volunteers. Known clients

include:

• The runtime for gcj, the GNU Java compiler. The collector

is part of the standard distribution of gcc, the GNU compiler

collection.1

• Bigloo, MzScheme, and several other Scheme, Lisp, and Java

implementations.

• Mono, an open source implementation of Microsoft’s .NET

framework.

• Xerox DocuPrint printer software based on Cedar. This has

been used successfully for many years and continues to drive

many of Xerox’ high end networked printers [8].

• The Mozilla web browser, but only as a leak detector during

development.

• It is distributed as part of the runtime libraries for optional

client use as part of the NAGWare Fortran compilers, and as

part of the Digital Mars C/C++ compiler distribution.

• Amazon.com has used both the original and Geodesic col-

lectors for a variety of systems including a modified version

of the Apache web server. A marketing-oriented discussion

can be found at [11].

Geodesic Systems also lists a large number of their clients on

their web site. A different reimplementation of the blacklisting

technique is described in [9].

3. FURTHER RESEARCH
The blacklisting technique is mentioned occasionally in the liter-

ature and has been used in a few other implementations, e.g. in

[9, 7]. However, we are not aware of much further work refining

either the blacklisting technique or one of the others mentioned in

the paper. Primarily, it remains a core piece of both our collec-

tor and Geodesic System’s “Geodesic Runtime” collector. This has

allowed various users to gather more empirical insight into its be-

havior.

We conclude by reviewing somemore theoretical results on space

use in general and conservative collectors in particular.

1For portability reasons, gcc also uses a second, different, garbage
collector for its internal front-end data structures.

ACM SIGPLAN 490 Best of PLDI 1979-1999

3.1 Empirical Results
The general issue of space efficiency for conservative collectors

was studied using a clever measurement technique in [6]. They

measured our collector, including the techniques described in the

original paper. Their test programs were selected to be particularly

vulnerable to pointer misidentification. They found space over-

heads up to around a factor of two, but no growing leaks.

In our experience, pointer misidentification is only occasionally

a problem for conservative collectors in real applications. When

it is, it can usually be worked around by supplying the collector

with type information for a few common kinds of heap objects.

Debugging facilities such as those in [10] make this relatively easy.

We did encounter one case, a compiler, for which this approach

was not viable. It intentionally kept dangling pointers to deallo-

cated objects, while relying on application-specific knowledge that

those pointers could not be referenced. Such a programming tech-

niques is fundamentally incompatible with any form of automatic

garbage collection, conservative or not. Fortunately, it also appears

to be exceedingly rare.

In spite of our generally positive results, pointer misidentifica-

tion is clearly more of an issue now (in 2002), than it was in 1993,

or is likely to be 10 years from now. A number of applications are

close to filling a 32-bit address space, thus making every value ap-

pear to be a possible object address. This is clearly a worst case

for conservative garbage collection. But we expect it to be rapidly

followed by the best case of a relatively sparsely occupied 64-bit

address space, where spurious retention is very unlikely to be an

issue[6].

As mentioned in the original paper, if the blacklisting technique

is combined with garbage collector recognition of all interior point-

ers, it may become difficult to allocate very large objects, since

there may be insufficient room between blacklisted addresses. This

seems to be one of the more common failure modes. In our collec-

tor this resulted in warnings, which were often puzzling to someone

who didn’t understand the blacklisting technique. In many cases,

the warnings were actually spurious, since they resulted from the

allocation of a single, large, permanent array. We have gradually

invested more care in generating these warnings only when they’re

likely to require attention, i.e. when we are repeatedly forced to al-

locate at blacklisted locations. The Geodesic Systems collector op-

tionally restricts interior pointer recognition for large objects, since

it unavoidably causes some problems.

3.2 Theoretical Studies
More work has been done on precisely defining how much space

a language implementation is allowed to use, and thus on defin-

ing what constitutes a memory leak[5]. A language incorporating

such a definition requires any garbage collector to obey strict space

bounds, which are often incompatible with conservative garbage

collectors. However most mainstream language definitions (e.g.

Java, C, C++) still make no such guarantees. Java does not de-

fine object reachability, and C/C++ memory allocator implemen-

tors typically do not publish an upper bound on space that can be

lost to fragmentation.

Somewhat surprisingly, it is often possible to give a mathemat-

ical bound on space usage of partially conservative collectors [4].

In large part, this work grew out of the lazy list and queue “coun-

terexamples” mentioned both in [13] and in our original paper.

These bounds become somewhat sharper when combined with

blacklisting. They probably have practical implications only for

mildly conservative collectors e.g. those that scan only the stack

conservatively. But even when the bounds don’t apply, similar rea-

soning leads to nonobvious testing techniques can detect the poten-

tial for unexpected failure.

4. ACKNOWLEDGEMENTS
We would like to thank Michael Spertus and others at Geodesic

Systems, for sharing some of their experiences, and for comment-

ing on a draft of this retrospective.

The contributors to the development of the open source collector

are too numerous to list here.

REFERENCES

[1] Hans-J. Boehm. A garbage collector for C and C++.

http://www.hpl.hp.com/personal/Hans Boehm/gc/.

[2] Hans-J. Boehm. Fast multiprocessor memory allocation and

garbage collection. Technical Report HPL-2000-165, HP

Laboratories, December 2000.

[3] Hans-J. Boehm. Reducing garbage collector cache misses. In

Proceedings of the 2000 International Symposium on

Memory Management, pages 59–64, 2000.

[4] Hans-J. Boehm. Bounding space usage of conservative

garbage collectors. In Proceeedings of the Twenty-Ninth

Annual ACM Symposium on Principles of Programming

Languages, pages 93–100, 2002.

[5] William D. Clinger. Proper tail recursion and space

efficiency. In SIGPLAN ’98 Conference on Programming

Language Design and Implementation, pages 174–185, June

1998.

[6] Martin Hirzel and Amer Diwan. On the type accuracy of

garbage collection. In Proceedings of the International

Symposium on Memory Management 2000, pages 1–11,

October 2000.

[7] Allen Leung. Prop : A C++ -based pattern matching language.

http://cs1.cs.nyu.edu/leunga/www/papers/research/prop/prop.html,

1996.

[8] Palo Alto Research Center, Incorporated. Parc history.

http://www.parc.com/company/history.

[9] Gustavo Rodriguez-Rivera, Mike Spertus, and Charles

Fiterman. Conservative garbage collection for general

memory allocators. In Proceedings of the International

Symposium on Memory Management 2000, pages 71–79,

October 2000.

[10] Manuel Serrano and Hans-J. Boehm. Understanding memory

allocation of Scheme programs. In Proceedings of the 2000

International Conference on Functional Programming

(ICFP), pages 245–256, 2000.

[11] Geodesic Systems. Geodesic systems - amazon.com

customer story.

http://www.geodesic.com/about/customers/amazon story.html,

2002.

[12] Geodesic Systems. Geodesic systems - runtime analyzer.

http://www.geodesic.com/solutions/products analyzer.html,

2002.

[13] E.P. Wentworth. Pitfalls of conservative garbage collection.

Software Practice and Experience, 20(7):719–727, 1990.

ACM SIGPLAN 491 Best of PLDI 1979-1999

ACM SIGPLAN 492 Best of PLDI 1979-1999

ACM SIGPLAN 493 Best of PLDI 1979-1999

ACM SIGPLAN 494 Best of PLDI 1979-1999

ACM SIGPLAN 495 Best of PLDI 1979-1999

ACM SIGPLAN 496 Best of PLDI 1979-1999

ACM SIGPLAN 497 Best of PLDI 1979-1999

ACM SIGPLAN 498 Best of PLDI 1979-1999

ACM SIGPLAN 499 Best of PLDI 1979-1999

ACM SIGPLAN 500 Best of PLDI 1979-1999

ACM SIGPLAN 501 Best of PLDI 1979-1999

