
 1

 Space Exploration and Global Optimization for Computationally

Intensive Design Problems: A Rough Set Based Approach

Songqing Shan G. Gary Wang*
Dept. of Mechanical and Industrial Engineering

The University of Manitoba
Winnipeg, MB, Canada R3T 5V6

Tel: 204-474-9463 Fax: 204-275-7507
Email: gary_wang@umanitoba.ca

Abstract
Modern engineering design problems often involve computation-intensive analysis and

simulation processes. Design optimization based on such processes is desired to be efficient,

informative, and transparent. This work proposes a rough set based approach that can identify

multip,le sub-regions in a design space, within which all of the design points are expected to

have a performance value equal to or less than a given level. The rough set method is applied

iteratively on a growing sample set. A novel termination criterion is also developed to ensure a

modest number of total expensive function evaluations to identify these sub-regions and search

for the global optimum. The significances of the proposed method are two folds. First, it

provides an intuitive method to establish the mapping from the performance space to the design

space; given a performance level, its corresponding design region(s) can be identified. Such a

mapping can be used to explore and visualize the entire design space. Second, it can be naturally

extended to a global optimization method. It also bears potentials for more abroad applications

to problems such as robust design optimization. The proposed method was tested with a number

of test problems and compared with a few well-known global optimization algorithms.

Keywords: rough set, design optimization, space exploration, global optimization

1. Introduction
In product design, design engineers not only want the final optimal solution, they would also

prefer a more informative process that can help them quickly and/or interactively search for the

optimum. In another word, a transparent and informing search process, rather than a blind

process, is desired. In addition, due to many practical limitations, a single crisp optimum might

not be a good solution. Engineers want to know in such cases what will be the other close-to-

* Corresponding author

 2

optimum alternatives. A set of attractive design alternatives, rather than a single optimum, is thus

preferred. All these demands can be transformed into one question: given a set of design

requirements, how to find those satisfactory and / or best design alternatives? Ullman (2002)

described 17 “wishes” for an ideal mechanical engineering design support system. The first two

wishes center on exactly the above needs, i.e, a design support system should give the engineers

the ability to work from function (design requirements) to geometry form of a product (product

design).

The recent design visualization methods, such as the Computer Steering and Visual Steering

methods, strive to enable engineers to interact with the search process (Eddy and Lewis 2002,

Winer and Bloebaum 2002a, 2002b). One major problem that Eddy and Lewis (2002) have

encountered is the mapping from the performance space to the design space. In another word,

given some performance level, the problem is how to find many design alternatives that will

suffice.

Traditional optimization processes start from a starting point (design) and check its performance;

the process iterates until the optimum is found. This process is thus a forward search method

from the design space to the performance space. Can we search backwards from the

performance space to identify the corresponding design space(s)? In practice, it is natural to

intuitively reduce the design space gradually to a small area (Reddy 1996). However, most of

these methods are ad hoc and problem dependent.

In recent years in the area of Multidisciplinary Design Optimization (MDO), a branch of

researches aims at developing methods that can gradually reduce the design space in an

optimization framework. The design space, defined by the combination of bounds of all

variables, is a hyper-box in an n-dimensional space. Such a hyper-box, as first given by design

engineers, reflects the scope of search and significantly influences the overall optimization time.

Two types of design space reduction schemes are seen in the literature. One is to reduce the

dimensionality of the design space by reducing the number of design variables. However,

dimensionality is difficult to reduce, especially for multidisciplinary design problems (Koch et

al. 1999). The other type of design space reduction seeks to reduce the size of the design space

while assuming the dimensionality cannot be further reduced. A detailed review on this research

 3

direction can be found in authors’ previous work (Wang and Simpson 2002). Most, if not all, of

those methods are developed to search for the design optimum, by taking the advantage of

sampling, space reduction, and the interplay between the two. They are essentially forward

searching methods.

In the field of global optimization, multi-start methods such as clustering (Boender et al. 1982,

Jain and Agogino 1993) divide a big design space to small regions so that each region contains a

local optimum. However, these methods are meant to search for local optima, with no regard to

if the local optima satisfy a certain performance requirement. That is, some local optima may

have unacceptable performance values. Therefore, these global optimization methods are not

developed to establish the aforementioned mapping from performance to design. A recent

detailed review is given by Neumaier (2001) on global optimization methods.

It is to be noted also that today’s engineering design often involves computationally intensive

analysis and simulation processes such as finite element analysis (FEA), computational fluid

dynamics (CFD), and so on. For instance, one crash simulation of a full passenger car takes 36-

160 hours to compute, according to engineers at For Motor Company (Gu 2001). Also a global

design optimum is always more attractive than a local optimum if the computation cost is

acceptable.

In summary, a systematic and domain-independent method that establishes the mapping from

performance to design space is needed. This work addresses this need by proposing a systematic

method that can identify a region or regions in a design space within which all of the design

points are expected to have function values less than or equal to a given performance level. If

the given performance level is given as a desired target, continuous and / or discontinuous

regions in the design space can be obtained; any point within is expected to have satisfactory

performance. If desired, engineers can explore further in those regions looking for the global

optimum. This work also bears in mind the goal of reducing the total number of expensive

function calls. Because this work is based on a new mathematical concept, rough set, and to the

best of the authors’ knowledge it is the first time that the rough-set is introduced into the

mechanical design area, the related rough set theory is first introduced and described in the

following section.

 4

2. Related Rough Set Theory
Rough set theory was developed by Pawlak (1982) in the early 1980's. Its main goal is to

synthesize approximation of concepts from the acquired data. It deals with the classificatory

analysis of data. Rough sets have been successfully applied in medicine (Pawlak et al. 1986)

finance (Golan and Ziarko 1995), telecommunication (Czyzewski 1997), material analysis

(Jackson et al. 1996), conflict resolution (Pawlak 1984), intelligent agents (Johnson 1998), image

analysis (Mrozek and Plonka 1993), pattern recognition (Kowalczyk 1996), control theory

(Mrozek and Plonka 1993), process industry (Mrozek 1992), marketing (van den Poel 1998), and

so on. Rough set has become a rigorous mathematical tool, and has been implemented into

software systems (Bazan et al. 1994, Øhrn and Komorowski 1997). Due to its mathematical

rigor and abilities in solving practical problems, rough set theory and its applications are

attracting attention from more and more domains. Due to the fact that the theory of rough set is

quite mathematically involving, our introduction aims at achieving a balance between the ease of

understanding by engineers and retaining its original mathematical features. As a result, the

introduction will leave out any mathematical proof and simplify the description of concepts

followed by an example for illustration. Also due to the length limitation and the wide scope of

rough set, only those related notions are introduced. For a more detailed description of rough

set, please see Ref. (Komorowski et al. 1999).

2.1 Information Systems and Decision Tables

According to the formal Rough Set theory, an information system is defined by a pair S = (U, A),

where U is a non-empty, finite set (u1, u2, …, um) called the universe; A is a non-empty, finite set

of attributes (a1, a2, …, an). An attribute a maps a universe U into Va for a∈A, where Va is

called the value set of a. The set V = U Aa aV
∈

 is said to be the domain of A. Elements of U are

called objects. For example, Table 1 excluding its last column is a very simple information

system in which U has 11 objects (u1, u2, …, u11); A consists of two attributes (a1 and a2) and the

A's domain V are the table elements (1.158705, …, -0.061620; -1.372335, …, 0.873131).

Specifically for the data in Table 1, the two attributes a1 and a2 correspond to x1 and x2,

respectively, for the well-known six-hump camelback (SC) function described by Eq. (1). The 11

U objects are in fact 11 random points defined by x1 and x2.

 5

]2,2[,441.24)(2,1
4
2

2
221

6
13

14
1

2
1 −∈+−+−−= xxxxxxxxxf sc (1)

In many applications the target of the classification is represented by an additional attribute

called decision, for instance, d in Table 1. Information systems of this kind are called decision

systems. Formally a decision system is any information system of the form S = (U, A ∪{d}),

where d∉A is a decision attribute. The elements of A are called conditional attributes or simply,

conditions. The decision system can be represented as a finite decision data table (simply called

a decision table). In the decision table, the columns are labeled by conditional attributes and

decision attributes; the rows are labeled by objects; and at the position corresponding to the row

u and column a or d, the value a(u) or d(u) of a or d on objects from U appears. Table 1

including its last column is a decision system or decision table. Each row in the table describes

the information about one object in S. Let us leave the question of how those decisions are made

for the SC function to a later section, and continue our introduction of rough set by simply

accepting the decision table.

Table 1 Example of an information (decision) system.

S a1 a2 D
u1 1.158705 -1.372335 1
u2 -0.225895 -0.763139 0
u3 0.414520 -0.553701 1
u4 -1.080601 1.612387 1
u5 1.831858 -0.093501 1
u6 -0.876749 -1.934921 1
u7 -1.972033 -1.043081 1
u8 0.198583 1.895447 1
u9 0.661393 -0.973502 1
u10 -0.225895 -1.572636 1
u11 -0.061620 0.873131 0

Let S = (U, A ∪{d}) be a decision system. With any subset of attributes B ⊆ A we associate a

binary relation ind(B), called an indiscernibility relation, which is defined by ind(B) = {(ui,

uj)∈U×U for every a∈B, a(ui) = a(uj) }, where a(ui) and a(uj) are values of the attribute a on the

objects ui and uj from U respectively. If ui ind(B) uj, then we say that the objects ui and uj are

indiscernible with respect to attributes from B. For example, objects u2 and u10 in Table 1 having

different decision attributes (0 and 1) are indiscernible from each other by the attribute a1

because the value a1(u2) of the attribute a1 on the object u2 has the same value –0.225895 as the

 6

value a1(u10) of the attribute a1 on the object u10. On the other hand, objects u2 and u10 are

discernible from each other by the attribute a2 because the values a2(u2) and a2(u10) of the

attribute a2 on the objects u2 and u10 have different values 0.763139 and -1.572636 respectively.

An equivalence class1 of the B-indiscernibility relation is denoted by [u]B.

In a decision system S = (U, A ∪{d}), the cardinality2 of the image3 d(U) = {k: d(u) = k for some

u ∈ U } is called the rank of d and is denoted by r(d), where d images U into the set Vd of values

of the decision attribute d. We assume that the value set Vd of the decision d is equal to {0, 1, ...,

r(d)-1 }. Let us observe that the decision d determines a partition {P0, P1, ..., Pr(d)-1 } of the

universe U, where Pk = { u ∈ U: d(u) = k } for 0 ≤ k ≤ r(d)-1. The set Pi is called the i-th

decision class of S. Obviously, r(d) is 2 and Vd is equal to {0, 1} in the decision system Table 1.

2.2 Concepts of Cut and Attribute Value Discretization

2.2.1 Concepts of Cut

Let S = (U, A ∪ {d}) be a decision system where U = {u1, u2, …, um} and A = {a1, a2, …, an}.

We assume Va = [la, ra) ⊂ R for any a ∈ A where R is the set of real numbers and la , ra are the

left and right ends, or lower and upper limits, of an attribute a respectively. Pa is a partition on

Va (for a ∈ A) into subintervals i.e.)},[),...,,[),,{[12110
a
k

a
k

aaaa
a aa

ccccccp += , for some integer k,

where a
a
k

a
k

aaa
a rcccccl

aa
=<<<<<= +1210 ... and).,[...),[),[12110

a
k

a
k

aaaa
a aa

ccccccV +∪∪∪= Any

Pa is uniquely defined by the set },...,,{ 21
a
k

aa
a a

cccC = , called the set of cuts on Va. We often

connect Pa with the set of cuts on Va defined by Ca. Then, any global family P of partitions can

be represented by aAa CaP ×∪= ∈ }{ . Any pair (a, c) ∈ P will be called a cut on Va. The cut will

define a new conditional attribute with binary values. For instance, with the data in Table 1, it

will be shown later that the new attribute corresponding to the cut (a1, -0.5505) is equal to 0 if

a1(u) < -0.5505, otherwise is equal to 1. Hence, objects positioned on different sides of the

straight line a1 = - 0.5505 are discerned by this cut or the cut discerns objects in the decision

1The equivalence class of an element Xx ∈ consists of all objectives Xy ∈ such that xRy, where
R is called the equivalence relation which is reflexive, symmetric and transitive.
2 Math. The property of having a certain cardinal number.
3 Math. The element or set into which a given element or set is mapped by a particular function
or transformation.

 7

system. Then, how to construct a set of cuts with a minimal number of attribute elements that

can discern all pairs of objects in the universe? This can be done using Boolean reasoning

(Komorowski et al. 1999), heuristics method (Komorowski et al. 1999), Equal Width and Equal

Frequency Interval Binning (Nguyen 1997), Holte's 1R Discretizer (Nguyen 1997), Statistical

test methods (Nguyen 1997), Entropy methods (Nguyen 1997), etc. Here the steps of MD-

heuristic method (Nguyen 1997) are introduced as following:

Step 1. Construct the information table S* from the decision system S.

1. Introduce a Boolean variable corresponding to each attribute a and each interval of a in its

information table S; this variable is called a propositional variable. For Table 1, a set of

propositional variables is defined as

},,,,,,,,,,,,,,,,{)(2222222222111111111
10987654321987654321
aaaaaaaaaaaaaaaaaaa pppppppppppppppppppSVB = ,

where)080601.1,972033.1[~1
1 −−ap of a1, i. e., 1

1
ap corresponds to the interval [-1.972033,

-1.080601) of attribute a1;)876749.0,080601.1[~1
2 −−ap of a1;

)225895.0,876749.0[~1
3 −−ap of a1; …; and)831858.1,158705.1[~1

9
ap of a1. Similarly,

)572636.1,934921.1[~2
1 −−ap of a2;)372335.1,572636.1[~2

2 −−ap of a2; …; and

)89544.1,612387.1[~2
10
ap of a2.

Figure 1 represents the set of cuts (a1, c1), (a1, c2), (a1,c3), …, (a1, c9) on the attribute a1, the

propositional variables 121
921 ,,, aaa ppp L , and the intervals corresponding to these variables.

The c numbers are the middle point of each interval. For instance, the cut (a1, c5) takes the

value of (a1, 0.0685) as c5 =(-0.061620+0.198583)/2. It also can be seen from Figure 1 that

each propositional variable corresponds to a cut defined within its interval. For instance,

1
3
ap corresponds to the interval [-0.876749 -0.225895] as well as the cut (a1, c3).

 8

Figure 1. The relationship among the cuts on a1, the corresponding propositional variables and the intervals

corresponding to these variables.

2. Construct the table S* from S. As shown in Table 2, the first column lists those and only

those pairs of objects with different decision values, and the first row lists all the

propositional variables. For example, (u1, u2) is a pair listed in the table because they

lead to different decision values. In contrast, (u1, u3) is not listed because they have the

same decision value and thus need not to be discerned. The value of each propositional

variable on each pair (ui, uj) is equal to 1 iff its corresponding cut (a, c) is discerning

objects (ui, uj) (i.e. min(a(ui), a(uj)) < c < max((a(ui), a(uj))) and 0 otherwise. For

example, the value of 1
5
ap in Table 2 corresponding to a cut (a1, 0.0685) on the pairs (u1,

u2), is equal to 1 because this cut discerns objects (u1, u2) (-0.225895 < 0.0685 <

1.158705), but the value of 1
5
ap corresponding to the same cut (a1, 0.0685) on the pairs

(u4, u2) is equal to 0 because this cut does not discern objects (u4, u2) (-1.080601 < -

0.225895 < 0.0685). We can formulate this condition in another way. The value of the

propositional variable Pa on the pair (ui, uj) is equal to 1 iff the interval corresponding to

pa is included in [min(a(ui), a(uj)), max(a(ui), a(uj))] and 0 otherwise. Thus, as can be

seen from Figure 1, the value of 1
5
ap on the pair (u1, u2) is equal to 1 because the interval

corresponding to 1
5
ap is included in [min(a1(u1), a1(u2))=-0.225895, max(a1(u1),

a1(u2))=1.158705] and but the value of 1
5
ap on the pair (u4, u2) is equal to 0 because the

interval corresponding to 1
5
ap is not included in [min(a1(u4), a1(u2))=-1.080601,

 9

max(a1(u4), a1(u2)) =-0.225895]. The resulting new table S* from S in Table 1 is shown in

Table 2.

Step 2. Choose a column from S* with the maximal number of occurrences of 1's. For instance,

choose column 1
5
ap because it has the maximal number of occurrences of 1’s. If there are a few

columns having the same maximal number of occurrences of 1’s, one of the columns is randomly

selected.

Step 3. Delete from S* the chosen column and all rows that have been marked “1” in this

column. In our example, we delete the column 1
5
ap and the rows (u1, u2), (u1, u11), (u3, u2), (u3,

u11), (u5, u2), (u5, u11), (u8, u2), (u8, u11), (u9, u2) and (u9, u11) because we have chosen the column

1
5
ap in step 2 and these rows are marked 1 in the column 1

5
ap .

Step 4. If S* is non-empty then go to Step 2; else Stop. In our example, we should go to Step 2

because the rows (u4, u2), (u4, u11), (u6, u2), (u6, u11), (u7, u2), (u7, u11), (u10, u2), and (u10, u11)

remain.

Table 2 An information System S* constructed from S

S* 1
1
ap

1
2
ap

1
3
ap

1
4
ap

1
5
ap

1
6
ap

1
7
ap

1
8
ap

1
9
ap

2
1
ap

2
2
ap

2
3
ap

2
4
ap

2
5
ap

2
6
ap

2
7
ap

2
8
ap

2
9
ap

2
10
ap

(u1, u2) 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0
(u1, u11) 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0
(u3, u2) 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
(u3, u11) 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
(u4, u2) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
(u4, u11) 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
(u5, u2) 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0
(u5, u11) 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0
(u6, u2) 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
(u6, u11) 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
(u7, u2) 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
(u7, u11) 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
(u8, u2) 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1
(u8, u11) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(u9, u2) 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
(u9, u11) 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0
(u10, u2) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
(u10, u11) 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

 10

For Table 2, the algorithm first chose 1
5
ap , then 1

3
ap and finally 2

2
ap . These three propositional

variables correspond to the cuts (a1, 0.0685), (a1, -0.5505), and (a2, -1.472), respectively. The

resulting set of cuts is thus P = {(a1, -0.5505), (a1, 0.0685), (a2, -1.472)} and is listed in Table 3.

Same results can be obtained by applying the software RSES (Bazan et al. 1994). The

geometrical representation of data’s partitions and cuts is shown in Figure 2. The data in Table 1

fall in the different intervals in Figure 2. Let n be the number of objects and let k be the number

of attributes of decision system S. The MD-heuristic method determines the best cut in O(kn)

steps (Komorowski et al. 1999) . This heuristic is very efficient in terms of the time necessary

for the decision rule generation and the quality of object classification.

Table 3 A set of cuts for the decision system defined in Table 1.

A Cuts
-0.5505 a1
0.0685

a2 -1.472

Figure 2 A geometrical representation of data partition and cuts.

2.1.1.1

2.1.1.2

2.1.1.3

2.1.1.4

2.1.1.5

2.1.1.6

2.1.1.7

2.1.1.8

In summary, the cutting operation generates the smallest set of attribute elements that can

classify the sample points of the same decision value. Then the intervals of each attribute

formed by the cutting operation are represented by integer numbers for the generation of decision

rules.

2.2.2 Discretization of Attribute Values

Any set of cuts),...},(),...,,(),,(),...,,{(}{ 2
2

2
12

1
1

1
11 21 kka

Aa
cacacacacap =×∪=

∈
 transforms from S =

(U, A∪{d}) into a new decision table Sp = (U, Sp∪{d}), where Sp = {ap: a∈A} and ap(u) = i ⇔

*

*

 11

a(u) ∈),[1
a
i

a
i cc + for any u ∈ U and i ∈ {0,…,ka}. This is to say that ap(u) = i in Table 4

represents a(u) ∈),[1
a
i

a
i cc + in Table 1. For instance, 2)(11 =ua p in Table 4 represents

)2,0685.0[)(11 ∈ua in Table 1. The table Sp is called P-discretization of S. In other words, cuts

make a partition of value sets of conditional attributes into intervals that are given unique integer

names (Nguyen 1997). In this way the size of the value attribute sets in a decision system is

reduced. For example, we use the cuts in Table 3 to discretize Table 1 into Table 4. Given the

bound of a1 [-2, 2], this set of cuts assigns the name 0 to the interval [-2, -0.5505] of a1, the name

1 to the interval [-0.5505, 0.0685), and the name 2 to the interval [0.0685, 2]. A similar

construction is done on a2 within the bound [-2, 2] as well. The values of the new attributes pa1

and pa2 are shown in Table 4.

Table 4 P-discretization of the decision system Table 1 (where P = {(a1, -0.5505),(a1, 0.0685), (a2, -1.472)}).

pS pa1 pa2 D

1u 2 1 1

2u 1 1 0

3u 2 1 1

4u 0 1 1

5u 2 1 1

6u 0 0 1

7u 0 1 1

8u 2 1 1

9u 2 1 1

10u 1 0 1

11u 1 1 0

2.3 Generation of Decision Rules

A decision system expresses all the knowledge about the model. But usually this decision

system may be unnecessarily large partially because it is redundant in at least two ways. The

same or indiscernible objects may be represented several times, or some of the attributes may be

superfluous. The first issue can be solved by the equivalence class [u]B and the second issue by

feature extraction or eliminating the superfluous attributes. After these processes, the size of the

decision system can be reduced. From the last section, we can see that as the size of the attribute

value sets is reduced due to discretization, the same objects are presented several times in Table

4. For instance, five rows {2 1 1} describe the same information about some objects in S.

 12

Therefore, Table 4 can be reduced to Table 5 by eliminating superfluous information represented

in the equivalence classes. Table 5 is then used to generate decision rules.

Before rules are generated, we briefly introduce some notions about rules. Let S = (U, A ∪{d})

be a decision table and let V = U Aa aV
∈

∪ Vd. Atomic formulae1 over B ⊆ A ∪{d} and V are

expressions of the form a = v; they are called descriptors2 over B and V, where a ∈ B and v ∈

Va. For example in Table 5, a1=2 is an atomic formulae. The set F(B, V) of formulae over B and

V is the least set containing all atomic formulae over B and V and closed under propositional

connectives: ¬ (negation), ∨ (disjunction) and ∧ (conjunction). Let τ ∈ F(B, V).
S

τ denotes

the meaning of τ in the decision table S which is the set of all objects in U with the property τ.

S
τ (or in short τ) of the formulae τ in S is defined inductively as follows:

If τ is of form α = ν, then

τ = va = = {u∈U: a(u) = v} for a∈B and v ∈ Va;

'ττ ∨ = τ ∪ 'τ ;

'ττ ∧ = τ ∩ 'τ ;

τ¬ = U - τ .

The set F(B,V) is called the set of conditional formulae of a decision table S.

A decision rule in S is any expression of the form vd =⇒τ , where τ ∈ F(B, V), v ∈ Vd and

τ ≠ ∅. The decision rule vd =⇒τ is true in S if and only if vd =⊆τ . Formulae τ and d

= ν are referred as the predecessor and the successor of the decision rule vd =⇒τ . τ is the

set of objects matching the decision rule. τ ∩ vd = is the set of objects supporting the rule.

The decision rule vd =⇒τ is minimal in S if and only if it includes a minimal number of

descriptors on its left-hand side. Assuming our decision table is consistent, we can obtain the

decision rules with a minimal number of descriptors on the left-hand side. There are different

algorithms to generate rules. Readers can refer to rough sets references (Pawlak 1982,

1 A undisjoined rule or principle expressed in algebraic symbols
2 An expression or sentence-element that has the function of describing

 13

Komorowski et al. 1999). Decision rules listed in Table 6 are deducted from Table 5 with the

RSES program (Bazan et al. 1994). For example, (a1= 1) & (a2 = 1) ⇒ (d = 0) means whenever

the attribute a1= 1 and a2 = 1, the decision will be zero.

 Table 5 A simplified decision system.

S* a1 a2 d

1u 2 1 1

2u 1 1 0

3u 0 1 1

4u 0 0 1

5u 1 0 1

Table 6. Rules for the decision system

(a1 = 2) ⇒ (d = 1)
(a1 = 0) ⇒ (d = 1)
(a1= 1) & (a2 = 1) ⇒ (d = 0)
(a2 = 0) ⇒ (d = 1)

2.4 Extraction of Attractive Regions

The main goal of the rough set analysis is to synthesize approximation of concepts from the

acquired data. The set of rules from a decision system describes or reflects the nature of a

decision system. The combination between the set of cuts and the set of decision rules roughly

outlines the features of the decision system. When a set of cuts has been constructed and a set of

rules has been induced from a decision system, we can make use of their combinations to extract

the intervals that are attractive to us. For example, the rule “(a1= 1) & (a2 = 1) ⇒ (d = 0)” tells

us that the region defined by a1=[-0.5505, 0.0685] and a2=[-1.472, 2] is attractive if the decision

value 0 indicates a desired product performance. Assuming there is enough information to

justify the decision rules, one can then search the optimum in the small region and need not to

search the rest of design space. Optimization time can thus be saved.

3. Proposed Approach

According to the rough set theory, we can obtain useful rules by classifying and analyzing the

information systems, represented by many data points. For computationally intensive design

problems, if we can obtain such useful rules through sampling, then the design space can be

reduced to smaller regions, and effort of searching for the optimal solution(s) will be

 14

significantly reduced. Before we can apply the rough set in space exploration and optimization,

three questions should be addressed:

1.How to fit an optimization problem to the rough set framework?

2.How many sample points would be adequate to reflect the behavior of an objective function?

Since the number of samples is problem dependent, the common strategy is to sample

sequentially. This strategy leads to the third question as follows.

3. What is the criterion to terminate sampling?

This section will discuss the proposed solutions to these three questions.

3.1 Decision Threshold

For the optimization problem defined by Eq. (1), if 11 sampling points are generated, their

function values can be obtained by calling the function. All the data are listed in Table 7.

Table 7 An information system for the six-hump camelback function.

Sampling No.
1x 2x f(x)

1 1.158705 -1.372335 7.455687
2 -0.225895 -0.763139 -0.601775
3 0.414520 -0.553701 -0.452884
4 -1.080601 1.612387 17.232299
5 1.831858 -0.093501 2.165213
6 -0.876749 -1.934921 44.773839
7 -1.972033 -1.043081 5.840888
8 0.198583 1.895447 37.790520
9 0.661393 -0.973502 0.533713
10 -0.225895 -1.572636 15.127800
11 -0.061620 0.873131 -0.763318

In the optimal design domain, given a x we obtain f(x), where x is a vector (x1, x2, …, xm) and f(x)

is an objective function. In the rough set domain, we consider that x (x1, x2,…, xm) as a non-

empty, finite set of attributes A. Sampling points or samples are the objects of the non-empty,

finite set universe U. By applying the rough set theory and considering Table 7 represents a

decision system, we can see that the attribute f(x) has 11 different values, i.e. r(d) = d(U) =11.

As the number of samples or elements of U increases, the value set of the decision attribute

increases. If we directly use the function value as the decision attribute, there will be nearly no

pair of objects leads to the same decision and no useful rules can be generated. Therefore, a

certain type of bracketing is needed for the function values. One could define as many intervals

of function values as desired to see the distribution of points in each level of function values.

 15

This is desired for design visualization or other space exploration applications. For the purpose

of optimization, the division of the function values to two groups is found adequate. Hence, we

introduce the decision threshold concept as following.

A decision threshold is a real number dt {dt: Min f(X) ≤ dt < Max f(X) | ∀ x∈X, f(x) ∈ f(X), dt(f(x))

= 0 iff f(x)≤ dt and dt(f(x)) = 1 iff f(x) > dt}, where f(X) is a non-empty, finite set of samples for

an objective function f(x); Min f(X) and Max f(X) are the minimum and the maximum in the

sampling set f(X) respectively. A decision threshold dt makes the sampling set f(X) of objective

function f(x) be classified into two subsets [0]B and [1]B (f(X) = [0]B ∪ [1]B), [1]B is the set that

the objective function value of the samples is greater than dt; [0]B is the set that the objective

function value of the samples is less than or equal to dt. For an objective function f(x), we can

have different decision thresholds. Different decision thresholds possibly lead to different

attractive intervals. Therefore, the efficiency of the optimization is dependent on the selection of

the decision threshold dt. On the other hand, by supplying a different dt, one can find its

corresponding sub-spaces within which all of the points will have the objective function value

lower than or equal to the threshold. If many thresholds are chosen, one can basically capture

the contour of the objective function. Here we will focus on the optimization and introduce an

intuitive method to select the decision threshold.

A decision threshold is chosen on the basis of the current sample distribution of the objective

function f(x). Figure 3b is the function value distribution for the information system in Table 7.

Figure 3a shows the histogram of the number of occurrence of these function values. These two

figures are applicable regardless of the number of design variables. For the random sampling,

the distribution of function values indicates the probability of reaching certain function values.

For the data shown in Figure 3a, we can easily see that there are more points having a function

value between -1 and 5 than any other intervals of the same length. Therefore, if the engineer is

interested in finding a robust design solution, the decision threshold can be chosen as one that

has the most occurrences while its value still indicates physically satisfactory performance. For

example, the decision threshold dt can be chosen as -0.5 for the information system in Table 7. If

the goal is to find the global optimum, the threshold value can be lower. The choice of the

decision threshold also depends on the specific performance requirement. For example, if the

 16

design objective is cost, the design engineer usually knows about the maximum allowed cost to

be competitive through benchmarking. In this case, such knowledge can be applied in the

selection of dt. If there is no a priori knowledge and the goal is to identify the global optimum,

usually we select one value that is a little bit greater than the minimum of all sampling values as

the decision threshold dt. Thus the two figures in Figure 3 can function as a visual aid to help

engineers decide on the threshold.

Once the decision threshold is chosen, samples having the function value greater than the

decision threshold dt is assigned a decision d = 1, otherwise, d = 0. Therefore, we classify all

samples into two classes (1 and 0). Please refer to the decision system in Table 1, which is

obtained from the information system in Table 7 by setting dt=-0.5.

By the introduction of a decision threshold, an optimization problem can be transformed as a

decision system and thus the rough set can be applied to seek the rules inherent in the samples.

Figure 3 A visual aid for selecting the decision threshold.

4.

5.

6.

a. Function value distribution histogram b. Function value distribution

3.2 Sampling

For the purpose of reducing the number of samples (or, expensive function evaluations) in design

optimization, a small sample set is generated first and the rough set is applied. But the rough set

was originally developed for a large amount of data. Such a small set will not be able to capture

the real attractive design region. Therefore, the sequential sampling is applied. In this work, the

inherited Latin Hypercube Sampling method (Wang 2002, Wang and Simpson 2002) is used to

Number of Samples Sample No.

 17

sequentially sample the six-hump camelback objective function f(x) and set up an information

system which has a form S = (U, x ∪ {f(x)}) as in Table 7. This method gradually adds samples

to a given design space, and the combination of newly added points with existing points forms a

new Latin Hypercube sample set with small redundancy for some variable intervals. For

constrained optimization problems, the samples will be first evaluated with those constraints. If

any of the constraints is violated, the point is deleted from the sample set and will not be

evaluated with the objective function. The use of sequential sampling strategy leads to the

question of when to terminate the sampling process.

3.3 Termination Criterion for Sampling

Definitions of Various Types of Design Spaces
Before the introduction of the termination criterion for sequential sampling, some concepts have

to be defined or clarified. Given the design variable x (x1, x2, …, xm) and its value range X, the

objective function f(x) (f1(x), f2(x), …, fn(x)) and its local optima fmin(x), the constraint function

g(x) (g1(x), g2(x), …, gk(x)), and the decision threshold dt, we introduce a number of definitions.

• A design space Sd = (x, f(x)) = {X ∈ R | ∀ x ∈ X, f(x) ∈ R} is the value range of the

optimal variable x which makes the objective function f(x) sensible.

• A feasible space Sf = (x, f(x), g(x)) = {X ∈ R | ∀ x ∈ X, f(x) ∈R and g(x) ≤ 0 } is the

value range of the optimal variable x which makes the objective function f(x) sensible and

satisfies the constraints g(x) ≤ 0.

• An attractive space Sa = (x, f(x), g(x), dt) = {X ∈ R | ∀ x ∈ X, f(x) ≤ dt and g(x) ≤ 0 } is the

value range of the optimal variable x within which any x makes the value of the objective

function f(x) equal to or less than a given decision threshold dt and satisfies the constraints

g(x) ≤ 0 .

• An optimal design space So = (x, f(x), g(x)) = {X ⊆ Sf | ∃ x ∈ X, f(x) = fmin(x)} is the set of

ideal design spaces in which the local optima exists.

There exists the following relationship between these spaces:

ofd SSS ⊇⊇

afd SSS ⊇⊇

In the previous section, we have described how we can get attractive intervals and all of the

attractive intervals constitute an attractive spaces Sa. This attractive space possibly consists of a

 18

number of single or multiple, continuous or discontinuous sub-attractive spaces]...,,[
21 paaa SSS .

For the decision system in Table 1, we have applied the RSES (Bazan et al. 1994) to get the cuts

as in Table 3 and rules in Table 6. From Table 6 or Figure 2, we know that the interval a1 = [-

0.5505 0.0685] and a2 = [-1.472 2] forms one and only one attractive space Sa.

3.4 Overlap Coefficient and Criterion for Convergence

Given the definition of the attractive space Sa and optimal design space So, we hope that Sa = So

or Sa overlaps So. But due to the limitation of sampling, usually it is difficult to get Sa = So. As

the number of sample points increases, Sa should approach to So. If the number of sample points

in the decision system is not enough to represent the features of the objective function f(x), we

should continue to sample new points to be added to the information system. The next natural

question is when to stop sampling? We introduce the overlap coefficient definition and a

criterion for convergence.

Assuming that }...{
21 mi iiia sssS ∪∪∪= and }...{)1()1()1(21)1(ni iiia sssS +++ ∪∪∪=

+
are the

attractive design spaces obtained through the ith and (i+1)th samplings respectively, we define

an overlap coefficient C as following:

)1(

)1(

+

+

∪

∩
=

ii

ii

aa

aa

SS

SS
C (2)

For an engineering problem, an optimal design space So always exists in the feasible design

space Sf. This optimal design space So only depends on the nature of the engineering problem

itself. In order to get this optimal design space So, we can sample in the feasible design space Sf,

then classify the feasible design space Sf into two classes of subspaces by the decision threshold

dt. One subspace is the attractive space Sa and the other is the unattractive space, Sf -Sa. As the

number of samples increases, the overlap coefficient C of the two attractive design spaces

iaS and
)1(+iaS should increase. When the number of samples or objects increases to the infinity,

the two attractive design spaces
iaS and

)1(+iaS will overlap each other, that is, we have

 19

1
)1(

)1(lim =
∪

∩
=

+

+

∞→
ii

ii

aa

aa

i SS

SS
C

 (3)

Its geometrical explanation is as in Figure 4. When C = 1, we have
)1(+

=
ii aa SS . Then we can

consider the attractive space
)1(+iaS as the optimal design space oS .

Figure 4 A geometrical illustration of the spaces Sa and So.

As design spaces and regions are defined by the variables ranges, and each variable range can be

thought as an interval, the computation of the coefficient lends itself well for the interval

arithmetic operations. In this work, an interval arithmetic tool called “b4m” is used (Zemke

1998). In engineering practice, we cannot sample unlimitedly, and thus it is difficult to locate

the exact optimal design space oS . From our experience, when C ≥ 0.65, the optimal design

oS can be sufficiently approximated by the attractive space aS .

3.5 Optimization

In the attractive space aS , it is easy to find the local optima using existing optimization methods,

for example, gradient-based methods. After we get the local optima, we compare them and

select one of them as a solution according to design requirements.

3.6 An Example

We mentioned earlier that the example data are based on the six-hump camel back (SC) function.

Figure 5a shows the contour plot of this function. The two global optima are in the optimal

space H2 and H5, while H1, H3, H4 and H6 indicate four local optimal spaces. Figure 5b shows

the space partition when dt = -0.5; Figure 5c shows the space partition when dt = 0. Comparing

Figure 5b with Figure 5a, we can see that Figure 5b captures the H2 and H5 of the SC function,

where the big round dots are the sample points having function values lower than dt. The convex

areas H1, H3, H4 and H6 disappear in Figure 5b because they are classified into spaces

unattractive to us after selecting dt = -0.5. When we select dt = 0, the convex areas H1, and H6

should appear in Figure 5c. However only H6 appears due to the lack of sampling points in the

so

sai sa(i+1)

 20

area of H1 (It is a very sparse sample set with only 11 points). This situation can be overcome by

adding new samples or objects into the information system.

Figure 5 Comparison of space partitions with the contour of the SC function.

a. Contour of the original SC function b. A representation of space partition when dt = -0.5

c. A representation of space partition when dt = 0 d. The final converged space with dt = -0.5

From Figure 5a-c, one can see even with 11 samples, the entire design space can be reduced to

small regions that contain the optimal spaces of SC. The decision threshold affects the number

of local optima to be found and also the efficiency of the global optimization. As more samples

are added and the Sa’s are obtained, the overlapping criterion C will be larger than 0.65 and the

final So can be fairly well approximated. Figure 5d shows the final converged region Sa with the

two obtained global optima. Detailed optimization results of SC and a number of other test

problems will be reported later.

H2

H5

H2

H5 H6

H1 H2

H3

H4

H5 H6

H2

H5

 21

4. Test of the Approach
The proposed method has been tested with a number of widely accepted test problems for global

optimization algorithms. The results and comparison with other optimization methods are given

as following.

4.1 Test Problems

The test problems are listed below where n represents the number of variables.

1. Six-hump camelback function (SC), n=2, as defined in Eq. (1).

2. Geometric container function (GC), n=3.

Minimize]5,0[,/3/4/2.0)(31321 ∈++= iGC xxxxxxxf

 Subject to 0)(11 ≤−= xxg

0)(22 ≤−= xxg

0)(33 ≤−= xxg

0102)(21314 ≤−+= xxxxxg

3. Hartman function (HN), n=6.

nixpxcxf iijj

n

j
ij

i
iHN ,...,1],1,0[],)(exp[)(2

1

4

1

=∈−−−= ∑∑
==

α

 where,
i 6,...,1, =jijα ic

1
2
3
4

10 3 17 3.5 1.7 8 1
.05 10 17 0.1 8 14 1.2
3 3.5 1.7 10 17 8 3
17 8 .05 10 0.1 14 3.2

i 6,...,1, =jpij

1
2
3
4

.1312 .1696 .5569 .0124 .8283 .5886

.2329 .4135 .8307 .3736 .1004 .9991

.2348 .1451 .3522 .2883 .3047 .6650

.4047 .8828 .8732 .5743 .1091 .0381

4. The fourth problem involves the design of a sandwich beam (SB) developed by Messac

(1996). The task is to design the sandwich beam shown in Figure 6 to support a vibrating

motor. The beam consists of three layers of different materials: the mass density (ρi),

Young’s Modulus (Ei), and cost per unit volume (Ci) for each of the three material types are

provided in Table 8.

 22

Figure 6 The sandwich beam design problem.

Table 8 Material properties of beam layers.

Material Type ρ (Kg/m3) E (N/m2) C ($/m3)
1 100 1.6 * 109 500
2 2770 70 * 109 1500
3 7780 200 * 109 800

The design objective is to minimize the cost while satisfying fundamental frequency and other

constraints. The cost function, fc, and frequency function, ff, are described as follows:

)]()([2 23312211 ddcddcdcbLf c −+−+=

µ
π EI

L
f f 22

=

where:

[])()(
3

2 3
2

3
33

3
1

3
22

3
11 ddEddEdE

b
EI −+−+=

[])()(2 23312211 dddddb −+−+= ρρρµ

Several geometric constraints are imposed: an upper bound for the total mass of the beam;

minimum thickness for layers two and three; and ranges for each geometric parameters, d1, d2,

d3, b, and L. The particular problem instantiation used for this study is:

)(2min 33221154 xcxcxcxxf c ++=

Subject to

)(2

])())(()[(
3

2
,150

2

3322114

3
3213

3
1232

3
121

4
2
5

xxxx

xxxExxEExEE
x

EI
EI

x
f f

ρρρµ

µ
π

++=

++++−+−=≥=

01.03,2 ≥x

]103[],25.0[],05.00[],05.00[],10[

2700

54321

5

∈∈∈∈∈

≤
xxxxx

xµ

where x1: d1, x2: (d2-d1), x3: (d3-d2), x4: b and x5: L. Based on the above equation, the initial

design space is: x1: [0 1] x2: [0 0.05] x3: [0 0.05] x4: [0.5 2] x5: [3 10].

 23

4.2 Test Results

Table 9 lists the detail results of the test problems. Table 10 compares the results obtained using

the simulated annealing (SA) method (Kirkpatrick et al. 1983), the Boender-Timmer-Rinnoy-

Kan (BTRK) clustering algorithm (Boender et al. 1982, Csendes 1985), and the DIRECT method

(Jones et al. 1993, Gablonsky 1998). These three methods are well known methods dealing with

black-box problems with no gradient information required. The SA process is a stochastic

optimization method analogous to the physical annealing of a solid. The BTRK clustering

method was tested against other stochastic optimization algorithms including the SA, and the

BTRK method was the winner on 45 standard testing problems of dimensions 2-30 (Neumaier

2002).

In Table 9 for the four test problems, the second column lists the number of variables; the 3nd~6th

columns list, respectively, the decision value dt, the overlap coefficient C, the number of

obtained Sa’s, and the number of function evaluations used in identifying the Sa’s by using the

proposed method. One can see that all the C’s are larger than 0.65. The column labeled by “# of

local min.” gives the number of the analytical optima whose function values are also lower than

dt, as well as the number of optima found by further performing local optimization in captured

Sa’s. One can see that the proposed method can find all the local optima for each of the four test

problems. The number of function evaluations needed in identifying these Sa’s is limited as

shown in the 6th column.

 24

Table 9 Summary of space identification results by using the proposed method.

of local
min. Global optimum

Func.

of

var.

dt

C

of
Sa’s

of
func.

eval. to
find Sa

Exist Got Analytical Proposed Method

SC 2 -0.5 0.78 4 207 2 2
(-0.0898, 0.7127) F=-1.0316
(0.0898, -0.7127) F=-1.0316

(-0.0898, 0.7127) F=-1.0316
(0.0898, -0.7127) F=-1.0316

GC 3 4.0 0.95 1 52 1 1 (2.3798, 0.3162, 1.9429) F=3.362 (2.3798, 0.3162, 1.9429) F=3.362

HN 6 -0.9 0.72 20 297 3 3

(0.4047, 0.8824, 0.8462, 0.5740,
0.1388,0.0385) F=-3.203

(0.2017, 0.1500, 0.4769, 0.2753,
0.3116, 0.6573) F=-3.322

(0.4046, 0.8823, 0.8537, 0.5739,
0.2262, 0.0387) F=-3.203

(0.4047, 0.8824, 0.8462, 0.5740,
0.1388,0.0385) F=-3.203

(0.2017, 0.1500, 0.4769, 0.2753,
0.3116, 0.6573) F=-3.322

(0.4046, 0.8823, 0.8537, 0.5739,
0.2262, 0.0387) F=-3.203

BEAM 5 1700 0.77 7 1037 1 1
(0.1678, 0.0100, 0.0100, 0.5000,
3.0000) F=320.770

(0.1678, 0.0100, 0.0100, 0.5000,
3.0000) F=320.770

Table 10 Comparison of the optimization results with other three strategies.

Direct Simulated annealing BTRK Clustering Proposed method
Func.

Anal.
Solu.

of
func.
eval.

of
optima
found.

Optim.

of
func.
eval.

of
optima
found.

Optim.

of
func.
eval.

of
optima
found.

Optim.

of
func.
eval.

of
optima
found.

Optim.

SC -1.032 165 1 -1.032 11128 1 -1.032 6710 1 -1.032 311 2
-1.032
-1.032

HN -3.322 393 1 -3.321 11081 1 -0.161 9180 1 -3.320 2424 3
-3.203
-3.322
-3.203

GC 3.362 913 1 3.378 55130 1 3.362 8300 1 3.66 78 1 3.362

BEAM 320.770 433 1 605.140 55269 1 321.040 21510 1 2.69e+9 1212 1 320.772

 25

As described before, the efficiency of the optimization depends on the chosen decision threshold.

Based on the dt’s listed in Table 9, the overall number of function evaluations and the global

optima are listed in Table 10, compared with results obtained by using other popular global

optimization methods. As shown in Table 10, all of the four methods, including the proposed

method, have found the global or close-to-global optimum for the first three test problems. The

Direct and the BTRK Clustering method failed for the Beam problem. Among all four methods,

only the proposed method has found all of the exact analytical solution. Also, the three chosen

methods only found one global optimum; only the proposed method found all of the global

optimum and those local optima that are close to the global optimum. The number of function

evaluations used by the proposed method consists of the function evaluations used in identifying

the attractive spaces, and the ones used in performing local optimization in all of the identified

Sa’s. The total number of function evaluations that the proposed method takes is much lower

than that demanded by the BTRK Clustering and the SA methods, and comparable with the

DIRECT method. Moreover, the decision threshold chosen for the comparison could be further

reduced and so would the total number function evaluations.

5. Closing Remarks
This work proposed a rough set based approach to search for attractive design spaces and the

global design optimum. The test results demonstrate that this method can effectively capture all

of the global optima and neighboring local optima, with a limited number of function

evaluations. Instead of searching for individual points, this method can yield “small islands” in a

big design space. All the points in the “island” are expected to have function values less than a

given decision threshold if enough samples are given. The proposed method can be possibly

used in following applications.

1. To “contour” the objective function in a n-D design space by using different decision

thresholds in the proposed method. Thus design engineers can jump to a smaller design

space for further study and exploration. Therefore, this method provides the space

exploration capability. This capability is very useful in design visualization in that the

performance space can be mapped to design spaces (Eddy and Lewis 2002)

2. To search for both global optimal design and, probably, robust optimal design. For

example, among the final set of sub-spaces (points in which all have satisfactory function

 26

values), one can search for “flat” subspaces to identify practical robust designs, instead of

“sharp” subspaces for the global yet no robust design solution.

3. To be combined with other metamodeling based optimization methods. The proposed

method can identify attractive subspaces with conservative expenses. This method can

be always used as the first step to reduce the design space, and thus to cut down the

computation expense for metamodeling based optimization methods.

The contributions of this work are as follows:

1. It is the first time that the Rough Set theory and tools are introduced and successfully

applied to design and optimization.

2. The definition of the overlapping coefficient and its integration with the sequential

iterative sampling strategy enables the use of Rough Set in identifying the subspaces and

optimum with a limited number of function evaluations.

3. The use of intuitive graphs to assist the selection of threshold. The projection of function

values to one axis can help the engineer visualize the probability of reaching certain

function values. Such an intuitive aid may be used for robust design as well.

It is also found that the inherited Latin Hypercube Sampling method evenly distributes all the

sample points to a given space. This is advantageous as it reduces the possibility of missing

important function features. On the other hand, it is not efficient for high dimensional design

problems. For the purpose of optimization, a large portion of the design space is unattractive and

thus it is not necessary to capture the function features in those areas. Therefore, a

discriminating sampling strategy may be better integrated with the proposed method in tackling

high dimensional problems. In addition, it is observed for some of the problems, the number of

obtained Sa’s is large, for instance, Sa’s found for the HN function is 20 with 3 local optima as

shown in Table 9. Consolidation of subspaces might be beneficial.

6. Acknowledgement
Financial support from the Natural Science and Engineering Research Council (NSERC) of

Canada is gratefully appreciated.

 27

References

1. Bazan, J., Nguyen, S. H., Nguyen, H. S., Synak, P., and Wroblewski, J., 1994, RSES – Rough Set Exploration
System, version 1.1, Copyright © 1994-2000 Logic Group, Institute of Mathematics, Warsaw University,
Poland.

2. Boender, C. G. E., Rinnooy Kan, A. H. G., Strougie, L., and Timmer, G. T., 1982, “A stochastic method for
global optimization”, Mathematical Programming, Vol. 22, pp. 125-140.

3. Csendes, T., 1985, “Two non-derivative implementations of Beender et al’s global optimization method:
numerical performance”, Report 1985/2, Jo`zsef Attila University, Szeged, Hungary.

4. Czyzewski, A., 1997, “Learning algorithms for audio signal enhancement – Part II, Rough set method
implementation for the removal of hiss,” Journal of the Audio Engineering Society 45/11, pp. 931-943.

5. Eddy, J., and Lewis, K. E., 2002, “Multidimensional design visualization in multiobjective optimization,”
Proceedings of the 9th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
AIAA-2002-5621, Atlanta, Georgia.

6. Gablonsky, J., 1998, “An Implementation of the DIRECT algorithm”, North Carolina State University report,
Department of Mathematics, Center for Research in Scientific Computation.

7. Golan, R., and Ziarko, W., 1995, “A methodology for stock market analysis utilizing rough set theory,”
Proceedings of IEEE/IAFE Conference on Computational Intelligence for Financial Engineering, New York
City, pp. 32-40.

8. Gu, L., 2001, "A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis," ASME
Design Engineering Technical Conferences - Design Automation Conference (DAC) (Diaz, A., ed.), Pittsburgh,
PA, ASME, September 9-12, Paper No. DETC2001/DAC-21063.

9. Jackson, A. G., Leclair, S. R., Ohmer, M. C., Ziarko, W., Al-Kamhawi, H., 1996, “Rough sets applied to
material data,” Acta Metallurgica et Materialia, pp. 44-75.

10. Jain, P. and Agogino, A. M., 1993, “Global Optimization Using Multistart Method,” Transactions of the ASME,
Journal of Mechanical Design, Vol. 115, December 1993, pp. 770-775.

11. Johnson, J., 1998, “Rough mereology for industrial design,” Proceedings of the First International Conference
on Rough Sets and Soft Computing, Warszawa, Poland, Springer-Verlag, LNAI 1424, pp. 553-556.

12. Jones, D.R., Perttunen, C.D. and Stuckmann, B.E., 1993, “Lipschitzian optimization without the lipschitz
constant,” Journal of Optimization Theory and Applications, October 1993, pp. 79-157.

13. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, “Optimization by Simulated Annealing,” Science, vol.
220, pp. 671 – 680.

14. Koch, P. N., Simpson, T. W., Allen, J. K. and Mistree, F., 1999, "Statistical Approximations for
Multidisciplinary Optimization: The Problem of Size," Special Multidisciplinary Design Optimization Issue of
Journal of Aircraft, Vol. 36, No. 1, pp. 275-286.

15. Komorowski, J., Pawlak, Z., Polkowski, L., and Skowron, A., 1999, Rough sets: A tutorial, in: S.K. Pal and
A. Skowron (eds.), Rough fuzzy hybridization: A new trend in decision-making, Springer-Verlag, Singapore,
pp. 3-98.

16. Kowalczyk, W., 1996, “Analyzing temporal patterns with rough sets,” Proceedings of the Fourth European
Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, Verlag Mainz 1, pp. 139-143.

17. Messac, A., 1996, "Physical Programming: Effective Optimization for Computational Design," AIAA Journal,
Vol. 34, No. 1, pp. 149-158.

18. Mrozek, A., 1985, “Information systems and control algorithms,” Bull. Polish Acad. Sci. Tech. Sci., 33, pp.
195-212.

 28

19. Mrozek, A., 1992, “Rough sets in computer implementation of rule-based control of industrial processes,” In
Intelligent Decision Support – Handbook of Applications and Advances of the Rough Sets Theory, Kluwer
Academic Publishers, Dordrecht, pp. 19-31.

20. Mrozek, A., Plonka, L., 1993, “Rough sets in image analysis,” Foundations of Computing Decision Sciences,
18/3-4, pp. 259-273.

21. Neumaier, A., 2001, “Chapter 4: Constrained Global Optimization”, in COCONUT Deliverable D1: Algorithms
for Solving Nonlinear Constrained and Optimization Problems: The State of the Art, the Coconut project.

22. Neumaier, A., 2002, http://www.mat.univie.ac.at/~neum/glopt.html. Computational Mathematics group, the
University of Vienna, Austria.

23. Nguyen, H. S., 1997, Discretization of Real Value Attribute: A Boolean Reasoning Approach, Ph. D thesis,
Warsaw University.

24. Øhrn, A., Komorowski, J., 1997, “ROSETTA: A Rough Set Toolkit for Analysis of Data,” Proc. Third
International Joint Conference on Information Sciences, Fifth International Workshop on Rough Sets and Soft
Computing (RSSC'97), Durham, NC, USA, March 1-5, Vol. 3, pp. 403-407.

25. Pawlak, Z., 1982, “Rough Sets,” International Journal of Computer and Information Sciences 11, pp. 341-356.

26. Pawlak, Z., 1984, “On conflicts,” Int. J. of Man-Machine Studies, 21, pp. 127-134.

27. Pawlak, Z., Stowinski, K., Stowinski, R., 1986, “Rough classification of patients after highly selected vagotomy
for duodenal ucler,” Journal of Man-Machine Studies 24, pp. 413-433.

28. Reddy, S. Y., 1996, “HIDER: A Methodology for Early-Stage Exploration of Design Space,” The proceedings
of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference,
Paper No. 96-DETC/DAC-1089, August 18-22, Irvine, California.

29. Ullman, D. G., 2002, “Toward the Ideal Mechanical Engineering Design Support System,” Research in
Engineering Design 13, pp. 55-64.

30. Van den Poel, D., 1998, “Rough set for database marketing,” In Rough Sets in Knowledge Discovery 2:
Applications, Case Studies and Software Systems, Physica-Verlag, Heidelberg, pp. 324-335.

31. Wang, G. G., and Simpson, T. W., 2002, “Fuzzy Clustering Based Hierarchical Metamodeling for Design
Optimization,” Proceedings of the 9th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, September, Atlanta, Georgia.

32. Wang, G. G., 2002, "Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points,"
ASME Journal of Mechanical Design, 2002, to appear.

33. Wang, G. G., Dong, Z. and Aitchison, P., "Adaptive Response Surface Method - A Global Optimization
Scheme for Computation-intensive Design Problems," Journal of Engineering Optimization, Vol. 33, No. 6,
2001, pp. 707-734.

34. Winer, E. H. and Bloebaum, C. L., 2002a, “Development of visual design steering as an aid in large-scale
multidisciplinary design optimization. Part I: Method development,” Structural and Multidisciplinary
Optimization, v 23, n 6, July 2002.

35. Winer, E. H. and Bloebaum, C. L., 2002b, “Development of visual design steering as an aid in large-scale
multidisciplinary design optimization. Part II: Method validation,” Structural and Multidisciplinary
Optimization, v 23, n 6, July 2002.

36. Zemke, J., 1998, B4m: a free interval arithmetic toolbox for Matlab based on BIAS, version 1.02.004.
http://www.ti3.tu-harburg.de/~zemke/b4m/index.html.

