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Space-Filling X-Ray Source Trajectories for Efficient

Scanning in Large-Angle Cone-Beam

Computed Tomography
Andrew M. Kingston , Glenn R. Myers, Shane J. Latham , Benoit Recur , Heyang Li, and Adrian P. Sheppard

Abstract—We present a new family of X-ray source scanning
trajectories for large-angle cone-beam computed tomography. Tra-
ditional scanning trajectories are described by continuous paths
through space, e.g., circles, saddles, or helices, with a large de-
gree of redundant information in adjacent projection images. Here,
we consider discrete trajectories as a set of points that uniformly
sample the entire space of possible source positions, i.e., a space-
filling trajectory (SFT). We numerically demonstrate the advan-
tageous properties of the SFT when compared with circular and
helical trajectories as follows: first, the most isotropic sampling of
the data, second, optimal level of mutually independent data, and
third, an improved condition number of the tomographic inverse
problem. The practical implications of these properties in tomog-
raphy are also illustrated by simulation. We show that the SFT
provides greater data acquisition efficiency, and reduced recon-
struction artifacts when compared with helical trajectory. It also
possesses an effective preconditioner for fast iterative tomographic
reconstruction.

Index Terms—Tomography, computed Tomography, X-rays, mi-
croscopy, trajectory optimization, sampling methods, robustness.

I. INTRODUCTION

X
-RAY cone-beam computed tomography (CBCT) is a

non-destructive tool that can provide high-resolution,

high-quality, three-dimensional (3D) structural information of
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Fig. 1. Ideal geometry of a fine-focus cone-beam CT system for 3D mi-
croscopy comprised of an X-ray source, sample manipulators (rotation stage
and possibly a translation stage) and an X-ray detector.

specimens. In many cases, particularly with dual-energy scan-

ning (e.g., [1]), it can also provide compositional information.

Analysis of these 3D tomographic images is yielding new in-

sights into a broad range of subject areas including palaeontol-

ogy [2], geology [3], and materials science [4].

The system components and geometry of a CBCT microscope

are presented in Fig. 1. A fine-focus geometry is depicted that

provides optics-free (or lensless) geometrical magnification due

to the spherical wave propagation of X-rays from a micro-focus

X-ray source. The sample is not directly imaged in 3D from this

instrument, rather, the 3D information of the sample (or spec-

imen) is projected onto a 2D detector and recorded as a radio-

graph. 3D microscopy (or tomography) can be computed from a

set of radiographs acquired with many different sample orienta-

tions. This non-destructive 3D probe was enabled by Feldkamp

et al. [5] in 1984 when they presented an algorithm to recon-

struct a 3D volume (or tomogram) from a set of 2D radiographs

taken with a circular X-ray source scanning trajectory. The re-

construction technique developed by Feldkamp-Davis-Kress is

analytical, a technique known as filtered back-projection (FBP),

and denoted here as FDK-FBP. Reconstruction is only approx-

imate since a circular trajectory does not satisfy the Tuy data

sufficiency condition [6]. For faithful 3D microscopy, CBCT

geometry in this case is restricted to a small cone-angle (see

Fig. 1); the limiting angle depends on material structure and

is typically less than ±5◦. Never-the-less, this is a very simple

and robust technique that is still used today in the majority of

commercial CBCT microscopes.
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Lab-based micro-focus X-ray sources typically produce near-

isotropic X-ray flux in the forward direction; the low-cone-angle

geometry required for circular scans means only a small frac-

tion of these X-rays are utilised. Measurements are lower flux

when compared with high-cone-angle imaging. This leads to a

lower signal-to-noise ratio (SNR) for a given experiment time.

In order to perform high-fidelity imaging with a high-cone-angle

geometry, a scanning trajectory that satisfies the Tuy condition

and enables theoretically-exact tomographic reconstruction is

required. An ideal trajectory is helical since there exists an in-

version formula of the FBP type developed by Katsevich in 2002

[7]. Katsevich FBP (KFBP) has been utilised in CBCT micro-

scopes developed at the Australian National University (ANU)

that incorporate helical scanning with large cone-angles (±30◦)

since 2010 [8]. This yields greater than a 40-fold increase in

flux when compared with an equivalent circular scan. In order

to produce high-fidelity, high-resolution tomograms from a he-

lical scanning trajectory using KFBP at ANU, several issues

had to be overcome (as summarised in [9]). In the process of

this work, some fundamental drawbacks of the helical trajectory

were also revealed [10].

A major shortcoming is the non-uniformity of resolution

within the tomogram. This arises in a high-magnification fine-

focus geometry where geometric magnification across the sam-

ple varies significantly (e.g., a factor of three for a cone-angle

of 60◦). Regions of the specimen that are (on average) closest

to the source have a much higher magnification than regions

that are furthest. Trajectories that provide a greater uniformity

in the average distance from the source to each tomogram voxel

reduce this effect; double helix [10] and low-pitch helix (such

as 3PI e.g., [11]) trajectories achieve this at the cost of increased

data redundancy and additional overscan (i.e., the additional

data required as the X-ray source trajectory scans past the ends

of the specimen volume of interest).

Analytical reconstruction schemes, e.g., FBP inversion

schemes for helical scanning [7], [12], require that the vary-

ing degrees of redundancy in the measured data per voxel of

the tomogram be taken into account. This is typically achieved

by applying an apodisation or window function to each radio-

graph to remove unwanted redundancy; for a helical trajectory

this is the Tam-Danielsson (TD) window [13], [14]. For large-

cone-angle geometries with square detectors, windowing leads

to about half the measured data being ignored. Additionally, the

problem of inversion from a helical trajectory with this minimal

data (as defined by the TD window) is more poorly conditioned

than that for the circular trajectory which has a uniform factor-

of-two redundancy. Inversion is complex and highly sensitive to

specimen/component motion [15], sampling imperfections [16],

[17], and component misalignment [18].

Analytical reconstruction schemes impose strict requirements

on the input data: it must be linear projected attenuation that

is geometrically aligned with a precise continuous trajectory.

In practice, measured data is noisy and discretised (with in-

consistent pixel response), finitely sampled along an imperfect

trajectory with component misalignment and may have beam-

hardening and little signal through high-density minerals. A sig-

nificant amount of pre-processing of the measured radiographs

is therefore required. Many of these pre-processing steps are

performed as optimisations and require iteration, i.e., forward

and/or back-projection, incorporating a physical model of the

phenomenon, e.g., beam-hardening correction [19], geometric

component alignment [20], component motion correction [21].

Even when highly optimised, this cumbersome preprocessing

can easily take longer than the final analytical reconstruction.

Iterative reconstruction (IR) schemes can incorporate physi-

cal models, geometry and noise into the forward process, thereby

simulating the experiment [22]. They can converge on solutions

with reduced artifacts, in particular, those satisfying certain a

priori information, e.g., [23]. Iterative reconstruction schemes

are not restricted to continuous line trajectories since they do

not require differentiation of data like their analytical counter-

parts. In fact, IR is the method of choice for non-ideal, noisy,

sparse, or limited-angle measured data such as in positron emis-

sion tomography (PET), single-photon emission computed to-

mography (SPECT), and electron tomography. In these cases,

extremely robust but slowly converging statistical reconstruc-

tion algorithms are required such as maximum-likelihood ex-

pectation maximisation (MLEM) [24] or the simultaneous it-

erative reconstruction technique (SIRT) [25]. Conversely, for

large, low-noise data sets typical of CBCT in the materials and

geological sciences, convergence speed must be prioritised; ro-

bustness must come through the properties of the trajectory used

to collect the measured data. Our objective is the production of

high-resolution, high-fidelity tomograms from large CBCT data

sets through a computationally efficient IR scheme.

Assuming the employment of some iterative reconstruction

scheme, we require a trajectory (not necessarily limited to a

continuous line) that: 1) satisfies the Tuy data sufficiency con-

dition with a minimal number of projections (to enable high-

SNR imaging), 2) requires minimal windowing to fully utilise

the measured data, 3) is maximally isotropic, i.e., provides as

uniform resolution as possible, 4) is as well-conditioned as pos-

sible, i.e., maximum mutually independent information, and 5)

minimum sensitivity to geometric misalignments. In this paper

we present such a trajectory, referred to as the space filling tra-

jectory (SFT). We also demonstrate how the isotropic nature of

the trajectory can be leveraged to achieve rapid convergence in

iterative tomographic reconstruction.

The remainder of this article is organized as follows: The

space-filling trajectory is defined in Section II and the fulfill-

ment of some of the above requirements is presented in the

following sections. Data sufficiency of the SFT is explored in

Section IV. The isotropic nature and associated properties of the

SFT are outlined in Section V. It is demonstrated in Section VI

that the SFT maximises mutually-independent information. This

enables a maximum tomogram quality from a given scan time.

The sensitivity of the SFT to inconsistencies introduced by geo-

metric and projected-attenuation inaccuracies is investigated in

Section VII. The implications of this for automatic a-posteriori

geometric system alignment are also presented. Finally, some

concluding remarks are included in Section VIII.

II. SPACE-FILLING TRAJECTORIES (SFT)

For low-cone-angle CBCT, circular trajectory acquisition can

produce tomograms (using FDK-FBP) of reasonable fidelity,
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Fig. 2. Depiction of the cylindrical surface, of radius R about the sample
rotation/translation axis, accessible by the X-ray source. A helical path with
pitch P has been overlaid on this surface as an example trajectory.

despite only the central tomogram plane, (in which the source

points are located), being theoretically exactly reconstructible.

In this context, “theoretically exact” means the reconstruction

problem has a unique solution for noiseless data. The circular

trajectory involves rotation of the source and detector (or equiv-

alently, the specimen) about a single point and single axis. For

high-cone-angle CBCT, the circular trajectory becomes inad-

equate as tomogram fidelity rapidly diminishes with distance

from the central tomogram plane. Theoretically exact recon-

struction requires an X-ray source scanning trajectory that in-

volves motion in another dimension. This is commonly achieved

by translation of the specimen (or equivalently, the source and

detector) parallel to the rotation axis. The trajectory rotation

and translation degrees of freedom yield a 2D space of possible

X-ray source positions. These source positions lie on the sur-

face of a cylinder with radius R — the source-to-rotation-axis

distance (see Fig. 2). The co-ordinate (z,Rθ) specifies a point

on this cylinder surface, where z is the translation parallel to the

rotation axis and θ is the rotation angle.

The major innovation of this work is to consider CBCT scan-

ning trajectories not as a continuous curve but rather as a set

of distinct points placed in the space through which the source

point can move. Within this framework it is natural to consider

trajectories for which the source points are distributed in a uni-

form manner throughout the space. We call this type of trajectory

a space filling trajectory (SFT). Fig. 3 plots source points from

a SFT (black triangles) and traditional helical trajectory (HT)

closely-sampled source points (black dots). The system geom-

etry used to generate this figure is described in Section III-B.

Here however, we have used a detector binned by eight, i.e.,

pixels-per-side M = 600/8 = 75. Therefore, the reconstructed

volume is N = 68 voxels in the plane normal to the rotation

axis, and E = 96 projection images are required to reconstruct

each voxel. The HT has Ω = 375 source points, and the SFT

has Ω = 286.

There are two drawbacks when deviating from a closely sam-

pled continuous path. The first drawback is that the acquisition

protocol necessarily contains “dead time” as the system moves

to each new X-ray source position. This is a limitation when

rapid imaging is required, such as capturing dynamic processes,

(e.g., flow, compression, dissolution). However, due to the low

Fig. 3. The space of possible X-ray source positions, i.e., the surface of a cylin-
der with radius R = 1.85 mm (system geometry is described in Section III-B).
The squares depict a helical trajectory with maximum pitch calculated accord-
ing to (5). The triangles depict the proposed space-filling trajectory with Z
calculated according to (2).

X-ray flux emanating from a micro-focus source in a typical mi-

croscopic CBCT application, the required “dwell time” at each

source position to achieve a reasonable SNR is considerable and

this dead time becomes insignificant. The second drawback is

that tomograms must be computed using iterative reconstruc-

tion (IR), since the differentiation required along the trajectory

curve in analytical inversions can no longer be approximated

by finite difference. This means that the ability for rapid turn-

around from experiment to 3D volume is limited due to the

increased computational requirements of IR. However, as stated

in the introduction, IR enables more physics-based a priori in-

formation to be incorporated into the reconstruction process,

and can achieve a quantitative volume with greater fidelity than

traditional analytical inversion, (see e.g., [26]).

There are numerous practical ways to uniformly sample the

space of the cylindrical trajectory surface, some of the simplest

being: a regular grid and pseudo-random points [27]. However,

the source trajectory should also satisfy a discretized form of

the Tuy [6] sufficiency conditions in order to guarantee the pos-

sibility of a theoretically exact reconstruction. The following

Section II-A establishes bounds on the SFT sampling density

(step size) based on the Nyquist sampling theorem. Section II-B

then describes the SFT realization (low discrepancy sampling

of a helix) that is considered for the remainder of the paper.

Subsequently, in Section IV we computationally illustrate that

our low discrepancy helix sampling (subject to the Nyquist sam-

pling density) satisfies the discretized interpretation of the Tuy

sufficiency conditions.

A. Space-Filling Trajectories for Large-Angle CBCT

For the continuum cone beam tomography inverse prob-

lem, Tuy [6] derived an analytic reconstruction formula which

imposed a set of weak conditions on the “source trajectory”

(bounded curve) that ensured acquisition data was sufficient

for a theoretically exact reconstruction. For the discrete inverse

problem, there is yet to appear in the literature an equivalent

to the Tuy trajectory conditions. Instead, for discrete/digitally

acquired (band-limited) radiograph data and digital tomogram

reconstruction, we use Nyquist sampling arguments in or-

der to calculate bounds on the z and Rθ sampling density

(step sizes) of the space-filling trajectory discretization. These
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step-size bounds are dependent on the acquisition geometry and

the detector discretization.

Let L denote the source-detector-distance, and W and H
specify the detector width and height respectively. The radius

of support, (or limiting radius of the specimen), is found as

r = RW/2
√

L2 + (W/2)2 . Given a pixel size p, the highest

frequency of the measured data is 1/2p at the detector; this

corresponds to L/2Rp at the rotation axis (or specimen). To

maximise tomographic resolution, the Nyquist sampling theo-

rem dictates that the source points sample the z-direction with

a minimum frequency of L/Rp.

The angular-space variant of Nyquist sampling commonly

used in tomography is the Crowther criterion [28]. This requires

that the minimum number of angular samples for reconstruc-

tion of an N × N array is πN/2, i.e., an angular frequency

of N/4. Typically N is specified as N = W/p (although for

very large fan angles N = 2rL/Rp = WL/p
√

L2 + (W/2)2

is more appropriate); the sampling frequency becomes W/4p.

Traditional helical and saddle acquisition trajectories (among

others) can be calculated to satisfy these sampling requirements.

Additionally, one can enhance traditional trajectory sampling to

possess space-filling properties, some enhancements include

1) reordering of the angular positions in a helical trajectory

[29], [30];

2) multi-helix, i.e., generalisation of double helix [10];

3) low-pitch helix [30].

4) reordering of the angular positions in a saddle trajectory;

5) multi-saddle, i.e., stacked or interleaved vertically;

6) high-frequency saddle [31];

The space-filling trajectory sampling considered in this pa-

per is produced by stepping along an extremely low-pitch helix.

Indeed, enhancements A-F can be described (or closely approx-

imated) in this manner. For the remainder of the paper, the SFT

is generated using a low-discrepancy sequence of strides along

a low-pitch helical path. The generation of this sequence is de-

scribed in the next section.

B. A Low-Discrepancy Space-Filling Helix

Let E denote the number of projection images (or radio-

graphs) in an ensemble required to exactly reconstruct a tomo-

gram voxel. Let Z denote the vertical translation attained while

collecting E radiographs. Let Q define the number of radio-

graphs (or source points) per revolution. For circular trajectories

E = Q in the source rotation plane. However, for helical and

space-filling trajectories E and Q are distinct. A trajectory with

Ω source points and starting at position (z0 , Rθ0) is defined as:

{(ωZ/E, ω2πR/Q) + (z0 , Rθ0) : ω ∈ [0,Ω)}. (1)

Here, we use the quantity E to enforce the satisfaction of the

Tuy data sufficiency criterion. For practical acquisitions, we

are yet to determine expressions that yield optimal values for

E, Z, and Q that sample the cylindrical surface as uniformly

as possible and also satisfy the vertical and angular sampling

bounds of the previous section. However, in the following, we

calculate bounds for Z and Q (and subsequently E) based on

the previous Nyquist sampling density bounds and the number

of source positions for which a ray intersects both a tomogram

voxel and the detector.

The number of radiographs containing the projection of a

point in the tomogram varies depending on the position of the

point in the tomogram. This has been illustrated in Fig. 3, where

the region between the dashed grey lines bounds the source

points for which the ray through the central tomogram voxel

intersects the (finite sized) square detector. The region between

the solid grey lines in Fig. 3 shows the source points where

the ray through a single edge voxel (from the central tomogram

plane at radius r from the rotation axis) intersects the same

square detector.

To define Z conservatively, such that no voxel is under-

sampled, we require that all voxels project to at least E con-

secutive radiographs, i.e., an ensemble of radiographs. This is

equivalent to finding the shortest distance between the solid grey

lines in Fig. 3 and is found as:

Z =
H(R − r)

L
. (2)

Observe that the area between the grey lines (solid or dashed)

in Fig. 3 is constant regardless of voxel location; removing the

“consecutive” restriction above, Z = HR/L produces fewer

redundant ray paths but has some proportion of voxels projecting

to fewer than E radiographs. However, we will use Eqn. 2 when

exploring SFT properties by simulation. The set of E source

positions ordered by height must have a vertical stride no greater

than pR/L, i.e., EpR/L ≥ Z or E ≥ H(R − r)/Rp. Similarly,

the set of positions ordered by angle must have an angular stride

no greater than 4p/W , i.e., E4p/W ≥ 2π. Therefore, we have

the lower bound on E:

E ≥ max

{

πW/2p,
H(R − r)

Rp

}

. (3)

Uniform coverage of the source point plane can be achieved

with source positions which lie at the vertices of a regu-

lar triangular tessellation, i.e., P =
√

3πR/Q and frac(Q) =
Q − ⌊Q⌋ ≈ 1/2. Of course if frac(Q) = 1/2 then only 2Q
unique angles are sampled. We desire a frac(Q) that is not

equal to, or approximated by, a rational fraction with a small

denominator (relative to the number of revolutions). An ideal

value for generating low-discrepancy sequences is the golden

ratio φ = (
√

5 − 1)/2 ≈ 0.618. The partitioning properties of

the residual 2πφR/Q on the range (0, 2πR/Q) provide an ap-

proximately uniform angular sampling with each new sample

dissecting the current largest partition. The number of radio-

graphs per revolution, Q is then found as:

Q =

⎢

⎢

⎢

⎣

√√
3πER

Z

⎥

⎥

⎥

⎦ + φ. (4)

The next Section III outlines the experimental method of sim-

ulation. The following Section IV numerically demonstrates that

this SFT satisfies a discretized form of the Tuy data sufficiency

condition. The remainder of the paper uses simulation to explore

the properties of this trajectory along with demonstrations of the

implications of these properties.
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Fig. 4. Central 2D slice, x = 0, through the 3D sandstone/limestone phantom.
Greyscale window: [black = 0.0 mm −1 ,white = 1.0 mm−1 ].

III. EXPERIMENT SIMULATION

Since much of the exploration of the properties of the SFT are

through simulations, we will first present the details of how these

simulations were performed. Here we describe the phantom

utilised, the experiment simulation (forward-projection) proce-

dure performed with various scanning trajectories, and the noise

model used.

A. Sandstone/Limestone Phantom

This phantom has been generated from a reconstructed tomo-

gram of stacked sandstone and limestone rock cores as depicted

in Fig. 4. The original volume was vertically truncated to be-

come cubic, and sub-sampled to N = 512 voxels per side with a

cubic voxel dimension of 4.11 µ m. The attenuation values rang-

ing from 0.0 to 1.0 mm−1 were binned into 12 equally spaced

discrete values.

B. Simulation Geometry

Unless otherwise stated, the specimens are placed at R =
1.85 mm from the X-ray source (i.e., source-specimen-

distance), a W × H = 400 × 400 mm2 detector is located

L = 300 mm from the source (i.e., source-detector-distance).

This gives a large cone-angle of 67.38◦. Reconstructed voxel

size is calculated as detector pixel size scaled by R/L =
0.00617, equivalently given the detector is M × M pix-

els, voxel size = WR/ML. The limiting radius of sup-

port is r = RW/2
√

L2 + (W/2)2 = 1.0262 mm. The diam-

eter (and thus reconstruction domain) in voxels is N =
ML/

√

L2 + (W/2)2 = 0.832M . We use M = 600 as a typi-

cal geometry. This yields N = 500, and the number of radio-

graphs E = πN/2 = 784; however, to make this suitable for

under-sampling, we select E = 768. The specimen height di-

mension is 2.0524 mm, i.e., N voxels, giving an N 3 voxel

reconstruction.

Note that in order to simulate physical X-ray cone-beam in-

tegrals (as opposed to unrealistic line-integrals) and avoid the

inverse crime, the forward-projection data was calculated with

a 3M × 3M pixel detector that was rebinned to M × M pix-

els. It is worth noting at this point that the projection and back-

projection operators used in our code are not exactly adjoint. The

projection process steps through the volume along each line of

integration and sums the result of tri-linear interpolation at reg-

ular intervals along this line; the back-projection process sums

the result of bi-linear interpolation of the projection-images at

the projected voxel position.

a) Circular trajectory: by definition Z = 0, and we use Q =
E = Ω = 768. Note that L = 300 mm gives a large cone-angle

which invalidates the pseudo-parallel-beam requirements, so we

have used L = 1200 mm in many cases. Note that this increase

in L by four increases required exposure time by 16 (which is

relevant for the noise calculations in Section VI-B.).

b) Helical trajectory: in order to minimise redundancy, we

use the maximum pitch (or vertical translation per rotation), P ,

according to equation 5 from [18]:

|P | ≤ πRLH

((W/2)2 + L2)(π/2 + arctan W/2L)
. (5)

Given the above parameters, this is defined as P = QZ/E. From

the simulation geometry used here we calculate P = 2.485 mm.

Since each point is reconstructed from PI-lines, (i.e., approxi-

mately half a revolution of data), we set Q = 2E and therefore

Z = 1.243 mm; for overscan we use the conservative estimate

presented in [18] of an additional π/4 + 3αf rotation at each

end, where αf is the fan-angle; this gives Ω = 3.897E = 2993.

c) Space-filling trajectory: we use Z = 1.098 mm calcu-

lated according to (2); Q is calculated according to (4); an over-

scan of E/2 radiographs is used at each end of the trajectory

to ensure all voxels project to at least E radiographs; this gives

Ω = 2.977E = 2286.

C. Poisson Noise

Noise has been included in Figs. 9(c) and 10 in accordance

with [32]. Here, noise is parameterised solely by exposure time,

t in seconds. A mean X-ray energy of ξ = 30.0 keV is used, with

a typical scaling factor (that encompasses, for example, lumi-

nescent conversion efficiency and electronic gain) of τ = 0.016.

We define measured intensity to be γ = 1024 intensity units (IU)

per second, according to γ = nξτ, where n is the number of de-

tected photons. Assuming a Poisson distribution, the variance of

measurement is σ2 = nξ2τ 2 . We have also included dark cur-

rent noise assuming a normal distribution with a typical value

σd = 24 IU.

IV. DATA SUFFICIENCY OF THE SPACE-FILLING TRAJECTORY

As outlined in the introduction, not all scanning trajecto-

ries provide sufficient information for a theoretically-exact re-

construction. For the continuum tomography inverse problem,

source trajectories which satisfy the Tuy sufficiency criterion

[6] ensure a theoretically exact reconstruction is possible. The

essence of this criterion stipulates that a trajectory is sufficient

if all planes that intersect the reconstruction volume also cut the

source trajectory. Of course, the Tuy condition is only applica-

ble for continuous source trajectories. For discretely sampled
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trajectories, the continuum is traditionally approximated by us-

ing angular step-sizes which are at or below the Crowther cri-

terion [28], i.e., the angular spacing between adjacent source

points is comparable to the angular spacing between adjacent de-

tector pixels. Theoretically exact reconstruction schemes (e.g.,

of the FBP type) also require such dense sampling along the

acquisition path in order to perform differentiation, but iterative

reconstruction methods liberate us from this constraint. The dis-

tributed sampling of the SFT, by design, means there exists no

such continuous curves that can represent the trajectory.

Development of a method to apply the Tuy condition to dis-

crete sets of vertices (source positions) is an ongoing problem.

It was first considered by Noo et al. [27] for the strided helix,

multi-circle and a pseudo-random distribution of source points.

They devised a parameter ǫ, the furthest distance of any plane

to the nearest vertex, but found it wasn’t necessarily indicative

of tomographic resolution. Many subsequent attempts to extend

this analysis have been made, particularly in the field of SPECT,

with limited success. Here, we demonstrate data sufficiency for

a small example SFT by presenting the 3D Radon transform

(RT) of the trajectory with the same discrete resolution used

in reconstruction. The value at each point in 3D Radon space,

at x = (x, y, z), is determined as the integration of the volume

over the plane through x that is normal to the vector from the

origin to x. The 3D RT yields precisely the set of plane integrals

required to test the Tuy condition (although the effect of a finite

detector is ignored).

We set up a set of source points in a discrete (gridded) volume

by placing a delta function at each source point and tri-linearly

interpolating to the nearest voxels. Circular, helical, and space-

filling trajectories have been simulated for comparison with

M = 140 m thus N = 116 voxels and E = 180; Here the cir-

cular trajectory used Ω = E while the HT and SFT both used

Ω = 4E. We define a spherical region of support (or reconstruc-

tion domain) within this plotted trajectory. If every point of the

3D Radon transform computed for each trajectory volume is

greater than 0.5 within the sphere then all planes, of thickness

one voxel (the spatial sampling required), through the domain

contain at least one source point. The 3D Radon transform of

each trajectory is presented in Fig. 5. Red indicates the bound-

ary of the spherical support. Blue indicates a plane sum below

0.5. The well known solid torus of data sampling for the circular

trajectory can be observed with data missing in the z direction.

Both the helical and space-filling trajectories have complete data

inside the spherical support. Due to the symmetrical nature of

the SFT, we observe a more uniform distribution of redundancy.

V. ISOTROPY OF THE SPACE-FILLING TRAJECTORY

A. Resolution and Signal Uniformity

A helical scanning trajectory is anisotropic, i.e., highly non-

uniform when viewed from the perspective of a point (or voxel)

within the object [10]. Regardless of windowing, the number of

source points where each voxel projects onto the detector area

[Fig. 6(a-i) and (a-ii)] and the average distance to the source

[Fig. 6(b-i) and (b-ii)] varies considerably.

Fig. 5. Horizontal (i) and vertical (ii) slices through Radon space, deter-
mined by taking the 3D Radon transform of discrete sets of source points.
Greyscale window: [black = 0, white = 8]. Geometry specified in Section III-B.
(a) Circular trajectory, (b) helical trajectory, and (c) space-filling trajectory. Only
Radon data out to R = 1.85 mm (85 px) was calculated, the extent of spherical
region of support (i.e., reconstructed domain) is red. Blue indicates plane sums
≤0.5.

In the large cone-angle fine-focus geometry considered here,

non-uniform source distances leads to non-uniform resolution

in the reconstructed volume when under high-magnification.

Average magnification is computed as L/R, however, we have

an expanding cone beam with magnification of regions of the

sample close to the source being (R − r)/L and far from the

source being (R + r)/L. Thus sample regions that are on-

average close to the source are projected with better resolution

than regions that are far on-average. The SNR of a reconstructed

voxel improves with the number of source points that project

that voxel onto the detector area. A large variation in this num-

ber across the volume leads to a large variation in tomogram

SNR.

In contrast to the anisotropy of the helix, the number of source

points where each voxel projects onto the detector area for

the SFT [Fig. 6(a-iii)] and the average distance to the source

[Fig. 6(b-iii)] is isotropic and as uniform as can be achieved

with standard CT imaging configurations.

B. Point-spread-function (PSF) Uniformity

In fact, the SFT is maximally isotropic assuming the source is

restricted to lie on the surface of a cylinder. This is quite distinct
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Fig. 6. Central 2D horizontal (i.e., XY-plane) slice through the reconstruction
volume showing (a) number of X-ray source positions that back-project through
each voxel, and (b) the average X-ray source distance, for the (i) helical trajectory
with Tam-Danielsson window applied, (ii) un-windowed helical trajectory, and
(iii) space filling trajectory. Geometry is given in Section III-B. Note that E =
768 and source-specimen-distance = 1.85 mm.

from continuous path trajectories where the blurring from back-

projection is highly anisotopic and location dependent: for the

SFT the directions of the set of measured rays passing through

each voxel in the tomogram are as uniformly distributed on the

unit sphere as is possible within the constraints of the imaging

apparatus, and with little potential for improvement with other

imaging configurations.

Even for the SFT, the range of directions of the set of measured

rays passing through a given voxel depends on the location of

that voxel within the reconstructed volume. This is due to the

limited acceptance-angle dictated by the finite detector height.

A voxel in the center of the volume (i.e., on the rotation axis)

is projected onto the detector area from source points in all

directions equally well. An example of this is presented in 3, the

set of source points in the region between the grey dashed lines

project the central voxel to the detector area. In contrast, the set

of source points that project an off-axis voxel to the detector area

is shaped by a sinusoidal envelope. For a voxel position (x, y) in

the plane, the amplitude of the sinusoid is determined by radius

(
√

x2 + y2), while the phase is determined by tan−1(y/x).
Fewer near-side source points project the voxel to the detector

area than far-side source points due to the finite detector height.

An example of this scenario is also presented in Fig. 3, the source

Fig. 7. Apodisation functions, or windows, that may be applied to radiographs:
(a) Tam-Danielsson window for the HT, and (b) n-PI window for the SFT
assuming it is a low-pitch HT, to remove redundancy; (c) Colsher window for
the SFT to equalise the acceptance angles for each reconstructed voxel. System
geometry specified in Section III.

points in the region between the solid grey lines project a voxel

at maximum radius onto the detector area. The area enclosed

by the sinusoidal envelope is unchanged by phase or amplitude,

so the total number of source points that project all voxels onto

the detector area is approximately constant [as can be seen in

Fig. 6(a-iii)]. A source point cropped on the side near to the

voxel is compensated by an additional source point on the side

far from the voxel (180◦ apart). The principal consequence of

this symmetry is that an unfiltered backprojection of linearised

radiographs, to a decent approximation, results in shift-invariant

blurring of the volume.

C. Leveraging Isotropy for Effective Pre-Conditioning

Shift-invariant blurring can be inverted using deconvolution

(an operation similar to ramp-filtering in FBP). In 1980, Col-

sher [33] analysed the case of idealised positron emission to-

mography (PET) data and proposed reconstruction algorithms

of the back-projection filtration (BPF) and FBP type with shift-

invariant spatial filtering. X-ray transmission data collected us-

ing an SFT is similar to PET, except that (a) the SFT contains

a distinct source position per radiograph where each data point

in PET has a distinct source point, and (b) the SFT, based on a

standard CT configuration, has a planar detector. An apodisation

function (or window) can be applied to the radiographs to sim-

ulate a cylindrical detector by enforcing a constant acceptance

angle as assumed for the inversion by Colsher in [33]. This will

be referred to as the Colsher window, defined as:

C(w) = ±(H/2)

√

L2 + w2

L2 + (W/2)2
. (6)

This is depicted in 7 for the experiment geometry described in

Section III-B. Fig. 7 also shows the Tam-Danielsson window for

a HT for comparison. The generalisation of this for a low-pitch

HT known as the n-PI window [34] is also presented for the

SFT. Note that these windows are designed to reduce unwanted

redundancy rather than restrict X-ray detection to a constant

acceptance angle. Colsher or n-PI windowing are not strictly

necessary for IR but cause the SFT to have higher symmetry

more amenable to the accelerated IR methods discussed below.

For a typical geometry used at the ANU micro-CT labs with a

fan angle of 60◦, Colsher and n-PI windows for the SFT removes

only∼15% and 25% of data respectively compared with∼ 50%

removed by the Tam-Danielsson window for the HT.
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Fig. 8. Vertical 2D slices through the sandstone/limestone phantom, reconstructed from a space filling trajectory, Z = HR/L = 2.47 mm, Ω = 1400, with
(a) Backprojection with Colsher filtering, (b) 8 iterations of Colsher-filter pre-conditioned CGM. Acquisition details are in Section III-B; both (a) and (b) use
Colsher windowing of projections.

We recall that iterative methods are required to reconstruct the

sparsely sampled SFT projection data. In order to pre-condition

and accelerate convergence we can incorporate Colsher filtering

in the radiographs. We model data acquisition as a linear process:

Ax = b,

where b is the measured data, x represents the object attenua-

tion (our objective function), and A describes X-ray projection.

Back-projection is the adjoint of projection,AT . Applying back-

projection to the measured data, AT
b, recovers a heavily low-

pass filtered form of x. This can be significantly improved by

applying Colsher filtering and windowing. Let F be the Colsher

filtering applied in the projection domain; let W be a diagonal

matrix giving the Colsher windowing function. Fig. 8(a) depicts

the result of A
T
WFb; it is a far better approximation to x than

that from simple back-projection. However, it contains some ar-

tifacts since F is a shift invariant approximation to (AT )−1
A

−1 .

Note that F is a self-adjoint circular convolution that can be ap-

plied very efficiently as a multiplication in Fourier space. This

filtering technique can be used as a pre-conditioner to speed up

a conjugate gradient method (CGM) iterative reconstruction.

In a tomography context, CGM seeks to find the most likely

function x assuming a Gaussian distribution in the measured

data b according the the model:

A
T
Ax = A

T
b.

Inserting filtering and windowing as a pre-conditioner, we arrive

at the following:

A
T
WFAx = A

T
WFb.

Although, both F and W are self-adjoint, this can not be rewrit-

ten symmetrically as (
√

F
T √

W
T
)(
√

W
√

F) due to the win-

dowing operation. Thus convergence is not guaranteed, how-

ever, windowing is beneficial since the filtered data outside the

Colsher window is produced using a significant degree of extrap-

olated data. The result of applying this pre-conditioner in to our

simulated data is presented in Fig. 8(b). The convergence plot

in Fig. 8(c) shows this simple pre-conditioned CGM (PCGM)

gives an order of magnitude speed up in convergence.

Although finding an efficient reconstruction scheme for the

SFT is a relatively unexplored problem, this demonstrates

that the properties of the trajectory can be leveraged heavily.

pre-conditioning can also be applied by Colsher filtering of

the post-backprojected volume. A form of this that incorpo-

rates multi-grid iterative reconstruction schemes and converges

to reasonable quality in just 2 iterations has been presented

in [35].

VI. MAXIMISING MUTUALLY-INDEPENDENT INFORMATION

THROUGH THE SPACE-FILLING TRAJECTORY

With a large stride between adjacent source points, data col-

lected using the SFT contains information about the specimen

that is more mutually independent. The pseudo-hexagonal tiling

of the source point plane minimises the area of unpopulated re-

gions and maximises the distance between two neighbouring

source points. This makes the SFT data maximally independent

given the constraints of the imaging apparatus. The space-filling

concept is optimal in the absence of a priori knowledge of the

object, as distinct from the method of Stayman and Siewerd-

sen [36] which determines an optimal trajectory for a particular

specimen.

Tomographic reconstruction from projection data is by nature

an ill-posed problem [37], however, this SFT property of max-

imally independent information should lead to a problem that

is better conditioned and yield reconstructed tomograms with

lower levels of noise and geometric artifacts for a given exper-

imental acquisition time. Proof of this is an open problem; for

the remainder of this section we attempt to demonstrate these

properties by example.

A. Condition Number

Through research with multi-source X-ray CT systems for

security screening, Thompson et al. [29], [38], [39] have in-

vestigated highly-constrained, discrete source trajectories with

properties similar to those proposed here. Their trajectories are

limited to a set of fixed X-ray sources and detectors located in

a ring around a conveyor belt. The set of sources are offset in

z with respect to the set of detectors. They seek to optimise the

source firing order, as the conveyor belt runs through the ring, to

maximise tomogram quality (or minimise artifacts). Thompson

investigated the condition number for these discrete trajectories
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Fig. 9. Log(MSE) convergence plots of gradient descent IR for HT compared with SFT using geometry specified in Section III-B for a) standard experiment
simulations, b) simulations with restricted total number of radiographs, Ω, and c) simulations with various radiograph exposure times (or noise levels). Mean
square error (MSE) is calculated compared with the known phantom volume data.

by computing the singular-value-decomposition (SVD) analysis

of some small simulations [38] – for larger data sets this analysis

is too computationally demanding to be feasible. The condition

number can be defined as the ratio of largest to smallest singular

values of the forward projection matrix. Thompson investigated

the condition number when reconstructing both a single z-slice

and 12 slices with varying x/y pixel size, as well as varying the

number of z-slices from one to 60 with a fixed x/y pixel size. He

found that the lattice trajectory (“k = 35”) had a better condition

number than the helix trajectory (“sequential”) in all cases. He

also showed that the singular vectors were much more smooth

and symmetric for “k = 35” compared with “sequential”.

The speed of convergence for gradient descent algorithms

depends on the condition number of the forward-projection ma-

trix. To show that the SFT is less ill-conditioned than the helical

trajectory, we reconstruct the phantom from data collected with

both HT and SFT using the Landweber algorithm [40] which

is a special case of gradient descent. The value used for the

Landweber relaxation parameter was 1/EN ; This is typical in

computed tomography as it approximates a diagonal rescaling

of the problem. Fig. 9(a) presents convergence plots. It can be

seen that overall the IR from the SFT data does indeed con-

verge more rapidly, indicating an improved condition number

compared with the HT. We also investigated the effects of win-

dowing and removing the “cone-beam” integrals in forward

projection (as described in Section III-B). Applying windowing

significantly degraded the rate of convergence for the HT with

only a slight loss of performance for the SFT. However, for

these noise free cases, windowing is predominantly removing

additional information, the decrease probably just reflected the

proportion of data masked out, i.e., 50% for the HT and 15%

for the SFT. Replacing “cone-beam” integrals with line integrals

had little effect.

Landweber IR convergence rates for simulated experiments

with the total number of source points (or radiographs), Ω,

limited to 256, 512, and 1024 is presented in Fig. 9(b). In the

simulations we have maintained the ratio of E/Ω compared

with that for a full set of radiographs. Here the IR from the

SFT data again converges more rapidly than that for the HT,

however, the performance benefit seems to reduce for sparser

sampling levels. Assuming a Poisson noise model as described

in Section III-C, Landweber IR convergence rates for simulated

Fig. 10. Mean square error (MSE) convergence plot for CGM reconstruction
of the sandstone/limestone phantom, from data collected over approximately
constant experiment time (geometry specified in Section III-B) using circu-
lar trajectory, circular trajectory with a long source-detector distance (L × 4),
helical trajectory, and space-filling trajectory.

experiments with 4 s, 8 s, and 16 s exposure times are presented

in Fig. 9(c). The IR from the SFT data converges more rapidly

than that for the HT in all cases. A similar degradation of the

convergence plots with increased noise is observed for both SFT

and HT data.

B. Improved SNR or Reduced Scan-time and Reduced Data

The SFT satisfies data sufficiency, utilises the entire detec-

tor area, and has a better condition number than a HT with

less radiographs; it is a very efficient trajectory. Other methods

to include redundancy such as double-helix and 3PI helix tra-

jectories require a certain sampling rate along the continuous

trajectory and significantly increase the number of radiographs

required. Fig. 10 shows the relative performance of circular

(with both short and long source-detector distances, L), helical

and space-filling trajectories given an approximately constant

experiment time. To allow comparison, IR has been performed

using the conjugate gradient method (CGM). Convergence plots

are given in Fig. 10. Convergence of all data sets is comparable
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Fig. 11. Subsets of vertical 2D slices through a sandstone/limestone phantom, with misalignments of 2ou in all parameters (as specified in [18]), reconstructed
with ramp-filtered back-projection from (a) circular trajectory, (b) helical trajectory, and (c) space-filling trajectory. Geometry is specified in Section III-B.

for the first few iterations. The reconstruction artefacts due to

high-cone angle for the circular trajectory give a strangely be-

haved convergence with the worst MSE (>0.08). These artefacts

are overcome by using a 4× larger source-detector distance

(L × 4), however, this reduces flux by a factor of 16. The high

level of noise in this case causes the MSE to diverge quickly with

a poor optimal MSE (0.07). The convergence of the HT and SFT

data are more well behaved with the SFT providing the highest

fidelity tomogram, i.e., the lowest MSE (0.033 compared with

0.04), from fewer projections.

VII. SENSITIVITY OF SPACE-FILLING TRAJECTORY

A. Sensitivity to Component Misalignment/Motion

The SFT is insensitive to perturbation of the input data, i.e.,

it is relatively well behaved when components (or the spec-

imen) are misaligned, or under specimen/component motion

during scanning. This is a very important property in practice.

Kingston et al. determined a referenceless post-acquisition soft-

ware alignment protocol for the circular trajectory [20]. Due to

its redundancy, the circular trajectory is also insensitive to per-

turbations and misalignment of radiographs manifests as blur

in the tomogram. The alignment protocol is robust since blur is

easily detected, quantified, and minimised. In contrast, Varslot

et al. showed that given the helical trajectory with Katsevich

filtering, it is quite difficult to align using this protocol [18].

The reason for this is that the HT has no redundancy and is

sensitive to perturbations [15], misalignment introduces geo-

metrical distortions and disjoint features. This was mitigated in

[18] by employing horizontal ramp-filtered back-projection with

no Tam-Danielsson window applied when scanning for align-

ment parameter values. Redundancy is then introduced leading

to increased blurring as desired, however, we note that some

streaking is still present. These streaks make it very difficult to

align helical data using sharpness measures.

As for the circular trajectory, the isotropic nature of the SFT

causes misalignment of radiographs to degrade the tomogram as

blur when using horizontal ramp-filtered back-projection. It is

an ideal trajectory for software alignment that maximises sharp-

ness in the tomogram (as in [20]). Using the parameterisation

and optimal units (ou) defined in [18], Fig. 11 shows the recon-

struction from by ramp-filtered back-projection for a circular,

helical, and space-filling trajectory, given a misalignment of

Fig. 12. An example of the position of all PI-line X-ray paths on a radiograph
given the geometry described in Section III-B for (a) helical trajectory, (b) space
filling trajectory.

the radiographs of 2ou in each parameter. The behaviour under

misalignment from each trajectory (as described above) is quite

evident.

Alignment can also be performed by minimising the PI-line

difference in the projection data [41]. PI-lines are points on the

radiograph where the X-ray source is positioned elsewhere in the

trajectory. Thus, there exists an X-ray path with an equivalent but

opposite trajectory on a different radiograph that should have

the same (or very similar in cone-beam geometry) measured

intensity. Geometric alignment can be found post-acquisition

by varying the alignment parameter values (with corresponding

transformation of the radiographs) until the difference between

these pairs of PI-line measurements is minimised. This is a

very fast method since it does not require the computationally

complex projection or back-projection operations.

For the circular trajectory only a subset of the parameters

can be determined since the PI-lines all lie on the central row

of the radiograph. The helical trajectory is better suited since

the PI-lines are more distributed over the entire detector area

[see Fig. 12(a)] and Kingston et al. [41] showed that PI-line

alignment is more robust than tomogram sharpness but less

precise. The distribution of PI-lines over the detector for the

SFT is ideal for alignment as it uniformly samples the detector

[see Fig. 12(b)] giving improved sensitivity to detector rotation

misalignments. The set of PI-lines in Fig. 12 was binned by

eight, i.e., used M = 600/8 = 75. Therefore, N = 68 voxels

and E = 96. The HT has Ω = 375, and the SFT has Ω = 286.
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Fig. 13. Registered 2D (i) horizontal and (ii) vertical slices through a 25.4 mm
diameter pendant made of timber injected with pewter using (a) double-helical
trajectory (maximum pitch used according to (5) as P = 51.49 mm, Q = 1440
per helix, Ω = 2294 per helix) with each helix reconstructed by KFBP and
averaged, (b) space-filling trajectory (with Z = HR/L = 51.51, E = 1440,
Ω = 1902) reconstructed using multi-grid BPF method described in [35]. The
total scan time for each experiment is similar. Greyscale window: [black =
0.183 mm−1 , white = 0.732 mm−1 ].

Another indication that the SFT is insensitive to perturba-

tions is that the SFT is well-behaved under motion of the

specimen/components during scanning. For the SFT, the source

rotates relatively rapidly about the specimen with time and with

z-translation; any motion that is smooth in time or with stage

translation causes a blurry but geometrically faithful reconstruc-

tion. Consequently, re-projecting this degraded tomogram (to

simulate the experiment) yields a blurry but aligned set of ra-

diographs to which the measured data can be registered. Using

the iterative reprojection method set out by Dengler [21] for

aligning electron tomography data, Latham et al. showed con-

vergence given SFT data is an order of magnitude faster than that

given the equivalent HT data [42]. Latham et al. showed, that

this reprojection method can be integrated into the multi-grid IR

scheme developed for the SFT [35] for very little computational

cost (2D registration per radiograph) and converges in the first

multi-scale iteration.

B. Sensitivity to Beam-hardening/Metal Artifacts

The SFT is also less sensitive to perturbations of data val-

ues resulting from e.g., the non-linear remapping of data due to

X-ray beam-hardening or metal inclusions. The isotropic na-

ture of the SFT causes the streak artifacts from such pertur-

bations to be distributed over the largest possible solid-angle;

this minimises impact on image quality. An extreme example

demonstrating the improved fidelity from real data is presented

in Fig. 13. Here a pendant made of timber and pewter was

imaged with both double-helix and space-filling trajectories.

Tomographic results will depend on the reconstruction algo-

rithm used; although different algorithms were used for each

trajectory, neither used any beam-hardening models or spectral

information. The sample was placed R = 39.98 mm from the

micro-focus X-ray source. A 400 mm × 400 mm detector with

a pixel size of 0.278 mm (i.e., 1520 × 1520 pixel array) was sit-

uated L = 336.3 mm from the source. The accelerating voltage

of the X-ray source was 120 kV and heavy filtering was applied

to the X-rays (1.2 mm stainless-steel) resulting in a high energy

spectrum, making the timber almost invisible in the tomogram.

Although artifacts are still visible in the results using the SFT,

and segmentation would still be non-trivial, a significant im-

provement in image quality can be observed. This is primarily

due to the properties of the trajectory and not the difference in

reconstruction algorithms used.

VIII. CONCLUSION

Traditional X-ray source trajectories are continuous due to

either: a) practical reasons such as very rapid (or even non-

stop) rotation and short acquisition times for the case of med-

ical and synchrotron CT, or b) to enable differentiation as part

of analytical reconstruction. Micro-CT is not restricted by (a)

due to inherently low-flux and relatively long radiograph ac-

quisition times, and the development of general purpose GPUs,

that are particularly suited to projection/back-projection cal-

culations, has made IR schemes the natural choice even for

3D tomography with large datasets [43]. Given these con-

siderations, we have introduced a family of sparse discrete

scanning trajectories. These trajectories sample the space of

possible viewing angles in a more uniform manner compared

with traditional line-trajectories. These space-filling trajectories

are maximally isotropic for typical system geometries, giving

more uniform resolution and signal-to-noise ratio than the he-

lical trajectory. The isotropic nature provides an approximately

shift-invariant point-spread-function under back-projection; the

straight-forward filtering of this inverse filter (as developed by

Colsher for PET [33]) produces an effective pre-conditioner to

speed convergence of iterative reconstruction. The SFT provides

maximally independent information that has a better condition

number yielding improved data acquisition efficiency. The SFT

has a lower sensitivity to perturbations than the helical trajec-

tory. We have shown that it is well behaved under specimen and

component misalignment or motion; the effects of which are

readily detected, quantified and corrected. Streak artifacts from

beam-hardening and metal inclusions are also reduced com-

pared with the HT, even without any attempt at correction. The

SFT along with the multigrid reconstruction scheme outlined

in [35] lays a foundation for more general application of iter-

ative reconstruction techniques in high resolution X-ray CT to

improve acquisition efficiency and image quality.
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