
 Open access Journal Article DOI:10.1007/BF01901287

Space-efficient region filling in raster graphics — Source link

Dominik Henrich

Institutions: Karlsruhe Institute of Technology

Published on: 01 Apr 1994 - The Visual Computer (Springer-Verlag)

Topics: Raster graphics, Computer graphics and Graphics

Related papers:

 Terrain coverage with ant robots: a simulation study

 Cooperative Cleaners: A Study in Ant Robotics

 A cooperative search framework for distributed agents

 Efficiently searching a graph by a smell-oriented vertex process

 Elephants don't play chess

Share this paper:

View more about this paper here: https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-
4gwsripvde

https://typeset.io/
https://www.doi.org/10.1007/BF01901287
https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-4gwsripvde
https://typeset.io/authors/dominik-henrich-23d5gquhld
https://typeset.io/institutions/karlsruhe-institute-of-technology-qoyshx5q
https://typeset.io/journals/the-visual-computer-1i5dtqxp
https://typeset.io/topics/raster-graphics-1uh0a1ka
https://typeset.io/topics/computer-graphics-2jo24l9j
https://typeset.io/topics/graphics-1kgu48se
https://typeset.io/papers/terrain-coverage-with-ant-robots-a-simulation-study-trftyqfd2k
https://typeset.io/papers/cooperative-cleaners-a-study-in-ant-robotics-563mioi44r
https://typeset.io/papers/a-cooperative-search-framework-for-distributed-agents-2k5i5jh2op
https://typeset.io/papers/efficiently-searching-a-graph-by-a-smell-oriented-vertex-2fo790h4jx
https://typeset.io/papers/elephants-don-t-play-chess-21x43dw5ok
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-4gwsripvde
https://twitter.com/intent/tweet?text=Space-efficient%20region%20filling%20in%20raster%20graphics&url=https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-4gwsripvde
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-4gwsripvde
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-4gwsripvde
https://typeset.io/papers/space-efficient-region-filling-in-raster-graphics-4gwsripvde

"The Visual Computer: An International Journal of Computer
Graphics", vol 10, no 4, pp 205-215, 1994.

Space-efficient Region Filling in Raster Graphics

Dominik Henrich

Institute for Real-Time Computer Systems and Robotics
University of Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany

email: dhenrich@ira.uka.de

Abstract
This paper presents fill algorithms for boundary-defined regions in raster graphics.

The algorithms require only a constant size working memory. The methods presented

are based on the so-called "seed fill" algorithms using the internal connectivity of the

region with a given inner point. Basic methods as well as additional heuristics for

speeding up the algorithm are described and verified. For different classes of regions,

the time complexity of the algorithms is compared using empirical results.

Key words: seed filling, graphic processors, frame buffer operations, display

algorithms, raster graphics

1 Introduction

In computer graphics the problem of region filling occurs mainly with interactive systems. For

example, the user of a drawing application clicks with the mouse into a region of the drawing

and the application is asked to shade this region instantly. Because of the high demands on

speed in this area, more and more solutions with special graphic processors are considered.

Since the chip area of the coprocessor is limited, algorithms without or with only little working

memory provided locally by the coprocessor are of particular interest. Here, we describe and

verify basic algorithms and additional heuristics which meet this constraint.

The regions to be filled can be described in different ways. For instance, the region can be

given by a polygon with the edges defining the boundary of the region (Little and Heuft 1979,

Brassel and Fegeas 1979). Another possibility is to define a region as a group of adjacent,

connected pixels. If the values of the pixels defining the region are all the same, then the region

is interior-defined. Otherwise the boundary pixels have the same value and the region is

boundary-defined (Foley and van Dam 1990). In both cases, the values of all other pixels are

random. In this paper we focus on boundary-defined regions, but interior-defined regions work

analogously.

Considering regions defined by pixels, most of the fill algorithms have a seed point as input.

The seed point is a pixel known to lie in the interior of the region. The so-called seeding

algorithms start at the seed point and proceed with other neighbouring pixels according to some

strategy. Only pixels in the interior of the region can be changed to the filling value. Thus, these

pixels are "connected" to the seed, because they can be reached them from the seed point

without leaving the region's interior.

With respect to the use of memory, the known filling algorithms can be subdivided into two

groups. In one group, an extra "working plane", in addition to the frame buffer, is used for

filling. After filling, it is copied to the frame buffer itself. In between, a pattern mapping may be

applied (Ackland and Weste 1981, Dunlavey 1983, Tang and Lien 1988). In the other group,

an additional data structure is used. In most cases, it is a stack which stores several inner pixels

if the region is split up while filling. In the following steps, each of these inner pixels serves as

a new seed point for filling a separate part of the region (Newman and Sproull 1973,

Liebermann 1978, Smith 1979, Shani 1980, Pavlidis 1982). In general, the methods of both

groups need working memory in addition to the frame buffer. The amount of working memory

used depends on the size of the region (increases with region complexity) and thus cannot be

constant.

In this paper, we describe algorithms which need little additional memory, which is of constant

size, and thus can be reserved in advance. To comply with this severe restriction, the

connectivity of the inner pixels must be stored in a different way than in the former algorithms.

For this purpose, it is necessary to use the frame buffer itself. Instead of storing the information

explicitly in an extra working memory, it is kept implicitly in the existing frame buffer. This is

possible, because each inner pixel has the property of being connected with the seed point.

Thus, the value of a pixel may be changed, provided that all the other inner pixels remain

connected. Roughly speaking, the global filling strategy is: move around in the region and fill it

in such a manner that the region remains connected. With this strategy, no memory is needed

for storing region parts because the algorithm does not divide the region into parts.

Following Fishkin and Barsky (1984), a filling algorithm can be logically decomposed into

four components: a start procedure, which initialises the algorithm; a set procedure, which

changes the value of a pixel; a propagation method, which determines the next point to be

considered; and an inside procedure, which computes whether a pixel is in the region and

should be filled. To implement our global filling strategy and to solve the problems arising from

it, some of these components are discussed in Section 2. Using different instances of the

components, we formulate algorithms for different region types. Basic methods for simple and

general regions are discussed and improved by heuristics in Section 3. To evaluate the

performance of the algorithms, they are compared using experiments with regions of different

complexity. The results of these experiments are shown in Section 4.

2 Basics

For the above mentioned global fill strategy, this section concentrates on two basic procedures

and introduces some theorems. The first procedure executes movement within the region.

Different rules for selecting the next direction control the moves. The second procedure

computes whether a pixel can be changed without losing necessary information. It is a local

decision which is sufficient in most cases. The last subsection distinguishes two different types

of regions. They lead us to the two basic fill algorithms of the next section. We begin with a

more precise specification of the problem, followed by a description of the data structures used.

2 . 1 Problem Definition

For a precise definition of filling with constant working memory, some terminology has to be

introduced first. In the following, we use a 2-dimensional bitmatrix as an abstract model of

the frame buffer. It represents the relevant information of the display by orthogonally arranged

elements. These picture elements (pixels) of the bitmatrix can take two alternative states, set or

free. For example, black and white could be modelled as such states with a monochrome

display – other colour pairs are applicable with multicoloured displays. Additionally, the

graphic coprocessor, which stores and executes the fill algorithm code, has random access to

the bitmatrix. It can read or write the state of a pixel in constant time using the procedures

ReadPixel and WritePixel.

The pixel neighbourhood is defined as follows (cf. Pavlidis (1982) and Rosenfeld, Kak

(1982)).

Definition 1:

Two distinct pixels of a bitmatrix are called 4-adjacent (4-neighbours) if they have a

common edge in the raster of the bitmatrix (see Fig.1a), and 8-adjacent (8-

neighbours) if they have a common edge or a common vertex (see Fig.1b).

p

 (a)

p

 (b)

Fig.1: In (a) all the 4-neighbours, and in (b) all the 8-neighbours of the free pixel p

have the state "set".

A 4-adjacent neighbour can be reached by any of the one-pixel-moves: up, down, left, right.

For an 8-adjacent neighbour horizontal, vertical and diagonal moves are allowed. Thus, a pixel

has four 4-adjacent and eight 8-adjacent neighbours. Note that all 4-neighbours are also 8-

neighbours. Now the region filling problem can be specified.

Problem: Region filling with constant working memory

Input: a connected, finite region consisting of free, 4-adjacent pixels of a bitmatrix in a

frame buffer, with a boundary contour of 8-adjacent pixels, which are set. Outside the

region, the pixel states are random. With this region a seed point is given which marks

its interior. Additionally, the available working memory is limited by a given constant,

independent of the region size.

Output: a change of the bitmatrix so that all the inner pixels of the region are in the

state "set".

The contour of the region can consist of several non-connected parts, i. e. the region can have

holes not belonging to the interior.

2 . 2 Data Structures

Following the general seeding algorithms, the seed point is the only inner pixel known in the

beginning. Starting with it, further inner pixels are identified by a so-called cursor. During the

filling process, the cursor keeps the coordinates of one inner pixel of the region. Because a 4-

adjacent, free neighbour also lies in the interior of the region, the cursor can be shifted onto it

without a loss of information or without leaving the region. By stepwise shifting, the cursor

can scan the whole region. There are different strategies for moving the cursor within the

region, which are discussed in Section 2.3.

Another basic data structure is the window. It is used to reduce the number of frame buffer

accesses. For most filling operations, a 3x3-section of the frame buffer provides sufficient

information. Therefore, a window stores the states of the 8-neighbours around the cursor in

local memory. Fig.2 shows the window with coordinates of the 8-neighbours relative to the

cursor. This window is the minimum information needed to decide how the cursor's pixel

influences the topology of the region. It is a local view of the fill algorithms for the region. To

get a more global view, further investigations are necessary, cf. Subsection 3.2.

Cursor

(0,0)

h

(-1,1)

a

(0,1)

c

(1,0)

e

(0,1)

f

(-1,-1)

g

(-1,0)

b

(1,1)

d

(1,-1)

Fig.2: The cursor and its window for storing the states of the 8-adjacent neighbours

(here with Boolean variables a to h and relative coordinates).

2 . 3 Cursor Movement

To fill the region successively, the cursor has to move around and reach the parts not yet filled.

Therefore, it is shifted from the current pixel onto one of the neighbours. To prefent the cursor

from leaving the 4-adjacent region, the only moves allowed are to its 4-neighbours. Hence, the

possible directions are: up, down, left, right. After a move, the next direction is selected

depending on the window and the last move.

All of the algorithms described in Section 3 require that the cursor always reach the free pixels.

In addition to this, with the general filling algorithm, the cursor has to return to its start position

to break cycles. For moving strategies "most right" or "most left" both requirements are

accomplished. When moving "most right", one chooses the next free pixel in counterclockwise

order beginning at the right. To precisely describe this strategy ("most left" works similarly) the

following definition is introduced and illustrated in Fig.3.

Definition 2:

A sequence of three free pixels (p, q, r) is called right-connected if

(1) p, q are 4-adjacent and q, r are 4-adjacent and

(2) r is the next counterclockwise 4-adjacent free neighbour of q after p.

p

q r

p

q

r

p

qr

p,r

q

"right" "straight" "left" "back"

Fig.3: Some examples for right-connected free pixels (p, q, r) and the

corresponding moving directions.

With the "most right" strategy, the priority of directions relative to the last direction is right,

straight, left and back. Thus, if the last move was from pixel p to pixel q, then this strategy

selects a direction to the pixel r, so that the triple (p, q, r) is right-connected. In total, the cursor

walks along a path with only right-connected triples of pixels.

The cursor's movement with the strategy "most right" is implemented by two procedures. The

procedure WalkRight(w,d,stop) chooses the direction which points to the right-connected

pixel. It depends on the pixel states in the window w and the last direction, d, moved. If all the

neighbours of the cursor are set, then the Boolean variable stop returns the value "true".

Otherwise, d stores the new direction of movement. The second procedure Shift(p,w,d)

displaces the cursor p one pixel in the new direction d and updates the window w. For that

purpose, three read operations by ReadPixel are necessary, because now the 3x3-window is

placed on three new pixels with unknown values. Altogether, alternate calls of these two

procedures make the cursor walk around the interior of the region on a well specified path.

2 . 4 Setting Pixels

While the region is being filled, the current pixel stored by the cursor is investigated. If it does

not connect two parts of the region, then it can be changed to the state "set". Otherwise it has to

stay free so that it does not destroy the connectivity. Whether or not a destruction is possible is

indicated by its eight neighbours, as we will see at the end of this subsection. At first, we have

to define some properties concerning the connectivity. The characteristic property of two

interior pixels is that they are connected by a sort of link. Such a link is set up by a path of 4-

adjacent pixels from one end to the other. This property is illustrated in Fig.4 and formulated

precisely in the following definition (cf. Rosenfeld and Kak 1982).

Definition 3:

Two inner pixels p, q are called 4-connected if a sequence of pixels S = (s1, ..., sn)

exist with:

(1) s1 = p and sn = q,

(2) for all i = 1, ..., n-1 holds: si, si+1 is 4-adjacent or si = si+1 and

(3) for all i = 1, ..., n holds: si inner pixel.

The sequence of pixels S is called the 4-path between p and q.

r

x

p q

(a)

r

p q

y

(b)

Fig.4: The pixels p, q are 4-connected, because there exists a 4-path (pixels on the

line) connecting them, but the pixels p, r or r, q are not 4-connected. The two

pixels x and y are critical, but only y actually divides the region into two parts.

For our global filling strategy (see Section 1), filling a dividing pixel will cut the cursor off

from an unfilled area. With the property "4-connected" to hand, it is straight forward to

formulate whether a certain pixel actually divides the region into parts or not. This is done in the

next two definitions.

Definition 4:

An inner pixel p is called dividing for a region R if there exist pixels q, r such, that p

is contained in all 4-paths of R between q, r. An inner pixel p is called critical if it is

dividing for the section W of the region consisting of p and its free 8-neighbours

(window).

A dividing pixel is the only connection between two (or more) sections of a region. Every path

from one part to the other leads via this pixel. This is a global property – in contrast to

"critical". If a pixel is critical, then we only know something about the pixel values in the

window. But the property "critical" is the precondition for a pixel dividing the region into parts.

See pixels x and y in Fig.4. These two properties are related as follows:

Theorem 1:

If pixel p is not critical, then p is not dividing.

Proof: Let p be an inner pixel which is not critical. Then p can not divide the 8-neighbours of p.

Thus, for all pairs q, r of 8-neighbours, there exists a 4-path without p. Assume that p is

dividing. Then there exist inner pixels s, t so that all 4-paths between s, t contain p. Let (w1,

..., wn) be such a 4-path with w1=s, wn=t and wi=p for one i. According to the precondition,

there exists a 4-path without p between wi-1, wi+1. Let (v1, ..., vm) be such a 4-path. Then (w1,

..., wi-1=v1, ..., vm=wi+1, ..., wn) is a 4-path not containing p. Thus p is not dividing which,

contradicts the assumption at the beginning. ◊

Hence, by inspecting the direct neighbours of a pixel we can decide whether it is safe to set it.

Of course, there are cases where pixels are critical but not dividing. But these cannot be

recognised by inspecting only the eight neighbours. More extensive investigations are

necessary in this case, cf. Subsection 3.2.

Based on the eight neighbours of a pixel, a Boolean function Critical(w) is defined. It

determines whether this pixel is critical or not. The states of the eight neighbours in the window

w are used as parameters. With eight parameters, the value range has a size of 28 = 256 values.

By viewing all cases in a Karnough-Veitch Diagram (KV Diagram, Fig.5) a minimal

conjunctive expression can be calculated. The value "true" (1) corresponds to the state "set" of

the pixel. With a 0 in the KV Diagram, the cursor's pixel can be set because it is not critical for

the 8-neighbours and therefore, according to Theorem 1, not dividing. For example, the left

window of Fig.6a has the variable values a=1, b=1, c=1, d=0, e=1, f=1, g=0, h=1. It

corresponds to the entry in the 12th row and the 14th column of the KV Diagram. In this field,

the KV Diagram has the value "false" (0). With that, the cursor pixel has the property "non-

critical". See Fig.6 for further examples.

0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

h h h h
f f

d
b

g

g

g

g

e

e

c

a

Fig.5: KV Diagram for computing whether the pixel of the cursor is critical.

Variables a to h are the states of the 8-adjacent neighbours from Fig.2.

p p p

 (a)

p p p

 (b)

Fig.6: Examples for window settings; (a): p is not critical; (b): p is critical

(probably dividing the region into two, three and four parts).

2 . 5 Region Types

Before we describe the fill algorithms themselves, we have to specify for which types of

regions they are applicable. At least two types of regions can be distinguished by their

topological properties. When regarding discrete regions, these properties can be characterised

similar to those of continuous point sets (Cullen 1968). First, a relationship between two

neighbouring paths is defined.

Definition 5:

Two 4-paths P = (p1, ..., pn) and Q = (q1, ..., qm) are called 4-adjacent if

(1) p1 = q1 and pn = qm,

(2) for all pi there exists a qj with pi, qj 4-adjacent or pi = qj, and

(3) for all qj there exists a pi with pi, qj 4-adjacent or pi = qj.

With two 4-adjacent paths, for each pixel of both paths there exists a corresponding pixel in the

other path that is a 4-neighbour or identical with the first pixel. Thus, given an arbitrary 4-path,

we obtain a second, 4-adjacent path by replacing some pixels by their 4-neighbours and/or by

adding some 4-neighbours. Thereby, the resulting pixel sequence still represents a 4-path.

Repeating this substitution several times with the second path, we obtain two 4-homotop paths.

Thus, the 4-homotop paths are the last paths of a sequence of 4-adjacent paths. See Fig.7 and

the following definition.

Definition 6:

Two 4-paths P = (p1, ..., pn) and Q = (q1, ..., qm) are called 4-homotop if there

exists a sequence of 4-paths K1, ..., Kk with:

(1) K1 = P and Kk = Q and

(2) Ki, Ki+1 are 4-adjacent, for all i = 1, ..., k-1.

p

q
12

3

(a)

1

2

3

p

(b)

Fig.7 (a): Path 1 and 2 from pixel p to q are 4-adjacent; path 3 is 4-homotop but not

4-adjacent to paths 1 or 2; (b): Paths 1 and 2 are 4-homotop and contractible to

pixel p. Path 3 is neither 4-homotop to paths 1 or 2 nor contractible to p.

A special case exists, if one of the two 4-homotop paths consists of only one pixel. Let this

pixel be an element of the first path, then this path is possibly contractible to one of its own

elements. See Definition 7 and the example in Fig.7b.

Definition 7:

A 4-path P = (p1, ..., pn) with p1 = pn (closed 4-path) is called contractible to the

point p1 if it is 4-homotop for the 4-path (p1).

Now, with these tools at hand, we can distinguish two fundamental types of regions.

Definition 8:

A region R is called simple if every closed 4-path in R is contractible to one pixel,

and cyclic if the region is not simple.

Cyclic regions have holes which do not belong to the interior (e. g., the three pixels in Fig.7b).

Closed 4-paths around those holes cannot be contracted, without leaving the interior. This fact

is important for the termination of the first algorithm in the next section. Therefore, in the

following theorem, we prove a relation between the kind of path used by the cursor and the

type of region.

Theorem 2:

If P = (p1, ..., pn) is a closed 4-path consisting of right-connected, critical pixels, then

P is not contractible to p1.

Proof: Assume that P is contractible to p1. Let T be a region with P as contour, and a finite area

as interior. Then all inner pixels of T are not set. Now we have to show that there is at least one

non-critical pixel on P.

Case 1: An inner pixel of T does exist. Let q be an inner pixel of T with pi from P as an 8-

neighbour. Since all pixels of P and T are free, all 8-neighbours of q are free. Thus, an 8-

neighbour pj in P of q exists which is not critical, hence resulting in a contradiction.

Case 2: No inner pixel of T exists. Then either a "return point" pi with pi-1 = pi+1 or a square

"return loop" (pi-1, pi, pi+1, pi+2) with pj, pk 8-neighbours (j, k in {i-1,...,i+2}) exists. Hence,

pi is not critical, which contradicts the assumption. ◊

3 Fill Algorithms

In this section, different fill algorithms with constant working memory are presented. They use

the basic procedures described in the previous section. The first algorithm applies only to

simple regions, i. e. regions without holes. As a generalisation, the second algorithm operates

on arbitrary regions. The next two fill methods are variations of the general algorithm. There,

additional heuristics are used to speed up the algorithms.

3 . 1 Simple Regions

We start with the most primitive fill algorithm and take a seed point as input. With this

algorithm it is assumed that the seed point lies in a simple, finite, 4-adjacent region. As

initialisation, InitFill(p,w,d,stop) shifts the seed point p and the window w to a boundary of the

region. Additionally, the direction of movement d is set as if the cursor is just along the

contour. After initialisation, the cursor p moves and sets all non-critical pixels until no path is

free, using the basic procedures Critical, WalkRight and Shift of Section 2. Critical determines

if a pixel can be set without losing information. WalkRight and Shift make the cursor walk

around in the region. The algorithm SimpleFill, here stated in Pascal, is the direct

implementation of the global fill strategy mentioned in the introduction.

procedure SimpleFill (p: point);
(*INPUT: point p within a simple, 4-adjacent region*)
(*OUTPUT: region filled using limited working memory and no pattern*)
var w :window; (*3x3-section of frame buffer*)

d :direction; (*moving direction*)
stop :boolean; (*true, if no direction is free*)

begin

InitFill(p, w, d, stop); (*move to contour*)
while not stop do begin

if not Critical(w) then begin
w[0,0] := true; (*write to local memory*)
WritePixel(p); (*write to frame buffer*)

end;

WalkRight(w, d, stop); (*choose new direction*)
Shift(p, w, d); (*move cursor and update window*)

end;

end;

In Fig.8a we see how SimpleFill works on a simple region, i. e., a region without holes. From

the seed point, the initialisation moves the cursor to the right contour. There, the cursor turns

upwards, just if it were moving along the contour and moves three steps filling non-critical

pixels. At the top, the cursor turns most right and moves though a channel to the right part of

the region. In this channel, no pixels can be set, because all of them are evaluated to be critical.

In a sort of loop, the algorithm can fill the right part of the region and come back through the

channel. Now these pixels are not critical anymore, and therefore, not dividing, so they are set.

In the left part of the region, SimpleFill proceeds analogously: it sets pixels provided that they

are not critical.

(a) (b)

Fig.8: Example for SimpleFill working on a simple region (a) and a cyclic region

(b). The seed point is the outlined pixel. The arrows show the cursor's movement

while setting pixels (normal lines) or leaving them unchanged (dotted lines). In (b)

an endless loop is indicated by the dash-dotted line.

Partial correctness: By definition, the seed point lies in the interior of the region. In InitFill,

WalkRight and Shift, the cursor stays in the inner part. Thus, on the path only inner pixels can

be processed. All pixels which are set have the property non-critical, which means, while pixels

are set, all free inner pixels remain connected with the cursor (Theorem 1). If the algorithm

terminates, i. e., the cursor is not in a cycle, no free inner pixel exists and the region is filled.

Termination: Because the region is finite, the algorithm must either terminate or the cursor

remains in a cycle of critical pixels. Such a cycle exactly corresponds to a closed right-

connected 4-path, cf. Definitions 2 and 3. According to Theorem 2, such a path is not

contractible. With that, the region would be cyclic, so the algorithm terminates.

From the partial correctness and the termination theorems we have:

Theorem 3:

The algorithm SimpleFill fills simple regions correctly.

If the region is not simply connected, i. e., there are holes in the region, a problem arises with

SimpleFill. The algorithm fills the region up to a 1-pixel-wide path. It describes one or more

cycles on which the cursor moves without success. On this path, no pixels can be set because

all of them are evaluated to be critical. The window itself does not allow a decision as to

whether parts of the region can be cut off or not by setting critical pixels. See Fig.8b for

example of such an endless loop. To break that cyclic path consisting of critical pixels, a more

global point of view is necessary. This is discussed in the next subsection.

3 . 2 Cyclic Regions

The algorithm SimpleFill enters an endless loop if cycles exist in the region, i. e., the region is

not simple. For an analysis of this behaviour, we concentrate on paths that are created by the fill

algorithm. Using the strategy "most right", cf. Subsection 2.3, for the cursor's movement, the

possible cyclic paths have the following characteristics:

Definition 9:

A sequence of inner pixels (z1, ..., zn) are called right-cycle if

(1) for all i = 1, ..., n-2 holds: (zi, zi+1, zi+2) right-connected,

(2) (zn-1, zn, z1) right-connected and

(3) for all i = 1, ..., n holds:z1 ≠ zi.

(a) (b)

Fig.9: Examples for right-cycles beginning at the same position with the window

shaded grey; (a): non-true right-cycle; (b): true right-cycle.

As can be seen in Fig.9, right-cycles can have very different shapes. They can be distinguished

by whether they surround existing holes of the region or not. Our interest lies in right-cycles

surrounding holes because only these are responsible for the problem of SimpleFill. A simple

classification of right-cycles is obtained by exploiting the last degree of freedom in Definition 9.

This freedom is the path's direction at the beginning and the end of the cycle. For example, in

Fig.9a the beginning direction of the path is exactly reverse to the ending direction. In contrast,

the path of Fig.9b shows directions orthogonal to each other. This is expressed in formal terms

by:

Definition 10:

A right-cycle (z1, ..., zn) is called true if (zn, z1, z2) are right-connected.

Before using this classification of right-cycles for fill algorithms, we have to prove its

applicability. Given an arbitrary cursor position marking a critical pixel, then, according to the

following theorem, the type of right-cycle can be related to the importance of the questionable

pixel for the region.

Theorem 4:

If (p1, ..., pn) is a true right-cycle, then p1 is not dividing for pn, p2.

Proof: If p1 is not critical, then this theorem directly results from Theorem 1. Otherwise, let

(p1, ..., pn) be a true right-cycle and p1 be critical. Assume that p1 is dividing pn, p2. This is

equivalent to the fact that there exist inner pixels q, r such that p1 belongs to all 4-paths between

q, r. Let (s1, ..., sm) be such a 4-path with:

s1=q, si-1=p2, si=p1, si+1=pn, sm=r, pn≠p2 and for all j≠i holds sj≠p1;

Thus W := (q=s1, ..., si-1=p2, p3, ..., pn-1, pn=si+1, .., sm=r) is 4-connected. This insures that

p1 is not in W. Thus p1 does not divide pn, p2, contradicting the assumption. ◊

Applying Theorem 4, the first pixel of a true right-cycle does not divide two parts of the region.

Thus, by global investigation of the region, it is possible to break the problematic cycles of

SimpleFill. The check whether a (critical) pixel is an element of a true right-cycle is performed

by the function RightCycle(p,w,d), cf. the appendix. It takes the cursor p, the window w, and

the current direction d as input. At the present position of p a second cursor p' starts and walks

"most right", until it returns to the start point p. Thus, the second cursor describes a right-cycle.

Then, the starting direction is compared with the return direction. If the latter proceeds by

turning "most right" to the former, then we have found a true right-cycle. Respectively,

RightCycle returns the Boolean value. During this test, the first cursor p and its current

direction d are left unchanged.

With the general fill algorithm, every critical pixel can be an element of a true right-cycle. This

must be checked at the first critical pixel. If the cycle is not true, then the pixel divides one or

more subregions and must not be set. With a true right-cycle, the pixel does not divide the

region in the current direction. But it can divide the region in other directions. Therefore, it is

only assumed as set for the next steps. In summary, the following algorithm is obtained (the

differences from SimpleFill are underlined):

procedure CycleFill (p: point);
(*INPUT: pixel p within a 4-adjacent region*)
(*OUTPUT: region filled using limited working memory and no pattern*)
var w :window; (*3x3-section of frame buffer*)

d :direction; (*moving direction*)
stop :boolean; (*true, if no direction is free*)

begin

InitFill(p, w, d, stop); (*move to contour*)
while not stop do begin

if not Critical(w) then begin
WritePixel(p); (*write to frame buffer*)
w[0,0] := true; (*write to local memory*)

end else

if RightCycle(p, w, d) then

w[0,0] := true; (*assume cursor to be set*)

WalkRight(w, d, stop); (*choose new direction*)
Shift(p, w, d); (*move cursor and update window*)

end;

end;

In Fig.10 we see how CycleFill works on a region with one hole. As with SimpleFill in

Subsection 3.1, the cursor moves upwards and sets three pixels after initialisation. There, the

algorithm evaluates p to be the first critical pixel. Instead of ignoring this fact, like SimpleFill,

the algorithm starts a second cursor by RightCycle moving around the hole. When the second

cursor returns to p, the starting and returning direction are compared. If the latter proceeds by

turning "most right" to the former, then RightCycle evaluates to "true". Following Theorem 4,

p is not dividing for this true right-cycle and p can be assumed as set. With this, the rest of the

processed pixels are not critical anymore and can be set.

p

Fig.10: An example for CycleFill working on a cyclic region. The outlined pixel

marks the seed point. The arrows show where the cursor moves along setting

pixels (normal lines) or leaving them unchanged (dotted lines). Pixel p indicates the

start and the end of a true right-cycle.

Partial correctness: Analogous to SimpleFill.

Termination: The region is finite, and at every essential step pixels are set: If a pixel is not

critical, it is set, following Theorem 1. Otherwise, it is critical and checked for a right-cycle. If

it is a true right-cycle, there exists at least one non-critical pixel in it, if the preceding is assumed

as set (Theorem 4). If it is not a true cycle, the cursor moves into the part of the region (the

current direction was not changed by RightCycle) and can either set pixels or break true right-

cycles.

From the partial correctness and the termination theorems, it follows:

Theorem 5:

The algorithm CycleFill fills cyclic regions correctly.

3 . 3 Changing Direction

In this and the next subsection, two heuristics are presented for speeding up the general

algorithm. They are pure supplements and do not affect the correctness or the constraint of

constant working memory.

The general algorithm CycleFill can show high running times in unfavourable cases. In these

cases, the region already contains a lot of dividing pixels or they are generated by successive

filling. Dividing pixels are time consuming because they cannot be set and the cursor traverses

long distances in order to break cycles. If the direction of the normal cursor movement and that

for breaking cycles are the same, then the normal cursor and the auxiliary cursor in RightCycle

can lengthen their own paths. The normal cursor sets pixels in certain parts of the region – due

to this, dividing pixels are generated, too. Then, the auxiliary cursor uses the same region parts

trying to break cycles. This job now needs more effort because of the increased number of

dividing pixels.

To avoid this disadvantage, a heuristic states: "To break cycles, walk most left, otherwise most

right". By replacing the procedure RightCycle by the procedure LeftCycle, the heuristic can

easily be built into CycleFill. The procedure LeftCycle works the same as RightCycle except in

the reverse direction, cf. the appendix. Now the cycles are broken counterclockwise, and the

region is filled clockwise. The resulting algorithm is called LeftRightFill.

3 . 4 Additional Memory

For the following modification, MemoryFill, of the algorithm CycleFill, another heuristic is

used. It says "Save the divided parts of the region" or "Use multiple cursors". This

corresponds to the methods with unlimited memory space. But here the space can be arbitrarily

limited! If no memory can be allocated anymore, the algorithm keeps on running like CycleFill.

This is a combination of a traditional seed fill algorithm with unlimited memory space and

CycleFill.

With MemoryFill, one cursor starts filling the region. If it reaches a critical pixel, then

intervention is necessary. Instead of breaking possibly existing cycles by the procedure

RightCycle, a new cursor is installed to process the rest. The old cursor stops. By means of

this, the critical pixel can be set to break further potential cycles. In this case, parts can also be

divided, but because the old cursor is still known, they are correctly filled later on.

More and more new cursors are installed until either the current part of the region is filled or no

memory space can be allocated. In the first case, one can delete the current cursor and access

those still to be processed. In the second case, one checks whether all of the stored cursors are

actually still used. If this is not true, then one of them can be reused. Otherwise, one must

proceed with the current cursor like CycleFill.

The correctness of this heuristic can be seen easily: MemoryFill runs several CycleFills in turn.

Each cursor of the procedure CycleFill works independently. Therefore, each cursor works

correctly by itself. A mutual influence is not possible because the essential steps of the single

cursors are computed completely separately.

4 Experimental Results

In this section, the efficiency of the presented algorithms is examined. As given by the problem

definition, the time complexity is measured depending on the most time-consuming operations.

For common von-Neumann-computers, these are reading and writing to the frame buffer.

Reading a pixel means getting its state from the frame buffer. Writing a pixel sets its state to

either "set" or "free". Both operations are assumed to have an equal and constant cost.

Furthermore, the costs for accessing the local working memory can be neglected. Compared

with frame buffer operations, these accesses are very fast. Additionally, the algorithms need

only a constant amount of accesses to the local memory per frame buffer operation.

To compare the behaviour of the algorithms, different regions have been generated.

Overlapping lines, squares and circles were randomly placed on an interactive display

(bitmatrix). From the resulting intersections, different regions arise. The corresponding seed

points of the regions were selected using a mouse. Similar to polygons, there are three kinds of

regions: convex, non-convex and cyclic regions (sorted by increasing complexity). Altogether,

about one hundred different regions equally chosen among these three types were tested.

2,5

3,0

3,5

4,0

4,5

5,0

5,5

convex

non-convex

cyclic

Algorithm

ø (#MemoryOp - #Pixel) / #Pixel

Simple-

Fill Fill
Cycle-

RightFill

Left-

Fill_3

Memory-

Fill_4

Memory-

Fill_5

Memory-

Fill_6

Memory-

Fill_10

Memory-

Fill_100

Memory-

Fill_500

Memory-

Fig.11: The experimental results show the efficiency of the different algorithms

sorted by the use of memory.

In Fig.11, the algorithms presented are sorted by the amount of available working memory

needed for the cursor along the horizontal axis. The number after the MemoryFill algorithm

indicates the number of available cursors, i. e., MemoryFill_n uses up to n cursors

(MemoryFill_1 = SimpleFill and MemoryFill_2 = CycleFill). For each region class, the average

overhead of memory operations relative to the region size (inner pixels) is mapped. This

measure is independent of the region size and enables a direct comparison of the algorithms.

Generally, to set a pixel at least once, the window must be shifted onto it. One shift costs three

reading operations, i. e., the overhead cannot become smaller than three operations per inner

pixel.

For cyclic regions, SimpleFill has no value because the algorithm would not terminate. The

heuristic of LeftRightFill, applied to different regions, yields no advantages compared with

CycleFill. The efficiency of the other heuristic, MemoryFill, approximates the optimum with a

mere two additional memory addresses, i. e., by increasing memory space, the average results

cannot be improved. This holds even in very complex cases, e. g., regions with 100 holes.

Comparing the region classes, notice that cyclic regions can be filled faster than convex or non-

convex regions at the optimum. This verifies the assumption in Subsection 3.3, that it is not the

cycles but a lot of dividing pixels that are time consuming.

5 Conclusion

In summary, we solved the problem of region filling with constant working memory in

bitmatrices. Several seeding algorithms were presented and verified. We proved that the basic

algorithm, CycleFill, fills general, boundary-defined, 4-adjacent regions correctly.

The algorithm MemoryFill is shown to be the most efficient heuristic. With little additional

memory, the efficiency converges to the optimal overhead of three reading operations per one

writing operation. Some algorithms described previously have less overhead in the best case (e.

g. TintFill (Smith 1979) has overhead Two) but none of them work with a constant working

memory.

The presented algorithms can easily be realised in an interactive graphic device with an extra

coprocessor for frame buffer operations. Using the most efficient heuristic MemoryFill, one

has to determine the maximum memory capacity of the coprocessor available for filling. The

more memory that can be used, the more efficient is the heuristic. Thus, the code of

MemoryFill is down-loaded with the corresponding number of cursors declared in the code.

An interesting generalisation of the region fill problem is filling patterns. The pattern is given by

a Boolean function which specifies whether a pixel should be set or not, depending on its

coordinates. Thus a region can, for example, be striped periodically or dotted randomly.

Because the presented algorithms do not use an extra "working plane" in addition to the frame

buffer, no pattern mapping can be applied while copying the filled region into the frame buffer.

Further research on filling with constant working memory should aim at algorithms for filling

patterns.

Appendix

Here, the source code of the function RightCycle (cf. Section 3.2) is given in Pascal notation.

The other subroutines mentioned in the paper such as InitFill, Critical, WalkRight, Shift,

ReadPixel and WritePixel are realised in a straitforward fashion following the description of

former sections. The function LeftCycle (cf. Section 3.3) is obtained through replacing the

procedure WalkRight by WalkLeft in the RightCycle.

function RightCycle(p :point, w :window, d :direction):boolean;
(*INPUT: pixel p within a 4-adjacent region, window w of p,*)
(* current moving direction d *)
(*OUTPUT: true, if p in true right-cycle; false, otherwise*)
var

p_old :point; (*starting point of cycle*)
d_old :direction; (*starting direction*)
stop :boolean; (*dummy*)

begin

WalkRight(w, d, stop);
d_old := d; p_old := p; (*store current values*)
Shift(p, w, d); (*move cursor and update window*)
while (p <> p_old) do begin (*move in right-cycle*)

if not Critical(w) then begin
WritePixel(p); (*write to frame buffer*)
w[0, 0] := true; (*write to local memory*)

end;
WalkRight(w, d, stop); (*choose new direction*)
Shift(p, w, d); (*move cursor and update window*)

end; (*right-cycle closed*)
WalkRight(w, d, stop);
if (d_old = d) then (*check directions*)

RightCycle := true
else

RightCycle := false;
end;

Acknowledgements

For the friendly support on the submitted paper, I would like to thank very much Prof.

Heinrich Müller. He also indicated the original problem. Additionally, I would like to thank

Alf-Christian Achilles, Dietmar Kappaey, Peter Kneisel, Volker Vogelgesang, and the

anonymous reviewers for proofreading and their valuable comments.

References

Ackland BD Weste NH (1981) The edge flag algorithm - A fill method for raster scan displays.
IEEE Transactions on Computers 30(1): 41-48.

Brassel KE Fegeas R (1979) An algorithm for shading of regions on vector display devices.
Computer Graphics 13(2): 126-133.

Cullen HF (1968) Introduction to general topology. Heath and Company, Boston.

Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. ACM
Transactions on Graphics 2(4): 264-275.

Fishkin KP Barsky BA (1984) A family of new algorithms for soft filling. Computer Graphics
18(3): 235-244.

Foley JD van Dam A Feiner SK Hughes JF (1990) Computer graphics: Principles and practice.
2.ed. Addison-Wesley: 979-986.

Liebermann H (1978) How to color in a coloring book. Computer Graphics 12(3): 111-116.

Little WD Heuft R (1979) An area shading graphics display system. IEEE Transactions on
Computers 28(7): 528-531.

Newman WM Sproull RF (1973) Principles of interactive computer graphics. McGraw-Hill 2.
Edition: 253.

Pavlidis T (1982) Algorithms for graphics and image processing. Computer Science Press:
167-193.

Rosenfeld A Kak AC (1982) Digital picture processing. 2. Edition, Academic Press.

Shani U (1980) Filling regions in binary raster images - A graph-theoretical approach.
Computer Graphics 14(3): 321-327.

Smith AR (1979) Tint fill. Computer Graphics 13(2): 276-283.

Tang GY Lien B (1988) Region filling with the use of the discrete Green Theorem. Computer
Vision, Graphics and Image Processing 42: 297-305.

