
Space-efficient Substring Occurrence Estimation

Alessio Orlandi
Dipartimento di Informatica

University of Pisa, Italy
aorlandi@di.unipi.it

Rossano Venturini
ISTI-CNR
Pisa, Italy

venturini@isti.cnr.it

ABSTRACT
We study the problem of estimating the number of occur-
rences of substrings in textual data: A text T on some al-
phabet Σ of size σ is preprocessed and an index I is built.
The index is used in lieu of the text to answer queries of
the form Count≈(P ), returning an approximated number of
the occurrences of an arbitrary pattern P as a substring of
T . The problem has its main application in selectivity esti-
mation related to the LIKE predicate in textual databases
[15, 14, 5]. Our focus is on obtaining an algorithmic so-
lution with guaranteed error rates and small footprint. To
achieve that, we first enrich previous work in the area of
compressed text-indexing [8, 11, 6, 17] providing an optimal

data structure that requires Θ( |T | log σ
l

) bits where l ≥ 1 is
the additive error on any answer. We also approach the is-
sue of guaranteeing exact answers for sufficiently frequent
patterns, providing a data structure whose size scales with
the amount of such patterns. Our theoretical findings are
sustained by experiments showing the practical impact of
our data structures.

Categories and Subject Descriptors
E.1 [Data Structures]: Arrays, Tables; E.4 [Coding and
Information Theory]: Data compaction and compression;
E.5 [Files]: Sorting/searching; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical algo-
rithms and Problems—Pattern matching ; H.3 [Information
Storage and Retrieval]: Content Analysis and Indexing,
Information Storage, Information Search and Retrieval.

General Terms
Algorithms, Design, Theory.

Keywords
Compressed Full-Text indexes, Pattern Matching, Full-text
Indexing, Data structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

1. INTRODUCTION
A large fraction of the data we process every day con-

sists of a sequence of symbols from an alphabet, i.e., a
text. Unformatted natural language documents, XML struc-
tured data, HTML collections, textual columns in relational
databases, biological sequences, are just few examples. With
nowadays growth of data it is not uncommon to have massive
data sets at hand, on which operations must be performed.
Thinking about text, the basic class of operations are simple
pattern matching queries (or variations, e.g. regular expres-
sions). The challenge, especially on massive data sets, is to
obtain low time complexities and little space requirements.
On one hand, one would like to achieve the maximum speed
in solving matching queries on the text, and thus indexing
the data is mandatory. On the other hand, when massive
data sets are involved, the cost for extra index data may
be non-negligible, and thus compressing the data is manda-
tory too. It is not surprising that the last decade has seen a
trending growth of compressed text indexes [8, 11, 6, 17, 10].
Their main role is to match both requirements at the same
time, allowing textual data to be stored in compressed for-
mat while being able to efficiently perform pattern matching
queries on the indexed text itself.

Nonetheless, there exists a bound on the compression ratio
they can achieve. Such a limit can be surpassed by allowing
pattern matching operations to have approximated results.
This is a realistic scenario, as with massive amounts of data
and answers that provide millions of strings, a small absolute
error is clearly tolerable in many situations. In this paper we
follow such idea by studying the problem called Substring
Occurrence Estimation:

Given a text T [1, n] drawn from an alphabet Σ of size σ
and fixed any error parameter l , we would like to design
an index that, without the need of accessing/storing the
original text, is able to count the number of occurrences of
any pattern P [1, p] in T . The index is allowed to err by at
most l : precisely, the reported number of occurrences of P is
in the range [Count(P ),Count(P ) + l − 1] where Count(P ) is
the actual number of occurrences of P in T . In the following
we will refer this operation, which we say has uniform error
range with Count≈l(P ). We also consider a stronger version
of the problem denoted Count≥l(P ), namely having lower-
sided error range, where Count≥l(P ) = Count(P ) whenever
Count(P ) ≥ l , and Count≥l(P ) ∈ [0, l − 1] otherwise.

A relative of additive error is multiplicative error, i.e.
when the estimation lays in [Count(P ), (1 + ε)Count(P )] for
some fixed ε > 0. In theory, such an error could provide

95



better estimates for low frequency patterns. Solving the
multiplicative error problem would imply an index able to
discover for sure whether a pattern P appears in T or not
(set Count(P ) = 0 in the above formulas). This turns out
to be the hard part of estimation. In fact, we are able to
prove (Theorem 4) that an index with multiplicative error
would require as much as T to be represented. Hence, the
forthcoming discussion will focus solely on additive error.

Occurrence estimation finds its main application in Sub-
string Selectivity Estimation: given a textual column of a
database, create a limited space index that finds (approxi-
mately) the percentage of rows satisfying the predicate LIKE
’%P%’ for any pattern P . Provided with a data structure
for substring occurrence estimation with lower-sided error,
solutions in literature [15, 14, 5] try to reduce the error when
the data structure is not able to guarantee a correct answer,
i.e., Count(P ) < l . This phase, called error reduction, usu-
ally involves splitting P into pieces appearing in the data
structure and using a probabilistic model to harness such
information to generate a selectivity estimate for the whole
pattern. Apart from providing an effective model, solutions
for substring selectivity incur in a space/error trade-off: the
more space-efficient is the underlying data structure, the
more information can be stored, hence yielding a more ac-
curate estimate. To date, most data structures used in selec-
tivity estimation are simple and waste space; therefore, we
can indirectly boost selectivity accuracy by studying space-
efficient substring occurrence estimation.

In the forthcoming discuss, we will focus on occurrence
estimation on whole texts only. Nonetheless, the techniques
immediately apply to collections of strings (i.e., rows in a
db column): given the content of strings R1, R2, . . . Rn we
introduce a new special symbol . and create the text T (R) =
.R1 . R2 . · · · . Rn.. A substring query is then performed
directly on T (R).

The main data structure for occurrence estimation, and
the one used in [15, 14], is the pruned suffix tree PST l(T ).
Here, we briefly review it and defer a full explanation of re-
lated work to Section 7. For a fixed error l ≥ 1, the PST l(T )
is obtained from the suffix tree [12] of T by pruning away all
nodes of suffixes that appear less than l times in T . It is im-
mediate to see that the resulting data structure has, indeed,
lower-sided error. However, the space occupancy of PST l

is a serious issue, both in theory and practice: it requires a
total of O(m logn + g log σ) bits where m is the number of
nodes surviving the pruning phase and g is the amount of
symbols that label the edges of such nodes. The number of
nodes in the pruned tree could raise to O(n − l) and could
slowly decrease as the error l increases: observe that we re-
quire to increase the error up to n/2 just to halve the number
of nodes in the tree. Consider the text T = an. The shape
of its suffix tree is a long chain of n− 1 nodes with two chil-
dren each. Therefore, for any value of l , the space required
to store its pruned suffix tree is at least O((n− l) logn) bits.
This quantity further increases due to the need of storing
explicitly edges’ labels. We point out that the number of
these symbols is at least equal to the number of nodes but
can significantly increase whenever the suffixes represented
in the tree share long common prefixes. It goes without say-
ing that the number of symbols we need to store can exceed
the length of the text itself. One could resort to techniques
like blind search over compacted tries [7] to remove the need
of storing full labels for the edges. However, it would incur in

an uncontrollable error when the pattern is not in the PST l ,
since solutions based on compacted tries require the original
text to perform membership queries. Thus, the space occu-
pancy of the pruned suffix tree may be not sublinear w.r.t.
the text. Moreover, the lower bound of Theorem 3 formally
proves that the space complexity for an index with thresh-
old l is Ω(n log(σ)/l) bits, hence stating that a pruned suffix
tree is highly non-optimal.

To provide solutions with smaller footprint, one can resort
to compressed full-text indexes [8, 11, 6, 17], which are well
known in the field of succinct data structures. They deliver
a framework to keep a copy of text T compressed together
with auxiliary information for efficient (i.e., without decom-
pressing the whole T ) substring search. Such solutions how-
ever work on the entire text and are not designed to allow
errors or pruning of portions of the string, yet they provide
a good baseline for our work. Our objective is to heavily
reduce the space of compressed text indexes as l increases.

We provide two different solutions: one in the uniform
error model and one in the lower-sided error model. Sec-
tion 4 illustrates the former and shows how to build an in-
dex (calledAPX l) that requires O(n log(σl)/l) bits of space.
This is the first index that has both guaranteed space, sub-
linear with respect to the size of the indexed text, and prov-
able error bounds. It turns out (Theorem 3) that such index
is space-optimal up to constant factors for sufficiently small
l (namely, log l = O(log σ)).

We also provide a data structure (CPST l) for the lower-
sided error problem (Section 5) that presents a space bound
of O(m log(σl)) where m is the number of nodes in the
PST l(T ). Hence, our CPST l does not require to store the
labels (the g log σ factor), which account for most of the
space in practice. Such data structure outperforms our pre-
vious solution only when m = O(n/l); surprisingly, many
real data sets exhibit the latter property1. Both the APX l

and CPST l data structures heavily rely on the Burrows-
Wheeler Transform (BWT), which proves to be an effective
tool to tackle the problem. As part of our contribution, we
prove how the pruning of Suffix Trees

In Section 6 we support our claims with tests on real data
sets. We show the improvement in space occupancy of both
APX l and CPST l , both ranging from 5 to 60 w.r.t. to
PST l , and we show our sharp advantage over compressed
text indexing solutions. As an example, for an english text
of about 512 MB, it suffices to set l = 256 to obtain an
index of 5.1 MB (roughly, 1%). We also confirm that m and
n/l are close most of the times. In such sense we also note
that the main component in PST l ’s space is given by the
labels, hence guaranteeing to our CPST l a clear advantage
over PST l .

Concerning the selectivity estimation problem, we illus-
trate the gain in estimation quality given by employing our
indexes as underlying data structure. For such purposes
we employ the MOL algorithm (see [14]). Given two thresh-
olds yielding similar space occupancies between PST l and
CPST l , we exhibit an improvement factor ranging from 5
to 790. Combining MOL and our CPST with reasonably small
l , it is possible to solve the selectivity estimation problem
with an average additive error of 1 by occupying (on aver-
age) around 1/7 of the original text size.

1Recall that the condition on m is not enough to obtain a
small PST l due to the edge labels.

96



2. NOTATION
Let T [1, n] be a string drawn from the alphabet Σ of size

σ.2 For each c ∈ Σ, we let nc be the number of occurrences
of c in T . The zero-th order empirical entropy of T is defined
as: H0(T ) = (1/n)

∑
c∈Σ nc log(n/nc).

Note that |T |H0(T ) provides an information-theoretic lo-
wer bound to the output size of any compressor that encodes
each symbol of T with a fixed code [19]. For any string w
of length k, we denote by wT the string of single symbols
following the occurrences of w in T , taken from left to right.
For example, if T = abracadabra and w = br, we have
wT = aa since the two occurrences of br in T are followed
by the symbol a. The k-th order empirical entropy of T is
defined as: Hk(T ) = (1/n)

∑
w∈Σk |wT |H0(wT ).

We have Hk(T ) ≥ Hk+1(T ) for any k ≥ 0. As usual
in data compression [16], we will adopt nHk(T ) as an infor-
mation-theoretic lower bound to the output size of any com-
pressor that encodes each symbol of T with a code that
depends on the symbol itself and on the k immediately pre-
ceding symbols.

Both our solutions rely on basic data structures that can
answer rank and select queries. In the binary version, let
B be a bit vector of length u, having m bits set to 1. Here,
rankb(B, x) for b ∈ {0, 1} counts the number of occurrences
of bit b in the prefix B[0..x−1]. selectb(B, x) for b ∈ {0, 1}
returns the position of the xth occurrence of bit b in B, or
−1. Among all available solutions, we employ Elias Fano
sequences (also known as SDarrays) ( [18, Section 6]):

Theorem 1. There exists a data structure encoding a bit-
vector B of length u with m bits set to 1 in m log(u/m) +
O(m) bits, supporting select1 in O(1) time and select0,
rank1 and rank0 in O(log(min{u/m,m})) time.

The idea of rank and select can be extended from binary
to arbitrary alphabets in the natural way. The best solutions
to date have been presented in [1, 2, 9]:

Theorem 2. Given a text T [1, n] drawn from an alphabet
of size σ there exists data structures storing T and support-
ing rank and select over it with the following trade-offs:
Ref. space (bits) rank/ select (time) σ

[9] nH0(T ) + o(n) O(1) logO(1) n

[9] nH0(T ) + o(n) · log σ O(1 + log σ
log logn

) o(n)

[2] nH0(T ) + n · o(log σ) O(log log σ) / O(1) O(n)
[1] (n+ o(n))H0(T ) + o(n) O(log log σ) / O(1) O(n)

3. LOWER BOUNDS
The following lower bound proves the minimum amount

of space needed to solve the substring occurrence estimation
problem for both error ranges, uniform and lower-sided.

Theorem 3. For a fixed additive error l ≥ 1, an index
built on a text T [1, n] drawn from an alphabet Σ of size σ
that approximates the number of occurrences of any pattern
P in T within l must use Ω(n log(σ)/l) bits of space.

Proof. Assume that there exists an index answering any
approximate counting query within an additive error l by
requiring o(n log(σ)/l) bits of space. Given any text T [1, n],
we derive a new text T ′[1, (l + 1)(n+ 1)] that is formed by
repeating the string T$ for l + 1 times, where $ is a symbol

2In the following we will adopt the common assumption that
σ = O(n).

abracadabra$

bracadabra$a

racadabra$ab

acadabra$abr

cadabra$abra

adabra$abrac

dabra$abraca

abra$abracad

bra$abracada

ra$abracadab

a$abracadabr

$abracadabra

=⇒

F L
$ abracadabr a

a $abracadab r

a bra$abraca d

a bracadabra $

a cadabra$ab r

a dabra$abra c

b ra$abracad a

b racadabra$ a

c adabra$abr a

d abra$abrac a

r a$abracada b

r acadabra$a b

Figure 1: Example of Burrows-Wheeler transform for the string
T = abracadabra$. The matrix on the right has the rows sorted
in lexicographic order. The output of the BWT is the column
L = ard$rcaaaabb.

that does not belong to Σ. Then, we build the index on
T ′ that requires o((l + 1)(n + 1) log(σ + 1)/l) = o(n log σ)
bits. We observe that we can recover the original text T by
means of this index: we search all possible strings of length
n drawn from Σ followed by a $, the only one for which the
index answers with a value greater than l is T . A random
text has entropy log(σn)−O(1) = n log σ−O(1) bits. Hence,
the index would represent a random text using too few bits,
a contradiction.

Using the same argument we can prove the following The-
orem, which justifies the need of focusing on additive errors.

Theorem 4. For a fixed multiplicative error (1 + ε) > 1,
an index built on a text T [1, n] drawn from an alphabet Σ of
size σ that approximates the number of occurrences of any
pattern P in T within (1 + ε) must use Ω(n log σ) bits of
space.

By similar arguments we are able to prove that even when
restricting to pattern of fixed, sufficiently large length, i.e.
≥ 2 logn, the problem remains within the same space com-
plexity. On the other hand, for sufficiently shorter lengths,
the problem becomes trivial. Details are deferred to the final
version.

4. OPTIMAL ERROR/SPACE SOLUTION
In this section we describe our first solution which is able

to report the number of occurrences of any pattern within an
additive error at most l . Its error/space trade-off is provably
optimal whenever the error l is such that log l = O(log σ).
In this section we will prove the following Theorem:

Theorem 5. Given T [1, n] drawn from an alphabet Σ of
size σ and fixed an error threshold l , there exists an index
that answers Count≈l(P [1, p]) in O(p× f(n, σ)) time by us-
ing O((n log(σl))/l + σ logn) bits of space, where f(n, σ)
depends on the chosen rank and select data structure (see
Theorem 2).

In order to understand this solution we require some back-
ground related to compressed full-text indexes [17, 6]. We
start by presenting the Burrows-Wheeler Transform [4] which

97



Algorithm Count(P [1, p])

1. i = p, c = P [p], Firstp = C[c] + 1, Lastp = C[c+ 1];

2. while ((Firsti ≤ Lasti) and (i ≥ 2)) do

3. c = P [i− 1];

4. Firsti−1 = C[c] + rankc(L,Firsti − 1) + 1;

5. Lasti−1 = C[c] + rankc(L, Lasti);

6. i = i− 1;

7. if (Lasti < Firsti) then return “no rows prefixed by P”
else return [Firsti, Lasti].

Figure 2: The algorithm to find the range [First1, Last1] of
rows of M(T ) prefixed by P [1, p] (if any).

is a tool originally designed for data compression that re-
cently turned out to be fundamental for most of known
compressed full-text indexes. Then, we present Backward
Search [8] that efficiently supports searching operations by
exploiting properties of the Burrows-Wheeler Transform.

4.1 Burrows-Wheeler Transform
Burrows and Wheeler [4] introduced a new compression

algorithm based on a reversible transformation, now called
the Burrows-Wheeler Transform (BWT from now on). The
BWT transforms the input string T into a new string that
is easier to compress. The BWT of T , hereafter denoted
by Bwt(T ), consists of three basic steps (see Figure 1): (1)
append at the end of T a special symbol $ smaller than any
other symbol of Σ; (2) form a conceptual matrixM(T ) whose
rows are the cyclic rotations of string T$ in lexicographic
order; (3) construct string L by taking the last column of
the sorted matrix M(T ). It is Bwt(T ) = L.

Every column ofM(T ), hence also the transformed string
L, is a permutation of T$. In particular the first column
of M(T ), call it F , is obtained by lexicographically sorting
the symbols of T$ (or, equally, the symbols of L). Note that
when we sort the rows ofM(T ) we are essentially sorting the
suffixes of T because of the presence of the special symbol $.
For our purposes, we hereafter concentrate on compressed
indexes [17, 6]. They efficiently support the search of any
pattern P [1, p] as a substring of the indexed string T [1, n]
by requiring a space which is close to the one of best com-
pressors. Two properties are crucial for their design [4]: (a)
Given the cyclic rotation of rows inM(T ), L[i] precedes F [i]
in the original string T ; (b) For any c ∈ Σ, the `-th occur-
rence of c in F and the `-th occurrence of c in L correspond
to the same symbol of string T .

In order to map symbols in L to their corresponding sym-
bols in F , [8] introduced the following function:

LF(i) = C[L[i]] + rankL[i](L, i)

where C[c] counts the number of symbols smaller than c in
the whole string L. Given Property (b) and the alphabetic
ordering of F , it is not difficult to see that symbol L[i] cor-
responds to symbol F [LF(i)].

4.2 Backward search
The backward search [8] is a surprisingly simple algorithm

that, given a pattern P [1, p], is able to identify the range
of rows in M(T ) prefixed by P in O(p) steps. In partic-
ular, the authors proved that data structures for support-

ing rank queries on the string L are enough to search for
an arbitrary pattern P [1, p] as a substring of the indexed
text T . The resulting search procedure is illustrated in Fig-
ure 2. It works in p phases. In each phase it is guaranteed
that the following invariant is kept: At the end of the i-th
phase, [Firsti, Lasti] is the range of contiguous rows inM(T )
which are prefixed by P [i, p]. Count starts with i = p so that
Firstp and Lastp are determined via the array C (step 1).
At any other phase, the algorithm (see pseudo-code in Fig-
ure 2) has inductively computed Firsti+1 and Lasti+1, and
thus it can derive the next interval of suffixes prefixed by
P [i, p] by setting Firsti = C[P [i]] + rankP [i](L,Firsti+1 −
1) + 1 and Lasti = C[P [i]] + rankP [i](L, Lasti+1). These
two computations are actually mapping (via LF) the first
and last occurrences (if any) of symbol P [i] in the substring
L[Firsti+1, Lasti+1] to their corresponding occurrences in F .
As a result, the backward-search algorithm requires to solve
2p rank queries on L = Bwt(T ) in order to find out the
(possibly empty) range [First1, Last1] of text suffixes pre-
fixed by P . The number of occurrences of P in T is, thus,
occ(P ) = Last1 − First1 + 1.

The data structures to support rank and select queries
of Theorem 2 achieve better space bounds when they are
built on strings which are the result of the Burrows-Wheeler
transform (i.e., L = Bwt(T )). In this cases the achieved
upper bounds are in terms of the k-th order entropy of the
original text for sufficiently small values of k. It follows:

Theorem 6. Given a text T [1, n] drawn from an alphabet
Σ of size σ, there exists a compressed index that takes p ×
trank time to support Count(P [1, p]) where trank is the time
required to perform a rank query. The following are the best
space/time complexities depending on σ.

Ref. space (bits) trank σ

[9] nHk(T ) + o(n) O(1) logO(1) n

[9] nHk(T ) + o(n) · log σ O(1 + log σ
log logn

) o(n)

[2] nHk(T ) + n · o(log σ) O(log log σ) O(n)
The space bounds hold for any k ≤ α logσ n and 0 < α < 1.

Notice that compressed indexes support also other opera-
tions, like locate and display of pattern occurrences, which
are slower than Count in that they require polylog(n) time
per occurrence (See [17, 6]). We do not enter into details
since these kind of operations are out of our scope.

4.3 Our solution
The idea behind our solution is that of sparsifying the

string L = Bwt(T ) by removing most of its symbols (namely,
for each symbol we just keep track of one every l/2 of its
occurrences). Similarly to backward search, our algorithm
searches a pattern P [1, p] by performing p phases. In each of
them, it computes two indexes of rows ofM(T ) (First≈i and
Last≈i) which are obtained by performing rank queries on
the sampled BWT and then by applying a correction mech-
anism. Corrections are required to guarantee that both in-
dexes are within a distance l/2 from the actual indexes Firsti
and Lasti (i.e., the indexes that the backward search would
compute for P in phase i). More formally, in each phase it
is guaranteed that First≈i ∈ [Firsti − (l/2))− 1),Firsti] and
Last≈i ∈ [Lasti, Lasti + (l/2)− 1]. Clearly, also the last step
obeys to the invariant, hence all rows in [First≈1, Last≈1]
contain suffixes prefixed by P , with the possible exception
of the first and last l/2 ones. Hence, the maximum error
such algorithm can commit is l .

98



Algorithm Count≈l (P [1, p])

1. i = p, c = P [p], First≈p = C[c] + 1, Last≈p = C[c+ 1];

2. while ((First≈i ≤ Last≈i) and (i ≥ 2)) do

3. c = P [i− 1];

4. DiscrFirsti = Succ(First≈i,Dc)
5. RL = min(DiscrFirsti − First≈i, l/2− 1)

6. First≈i−1 = LF(DiscrFirsti)−RL;

7. DiscrLasti = Pred(Last≈i,Dc)
8. RR = min(Last≈i − DiscrLasti, l/2− 1)

9. Last≈i−1 = LF(DiscrLasti) +RR;

10. i = i− 1;

11. if (Last≈i < First≈i) then return “no occurrences of P”
else return [First≈i, Last≈i].

Figure 3: Our algorithm to find the approximate range
[First1, Last1] of rows of M(T ) prefixed by P [1, p] (if any).

For each symbol c, the sampling of L = Bwt(T ) keeps
track of a set Dc of positions, called discriminant positions
(for symbol c), containing:

• the position of the first occurrence of c in L;

• the positions x of the ith occurrence of c in L where
i mod l/2 ≡ 0;

• the position of the last occurrence of c in L.

Algorithm 3 searches a pattern P [1, p] by performing pre-
decessor and successor queries on sets Ds.3 The crucial steps
are lines 4 − 9 where the algorithm computes the values of
First≈i−1 and Last≈i−1 using the values computed in the
previous phase. To understand the intuition behind these
steps, let us focus on the computation of First≈i−1 and as-
sume that we know the value of Firsti. The original back-
ward search would compute the number of occurrences, say
v, of symbol c in the prefix L[1 : Firsti − 1]. Since our al-
gorithm does not have the whole L, the best it can do is to
identify the rank, say r, of the position in Dc closest (but
larger) to Firsti. Clearly, r · l/2 − l/2 < v ≤ r · l/2. Thus,
setting First≈i−1 = C[c] + r · l/2 − l/2 − 1 would suffice
to guarantee that First≈i−1 ∈ [Firsti−1 − (l/2− 1),Firsti−1].
Notice that we are using the crucial assumption that the
algorithm knows Firsti. If we replace Firsti with its approxi-
mation First≈i, this simple argumentation cannot be applied
since the error would grow phase by phase. Surprisingly, it
is enough to use the simple correction computed at line 5
to fix this problem. The following Lemma provides a formal
proof of our claims.

Lemma 1. For any fixed l ≥ 0 and any phase i, both
First≈i ∈ [Firsti−(l/2−1),Firsti] and Last≈i ∈ [Lasti, Lasti+
l/2− 1] hold.

Proof. We prove only that First≈i ∈ [Firsti − (l/2 −
1),Firsti] (a similar reasoning applies for Last≈i). The proof
is by induction. For the first step p, we have that First≈p =

3A predecessor query Pred(x,A) returns the predecessor of
x in a set A i.e., max{y | y ≤ x ∧ y ∈ A}. A successor
query is similar but finds the minimum of y ≥ x.

First ≈i
DiscrFirsti Firsti

Bwt(T )

Bwt(T )

≤ l

2

Firsti−1
First ≈i−1

≤ l

2

LF(DiscrFirst ≈i−1)

First ≈i DiscrFirstiFirsti
Bwt(T )

Bwt(T )

≤ l

2

Firsti−1First ≈i−1

≤ l

2

LF(DiscrFirst ≈i−1)

1.

2.

Figure 4: How First≈i, DiscrFirsti and Firsti interact.

Firstp, thus the thesis immediately follows. Otherwise, we
assume that First≈i ∈ [Firsti − (l/2 − 1),Firsti] is true and
prove that First≈i−1 ∈ [Firsti−1 − (l/2− 1),Firsti−1]. Recall
that Firsti−1 is computed as C[c] + rankc(L,Firsti − 1) + 1.
We distinguish two cases: (1) Firsti ≤ DiscrFirsti and (2)
Firsti > DiscrFirsti, both of which are illustrated also in
Figure 4.
Case 1) Let z be the number of occurrences of symbol c
in the substring L[Firsti,DiscrFirsti − 1], so that Firsti−1 =
LF(DiscrFirsti)−z 4. Then, the difference Firsti−1−First≈i−1

equals to LF(DiscrFirsti)−z−LF(DiscrFirsti)+min(DiscrFirsti−
First≈i, l/2 − 1) = min(DiscrFirsti − First≈i, l/2 − 1) − z ≤
l/2. Since (by inductive hypothesis) 0 ≤ Firsti − First≈i ≤
l/2 and DiscrFirsti is the closest discriminant position for
c larger than First≈i, we have that z ≤ min(DiscrFirsti −
First≈i, l/2 − 1). Thus, the difference is also always non
negative.

Case 2) Let k = |First≈i − DiscrFirsti| and z be the num-
ber of occurrences of c in L[DiscrFirsti,Firsti − 1]. Start
by noting that z < l/2 since L[DiscrFirsti,Firsti − 1] con-
tains at most l/2 symbols. Since (by inductive hypoth-
esis) Firsti − First≈i < l/2, we have that k + z < l/2;
moreover, Firsti−1 can be rewritten as LF(DiscrFirsti) + z +
1. Thus, Firsti−1 − First≈i−1 = LF(DiscrFirsti) + z + 1 −
LF(DiscrFirsti) + k = z + k+ 1 ≤ l/2. Finally, since k and z
are non negative, Firsti−1 − First≈i−1 is non negative.

By combining Lemma 1 with the proof of correctness of
Backward Search (Lemma 3.1 in [8]) we easily obtain the
following Theorem.

Theorem 7. For any pattern P [1, p] that occurs Count(P )
times in T Algorithm 3 returns in O(p) steps as result a
value Count≈l(P ) ∈ [Count(P ),Count(P ) + l − 1].

Notice that, if [First, Last] is the range of indexes corre-
sponding to the consecutive suffixes that are prefixed by

4Observe that L[DiscrFirsti] = c by definition of discriminant
position for c.

99



P , then the algorithm identifies a range [First≈, Last≈] such
that First − l/2 < First≈ ≤ First and Last ≤ Last≈ <
Last + l/2.

It remains to show how to represent the sets of discrimi-
nant positions Dc to support predecessor and successor queries
on them. We represent each of these sets by means of
two different objects. We conceptually divide the string
L = Bwt(T ) into d2n/le blocks of equal length and for each
of them we create the characteristic set Bi, such that Bi
contains c iff there exists a position in Dc belonging to block
i. Considering sets Bi as strings (with arbitrary order), we
compute the string B = B0#B1# . . . B2n/l# where # is
a symbol outside Σ and augment it with rank and select

data structures (see Theorem 2). Let r be the total num-
ber of discriminant positions. We also create an array V of
r cells, designed as follows. Let x be a discriminant posi-
tion and assume that it appears as the jth one in B, then
V [j] = x mod l/2. The following Lemma states that a con-
stant number rank and select queries on B and V suffice
for computing Pred(x,Dc) and Succ(x,Dc).

Lemma 2. Pred(x,Dc) and Succ(x,Dc) can be computed
with a constant number of rank and select queries on B
and V .

Proof. We show only how to support Pred(x,Dc) since
Succ(x,Dc) is similar. Let p = rankc(B, select#(B, bx/lc)),
denoting the number of blocks containing a discriminant
position of c before the one addressed by bx/lc. Let q =
selectc(B, p) − bx/lc be the index of the discriminant po-
sition preceding x (the subtraction removes the # spurious
symbols). Then, rank#(B, selectc(B, p)) finds the block
preceding (or including) bx/lc that has a discriminant posi-
tion for c. And, V [q] contains the offset, within that block,
of the discriminant position. Such position can be either in
a block preceding bx/lc or in the same block. In the latter
case we have an additional step to make, as we have so far
retrieved a position that just belongs to the same block but
could be greater than x. In such case, we decrease p by 1
and repeat all the calculations. Note that since the first oc-
currence of c is also a discriminant than this procedure can
never fail.

Once we have computed the correct discriminant posi-
tions, Algorithms 3 requires to compute an LF-step from
them (lines 7 and 9). The following Lemma states that this
task is simple.

Fact 1. For any symbol c, given any discriminant po-
sition d in Dc but the largest one, we have that LF(d) =
C[c] + (i− 1) · l/2 + 1 where i is such that Dc’s ith element
in left-to-right position is d. For the largest discriminant
position d in Dc we have LF(d) = C[c+ 1].

It follows immediately that while performing the calcula-
tions of Lemma 2 we can also compute the LF mapping of
the discriminant position retrieved.

Proof of Theorem 5. Correctness has been proved. The
time complexity is easily seen to be O(|P |) instances of
Lemma 2, hence the claim. The space complexity is given by
three elements. The array C, containing counters for each
symbol, requires O(σ logn) bits. The number of discrim-
inant positions is easily seen to be at most 2n/l in total,

hence the array V requires at most O(n/l) cells of O(log l)
bits each. Finally, the stringB requires one symbol per block
plus one symbol per discriminant positions, accounting for
O(n log(σ)/l) bits in total. The theorem follows.

5. COMPACT PRUNED SUFFIX TREE
Let PST l(T ) be the pruned suffix tree as discussed in the

introduction, and let m be the number of its nodes. Re-
call that PST l(T ) is obtained from the suffix tree of T by
removing all the nodes with less than l leaves in their sub-
trees, and hence constitutes a good solution to our lower-
sided error problem: when Count(P ) ≥ l, the answer is
correct, otherwise an arbitrary number below l can be re-
turned. Compared with the solution of Section 4 it has the
great advantage of being perfectly correct if the pattern ap-
pears frequently enough, but is extremely space inefficient.
Our objective in this section is that explaining a compact
version of the PST l(T ), by means of proving the following:

Theorem 8. Given T [1, n] drawn from an alphabet Σ of
size σ and given an error threshold l , there exists a repre-
sentation of PST l(T ) using O(m log(σl) + σ logn) bits that
can answer to Count≥l(P ) in O(|P | × f(n, σ)) time where
m is the number of nodes of PST l(T ) and f(n, σ) is the
chosen rank and select time complexity summed up (see
Theorem 2).

To appreciate Theorem 8, as also observed in the intro-
duction, consider that the original PST l(T ) representation
requires, apart from node pointers, labels together with their
length for a total of O(m logn+ g log σ). The predominant
space complexity is given by the edge labels, since it can
reach n log σ bits even when m is small. Therefore, our ob-
jective is to build an alternative search algorithm that does
not require all the labels to be written.

5.1 Suffix trees
We now review the suffix tree[12] in greater detail, intro-

ducing useful notation and some of its properties. The suffix
tree [12] of a text T is the compacted trie, i.e., a trie in which
all unary nodes omitted, denoted as ST (T ) or simply ST ,
built on all the n suffixes of T . We ensure that no suffix
is a proper prefix of another suffix by simply assuming that
a special symbol, say $, terminates the text T . The sym-
bol $ does not appear anywhere else in T and is assumed
to be lexicographically smaller than any other symbol in
Σ. This constraint immediately implies that each suffix of
T has its own unique leaf in the suffix tree, since any two
suffixes of T will eventually follow separate branches in the
tree. For a given edge, the edge label is simply the substring
in T corresponding to the edge. For edge between nodes u
and v in ST , the edge label (denoted label(u, v)) is always
a non-empty substring of T . For a given node u in the suf-
fix tree, its path label (denoted pathlabel(u)) is defined as
the concatenation of edge labels on the path from the root
to u. The string depth of node u is simply |pathlabel(u)|.
In order to allow a linear space representation of the tree,
each edge label is usually represented by a pair of integers
denoting, respectively, the starting position in T of the sub-
string describing the edge label and its length. In this way,
the suffix tree can be stored in Θ(n logn) bits of space. It
is very well-known that to search a pattern P [1, p] in T we
have to identify, if any, the highest node u in ST such that
P prefixes pathlabel(u). To do this, we start from the root

100



of ST and follow the path matching symbols of P , until a
mismatch occurs or P is completely matched. In the for-
mer case P does not occur in T . In the latter case, each
leaf in the subtree below the matching position gives an oc-
currence of P . The number of these occurrences can be
obtained in constant time by simply storing in any node u
the number C(u) of leaves in its subtree. Therefore, this
algorithm counts the occurrences of any pattern P [1, p] in
time O(p log σ). This time complexity can be reduced up to
O(p) by placing a (minimal) perfect hashing function [13] in
each node to speed up percolation. This will increase the
space just by a constant factor.

5.2 Computing counts
As a crucial part of our explanation, we will refer to nodes

using their preorder traversal times, with an extra require-
ment. Recall the branching symbol in a set of children of
node u is the first symbol of children edge labels. During the
visit we are careful to descend into children in ascending lex-
icographical order over their branching symbols. Therefore,
u < v iff u is either an ancestor of v or their correspond-
ing path labels have the first mismatching symbols, say in
position k, such that pathlabel(u)[k] < pathlabel(v)[k].

We begin by explaining how to store and access the basic
information that our algorithm must recover: Given a node
u ∈ PST l(T ) we would like to compute C(u), the number of
occurrences of pathlabel(u) as a substring in T 5. A straight-
forward storage of such data would require m logn bits for
a tree of m nodes. We prove we can obtain better bounds
and still compute C(u) in O(1) time, based on the following
simple observation:

Observation 1. Let u be a node in PST l(T ) and let
v1, v2, . . . , vk be children of u in PST l(T ) that have been
pruned away. Denote by g(u) the sum C(v1) +C(v2) + · · ·+
C(vk). Then g(u) < σl .

Proof. Each of the vis represents a suffix that has been
pruned away, hence, for any i, C(vi) < l in T by definition.
Since each node can have at most σ children, the observation
follows.

Note that Observation 1 applies in a stronger form to leaves,
where for a leaf x, C(x) = g(x). We refer to the g(·) values as
correction factors (albeit for leaves they are actual counts).
For an example refer to Figure 5. It is easy to see that to
obtain C(v) it suffices to sum all correction factors of all
descendants of v in PST l(T ). Precisely, it suffices to build

the binary string G = 0g(0)10g(1)1 · · · 0g(m−1)1 together with
support for binary select queries.

Lemma 3. Let v ∈ PST l(T ) and let z be the identifier of
its rightmost leaf, Define CNT(u, z) = select1(G, z) − z −
select1(G, u) + u. Then C(u) = CNT(u, z).

Proof. By our numbering scheme, [u, z] contains all val-
ues in G for nodes in the subtree of u. select1(G, x) − x
is equivalent to rank0(G, select1(G, x)), i.e. it sums up
all correction factors in nodes before x in the numbering
scheme. Computing the two prefix sums and subtracting is
sufficient.

Lemma 4. Let m be the number of nodes in PST l(T ),
then G can be stored using at most m log(σl) + O(m) bits
and each call CNT(u, z) requires O(1) time.
5Here, C(u) is the number of leaves in the subtree of u in
the original suffix tree.

Proof. Each correction factor has size σl at most, hence
the number of 0s in G is at most mσl . The number of 1s in
G is m. The thesis follows by storing G with the structure
of Lemma 1.

5.3 Finding the correct node
In our solution we will resort to the concepts of suffix links

and inverse suffix links in a suffix tree. For each node u of
PST l(T ), the suffix link SL(u) is v iff we obtain pathlabel(v)
from pathlabel(u) by removing its first symbol. The inverse
suffix link of v for some symbol c, denoted ISL(v, c), is u iff
u = SL(v) and the link symbol is c. We say that v possesses
an inverse suffix link for c if ISL(v, c) is defined. We also
refer to the lowest common ancestor of two nodes u and v
as LCA(u, v). An inverse suffix link ISL(u, c) = v exists only
if pathlabel(v) = c · pathlabel(u), however many search algo-
rithms require also virtual inverse suffix links to be available.
We say a node w has a virtual inverse suffix link for symbol
c (denoted VISL(w, c)) if and only if at least one of its de-
scendant (including w) has an inverse suffix link for c. The
value of VISL(w, c) is equal to ISL(u, c) where u is the high-
est descendant of w having an inverse suffix link for c6. As
we will see in Lemma 7, it is guaranteed that this highest
descendant is unique and, thus, this definition is always well
formed. The intuitive meaning of virtual suffix links is the
following: VISL(w, c) links node w to the highest node w′ in
the tree whose pathlabel is prefixed by c · pathlabel(w).

Our interest in virtual inverse suffix links is motivated by
an alternative interpretation of the classic backward search.
When the backward search is performed, the algorithm vir-
tually starts at the root of the suffix tree, and then traverses
(virtual) inverse suffix links using the pattern to induce the
linking symbols, prefixing a symbol at the time to the suffix
found so far. The use of virtual inverse suffix links is nec-
essary to accommodate situations in which the pattern P
exists but only an extension P · α of it appears as a node
in the suffix tree. Note that the algorithm can run directly
on the suffix tree if one has access to virtual inverse suffix
links, and such property can be directly extended to pruned
suffix trees. Storing virtual inverse suffix links explicitly is
prohibitive since there can be up to σ of them outgoing from
a single node, therefore we plan to store real inverse suffix
links and provide a fast search procedure to evaluate the
VISL function.

In the remaining part of this section we will show prop-
erties of (virtual) suffix links that allow us to store/access
them efficiently and to derive a proof of correctness of the
searching algorithm sketched above.

The following two Lemmas state that inverse suffix links
preserve the relative order between nodes.

Lemma 5. Let w, z be nodes in PST l(T ) such that ISL(w, c) =
w′ and ISL(z, c) = z′. Let u = LCA(w, z) and u′ = LCA(w′, z′).
Then, ISL(u, c) = u′.

Proof. If w is a descendant of z or viceversa, the lemma
is proved. Hence, we assume u 6= w and u 6= z. Let α =
pathlabel(u). Since u is a common ancestor of w and z, it
holds pathlabel(w) = α · β and pathlabel(z) = α · ζ for some
non-empty strings β and ζ. By definition of inverse suffix
link, we have that pathlabel(w′) = c ·α ·β and pathlabel(z) =

6Notice that w and u are the same node whenever w has an
inverse suffix link for c.

101



0(1)

1(0)

2(2) 3(1)

4(2)

b

b na

5(1)

6(2)

ana

7(1)

8(2)

b

a b
na

b..

b..

G = 01100101001010010100101001

(a)

{a,b,n}

{b,n}

{n} {b}

b

b

n
a

{a}

ana

{a}

{a}

b

a
b

na

S =ab#n#n#b##a##a#a#

(b)

Figure 5: The pruned suffix tree of banabananab with threshold 2. Each node contains its preorder traversal id and in brackets,
its correction factor. Arrow denotes an inverse suffix link for b; dashed arrow a virtual one. (b) The same PST of (a), with
information associated to Theorem 9. Each node is given the set of symbols for which a virtual inverse suffix link is defined.
The binary string G contains corrections factor in unary format (separators are in bold for clarity). The string S contains the
separated encoding, in preorder traversal, of suffix links chosen by our procedure.

c · α · ζ. Since w and z do not share the same path below
u, the first symbols of β and ζ must differ. This implies
the existence of a node v whose path label is pathlabel(v) =
c · α which is the lowest common ancestor between w′ and
z′. Again by definition of inverse suffix link, it follows that
ISL(u, c) = u′ = v.

Lemma 6. Given any pair of nodes u and v with u < v
such that both have an inverse suffix link for symbol c, it
holds ISL(u, c) < ISL(v, c).

Proof. Since u < v, we have that pathlabel(u) is lexi-
cographically smaller than pathlabel(v). Thus, obviously c ·
pathlabel(u) is lexicographically smaller than c ·pathlabel(v).
Since c · pathlabel(u) is the path label of u′ = ISL(u, c) and
c · pathlabel(v) is is the path label of v′ = ISL(v, c), u′ pre-
cedes v′ in the preorder traversal of PST l(T ).

Computing the virtual inverse suffix link of node u for
symbol c requires to identify the highest descendant of u
(including u) having an inverse suffix link for c. If such
a node does not exist we conclude that the virtual inverse
suffix link is undefined. The following Lemma states that
such node, say v, must be unique meaning that if there exists
an other descendant of u having an inverse suffix link for c,
then this node must be also descendant of v.

Lemma 7. For any node u in the PST l(T ), if exists, the
highest descendant of u (including u) having an inverse suf-
fix link for a symbol c is unique.

Proof. Pick any pair of nodes that descend from u hav-
ing an inverse suffix link for the symbol c. By Lemma 5 their
common ancestor must also have an inverse suffix link for
c. Thus, there must exist an unique node which is common
ancestor of all of these nodes.

In our solution we conceptually associate each node u
in PST l(T ) with the set of symbols Du for which u has
an inverse suffix link. We represent each set with a string
Enc(Du) built by concatenating the symbols in Du in any
order and ending with a special symbol # not in Σ. We

then build a string S as Enc(D0)Enc(D1) · · ·Enc(Dm−1) so
that the encodings follow the preorder traversal of the tree.
We also define the array C[1, σ] whose entry C[c] stores the
number of nodes of PST l(T ) whose path label starts with a
symbol lexicographically smaller than c. The next Theorem
proves that string S together with rank and select capabil-
ities is sufficient to compute VISL. This is crucial to prove
that our data structure works, proving virtual inverse suffix
links can be induced from real ones.

Theorem 9. Let u ∈ PST l(T ) and let z be the rightmost
leaf descending from u. For any character c, let
cu = rankc(S, select#(S, u)) and, similarly, let
cz = rankc(S, select#(S, z)). Then (a) if cz = cu, VISL(u, c)
is undefined. Otherwise, (b) C[c] + cu + 1 = VISL(u, c) and
(c) C[c]+cz is the rightmost leaf descending from VISL(u, c).

Proof. Let A be the set of nodes of PST l(T ) whose
pathlabel is lexicographically smaller than the pathlabel of
u and let B be the set of nodes in the subtree of u. Let S(A)
and S(B) be the concatenations of, respectively, Enc(Dw) for
w ∈ A and Enc(Dw) for w ∈ B. Due to the preorder num-
bering of nodes, we know that A = [0, u− 1] and B = [u, z].
Thus, S(A) is a prefix of S that ends where S(B) begins.
Notice that the operations select#(S, u) and select#(S, z)
return respectively the ending positions of S(A) and S(B)
in S. Thus, cu counts the number of inverse suffix links of
nodes in A while cz includes also the number of inverse suf-
fix links of nodes in B. Hence, if cu = cz no node of B has
an inverse suffix link and, thus, proposition (a) is proved.

By Lemma 6 we know that inverse suffix links map nodes
by preserving their relative order. Thus, the first node in
B that has an inverse suffix link for c is mapped to node
C[c] + cu + 1. By the numbering of node, this first node
is obviously also the highest one. Thus, proposition (b) is
proved.

Proposition (c) is proven by resorting to similar consider-
ations.

Figure 5 illustrates the whole situation: from a pruned
suffix tree, we illustrate the resulting string containing cor-
rection factors and the data to rebuild inverse suffix links.

102



Algorithm Count≥l (P [1, p])

1. i = p, c = P [p], up = C[c] + 1, zp = C[c+ 1];

2. while ((ui 6= zi) and (i ≥ 2)) do

3. c = P [i− 1];

4. ui−1 = VISL(ui, c) = C[c]+rankc(S, select#(S, ui))+1;

5. zi−1 = VISL(zi, c) = C[c] + rankc(S, select#(S, zi));

6. i = i− 1;

7. if (ui = zi) then return“no occurrences of P”else return
CNT(u1, z1)

Figure 6: Our algorithm to report the number of occurrences
of a pattern P [1, p] in our Compact Pruned Suffix Tree.

Exploiting VISL, Algorithm 6 searches a pattern P [1, p]
backward. The algorithm starts by setting up to be C[P [p]]+
1. At the ith step, we inductively assume that ui+1 is known,
and its pathlabel to be prefixed by P [i+ 1, p]. Similarly, we
keep zi+1, the address of the rightmost leaf in u’s subtree.
Using ui+1 and zi+1 we can evaluate if VISL(ui+1,P[i]) and,
in such case, follow it. In the end, we have to access the
number of suffixes of T descending from u1. The next The-
orem formally proves the whole algorithm correctness:

Theorem 10. Given any pattern P [1, p], Algorithm 6 re-
trieves C(u), where u is the highest node of PST l(T ) such
that pathlabel(u) is prefixed by P . If such node does not
exist, it terminates reporting −1.

Proof. We start by proving that such node u, if any, is
found, by induction. It is easy to observe that C[P [p]] + 1 is
the highest node whose path label is prefixed by the single
symbol P [p].

By hypothesis, we assume that ui+1 is the highest node
in PST l(T ) whose path label is prefixed by P [i+ 1, p], and
we want to prove the same for ui = VISL(ui+1, P [p − i]).
The fact that pathlabel(ui) is prefixed by P [p − i, p] easily
follows by definition of inverse suffix link. We want to prove
that ui is the highest one with this characteristic: by con-
tradiction assume there exists an other node w′ higher that
ui = VISL(ui+1, P [i]). This implies that there exists a node
w = SL(w′), prefixed by P [i+ 1, p]. Also, the virtual inverse
suffix link of ui+1 is associated with a proper one whose
starting node is z = SL(ui+1), which by definition of VISL is
also the highest one in u’s subtree. Thus, by Lemma 7 w is
a descendant of z. Hence, w > z but ISL(w′, c) < ISL(z, c),
contradicting Lemma 6.

Finally, if at some point of the procedure a node ui+1 does
not have a virtual inverse suffix link, then it is straightfor-
ward the claimed node u does not exist (i.e. P occurs in T
less than l times). Once u is found, also z is present, hence
we resort to Lemma 3 to obtain C(u) = CNT(u, z).

By combining this Theorem with the discussion of the
previous section, we derive the proof of our main Theorem.

Proof of Theorem 8. We need to store: the C array,
holding the count of nodes in PST l(T ) whose pathlabel pre-
fixed by each of the σ characters; the G string, together
with binary select capabilities and the S string, together
with arbitrary alphabet rank and select capabilities. Let

m be the number of nodes in PST l(T ). We know C occu-
pies at most σ logn bits. By Lemma 4 G occupies at most
m log(σl)+O(m) bits. String S can be represented in differ-
ent ways, related to σ, picking a choice from Theorem 2, but
the space is always limited by m log σ + o(m log σ). Hence
the total space is σ logn+m log(σl)+O(m)+O(m log(σ)) =
O(m log(σl) +σ logn), as claimed. For the time complexity,
at each of the p steps, we perform four rank and select

queries on arbitrary alphabets which we account as f(σ).
The final step on G takes O(1) time, hence the bound.

6. EXPERIMENTS
In this section we show an experimental comparison among

the known solutions and our solutions. We use four differ-
ent datasets downloaded from Pizza&Chili corpus [6] that
correspond to four different types of texts: DNA sequences,
structured text (XML), natural language and source codes.
Text and alphabet size for the texts in the collection are
reported in the first column of Figure 7.

We compare the following solutions:

• FM-index. This is an implementation of a compressed
full-text index available at the Pizza&Chili site [6].
Since it is the compressed full-text index that achieves
the best compression ratio, it is useful to establish
which is the minimum space required by known so-
lutions to answer to counting queries without errors.

• APPROX− l . This is the implementation of our solution
presented in Section 4.

• PST−l . This is an implementation of the Pruned Suffix
Tree as described in [15].

• CPST − l . This is the implementation of our Compact
Pruned Suffix Tree described in Section 5.

Recall that APPROX− l reports results affected by an error
of at most l while PST − l and CPST − l are always correct
whenever the pattern occurs at least l times in the indexed
text. Due to the lack of space we leave details regarding the
various implementations to the final version.

The plots in Figure 8 show the space occupancies of the
four indexes depending on the chosen threshold l . We do
not plot space occupancies worse than FM-index, since in
those cases FM-index is clearly the index to choose.

As anticipated in the previous sections, it turns out that in
all texts of our collection the number of nodes in the pruned
suffix tree is small (even smaller than n/l) (these statistics
are reported in Figure 7). This is the reason why our CPST

is slightly more space efficient than APPROX. In practice, the
former should be indubitably preferred with respect to the
latter: it requires less space and it is always correct for pat-
terns that occur at least l times. Even though, the latter
remains interesting due to its better theoretical guarantees.
In both solutions by halving the error threshold, we obtain
indexes that are between 1.75 and 1.95 times smaller. Thus,
we can obtain very small indexes by setting relatively small
values of l . As an example, CPST with l = 256 on text
english requires 5.1 Mbytes of space which is roughly 100
times smaller than the original text. We observe that both
CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english

which is roughly 45 times larger than CPST−256.

103



Dataset Size σ
l = 8 l = 64 l = 256

|T |/l |PST l |
∑
i |edge(i)| |T |/l |PST l |

∑
i |edge(i)| |T |/l |PST l |

∑
i |edge(i)|

dblp 275 96 36064 28017 1034016 4508 3705 103383 1127 941 20200
dna 292 15 38399 42361 814993 4799 5491 102127 1199 1317 19194
english 501 225 65764 53600 660957 8220 6491 64500 2055 1616 14316
sources 194 229 25475 25474 11376730 3184 3264 9430627 796 982 8703817

Figure 7: Statistics on the datasets. The second column denotes the original text in MBytes. Each subsequent group of three
columns describe PST l information for a choice of `: expected amount of nodes, |T |/l ; real amount of nodes in PST l(T );
sum of length of labels in PST l(T ). All numbers are expressed in thousands.

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64 128 256

S
p

a
c
e

 (
M

b
y
te

s
)

Error Threshold

(a) dblp

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256

S
p

a
c
e

 (
M

b
y
te

s
)

Error Threshold

(b) dna

 0

 50

 100

 150

 200

 250

8 16 32 64 128 256

S
p

a
c
e

 (
M

b
y
te

s
)

Error Threshold

(c) english

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 16 32 64 128 256

S
p

a
c
e

 (
M

b
y
te

s
)

Error Threshold

(d) sources

• FM-index × PST � APPROX � CPST

Figure 8: Space occupancies of indexes as a function of the error threshold l .

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space inefficiencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure 7). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources

we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section 7.2; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We
performed (details omitted) a comparison between MO, MOL
and KVI [15, 14] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was

prohibitive in term of running memory. Finally, we tried to
compare with CRT [5]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.

Figure 9 shows the average error of the estimates obtained
with MOL on our collection by using either CPST or PST as base
data structure. For each text, we searched 4 Millions pat-
terns of different lengths that we randomly extracted from
the text. For each set we identified two pairs of thresholds
such that our CPST and PST have roughly the same space
occupancy. Thus, this table gives the idea of the signifi-
cant boost in accuracy that one can achieve by replacing
PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the
factor of improvement that derives by using our solution is
more than 790. The improvements for the other texts are
less impressive but still considerable.

104



Dataset Indices |P | = 6 |P | = 8 |P | = 10 |P | = 12 Avg improvement

dblp
PST-256 10.06 ± 32.372 12.43 ± 34.172 14.20 ± 35.210 15.57 ± 36.044
CPST-16 0.68 ± 1.456 0.86 ± 1.714 1.00 ± 1.884 1.14 ± 2.009

19.03×

dna
PST-256 0.47 ± 1.048 0.49 ± 2.433 4.26 ± 15.732 11.09 ± 19.835
CPST-32 0.47 ± 0.499 0.43 ± 0.497 0.52 ± 0.904 1.77 ± 2.976

5.51×

english
PST-256 7.03 ± 27.757 12.45 ± 31.712 13.81 ± 28.897 11.43 ± 23.630
CPST-32 0.80 ± 2.391 1.40 ± 3.394 2.07 ± 3.803 2.45 ± 3.623

9.68×

sources
PST-11000 816.06 ± 1646.57 564.94 ± 1418.53 400.62 ± 1229.35 313.68 ± 1120.94
CPST-8 0.70 ± 1.028 0.93 ± 1.255 1.13 ± 1.367 1.28 ± 1.394

792.52×

Figure 9: Comparison of error (difference between number of occurrences and estimate) for MOL estimates over different pattern
lengths. PST and CPST parameters chosen as to obtain close index sizes. Tests performed on 1M random patterns appearing
in the text. The last column shows the average factor of improvement obtained by using our CPST instead of PST.

7. RELATED WORK
In this section we introduce known solutions (or unpub-

lished simple solutions that use known techniques) for the
Substring Occurrence Estimation problem. We also review
the literature about our main application, Substring Selec-
tivity Estimation. Unfortunately, they suffer from two im-
portant drawbacks: 1) they are not space optimal since they
require Θ(n log(n)/l) bits of space; 2) they actually solve a
relaxed version of our problem in which we do not care on
the results whenever the patterns occur less than l times (in
these cases, the result may be arbitrarily far from Count(P ),
i.e., ignoring the rules of lower-sided and uniform error).

7.1 Occurrence estimation
PST l has been already explored in previous sections, hence

we skip it and move to other solutions. An alternative
pruning strategy consists in building a pruned Patricia Trie
PT l/2(T ) that stores just a suffix every l/2 suffixes of T
sorted lexicographically and resort to Blind Search. A plain
Patricia Trie PT (T ) [12] coincides with ST (T ) in which we
replace each substring labeling an edge by its first symbol
only, called branching symbol. More formally, let T1, T2, . . . , Tn
denote the n suffixes of T sorted lexicographically, PT l/2(T )
is the patricia trie of the set of O(n/l) strings S = {Ti | i ≡
1 (mod l/2)}. The pruned patricia trie PT l/2(T ) can be
stored in O(n/l · (log σ+ logn)) = O(n logn/l) bits. We use
the blind search described in [7] to search a pattern P [1, p]
in time O(p). Such algorithm returns a node u that either
corresponds to P , if P is a prefix of some string in S or an-
other node otherwise (whereas there is a connection between
such node and P , without the original text it is not possible
to exploit it). Once we identify the node u, we return the
number of leaves descending from that node multiplied by l .
If P occurs at least l/2 times in T , it is easy to see that the
number of reported occurrences is a correct approximation
of its occurrences in T . Instead, if P occurs less than l/2
times in T , the blind search returns a different node. Thus,
in such cases the algorithm may fail reporting as result a
number of occurrences that may be arbitrarily far from the
correct one.

A similar solution resorts to a recent data structure pre-
sented by Belazzougui et al. [3]. Their solution solves via
hashing functions a problem somehow related to ours, called
weak prefix search. The problem is as follows: We have a set
V of v strings and want to build an index on them. Given
a pattern P , the index outputs the ranks (in lexicographic
order) of the strings that have P as prefix, if such strings do

not exist the output of the index is arbitrary. Their main
solution needs just O(|P | log σ/w + log|P | + log log σ) time
and O(v log(L log σ)) bits of space where L is the average
length of the strings in the set and w is the machine word
size. We can use their data structure to index the set of suf-
fixes S, so that we can search P [1, p] and report its number
of occurrences multiplied by l . Since in our case L = Θ(n),
the index requires O(n log(n log σ)/l) = O(n logn/l) bits of
space. As in the case of pruned patricia tries, the answer
is arbitrary when P is not prefix of any suffix in S (i.e., it
occurs less that l times). Hence, this solution improves the
time complexity but has the same drawback of the previous
one.

7.2 Selectivity estimation
In this section we present in more detail the three main

algorithms for substring selectivity estimation: KVI [15], the
class of MO-based estimators [14] and CRT [5], in chrono-
logical order. For a given threshold l , the work of KVI

starts by assuming to have a data structure answering cor-
rectly to queries Count(P ) when Count(P ) ≥ l and strives
to obtain a one-sided error estimate for infrequent (< l)
strings. It also assume the data structure can detect if
Count(P ) < l . Their main observation is as follows: let
P = αβ where Count(P ) < l and assume Count(α) ≥ l
and Count(β) ≥ l , then one can estimate Count(P ) from
Count(α) and Count(β) in a probabilistic way, using a model
in which the probability of β appearing in the text given that
α appears is roughly the same of β appearing by itself. Gen-
eralizing this concept, KVI starts from P and retrieves the
longest prefix of P , say P ′, such that Count(P ′) > l , and
then reiterates on the remaining suffix.

Requiring the same kind of data structure beneath, the MO

class starts by observing that instead of splitting the pattern
P into known fragments of information, one can rely on the
concept of maximum overlap: given two strings α and β, the
maximum overlap α�β is the longest prefix of β that is also
a suffix of α. Hence, instead of estimating Count(P ) from
Count(α) and Count(β) alone, it also computes and exploits
the quantity Count(α � β). In probabilistic terms, this is
equivalent to introducing a light form of conditioning be-
tween pieces of the string, hence yielding better estimates.
The change is justified by an empirically proved Markovian
property that makes maximum overlap estimates very sig-
nificant. MO is also presented in different variants: MOC, in-
troducing constraint network from the strings to avoid over-
estimation, MOL, performing a more thorough search of sub-

105



strings of the pattern, and MOLC, combining the two previous
strategies.

In particular, MOL relies on the lattice LP of the pattern
P . For a string P = a · α · b (|α| ≥ 0), the l-parent of
P is the string α · b and the r-parent of P is a · α. The
lattice LP is described recursively: P is in the lattice and
for any string ζ in the lattice, also its l-parent and r-parent
are in the lattice. Two nodes β and ζ of the lattice are
connected if β is an l-parent or an r-parent of ζ or viceversa.
To estimate Count(P ), the algorithm starts by identifying all
nodes in the lattice for which Count(α) can be found in the
underlying data structure and retrieve it, so that Pr(α) =
Count(α)/N), where N is a normalization factor. For all
other nodes, it computes Pr(a · α · b) = Pr(a · α) × Pr(α ·
b)/Pr(a ·α�α · b) recursively. In the end, it obtains Pr(P ),
i.e. the normalized ratio of occurrences of P in T .

The CRT method was presented to circumvent underesti-
mation, a problem that may afflict estimators with limited
probabilistic knowledge as those above. The first step is to
build an a-priori knowledge of which substrings are highly
distinctive in the database: in that, they rely on the idea
that most patterns exhibit a short substring that is usually
sufficient to identify the pattern itself. Given a pattern to
search, they retrieve all distinctive substrings of the pattern
and use a machine learning approach to combine their value.
At construction time, they train a regression tree over the
distinctive substrings by using a given query log; the tree is
then exploited at query time to obtain a final estimate.

8. FUTURE WORK
We presented two different solutions to the problem of

substring occurrence estimation. Our first solution is a space-
optimal data structure when the index is allowed to have a
uniform error on the reported number of occurrences. Our
second solution can be seen as a very succinct version of the
classical Pruned Suffix Tree for the harder problem of hav-
ing one-sided errors. It guarantees better space complexities
with respect to the pruned suffix tree both in theory and in
practice. It is not clear if the latter solution is space-optimal
or not, thus, proving a lower bound for the latter problem
would provide greater insight into the problem.

As a second open problem, we note that the entire article
is forced to deal with additive errors due to lower bounds.
A natural question is: is there a way to relax the model,
in order to circumvent the multiplicative lower bound (The-
orem 4)? For example, what if we allow non-existing sub-
strings to have an arbitrary estimation error, forcing all oth-
ers with a multiplicative bound?

Acknowledgments
The authors would like to thank Roberto Grossi for fruitful
discussions on the topic of this paper.

This work was partially supported by the EU-PSP-BPN-
250527 (ASSETS), the POR-FESR 2007-2013 No 63748 (VIS-
ITO Tuscany) projects, the MIUR of Italy under project
AlgoDEEP prot. 2008TFBWL4, and the PRIN MadWeb
2008.

9. REFERENCES
[1] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich.

Alphabet partitioning for compressed rank/select and
applications. In ISAAC (2), pages 315–326, 2010.

[2] J. Barbay, M. He, J.I. Munro, and S. Srinivasa Rao.
Succinct indexes for string, binary relations and
multi-labeled trees. In Proc. ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 680–689, 2007.

[3] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast
prefix search in little space, with applications. In ESA
(1), pages 427–438, 2010.

[4] M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, 1994.

[5] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity
estimation for string predicates: Overcoming the
underestimation problem. In Proceedings of the 20th
International Conference on Data Engineering, ICDE
’04, pages 227–, 2004.

[6] P. Ferragina, R. González, G. Navarro, and
R. Venturini. Compressed text indexes: From theory
to practice. ACM Journal of Experimental
Algorithmics, 13, 2008.

[7] P. Ferragina and R. Grossi. The string b-tree: a new
data structure for string search in external memory
and its applications. J. ACM, 46:236–280, March 1999.

[8] P. Ferragina and G. Manzini. Indexing compressed
text. Journal of the ACM, 52(4):552–581, 2005.

[9] P. Ferragina, G. Manzini, V. Mäkinen, and
G. Navarro. Compressed representations of sequences
and full-text indexes. ACM Transactions on
Algorithms, 3(2), 2007.

[10] P. Ferragina and R. Venturini. Compressed
permuterm index. In SIGIR, pages 535–542, 2007.

[11] R. Grossi and J. S. Vitter. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. SIAM Journal on Computing,
35(2):378–407, 2005.

[12] D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[13] T. Hagerup and T. Tholey. Efficient minimal perfect
hashing in nearly minimal space. In Proceedings of the
18th Annual Symposium on Theoretical Aspects of
Computer Science(STACS), pages 317–326, 2001.

[14] H.V. Jagadish, R. T. Ng, and D. Srivastava. Substring
selectivity estimation. In Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’99, pages
249–260, 1999.

[15] P. Krishnan, J. S. Vitter, and B. R. Iyer. Estimating
alphanumeric selectivity in the presence of wildcards.
In SIGMOD Conference, pages 282–293, 1996.

[16] G. Manzini. An analysis of the Burrows-Wheeler
transform. Journal of the ACM, 48(3):407–430, 2001.

[17] G. Navarro and V. Mäkinen. Compressed full text
indexes. ACM Computing Surveys, 39(1), 2007.

[18] D. Okanohara and K. Sadakane. Practical
entropy-compressed rank/select dictionary. In
ALENEX, 2007.

[19] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, 1999.

106


