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ABSTRACT

Virtually every modern search application, either desktop,
web, or mobile, features some kind of query auto-completion.
In its basic form, the problem consists in retrieving from
a string set a small number of completions, i.e. strings be-
ginning with a given prefix, that have the highest scores
according to some static ranking. In this paper, we focus
on the case where the string set is so large that compres-
sion is needed to fit the data structure in memory. This is a
compelling case for web search engines and social networks,
where it is necessary to index hundreds of millions of distinct
queries to guarantee a reasonable coverage; and for mobile
devices, where the amount of memory is limited.
We present three different trie-based data structures to

address this problem, each one with different space/time/
complexity trade-offs. Experiments on large-scale datasets
show that it is possible to compress the string sets, including
the scores, down to spaces competitive with the gzip’ed data,
while supporting efficient retrieval of completions at about a
microsecond per completion.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; E.1 [Data Structures]: Trees
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1. INTRODUCTION
Auto-completion is an important feature for modern search

engines, social networking sites, mobile text entry, and many
web and database applications [35, 23, 16]. Specifically, as
the user enters a phrase one character at a time, the system
presents the top-k completion suggestions to speed up text
entry, correct spelling mistakes, and help users formulate
their intent. As shown in Figure 1, a search engine may
suggest query completions of search prefixes, a browser may
complete partial URLs, and a soft keyboard may predict
word completions. Typically, the completion suggestions are
drawn from a set of strings, each associated with a score. We
call such a set a scored string set.
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(a) Search engine (b) Browser (c) Soft keyboard

Figure 1: Usage scenarios of top-k completion.

Definition 1.1 (Scored string set). A scored string
set S, |S| = n, is a set of n pairs (s, r) where s ∈ Σ∗ is a
string drawn from an alphabet Σ and r is an integer score.

Given a prefix string, the goal is to return the k strings
matching the prefix with the highest scores. Formally, we
define the problem of top-k completion as follows.

Problem 1.2 (Top-k completion). Given a string p ∈
Σ∗ and an integer k, a top-k completion query in the scored
string set S returns the k highest scored pairs in Sp =
{(s, r) ∈ S | p is a prefix of s} (or the whole set if |Sp| < k).

To be effective, an auto-completion system needs to be
responsive, since users expect instantaneous suggestions as
they type. As each keystroke triggers a request, the system
needs to scale to handle the high volume. To host a large
number of unique suggestions, the data should be compressed
to avoid the latency costs associated with external memory
access or distributed data structures. If the data needs to
be hosted on mobile clients, the compression should further
scale across dataset sizes.
A simple solution is to store all the strings in a trie or

compacted trie [21], and associate each leaf node with its cor-
responding score. Although such a data structure is compact
and allows us to quickly enumerate all the strings matching
a given prefix, we need to explicitly sort the matches by
their scores in order to return the top-k completions. For
large string sets where short prefixes may potentially match
millions of strings, this approach is prohibitive in terms of
speed. Although we can precompute and store the top-k
completions for the short prefixes [24], this requires a priori
knowledge of k and the space scales poorly with k.

Many of the top-k completion application scenarios exhibit
special properties which we can take advantage of to improve
the space and time efficiency of the system. First, the scores
associated with the strings often exhibit a skewed power law
distribution, as demonstrated by the histogram of search



1

100

10K

1M

1 100 10K 1M

#
 Q

u
e

ri
e

s

Query Count

Figure 2: Score distribution in the AOL dataset.

counts associated with the AOL queries [1] in Figure 2. Most
of the queries have low counts as scores that require only a few
bits to encode. Second, the distribution of the target strings
that users enter one character at a time often approximates
the distribution of the scores, after ignoring the prefixes
not matching any of the strings in the set. Specifically, in
practical usages of top-k completion systems, prefixes of
entries with higher scores tend to be queried more than
those associated with lower scored entries. In fact, a common
folklore optimization in practical trie implementations is to
sort the children of each node by decreasing score. Third, as
a large number of strings share common prefixes, they are
highly compressible.
In this work, we present three data structures that ex-

ploit the aforementioned properties to support efficient top-
k completion queries with different space/time/complexity
trade-offs.

• Completion Trie: A compact data structure based on
compressed compacted trie, where the children of each
node are ordered by the highest score among their re-
spective descendants. By storing the max score at each
node, we can efficiently enumerate the completions of
a string prefix in score order. This data structure uses
standard compression techniques, such as variable-length
encoding, to reduce space occupancy.

• RMQ Trie: A generic scheme that can be applied to
any data structure that bijectively maps a set of strings
to consecutive integers in lexicographic order, by using
a Range Minimum Query (RMQ) data structure [13]
on the sequence of scores to retrieve the top-k comple-
tions. In our experiments, we apply the scheme to the
lexicographic path-decomposed trie of [17].

• Score-Decomposed Trie: A compressed data structure
derived from the path-decomposed trie of [17], where we
use a path decomposition based on the maximum descen-
dant score. This path decomposition enables efficient
top-k completion queries.

Large scale evaluations on search queries, web URLs, and
English words demonstrate the effectiveness of the proposed
approaches. For example, on the AOL query log with 10M
unique queries [1], the Completion Trie achieves a size of 120
bits/query (including the scores) while requiring an average
of only 3.7µs to compute the top-10 completion on a simu-
lated workload. In comparison, the Score-Decomposed Trie
increases the completion time to 8.0µs, but further reduces
the size to 62 bits/query. In fact, this is less than 30% of
the uncompressed data size and within 11% of the gzip’ed
size. The RMQ Trie obtains a similar space occupancy at 65
bits/query, but is significantly slower at 33.9µs.

2. RELATED WORK
There is a vast literature on ranked retrieval, both in the

classical and succinct settings. We report here the results
closest to our work.

Using classical data structures, various studies have exam-
ined the task of word/phrase completion [7, 26, 24, 25, 30,
36], though most do not consider datasets of more than a
million strings or explore efficient algorithms on compressed
data structures. In [24], Li et al. precompute and materialize
the top-k completions of each possible word prefix and store
them with each internal node of a trie. This requires a pre-
determined k and is space inefficient. Church et al. employ a
kd-tree style suffix array that alternates the sorting order of
nodes between lexicographic and score order at each level [7].
However, the lookup time is in the worst case O(

√
n) and

has empirical performance in milliseconds. Recently, Matani
[26] describes an index similar in principle to the proposed
RMQ Trie structure in Section 5, but uses a suboptimal data
structure to perform RMQ. Although the system achieves
sub-millisecond performance, both this and the previous work
require storing the original string set in addition to the index.
From a theoretical point of view, Bialynicka-Birula and

Grossi [4] introduce the notion of rank-sensitive data struc-
tures, and present a generic framework to support ranked
retrieval in range-reporting data structures, such as suffix
trees and tries. However, the space overhead is superlinear,
which makes it impractical for our purposes.

As the strings are often highly compressible, we would like
data structures that approach the theoretic lower bound in
terms of space. Succinct data structures use space that is the
information-theoretically optimal number of bits required to
encode the input plus second-order terms, while supporting
operations in time equal or close to that of the best known
classical data structures [20, 28, 3, 33]. Recent advances have
yielded many implementations of string dictionaries based
on succinct data structure primitives [17, 6], without scores.
Hon et al. [19] use a combination of compressed suffix

arrays [18, 12] and RMQ data structures to answer top-k
document retrieval queries, which ask for the k highest-scored
documents that contain the queried pattern as a substring,
in compressed space. While this is strictly more powerful
than top-k completion, as shown in [6], string dictionaries
based on compressed suffix arrays are significantly slower
than prefix-based data structures such as front-coding, which
in turn is about as fast as compressed tries [17]. The RMQ
Trie of Section 5 uses a similar approach as [19], but is
based on a trie instead of a suffix array. As we will discuss
in Section 8.4, speed is crucial when implementing more
sophisticated algorithms, such as fuzzy completion, on top
of the core top-k completion data structures.

3. PRELIMINARIES
In this section, we briefly describe some of the data struc-

tures and primitives used in this paper. For additional details
on the design and implementation of these primitives, please
refer to the cited references.
String Dictionaries. A string dictionary is a data struc-
ture that maps a prefix-free set S ⊂ Σ∗ of strings drawn
from an alphabet Σ bijectively into [0, |S|), where prefix-free
means that no string in the set is a prefix of another string in
the set; this can be guaranteed, for example, by appending
a special terminating null character to every string. We call



Lookup the function that maps a string to its index, and the
inverse function Access, i.e. Access(Lookup(s)) = s for all
s ∈ S. Lookup(s) returns ⊥ if s is not in S. A popular way
of implementing a string dictionary is by using a trie data
structure [14], possibly compacted, where each chain of edges
without branches is collapsed into a single edge.
Priority queues. A priority queue Q maintains a set under
operations Push(Q, v), which adds the element v to Q; and
Pop(Q), which returns the minimum element in Q according
to a given total ordering on the values, and removes it from
the set. To implement priority queues, we use a classical bi-
nary heap [21]. While alternative solutions, such as Fibonacci
heaps and pairing heaps, have O(1) amortized insertion cost,
they are often slower than binary heaps in practice.
Bitvectors with Rank and Select. Given a bitvector X
with n bits, we can define the following operations: Rankb(i)
returns the number of occurrences of bit value b ∈ {0, 1} in X

in the range [0, i). Selectb(i) returns the position of the i-th
occurrence of bit value b in X. Note that Rankb(Selectb(i)) =
i. These operations can be supported in constant time by
adding o(n) bits of redundancy to the bitvector [8, 20]. In our
implementations we use the rank9 data structure [37] and a
variation of the darray [31] when only Select is needed.
Balanced parentheses (BP). In a sequence of n balanced
parentheses, each open parenthesis ( is paired with its mate
close parenthesis ). Operations FindClose and FindOpen find
the position of the mate of an open and close parenthesis, re-
spectively. The sequence can be encoded as a bitvector, where
1 represents ( and 0 represents ). The difference between the
number of open and close parentheses in the range [0, i) is
called the excess at i. Note that Excess(i) = 2Rank((i)− i.
It is possible to support the above operations in constant
time with a data structure that takes o(n) bits [20, 28, 2,
33]. In our implementation we use the Range-Min tree [17],
a variation of the Range-Min-Max tree [2, 33].
DFUDS representation. The DFUDS (depth-first unary
degree sequence) representation [3] maps a tree with t nodes
to a BP sequence of 2t bits; several traversal operations
can be implemented with a combination of Rank, Select,
FindClose, and FindOpen operations.
Range Minimum Queries (RMQ). Given an array A

of n values, the operation RMQ(i, j) returns the position of
the minimum value of A in the range [i, j], according to a
given total ordering of the values (in case of ties, the leftmost
value is chosen). RMQ can be supported in constant time by
pre-computing the Cartesian tree of A, which can be encoded
using BP into 2n+ o(n) bits [13]. In our implementation we
use this data structure with a slight variation in the RMQ
algorithm, described in more detail in Appendix A.
Implementation details. In implementing the succinct
data structures described above, we are mostly concerned
with the actual speed and space of the data structures we
consider, rather than theoretical optimality. For this reason,
although constant-time implementations of many succinct
primitives are available, we often prefer logarithmic-time
versions. As shown in several papers [31, 37, 2, 17], such
implementations are actually faster and smaller than their
constant-time counterparts. For this reason, when reporting
time complexities, we will ignore the logarithmic factors intro-
duced by succinct operations, treating them as constant-time;
in this case we will use the Õ notation to avoid ambiguity.

Our implementations of these structures are freely available
as part of the Succinct C++ library [34].

4. COMPLETION TRIE
A trie, or prefix tree, is a tree data structure that encodes

a set of strings, represented by concatenating the characters
of the edges along the path from the root node to each
corresponding leaf. We collapse common prefixes such that
each string prefix corresponds to a unique path. Whereas
each edge represents a single character in the simple trie, a
compacted trie, also known as a Patricia trie or radix tree,
allows a sequence of characters to be associated with each
edge such that no node can have a single child (except for
the root node in degenerate cases).

To encode the score associated with each string, we assign
to each leaf node the score of the string it represents. To
support efficient top-k completion, we further assign to each
intermediate node the maximum score among its descendant
leaf nodes. Note that by construction, the score of each non-
leaf node is simply the maximum score among its children, as
exemplified in Figure 3. As each node score now represents
the largest score among all strings starting with the prefix
corresponding to the node, we can apply it as an exact
heuristic function in a variation of the A* search algorithm
[32] to find the best completion path from a node representing
the prefix. Specifically, we first find the locus node, the highest
node in the trie that matches or extends the prefix string,
and insert it into a priority queue, if found. Iteratively, pop
the node with the largest score. If it is a leaf node, add the
string and score corresponding to the node to the list of
completions. Otherwise, iteratively insert its children to the
queue until k completions have been found or the priority
queue is empty.

ab 4
b 2
bba 1
caca 3
caccc 1
cbac 2
cbba 1

ǫ

4

A

ab

4

B

c

3

C

b

2

D

ac

3

E

b

2

F

ǫ

2

K

ba

1

L

a

3

G

cc

1

H

ac

2

I

ba

1

J

Figure 3: Compacted trie with max scores in each node.

The worst-case time complexity of this algorithm isO(|Σ||p|+
|Σ|kl log |Σ|kl), where Σ is the alphabet from which the
strings are composed, p is the input string prefix, k is the
number of requested completions, and l is the average length
of the completions returned excluding the common prefix p.
Specifically, we need to examine up to |p| nodes with up to |Σ|
children each to find the locus node. We may encounter and
expand kl nodes on the way to the leaf nodes corresponding
to top-k completions. As the algorithm inserts all children
of each expanded node to the priority queue, we add up to
|Σ|kl nodes to the binary heap, contributing an additional
O(|Σ|kl log |Σ|kl) term.

Instead of inserting all children of each expanded node to
the priority queue, if we were to sort the children by order of
decreasing score, we only need to add the first child and the
next sibling, if any, of each expanded node. Conceptually, we
can view this as adding a sorted iterator to the priority queue.
Whenever we remove an iterator from the queue, we return
the first element and insert the remainder of the iterator
back into the queue. With this change, the time complexity



to find the top-k completions reduces to O(|Σ||p|+ kl log kl)
as we insert a maximum of 2 nodes for each node expanded
during the search algorithm. In practice, sorting the children
by decreasing score also reduces the number of comparisons
needed to find the locus node. A summary of the top-k
completion algorithm on the Completion Trie data structure
is presented in Algorithm 1.

Algorithm 1 Top-k completion with Completion Trie.

Input: Completion Trie T , prefix p, and k ≥ 0
Output: List c of top-k completions of p

1 Q ← Empty priority queue
2 c ← Empty list
3 n ← FindLocus(T , p)
4 if n is not null then
5 Push(Q, (Score(n), n))

6 while Q is not empty do
7 r, n ← Pop(Q)
8 if n is a leaf node then
9 s ← String corresponding to n

10 Append (s, r) to result list c
11 if |c| = k then return c

12 else
13 fn,nn ← First child of n, next sibling of n
14 Push(Q, (Score(fn), fn))
15 if nn is not null then Push(Q, (Score(nn),nn))

16 return c

4.1 Compressed Encoding
In addition to improving the theoretical time complex-

ity, improving the locality of memory access also plays a
significant role in improving the practical running time, as
accessing random data from RAM and hard drive can be 100
and 10M times slower than from the CPU cache, respectively,
easily trumping any improvements in time complexity. For
example, to improve memory locality when finding the locus
node, we store each group of child nodes consecutively such
that accessing the next sibling is less likely to incur a cache
miss. However, instead of writing each group of sibling nodes
in level order, we write the encodings of each group of trie
node in depth-first search (DFS) order. As each internal
node is assigned the maximum score of its children and the
children are sorted by decreasing score, iteratively following
the first child is guaranteed to reach a leaf node matching
the score of an internal node. Thus, by writing the nodes
in depth-first order, we typically incur only one cache miss
per completion, resulting in significant speedup over other
arrangements.

For each node, we encode the character sequence associated
with its incoming edge, its score, whether it is the last sibling,
and an offset pointer to its first child, if any. Note that if
the node has a next sibling, it is simply the next node.
Furthermore, we can use a special value of 0 as the first child
offset for leaf nodes. Assuming 4-byte scores and pointers,
a näıve encoding would require (l + 1) + 4 + 1 + 4 = l + 10
bytes, where l is the length of the character sequence.
One way to reduce the size of each node is to apply a

variable-byte encoding to scores and offsets. However, as
each group of child nodes are sorted by decreasing order and
we traverse the children sequentially, we can first perform
delta encoding by storing only the score difference between

the current node and its previous sibling. As the first child
shares the same score as its parent and is always traversed
from its parent node, we can simply store a differential score
of 0. Similarly, we observe that the first child offset for
siblings can only increase. Thus, we can apply the same delta
encoding techniques to derive the first child offset of a node
from its previous siblings. To find the first child offset for the
first sibling, we can traverse all the remaining siblings and
return the next node, as each set of sibling nodes are stored
in depth-first order. However, as the number of siblings may
be large, we simply store the difference in offset between the
first child and the first sibling node. Note that we still encode
leaf nodes with a first child offset of 0.

With delta encoding, we significantly reduce the values of
the node scores and first child offsets. While many variable-
byte encoding schemes exist, we choose to apply an approach
where we encode the size of each value in a header block.
As smaller values, including 0, are much more frequent than
larger values due to the power law distribution of scores and
the depth-first ordering of the nodes, we choose to allocate
two bits in the header to represent values encoded with 0, 1,
2, or 4 bytes.1 We further allocate another bit in the header
to indicate if the node is the last sibling. Finally, if we limit
the maximum number of characters that we can store with
each node to 7 by adjusting how the trie is compacted, we can
store the length of the character sequence in the remaining 3
bits of a 1 byte header. Figure 4 shows the binary Completion
Trie encoding of the example from Figure 3.
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Figure 4: Binary Completion Trie encoding.

4.2 Implementation Details
As the trie nodes are stored in DFS order, it is possible to

reconstruct the string corresponding to a completion leaf node
by starting from the root node and iterative finding the child
whose subtrie node offset range includes the target leaf node.
However, this is an expensive O(|Σ|d) operation, where d is
the depth of the leaf node. Instead, we can significantly reduce
the cost of returning the top-k completion strings through
additional bookkeeping in the search algorithm. Specifically,
we store the nodes to be inserted into the priority queue in
an array, along with the index of its parent node in the array.
By modifying the priority queue to access nodes through
their corresponding array indices, we can retrieve the path
from each completion node to the locus node by following
the parent indices. Thus, we can efficiently construct the
completion string in time O(d) by concatenating the original
prefix string with the character sequences encountered along
the reverse path.
To further improve the running time of the algorithm,

we employ a few bit manipulation techniques that take ad-

1If the dataset calls for scores or first child offsets that cannot
be represented in 4 bytes, we can simply change 4 to the
number of bytes required to represent the largest value.



vantage of our particular encoding scheme. With standard
variable-byte encoding [38], we need to read multiple bytes
to determine the size and decode the value. But by storing
the size of the variable-byte value in a 2-bit code, we can
determine the size ℓ by looking up the code c in a small array:
ℓ← sizeFromCode[c]. Furthermore, we can decode the value
v by reading a 64-bit integer from the starting position p

and applying a mask indexed by the size code c to zero out
the extra bytes: v ← ReadInt64(p) & codeMask[c].2

With a direct implementation, a significant amount of
time is spent on matching strings in the prefix and construct-
ing the completion string. In the compressed encoding of
the Completion Trie, each trie node represents at most 7
characters. Thus, we can apply a similar masking technique
to compare the first ℓ characters of two strings p and q:
isMatch ← (ReadInt64(p) & strMask[ℓ]) = (ReadInt64(q) &
strMask[ℓ]). When constructing the completion string, by
over-allocating the string buffer that stores the completion
string, we can copy 8 bytes from the node character sequence
to the insertion position in one instruction and advance the
insertion point by the desired length. By replacing several
unpredictable conditional branching instructions with a few
simple bit operations, these optimizations significantly im-
prove the performance of the runtime algorithm.

5. RMQ TRIE
In this section, we describe a simple scheme to augment

any sorted string dictionary data structure with an RMQ
data structure, in order to support top-k completion.
As shown in Figure 5, if the string set S is represented

with a trie, the set Sp of strings prefixed by p is a subtrie.
Hence, if the scores are arranged in DFS order within an
array R, the scores of Sp are those in an interval R[a, b]. This
is true in general for any string dictionary data structure
that maps the strings in S to [0, |S|) in lexicographic order.
We call PrefixRange(p) the operation that, given p, returns
the pair (a, b), or ⊥ if no string matches the prefix.

v

p

R

a b

Figure 5: The scores of the strings prefixed by p correspond
to the interval [a, b] in the scores vector R.

To enumerate the completions of p in ranked order, we em-
ploy a standard recursive technique, used for example in [29,
19]. We build an RMQ data structure on top of R using an
inverted ordering, i.e. the minimum is the highest score. The

2This expression is specific to little-endian architectures. An
additional shift operation is required for big-endian systems.
Furthermore, we need to pad the end of the binary trie
encoding with 7 buffer bytes to avoid reading past the end of
the data. On processors without support for unaligned access,
such as some ARM processors, ReadInt64 is less efficient.

index of the first completion is then i = RMQ(a, b). Now the
index of the second completion is the one with highest score
among RMQ(a, i− 1) and RMQ(i+ 1, b), which splits again
either [a, i− 1] or [i+ 1, b] into two subintervals. In general,
the index of the next completion is the highest scored RMQ
among all the intervals obtained with this recursive splitting.
By maintaining the intervals in a priority queue ordered by
score, it is hence possible to find the top-k completion indices
in Õ(k log k). We can then perform k Access operations on
the dictionary to retrieve the strings. The pseudo-code is
shown in Algorithm 2.

Algorithm 2 Top-k completion with RMQ Trie.

Input: Trie T , scores vector R, prefix p, and k ≥ 0
Output: List c of top-k completions of p

1 Q ← Empty priority queue
2 c ← Empty list
3 found, a, b ← PrefixRange(T , p)
4 if found then
5 i ← RMQR(a, b)
6 Push(Q, (R[i], i, a, b))
7 while Q is not empty do
8 r, i, a, b ← Pop(Q)
9 s ← AccessT (i)

10 Append (s, r) to result list c
11 if |c| = k then return c

12 if i > a then
13 j ← RMQR(a, i− 1)
14 Push(Q, (R[j], j, a, i− 1))

15 if i < b then
16 j ← RMQR(i+ 1, b)
17 Push(Q, (R[j], j, i+ 1, b))

18 return c

The space overhead of this data structure, beyond the
space needed to store the trie and the scores, is just the
space needed for the RMQ data structure, which is 2n+ o(n)
bits, where n = |S|. If the trie can answer PrefixRange in
time TP and Access in time TA, the total time to retrieve
the top-k completions is Õ(TP + k(TA + log k)).

The advantages of this scheme are its simplicity and modu-
larity, since it is possible to re-use an existing dictionary data
structure without any significant modification. In fact, in
our experiments we use the lexicographic compressed trie of
[17]. The only change we needed to make was to implement
the operation PrefixRange. On the other hand, as we will
see in Section 8, this comes at the cost of significantly worse
performance than the two other data structures, which are
specifically designed for the task of top-k completion.

6. SCORE-DECOMPOSED TRIE
In this section, we introduce a compressed trie data struc-

ture specifically tailored to solve the top-k completion prob-
lem. The structure is based on the succinct path-decomposed
tries described in [17], but with a different path decomposi-
tion that takes into account the scores.
Path decompositions. Let T be the trie built on the
strings of the scored string set S. A path decomposition of T
is a tree T c whose nodes correspond to node-to-leaf paths in
T . The tree is built by first choosing a root-to-leaf path π in
T and associating it with the root node uπ of T c; the children
of uπ are defined recursively as the path decompositions of
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the subtries hanging off the path π, and their edges are
labeled with the labels of the edges from the path π to the
subtries. See Figure 6 for an example.
Note that while each string s in S corresponds to a root-

to-leaf path in T , in T c it corresponds to a root-to-node
path. Specifically, each leaf ℓ in T is chosen at some point
in the construction as the decomposition path of a subtrie,
which becomes a node u in T c; the path from uπ to u in T c

corresponds to the root-to-leaf path of ℓ in T . For the sake
of simplicity we will say that s corresponds to the node u.
Max-score path decomposition. A path decomposition
is completely defined by the strategy used to choose the path
π and order the subtries hanging off π as children of the
root uπ. Since each string corresponds to a leaf in T , we can
associate its score with the corresponding leaf. We define the
max-score path decomposition as follows. We choose path π

as the one to the leaf with the highest score (ties are broken
arbitrarily). The subtries are ordered bottom-to-top, while
subtries at the same level are arranged in decreasing order
of score (the score of a subtrie is defined as the highest score
in the subtrie).
To enable scored queries, we need to augment the data

structure to store the scores. Following the notation of Fig-
ure 6, let uπ be the root node of T c and v1, . . . , vd be the
nodes hanging off the path π. We call ri the highest score
in the subtrie rooted at vi (if vi is a leaf, ri is just its corre-
sponding score). We add ri to the label of the edge leading
to the corresponding child, such that the label becomes the
pair (bi, ri).
Succinct tree representation. To represent the Score-
Decomposed Trie, we use the same encoding described in
[17], which we briefly summarize here. For each node u in
T c we build three sequences Lu, BPu, and Bu. Figure 6
shows the encoding of the root node uπ; the other nodes
are encoded recursively. Luπ

contains the concatenation of
the node and edge labels along the path π, interleaved with
special characters 1,2, . . . that indicate how many subtries
branch off that point in the path π. We call the positions of
these special characters branching points. BPuπ

contains one
open parenthesis for each child of uπ, followed by a single
close parenthesis. Buπ

contains the sequence of the characters
bi branching off the path π in reverse order. The sequences
for each node are concatenated in DFS order into the three

ab 4
b 2
bba 1
caca 3
caccc 1
cbac 2
cbba 1

2ab

4

1ac1a

c

c, 1

1ac

a

b, 1

b, 2

c, 3

1

a

b, 1

b, 2

L 2ab←→1ac1a←−−→ c←→1ac←→ a←→ 1←→ a←→
BP ((()(())())())
B bcbcbb
R 2321114

Figure 7: Score-Decomposed Trie example and its encoding.

sequences L, BP, and B. In particular, after prepending
an open parenthesis, BP is the DFUDS representation of
the topology of the path-decomposed tree. Note that the
branching characters bi are in one-to-one correspondence
with the open parentheses in BP, which in turn correspond
to the nodes of T c. In addition, we need to store the scores in
the edges along with the branching characters. We follow the
same strategy used for the branching characters: concatenate
the ri’s in reverse order into a sequence Ruπ

, and then
concatenate the sequences Ru for each node u into a sequence
R in DFS order. Finally, append the root score to R.

The advantage of storing BP, B, L, and R separately is that
they can be compressed independently with specialized data
structures, provided that they support the operations needed
by the traversal algorithms. Specifically, BP and B are stored
explicitly as a balanced parentheses structure and character
array, respectively. We compress the sequence of labels L

using a variant of RePair [22] that supports scanning each
label in constant-time per character [17]. The sequence R is
compressed using the data structure described in Section 7.
Top-k completions enumeration. The operations Lookup
and Access [17] do not need any modification, as they do not
depend on the particular path decomposition strategy used.
We now describe how to support top-k completion queries.

Because of the max-score decomposition strategy, the high-
est score in each subtrie is exactly the score of the decompo-



sition path for that subtrie. Hence if ri is the highest score
of the subtrie rooted in vi, and ui is the node in T c corre-
sponding to that subtrie, then ri is the score of the string
corresponding to ui. This implies that for each (s, r) in S,
if u is the node corresponding to s, then r is stored in the
incoming edge of u, except when u is the root uπ, whose
score is stored separately. Another immediate consequence of
the decomposition is that the tree has the heap property : the
score of each node is less or equal to the score of its parent.

We exploit this property to retrieve the top-k completions.
First, we follow the algorithm of the Lookup operation until
the prefix p is exhausted, leading to the locus node u, the
highest node whose corresponding string contains p. This
takes time Õ(|Σ||p|). By construction, this is also the highest
scored completion of p, so we can immediately report it.
To find the next completions, we note that the prefix p

ends at some position i in the label Lu. Thus, all the other
completions must be in the subtrees whose roots are the
children of u branching after position i. We call the set of
such children the seed set, and add them into a priority queue.

To enumerate the completions in sorted order, we extract
the highest scored node from the priority queue, report the
string corresponding to it, and add all its children to the
priority queue. For the algorithm to be correct, we need
to prove that, at each point in the enumeration, the node
corresponding to the next completion is in the priority queue.
This follows from the fact that every node u corresponding
to a completion must be reached at some point, because it
is a descendant of the seed set. Suppose that u is reported
after a lower-scored node u′. This means that u was not in
the priority queue when u′ was reported, implying that u is
a descendant of u′. But this would violate the heap property.
The previous algorithm still has a dependency on the

number of children in each node, since all of them must be
placed in the priority queue. With a slight modification in
the algorithm, this dependency can be avoided. Note that
in the construction, we sort the children branching off the
same branching point in decreasing score order. Thus, we
can delay the insertion of a node into the priority queue until
after all other higher-scored nodes from the same branching
point have already been expanded. For each node u, the
number of branching points in Lu is at most |Lu|. Hence, we
add at most |Lu|+ 1 nodes to the priority queue: 1 for each
branching point and the next sibling, if any, of node u. Thus,
the time to return k completions is Õ(lk log lk) where l is
the average length of the completions returned minus the
prefix length |p|.
Comparison with Completion Trie. The algorithm de-
scribed above is very similar to Algorithm 1 for the Comple-
tion Trie. In fact, the Score-Decomposed Trie can be seen as a
path decomposition of the Completion Trie, and the previous
algorithm as a simulation of Algorithm 1 on the transformed
tree. However there are two significant differences. First, the
scores in the Completion Trie along the max-score path are,
by construction, all the same. Thus, they can be written just
once. Hence, while the Completion Trie stores at least 2n− 1
scores for n strings, the Score-Decomposed Trie only stores n.
Second, after the locus node is found, only k − 1 nodes need
to be visited in order to return k completions. In contrast,
Completion Trie may require visiting up to Ω(kl) nodes. This
property makes the Score-Decomposed Trie very suitable
for succinct representations, whose traversal operations are
significantly slower than pointer-based data structures.

7. SCORE COMPRESSION
For both data structures described in Section 5 and Sec-

tion 6, it is necessary to store the array R of scores, and
perform random access quickly. Further, it is crucial to effec-
tively compress the scores: if stored directly as 64 bit integers,
they would take more than half of the overall space.
As noted in Section 1, many scoring functions (number

of clicks/impressions, occurrence probability, . . . ) exhibit a
power law distribution. Under this assumption, encoding the
scores with γ-codes [11] (or in general ζ-codes [5]) would give
nearly optimal compression. However it would not be possible
to support efficient random access to such arrays. Specifically,
we experimented with a random-access version of γ-codes:
concatenate the binary representations of the values of R
(without the leading 1) into a bitvector and use a second
bitvector to delimit their endpoints, which can be retrieved
using Select1. While this obtained very good compression, it
came at the cost of a significant slowdown in retrieval.
We use instead a data structure inspired by Frame of

Reference compression [15], which we call packed-blocks array.
The scores array of length n is divided into blocks of length
l; within each block j the scores are encoded with bj bits
each, where bj is the minimum number of bits sufficient to
encode each value in the block. The block encodings are then
concatenated in a bitvector B. To retrieve the endpoints of
the blocks inside B we employ a two-level directory structure:
the blocks are grouped into super-blocks of size L, and the
endpoint of each block is stored relative to the beginning of
the superblock using O(log(Lw)) bits, where w is the size in
bits of the largest representable value. The endpoint of each
superblock is encoded using O(log(nw)) bits. To retrieve
a value, the endpoints of its block are retrieved using the
directory structure; then bj is found by dividing the size of
the block by l. The overall time complexity is constant. In our
implementation, we use l = 16, L = 512, 16-bit integers for
the block endpoints, and 64-bit integers for the super-block
endpoints.
In our experiments, the slowdown caused by the packed-

blocks array instead of a plain 64-bits array was basically
negligible. On the other hand, as we show in Section 8 in more
detail, we obtain very good compression on the scores, down
to a few bits per integer. We attribute the good compression
to the fact that each group of sibling scores are arranged
in DFS order. As the decomposed trie exhibits the heap
property, the score of each node upper bounds the scores of
its descendants. This increases the likelihood that adjacent
sibling groups have scores with the same order of magnitude.
Hence, the waste induced by using the same number of bits
for l consecutive values is relatively small.

8. EXPERIMENTAL ANALYSIS
To evaluate the effectiveness of the proposed top-k comple-

tion techniques, Completion Trie (CT), Score-Decomposed
Trie (SDT), and baseline RMQ Trie (RT), we will compare
their effectiveness on the following datasets from different
application scenarios on an Intel i7-2640M 2.8GHz processor
with 128/512/4096KB of L1/2/3 cache and 8GB of RAM,
compiled with Visual C++ 2012 running on Windows 8.

• QueriesA: 10,154,742 unfiltered search queries and their
associated counts from the AOL query log [1]. This
dataset is representative of the style and frequency of



queries users may enter into the search box of a search
engine or large website.

• QueriesB: More than 400M filtered search queries and
their click counts from a commercial search engine for
scalability evaluation.

• URLs: 18M URL domains and click counts derived from
the query click log of a commercial search engine, rep-
resenting the scenario of URL completion suggestions
in web browser address bars. As users generally skip
the initial URL protocol (eg. http) and often the www

domain prefix, for each URL, we artificially inject addi-
tional entries with the same count to accommodate such
behavior, for a total of 42M unique scored strings. Unlike
queries, URLs share a small set of extension suffixes,
which makes the data more compressible.

• Unigrams: The top 1M words and their probabilities from
the Microsoft Web N-gram Service (bing-body:apr10)
[27]. We quantize the probabilities to ⌊1000 ln(p)⌋. This
dataset is representative of the lexicons used by mobile
devices with soft keyboards, which need a large lexi-
con for each language to support predictive text entry
and spelling correction, but the tight memory resources
require a space-efficient storage.

In each dataset we subtracted from the scores their mini-
mum, so that the smallest score is 0, without affecting the
ordering. The minimum is then added back at query time.

8.1 Space
We evaluate the compactness of the data structures by

reporting in Table 1 the average number of bits per string
(including score). For comparison, we also report the size
of the original uncompressed text file (Raw) and the gzip

compressed binary (GZip). Across the 4 datasets, the three
presented techniques achieve an average compression ratio
of between 29% and 51%, with SDT consistently having the
smallest size. In fact, its size is only 3% larger than that
achieved by gzip compression on average, and is actually
10% smaller on the Unigrams datatset.

Dataset Raw GZip CT SDT RT

QueriesA 209.8 56.3 120.5 62.4 65.5
QueriesB 235.6 57.9 112.0 61.2 64.4
URLs 228.7 54.7 130.9 58.6 62.0
Unigrams 114.3 44.2 49.3 39.8 42.1

Table 1: Data structure sizes in bits per string.

To better understand how the space is used, we present
in Figure 8 the storage breakdown of each of the techniques
on QueriesA. For CT, 70% of the space is used to store the
uncompressed character sequences. Compressing the node
character sequences with RePair [22] can further reduce the
size, but will incur some sacrifice in speed. With delta en-
coding, storing the scores, including the 2 bit header, takes
only 4.0 and 9.6 bits per node and string, respectively. In
comparison, standard variable-byte encoding with a single
continuation bit [38] requires at least 8 bits per node. Simi-
larly, we utilize an average of only 16.4 bits per string in the
dataset to encode the tree structure. As reference, it would
have required 24 bits just to encode the index of a string.

For SDT, nearly 90% of the space is dedicated to storing the
compressed labels and branching characters. On average, each
score takes 4.1 bits, less than half of CT; while maintaining
the tree structure via BP requires only 2.7 bits per string.
RT behaves similarly except each score takes 4.9 bits as the
child nodes are sorted lexicographically rather than by score.
In addition, it requires a Cartesian tree to perform Range
Minimum Queries, which takes a further 2.7 bits per string.
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Figure 8: Data structure size breakdowns.

8.2 Time
To evaluate the runtime performance of the proposed data

structures, we synthesize a sequence of completion requests
to simulate an actual server workload. Specifically, we first
sample 1M queries in random order from the dataset accord-
ing to the normalized scores. Assuming that user queries
arrive according to a Poisson process, we can model the inter-
arrival time of each query using an exponential distribution.
We can control the average queries per second (QPS) by
adjusting the λ parameter of the exponential distribution.
For simplicity, we assume that each subsequent keystroke
arrives 0.3 seconds apart, corresponding to an average typing
speed of 40 word per minutes. Users will continue to enter
additional keys until the target query appears as the top
suggestion, or until the query has been fully entered. Note
that with higher QPS, requests from different queries are
more likely to overlap, leading to more cache misses.

In Table 2, we present the mean time to compute the top-10
completions, averaged over 10 runs. Overall, CT achieves the
best performance, about twice as fast as SDT. While much
of the differences can be attributed to SDT’s use of succinct
operations for trie traversal and RePair decoding of label
sequence L, CT’s better memory locality, where all node
information are stored together, still plays an important
part. For instance, we see that when the nodes are not
arranged for locality, as is the case for RT, the performance
is extremely poor. Similarly, as the requests corresponding
to higher QPS exhibit less overlap in memory access, the
performance degrades by an average of 10% for CT and 21%
for SDT. As the prefixes used by the two workloads differ only
in order, the performance gap is due entirely to the effect
of CPU cache, where CT shines. To simulate a moderate
workload, we use 1K QPS in the remaining analyses.

1 QPS 1K QPS
Dataset CT SDT RT CT SDT RT

QueriesA 3.30 6.65 30.41 3.65 8.04 33.92
QueriesB 4.45 9.85 49.09 5.34 13.71 58.43
URLs 4.81 9.47 50.23 4.99 10.25 52.94
Unigrams 2.06 3.89 17.13 2.12 4.08 17.82

Table 2: Average time per top-10 completion query in µs.



To better understand the performance differences between
the techniques, we break down the total time to compute the
top-10 completions on QueriesA into the time spent finding
the locus node and computing each successive completion.
As shown in Figure 9, CT using pointer arithmetic is signifi-
cantly faster than data structures using balanced parentheses
for traversal, especially in finding the initial locus node. The-
oretically, the cost of retrieving each additional completion
increases logarithmically. But in practice, the incremental
cost for both CT and SDT remains mostly constant (not
shown), as it is dominated by memory access time, with
decreasing probability of cache miss for each additional com-
pletion. In fact, for RT, it actually takes less time to compute
each additional completion. Furthermore, although we are
also returning the completion string, each completion in SDT

is about twice as fast as a random Access operation. CT has
an even larger ratio due to its less efficient Access operation.
Thus, by integrating string construction into the completion
algorithm, we sigificantly reduce the overall time required to
enumerate the top-k completions.
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Figure 9: Completion time breakdowns.

In terms of build time, CT, SDT, and RT with unoptimized
code currently take an average of 1.8, 7.8, and 7.7 µs per
string in QueriesA, respectively, with RePair compression
taking up 73% of the time for the two succinct tries. All
algorithms use memory linear to the size of the binary output.

8.3 Scalability
To assess the scalability of the data structures, we compare

their performance on different size subsets of the QueriesB

dataset. Specifically, to mimic practical scenarios where we
have a limited memory budget and can only afford to serve
the most popular queries, we will generate these subsets by
taking the top-N distinct queries in decreasing score order.
Figure 10 plots the change in average bytes per query as we
increase the number of queries. Overall, we see that lower
count tail queries are longer and require more space across all
techniques, likely due to the different characteristics exhibited
by queries with only a few counts. While SDT requires more
space than CT below 100 queries due to its large sublinear
overhead, its size continues to fall with increasing number of
queries and actually becomes smaller than GZip on a wide
range of dataset sizes.
We present in Figure 11 the effect the number of queries

has on the average time per completion for top-10 completion
requests. We use the synthesized workload based on the full
QueriesB dataset to best approximate real world usage scenar-
ios where users enter prefixes without knowing what queries
the system can complete. Thus, both the average number of
completions and average completion length increase with the
dataset size. As shown, the average time per completion for
CT increases very slowly, due to increasing completion length
and more cache misses. It is higher for smaller datasets as
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the we have fewer completions to distribute the cost of Find-
Locus over. As SDT accesses more lines of CPU cache per
completion, it performs worse than CT, with increasing time
ratio. RT further suffers from lack of memory locality among
the top completions which magnifies the effect of cache miss.
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8.4 Discussions
In practical scenarios, auto-completion needs to support

not only exact prefix matches, but also inexact matches due to
differences in casing, accents, or spelling. One way to support
case and accent insensitive match is to normalize both the
dataset strings and the input prefix into lowercase unaccented
characters before computing the completions. However, this
removes the original casing and accents from the completions,
which may be important for certain languages and scenarios.

An alternative technique is to apply a fuzzy completion
algorithm, such as the one described by Duan and Hsu [10].
In short, after adding the root node to a priority queue,
iteratively add the children of the best path to the queue,
applying a penalty as determined by a weighted transfor-
mation function if the character sequence of the child node
does not match the input prefix. Once a path reaches a
leaf node in the trie and has explained all characters in the
input prefix, return the completion. This fuzzy completion
algorithm only requires basic trie traversal operations and
access to the best descendant score of each node, which are
supported by all of the proposed trie data structures. As
this algorithm essentially merges the top completions of vari-
ous spell corrected prefixes, the ability to retrieve additional
completions efficiently and on-demand is critical to meeting
target performances on web-scale server loads.
Another common scenario is the need to associate addi-

tional data with each string entry. For example, to map the
injected partial URLs from the URLs dataset to their canoni-
cal forms, as shown in Figure 1b, we can create an array that
maps the index of each string in the dataset to the index
of full URL, or a special value if no alteration mapping is
required. These auxiliary arrays are often sparse and can be
compressed efficiently using various succinct and compressed



data structures [31]. Although CT only maps each completion
to a node offset, we can create a small bitvector with Rank
and Select capabilities to convert between the offsets and
indices.

Furthermore, some applications need to retrieve the top-k
completions according to a dynamic score that depends on
the prefix and completion. As the static score is usually a
prominent component of the dynamic score, an approximate
solution can be obtained by taking the top-k′ completions
with k′ > k according to the static score and re-ranking the
completion list.
To truly scale to large datasets, we need to build the

proposed trie structures efficiently. Although we have not
discussed the build process in detail due to the lack of space,
we have implemented efficient algorithms that scale linearly
with the size of the dataset. For CT, we have further devel-
oped efficient techniques to merge tries with additive scores,
enabling distributed trie building across machines.

9. CONCLUSION
In this paper, we have presented three data structures to

address the problem of top-k completion, each with different
space/time/complexity trade-offs. Experiments on large-scale
datasets showed that Completion Trie, based on classical
data structures, requires roughly double the size of Score-
Decomposed Trie, based on succinct primitives. However, it
is about twice as fast. As it turns out, organizing the data
in a locality-sensitive ordering is crucial to the performance
gains of these two structures over the simpler RMQ Trie.

For scenarios where memory is scarce, Score-Decomposed
Trie can achieve sizes that are competitive with gzip. When
throughput dominates the cost, Completion Trie can reduce
the time for each completion to under a microsecond. For
most applications, the difference of a few microseconds be-
tween Completion Trie and Score-Decomposed Trie should
be negligible. However, for algorithms that require numerous
trie traversals, such as fuzzy completion where we consider a
large number of locus nodes, the speedup from Completion
Trie may become significant.

As handling big data becomes ever more important, suc-
cinct data structures have the potential to significantly reduce
the storage requirement of such data while enabling efficient
operations over it. Although their theoretical performance
matches their classical counterparts, there is still a noticeable
gap in practice. It is an interesting open question whether
such gap can be closed, thus obtaining the best of both
worlds.
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APPENDIX

A. DATA STRUCTURE FOR RMQ
To perform Range Minimum Queries on a vector of scores,

we use the 2d-Min-Heap described by Fischer and Heun
[13], which, as noted by Davoodi et al. [9], is an alternative
representation of the Cartesian tree. As in [13], we build the
DFUDS representation of the 2d-Min-Heap in the bitvector
U . The RMQ of i and j can then be reduced to the RMQ
on the excess sequence E of U , denoted as ±1RMQE , with
the following algorithm. Note that the indices are slightly
different from [13] because all our primitives are 0-based.

Lemma A.1 ([13, Section 5.1]). If U is the DFUDS
representation of a 2d-Min-Heap, then RMQ(i, j) can be
computed by the following algorithm.

1 x ← Select)(U, i+ 1)
2 y ← Select)(U, j + 1)
3 w ← ±1RMQE(x, y)
4 if Rank)(U,FindOpen(U,w − 1)) = i+ 1 then
5 return i

6 else
7 return Rank)(U,w − 1)

Our implementation differs from the one in [13] in two
ways. First, instead of using an ad-hoc data structure for
±1RMQE , we re-use the same Range-Min tree [17] that is
used for tree navigation. The Range-Min tree divides the
excess sequence E into blocks and builds a binary tree whose
nodes correspond to intervals in E: the leaves correspond to
individual blocks, while each internal node corresponds to the
union of the intervals corresponding to its children. In each
node, we store the excess minimum for the corresponding
interval. It is straightforward to find the block with minimal
excess between the block containing x and the one containing
y in O(logn) time. Then, to find the position of minimal
excess within a block, we perform a simple linear scan by
dividing the block into 8-bit chunks and using a lookup table
to find the minimum inside each chunk.
Second, line 4 in Lemma A.1 checks whether the node at

position x is the parent of w − 1 (in which case the minimal
value is at position i). We replace it with the following line.

4 if Excess(U, Select)(i) + 1) ≤ Excess(U,w) then

Since, in our implementation, Select is significantly faster
than FindOpen, the whole algorithm speeds up by 10− 20%
with this change. The following lemma proves that the two
conditions are equivalent.

Lemma A.2. In the algorithm described in Lemma A.1,
Excess(U, Select)(i) + 1) ≤ Excess(U,w) if and only if the
node at w − 1 in U is a child of the node at Select)(i+ 1).

Proof. Let t = Select)(i) and x = Select)(i+ 1). If the
node at w − 1 is a child of the node at x, then its mate z is
between t and x as shown below:

)
t
( · · · (

z
· · · ()

x
· · · · · · · · · )

w−1

If follows that Excess(t+ 1) ≤ Excess(z). Since Excess(z) =
Excess(w), we obtain Excess(t+ 1) ≤ Excess(w).

Conversely, suppose Excess(U, t+1) ≤ Excess(U,w). Since
w = ±1RMQE(x, y), it holds Excess(U,w) < Excess(U, x).
Hence there must be a position z such that t+1 ≤ z < x and
Excess(U, z) = Excess(U,w). To prove that z is the mate of
w − 1, it suffices to note that the excess between z + 1 and
w − 1 is strictly greater than Excess(w), again because w is
the leftmost excess minimum in the range [x, y].

http://www.dhruvbird.com/autocomplete.pdf
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