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RADICALS AND SEMISIMPLE CLASSES OF ft-GROUPS

by RAINER MLITZ
(Received 15th September 1978)

In this paper radicals in the sense of Kuros and Amitsur (KA-radicals) for
ft-groups will be studied. For the sake of simplicity these radicals will be considered on
varieties, the results remaining valid for more general classes.

A KA-radical can be defined in the following way (see for example (1)):

a property P of ft-groups is called a radical property if the following conditions hold:
(a) every homomorphic image of an ft-group having P has P ;
(/3) every fl-group G in the considered variety contains a unique maximal ideal

having P:P(G);
(?) P(PIP(G)) is the zero ideal.

It is well known that a subclass 9t of a variety 93 is a radical class (i.e. the class of all
ft-groups in 93 with P(G) = G for some radical property P), iff it satisfies the
conditions

(1) 9t is homomorphically closed;
(2) any sum of ideals in 9f of some ft-group G belongs to 5t;
(3) 9? is closed under extensions (i.e.: / < G, I G Ut, GH G 9t implies G G di).

(see for example (8)—the proofs mentioned there make use only of isomorphism
theorems and are therefore valid for ft-groups). Good characterizations of the
semisimple classes (i.e. the classes of all ft-groups in 93 with P(G) = {0} for some
radical property P) have been given by v. Leeuwen, Roos and Wiegandt in (5) for
associative and alternative rings. Unfortunately their methods—using the hereditari-
ness of the radicals—do not apply to arbitrary rings or to ft-groups (see 4).

The aim of this paper is threefold: (1) to describe the semisimple classes of
ft-groups; (2) to describe the pairs of corresponding radical and semisimple classes (in
analogy to Dickson's torsion theory—see for example (6)); (3) to describe the
mappings assigning to each ft-group its radical. The proof methods will be essentially
based on Hoehnke's theory of M-radicals (see 2).

Let 93 be any variety of ft-groups.

Definition 1. For any subclass S of 93 define the classes SS and /?S by:

S e = {G G 93/7 < G, IG £ 4> / = {0}}

R£ = {G G 93 / Gil G S4>/ = G}

(SS = & and J?e = Sr in Hoehnke's terminology).
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Definition 2. A radical in the sense of Hoehnke (2) (H-radical) on 93 is defined by a
mapping p assigning to each G G 93 an ideal p(G) (the radical) of G and satisfying

(i) <p(pG) C p((pG) for any homomorphism <p defined on G
(ii) p(G/pG) = {0}.

Definition 3. Given a binary relation M on 93, a 77-radical is called an M-radical if
the corresponding semisimple class © satisfies the conditions:

(M,) G e S , (/, G)GM=>7£7?©
(M2) If I<£ R<5 for every / with (/, G) G M, then G belongs to ©.

The following results of Hoehnke (2, p. 365-366) will be used:

For M-radicals, the radical class 9t and the semisimple class © are uniquely deter-
mined each by the other: © = S9? and 9? = 7?©. It follows that © = SR<5 and
9t = RSdi hold. A subclass © of 93 is the semisimple class of an M-radical iff © is
closed under subdirect products and satisfies (Mi) and (M2); a subclass 9t of 93 is the
radical class of an M-radical iff it satisfies the conditions
(Ni) ?H is homomorphically closed;
(N2) If for every homomorphic image <pG T* {0} of G there exists 7 G 9t with

(/, <pG) G M, then G belongs to 9*;
(7V3) SIR is closed under subdirect products;
(N4) For every G G 9t, G# {0}, there is an element 7 in 9? with (/, G) G M.

In the following, we will consider the relation M defined by:

(7,G)GM iff {0}#

For this relation M, one easily checks that every subclass of 93 satisfying (Mi) and
(M2) is closed under subdirect products and that the conditions (N\) and (N2) imply
(N3) and (N4). Therefore our M-radicals are then exactly the radicals in the sense of
Kuros and Amitsur (see (8), p. 10).

Notation. For any subclass © of 93 containing {0} and any G G 93 define (G)C =
KG, G / / £ g ) and (£(G) = (S I:I<lG,I G (£).

Theorem 1. For all pairs (9f, ©) of corresponding KA-radical and semisimple
classes in 93, (G)© e<?aa/s 9t(G) /or euery G G 93.

Proof. 91 satisfies the conditions (1M3), © the conditions (Mi) and (M2). Let / be
any ideal of G/9t(G) with / G 9t and let K be the complete preimage of / in G. (2) and
(3) for m then imply K G 9t, i.e. K C 9t(G). Hence 7 is the zero-ideal and G/9<l(G)
belongs to © by (M2). It follows that (G)© is contained in 9t(G).

Conversely it follows from (2) that the radical defined by © is (G)© for every
G G 93. (1) and (2) for dl imply that 9t(G)/(G)© belongs to 9t. But 9t(G)/(G)© is an
ideal in GI(G)& G ©, hence by (M,)9t(G) must be contained in (G)©.
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Theorem 2. For a pair (g, £) of subclasses of 93 the following assertions are
equivalent:

(2.1) (g, SE) is the pair of corresponding semisimple class (g) and radical class (SE)
for some KA-radical on 93;

(2.2) (g, SE) satisfies the conditions
(A) g n £ = {0},
(B) SE is homomorphically closed,
(C) G £ g , (/, C)£Mimp/ies / £ £ ,
(D) For any GG93, there is an ideal T{G) of G satisfying T(G)G^l and

G/T(G)Gg;
(2.3) (g, St) satisfies the conditions (A), (C), (D) and the dual to (C):
(E) G e S, G//# {0} imp/ies G//£ g.

(Assertion 2.3 is more general than 2.2 and gives a self-dual characterisation of the
pairs of semisimple and radical classes; it is due to a remark of R. Wiegandt.)

Proof. Equivalence of 2.1 and 2.2:
Let (g, 5E) be a pair of corresponding semisimple and radical classes. Then g = SSE

and £ = Rg; (A), (B) and (C) are trivially fulfilled. To prove (D) take T(G) = (G)g =
£(G). Then by (2) T{G) belongs to T and G/T(G) belongs to g as g is closed under
subdirect products.

Assume conversely that (g, 5E) satisfies (AMD). Then (C) and (D) imply S£ = g
and (A), (B) and (D) imply Kg = 5t. Condition (M,) for g is exactly (C); to prove (M2)
assume that for some G G93, (/, G)GM implies / £ K g = £ ; then by (D) T(G) = {0}
and G belongs to g. Hence g is a semisimple class and S£ = l?g the corresponding
radical class of some KA-radical.

Equivalence of (B) and (E) if (A), (C) and (D) are satisfied:
(B) implies (E) by (A).
(E) implies (B) by the following argument: G e S , G//# {0} implies G//£ g by (E);

GUI T(GII) belongs to g by (D); hence GUI T(GU) is equal to {0}; it follows that
T(GII) = Gil and therefore that GU belongs to ST.

Corollary. A subclass R of 93 is the radical class for some KA-radical on 93 iff it
satisfies the conditions:

(*,) 9t(G) G SR for every G G 93;
(R2) m(G) = (G)Sm for every G G 93.

(This corollary is due to a remark of R. Wiegandt.)

Proof. (Rt) for a .K/4-radical class follows from (2), (R2) is easily deduced from
Theorem 1. Conversely, if (R\) and (R2) hold for a class 9t, take £ = St and g = S9t;
then (A) holds for (g,£) by construction; GG& implies (G)SfR = 9t(G) = G,
i.e. (E) holds; G G g implies 9t(G) = (G)S9t = (G)g = 0, hence (C) and (D) are fulfilled
(with T(G) = 9t(G)).

Remark. If (g, SE) satisfies (AMD), ^(G) is uniquely determined for every
G G 93: if we assume that (D) is satisfied for both T(G) and U(G), by (B) we get that
l/(G)/T(G) belongs to 5E; but U(G)IT(G) is an ideal of G/r(G)Gg and hence
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belongs to £ iff it is the zero-ideal. It follows U(G) C T(G). By the same argument we
get T(G)CU(G).

From this remark we can deduce that for every pair (g, £) of subclasses of 93
satisfying (A)-(D) the corresponding KA-radical is given for every G G 93 by: T(G) =

Theorem 3. A mapping p assigning to each G G 93 an ideal p(G) of G defines a
KA-radical iff it satisfies the conditions (i) and (ii) (i.e. defines a H-radical) and the
conditions

(iii) idempotence
(iv) KG, p(I) = / implies I C p(G).

Proof. Assume that p satisfies (i)-(iv) and take %p = {G G 93 / p(G) = G} and
®p = {G G 93 / p(G) = {0}}. Then for the pair (&,£„) condition (A) is fulfilled by
construction, (B) follows directly from (i), (C) can be deduced from (iv) and (D) holds
for T(G) = p(G) by (ii) and (iii). Hence by Theorem 2 and the remark above follows
that (%p, %p) is the pair of semisimple and radical class for KA-radical and that this
radical is given by T(G) = p(G) on every G G 93.

Another proof of this implication can be found in (3).
Conversely, take any KA-radical on 93; the pair of the corresponding semisimple

class $ and radical class S£ satisfies (A)-(D) and the radical is given by T(G) for every
G G93. Since the KA-radicals are M-radicals, the mapping G-> T(G) satisfies (i) and
(ii); (iii) follows directly from (D) and the fact that T(G) is uniquely determined. To
prove (iv) consider KG with T(I) = I, i.e. with /GSt; from (B) follows that I/T(G)
belongs to S£, but HT(G) is an ideal in G/7\G)Gg; hence by (C) we get ICT(G).

Theorem 4. For a subclass © of 93 the following assertions are equivalent:
(4.1) © is the semisimple class of some KA-radical on 93
(4.2) © has the properties
(a) closed under subdirect products
(b) (M,)
(c) ((G)©)@ = (G)© for every G G 93.
(4.3) © has the properties (a), (b),
(d) closed under extensions, i.e.: KG, IG ©, Gjl G © implies G G ©
(e) ((G)©)© is an idea/ in G /or every G G 93.

Proof. (4.1)=>(4.2): As the KA-radicals are M-radicals, (a) and (b) hold; by
Theorem 2 the considered radical is given by the mapping G^>(G)<5 and by Theorem
3 this mapping is idempotent; hence (c) holds.

(4.2)4>(4.3): (e) is a trivial consequence of (c); (d) follows from the following
argument: for every ideal I of G with Gil G ©, (G)© is contained in / by construction
and hence is an ideal of / ; / G © then implies (G)© = {0} or (G)&£RS by (M,).
Since the second assertion is a contradiction to (c), we get (G)© = {0}, i.e. G G © by
(a).

(4.3)^>(4.1): (Mi) is satisfied by (b), hence we only have to prove (M2) for ©.
Assume that for G (/, G) G M implies ik R<B, i.e. (/)© # / ; it follows that for G £ © (i.e.
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(G)© # {0}), ((G)©)© * (G)S; by (e) ((G)©)© is an ideal of G and we get

G/((G)©)@ / (G)@ / «G)®)@-G/(G)®;

since by (a) GI(G)<5 and (G)© / ((G)©)© are elements of ©, we can apply (d) to get
Gl ((G)©)© G © and hence (G)© = ((G)©)© in contradiction to our assumptions for

Remark. The equivalence of (4.1) and (4.3) of Theorem 4 has been independently
shown by a slightly different approach by v. Leeuwen and Wiegandt (7).
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