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Space-Fractional Diffusion with Variable Order and Diffusivity:
Discretization and Direct Solution Strategies

Hasnaa Alzahrani · George Turkiyyah · Omar
Knio · David Keyes

Abstract We consider the multidimensional space-fractional diffusion equations with spatially vary-
ing diffusivity and fractional order. Significant computational challenges are encountered when solv-
ing these equations due both to the kernel singularity in the fractional integral operator and to
the resulting dense discretized operators, which quickly become prohibitively expensive to handle
because of their memory and arithmetic complexities.

In this work, we present a singularity-aware discretization scheme that regularizes the singular
integrals through a singularity subtraction technique adapted to the spatial variability of diffusivity
and fractional order. This regularization strategy is conveniently formulated as a sparse matrix
correction that is added to the dense operator, and is applicable to different formulations of fractional
diffusion equations. We also present a block low rank representation to handle the dense matrix
representations, by exploiting the ability to approximate blocks of the resulting formally dense matrix
by low rank factorizations. A Cholesky factorization solver operates directly on this representation
using the low rank blocks as its atomic computational tiles, and achieves high performance on
multicore hardware.

Numerical results show that the singularity treatment is robust, substantially reduces discretiza-
tion errors, and attains the first-order convergence rate allowed by the regularity of the solutions.
They also show that considerable savings are obtained in storage (O(N1.5)) and computational cost
(O(N2)) compared to dense factorizations. This translates to orders-of-magnitude savings in mem-
ory and time on multi-dimensional problems, and shows that the proposed methods offer practical
tools for tackling large nonlocal fractional diffusion simulations.

Keywords fractional diffusion · variable order · variable diffusivity · singularity subtraction · block
low rank matrix · TLR Cholesky

1 Introduction

Simulations involving space-fractional diffusion operators are becoming increasingly important in a
number of application domains. Their ability to model phenomena of anomalous nonlocal diffusion
in fractured and granular media, and account for long range interactions beyond classical Brownian
motion, have made them powerful tools in several areas of relevance to industrial and environmental
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applications [10,28]. Beyond anomalous diffusion, diverse problems in physics-informed neural net-
works [32], image denoising [18,9], and sampling from random gaussian fields in spatial statistics [4]
also benefit from the ability of fractional operators to capture nonlocal effects and control solution
regularity. In many of these applications, the heterogenous case, with spatially-varying fractional or-
der and diffusivity, is particularly useful. As a result, there is significant interest in the development
of fast and accurate methods for the solution of variable coefficient problems.

There are however two primary challenges in fractional diffusion simulations, when attempted
on realistic problems in multiple spatial dimensions. The first one comes from the singularity of the
kernel in the formulation of the fractional integral operator. Singularity of the kernel implies that
standard quadrature rules will converge slowly and will not obtain the convergence rates that can
be expected with smooth integrands. For the special case of the fractional Laplacian, i.e., problems
with constant fractional order and constant diffusivity, treatments of the singularity have been
proposed. A singularity subtraction method to regularize the integral is described in [33]. This
method was substantially enhanced in [30] where the singularity subtraction is modified and limited
to a local neighborhood through a radial windowing function that is shown to be quite effective
computationally in 2D and 3D. [37] uses a similar method in the context of an isogeometric 2D
discretization and shows linear convergence with mesh size, a rate that cannot be obtained by a finite
element discretization that does not explicitly treat the singularity [1]. A finite difference method
for the constant coefficient fractional Laplacian, which splits the kernel function into two weakly-
singular parts, is introduced in [17,16] as a fractional analogue of the classical central difference
schemes. A finite difference method for a variable diffusivity problem in 1D is described in [31].
There is still however no general treatment for variable order and variable diffusivity in fractional
multidimensional problems.

The second challenge comes from the fact that the discretization of the integral operator results
in a dense matrix, a consequence of the non-local nature of fractional diffusion. If not effectively
tackled, this imposes prohibitive computational requirements in both memory and runtime on the
numerical simulations. For constant fractional order and diffusion coefficients, these challenges may
be addressed by taking advantage of the homogeneity to render the problem tractable. For example,
when using a regular uniform discretization, the construction and storage of only a small represen-
tative translation-invariant portion of the problem is sufficient, because of the block-Toeplitz with
Toeplitz blocks structure of the resulting matrix [12,30]. Consequently, application of the discrete
operator can be performed in O(N logN) using FFT. For variable fractional order in 1D, [23] ap-
proximates the discrete operator by a scaled sum of Toeplitz matrices, which permits its application
in log-linear asymptotic complexity. However, in the general multidimensional case when either the
order or the diffusion coefficient is not homogeneous, or when the discretization is unstructured,
or when the simulation domain is bounded, the Toeplitz structure is not helpful and alternative
representations are needed, especially as the discretizations gets refined.

Hierarchical (H) matrices provide such an alternative and have been shown to be effective and
general-purpose representations for the discretizations of fractional operators in one and two dimen-
sional problems [38,29,24,36,6]. Hierarchical matrix representations allow substantial and accuracy-
tunable compression of the dense matrix, by approximating certain blocks of the matrix with low
rank factorizations. These low rank blocks are not necessarily of the same size but can be of different
granularity representing different levels of the hierarchical representation. Hierarchically low rank
matrices reduce the O(N2) memory footprint of dense matrices to O(kN logN) or even O(kN) in
the case of the H2 representation with nested bases, where k � N is a representative block rank
that depends on the desired quality of the approximation. H- and H2-matrices also allow opera-
tor application to be performed with similar log-linear and linear complexity, respectively. Iterative
solvers can then be readily built using the hierarchical matrix representation, as the inner kernel of
an iterative solver is a matrix-vector multiplication that can be efficiently performed.

While iterative methods, when preconditioned by appropriate preconditioners, can lead to effec-
tive solvers, there are many scenarios in which direct solvers are desirable. Direct factorization-based
solvers are more robust, require no parameter tuning, can effectively handle simulations with multiple
right hand sides at negligible additional cost beyond the initial factorization, and can be updated via
Sherman-Morrison-Woodbury formulas when local modifications in the form of low rank updates are
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made to the problem. Unfortunately, direct solvers for general hierarchical matrices are not partic-
ularly efficient. While simple blocking structures (HODLR and HSS weak-admissibility structures)
allow for direct factorization methods, the rank growth in the off-diagonal blocks of these repre-
sentations leads to undesirable growth in the runtime. Direct factorizations of general hierarchical
matrices with strong-admissibility blocking have large constants in their complexity estimates and
introduce data dependencies to make them impractical, particularly on modern multicore hardware.
It is therefore desirable to use alternative representations that provide sufficient memory compression
to be able to store discretizations of simulations of practical interest, and achieve high performance
on direct factorizations.

In this paper, we propose strategies for addressing the two difficulties outlined above in the
inhomogeneous multidimensional case. In particular, we propose a singularity treatment that allows
a convenient quadrature rule, such as the trapezoidal rule, to be used in the discretization of the
integral operators. Our method uses a singularity subtraction method that takes into account the
spatially varying coefficients, generalizing the treatment of the constant coefficient case in [30]. We
show it to be effective for different formulations of fractional diffusion, and attains the first-order
convergence allowed by the solution, which does not generally have sufficient regularity for higher
order convergence. We also present a practical block low rank matrix representation of the resulting
operator and show that it achieves substantial memory reduction of O(kN1.5) compared to an O(N2)
dense representation. This representation is the foundation of a direct solver that uses the low rank
blocks as its computational tiles. The solver relies on randomized sampling to produce a block low
rank Cholesky factorization in only O(kN2) operations, and with substantial concurrency in its
operations. Even though the asymptotic rate is not optimal, in practice, and for many problems
of relevant size, the computations are well tolerated and balanced by more efficient execution on
multi/many-core architectures.

The rest of the paper is organized as follows. Section 2 describes the formulations of the frac-
tional diffusion operators that we consider. Section 3 describes the singularity subtraction treatment
for spatially varying fractional order and diffusivity in the simple one-dimensional context. Section
4 presents the singularity treatment in the multidimensional case. Section 5 describes the matrix
representation that uses low rank factorizations in matrix blocks and the direct solver that operates
on the compressed representation to generate a Cholesky factorization. Numerical results are pre-
sented in Section 6. They show the convergence attained by the discretization strategy in 1D and 2D
with various variable diffusivity and fractional order examples, as well as the memory compression
produced by the blockwise low rank representation and the runtime savings achieved by the solver
on large representative 2D problems. We conclude and outline future work in Section 7.

2 Formulation with variable diffusivity and fractional order

Different formulations of nonlocal diffusion are possible and have been proposed in the literature.
They differ in the way that the fractional gradient and/or divergence are defined. In this work, we
consider two specific formulations, both consistent with nonlocal conservation laws; see Fig. 1 for an
illustration.

The first formulation considered follows a nonlocal mechanics formalism [14,13], in which a non-
local generalization of divergence is introduced and its adjoint is used as a nonlocal gradient. In the
second formulation, a nonlocal flux is first defined using a fractional gradient, and the classical diver-
gence the fractional flux is used to defined the fractional diffusion term. In light of these definitions,
we shall refer to these two formulations as symmetric and non-symmetric, respectively.

2.1 Symmetric formulation

In the symmetric case, the fractional diffusion term is defined in terms of (i) the generalized (non-
local) divergence operator [14],

D(ν)(x) :=

∫
Rn

(ν(x,y) + ν(y,x)) · α(x,y)dy (1)
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u(x) f(x)

g(x, y) ν(x, y)

D∗
α

a(x, y)

Dα

u(x) f(x)

g(x) q(x)

∇β

κ(x)

−∇·

Fig. 1 Nonlocal diffusion frameworks. The symmetric formulation on the left uses a nonlocal divergence operator
and its adjoint as a nonlocal gradient. The non-symmetric formulation on the right uses a nonlocal flux and uses the
classical local divergence.

where ν(x,y) : Rn × Rn → Rn is a two-point vector-field x and y are points in Rn, and α(x,y) :
Rn × Rn → Rn is an antisymmetric vector field, i.e. α(x,y) = −α(y,x), and (ii) its adjoint,

D∗(u)(x,y) = − (u(y)− u(x))α(x,y) (2)

where u(x) is a scalar field over Rn.

D∗(u)(x,y) = − (u(y)− u(x))α(x,y), (3)

which is viewed as a generalized (nonlocal) gradient. Using these definitions, and given a second-order
tensor, a, satisfying a(x,y) = a(y,x) and a = aT , one defines the generalized diffusion term:

D (a · D∗) (x) = −2

∫
Rn

(u(y)− u(x)) γ(x,y)dy (4)

where
γ(x,y) := α(x,y) · a(x,y) · α(x,y).

In this work, we shall suppose that a is diagonal, i.e., it reduces to a scalar of the form

a(x,y) =
√
κ(x)κ(y), (5)

with κ(x) ≥ δ > 0, δ a constant independent of x, and that α is given by:

α(x,y) ≡ y − x

|y − x|n2 +
β(x)+β(y)

2 +1
, (6)

with 0 < β(x) < 1. This yields

γ(x,y) =

√
κ(x)κ(y) |y − x|2

|y − x|d+β(x)+β(y)+2
=

√
κ(x)κ(y)

|y − x|n+β(x)+β(y) , (7)

and enables us to interpret

Lβu(x) := −2

∫
Rn

(u(y)− u(x))

√
κ(x)κ(y)

|y − x|n+β(x)+β(y) dy (8)

as a fractional (sub-) diffusion operator of variable order β(x), and variable diffusivity field κ(x).
Note that the expression of a given in (5) is appealing on dimensional grounds, as κ(x) has dimension
[L]2β(x)/T where [L] and [T] respectively denote length and time dimensions.

We shall generally focus on solving the fractional diffusion equation,

Lβu(x) = f(x), (9)

in a domain Ω ⊂ Rn, where f is a given source term. In case there are no interactions with the
region outside the domain, the integral in (8) is restricted to Ω. In a more general setting, we
consider that the domain Ω is surrounded by an enclosing region Ω0 ⊂ Rn with Ω ∩ Ω0 = ∅, and
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Ω Ω0

Fig. 2 Schematic illustration of the solution domain, Ω, and the surrounding region Ω0 over which volume constraints
are imposed.

that nonlocal interactions occur between points in Ω and Ω0; see Fig. 2. In this case, the integral
(8) is performed over Ω ∪ Ω0, and the fields u(y), κ(y) and β(y) are assumed to be specified for
y ∈ Ω0. These “volume constraints” are the nonlocal generalizations of the classical (local) Dirichlet
or Neumann boundary conditions [15,11]. In the following, we shall focus on homogeneous Dirichlet
type conditions, with u(y) = 0 when y ∈ Ω0.

We also note that the standard fractional Laplacian may be recovered as a special case of the
above, namely for constant β and κ, and Ω ∪Ω0 = Rn.

2.2 Non-symmetric formulation

The non-symmetric formulation consists in first defining a nonlocal flux, Qβ , based on a fractional
derivative of order β [34,33,26,27,28,6]. Allowing for variable order and diffusivity, we set

Qβ = −κ(x)∇βu(x) (10)

where κ is the diffusivity,

∇βu(x) = ω(x)

∫
Rn

y − x

|y − x|β(x)+n+1
u(y)dy (11)

is the fractional gradient of order β, whereas

ω(x) :=
2β(x)Γ (n+β(x)+1

2 )

π
n
2 Γ ( 1−β(x)

2 )
(12)

is scaling factor that depends on the (variable) order and on the number of spatial dimensions. Note
that ω may be dropped by suitably rescaling the diffusivity, κ, and that with κ(x) having dimension
[L]β(x)+1/[T ] the fractional flux Qβ is dimensionally homogeneous across space.

In the non-symmetric case, we shall consider the solution of the fractional diffusion equation,

Nβu(x) = f(x) (13)

where
Nβu(x) ≡ −∇ ·Qβ , (14)

and ∇ the classical gradient of order 1. As in the symmetric case, we consider the Dirichlet problem
in a bounded domain Ω. As in the symmetric case, this requires specifying values of u outside Ω,
but unlike the symmetric case the fields κ and β need not be specified outside the domain. Note
that in the special case where u vanishes identically outside the domain, the integral in (11) may
simply be restricted to Ω.

3 Singularity-aware discretization in the 1D case

We first describe our scheme for the treatment of the kernel singularity in the one-dimensional
context, which we extend to the multidimensional case in the following section. We treat the variable
diffusion coefficient first, followed by the variable fractional order.
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3.1 Spatially varying nonlocal diffusion coefficient

The two-parameter diffusivity coefficient a(x, y) that appears in the symmetric formulation of frac-
tional diffusion may take different algebraic forms, with a common one being the geometric mean of
a one-parameter diffusivity field κ

a(x, y) = κ(x)1/2κ(y)1/2 = c(x)c(y) (15)

where we define c(x) := κ(x)1/2. The kernel function becomes

γ(x, y) =
c(x)c(y)

|y − x|1+2β
(16)

and the integral in (4) is written as:

L[u(x)] = −2

∫
Ω∪Ω0

[u(x)− u(y)] [c(x)c(y)]

|y − x|1+2β
dy (17)

It is possible to remove the singularity of the integral of (17) at y = x by adding a term to the
integrand and subtracting it in a separate term that can be handled more readily. We can use the
Taylor series expansions

u(y) = u(x) + u′(x)(y − x) + 1
2u
′′(x)(y − x)2 +O(|y − x|3) (18)

c(y) = c(x) + c′(x)(y − x) +O(|y − x|2) (19)

to define the following desingularization term in a small window around the point x:

px(y) = 2 w(|y − x|)︸ ︷︷ ︸
local window

[
u′(x)(y − x) + 1

2u
′′(x)(y − x)2

]︸ ︷︷ ︸
local approximation of u(y)−u(x)

[
c(x)2 + c(x)c′(x)(y − x)

]︸ ︷︷ ︸
local approximation of a(x,y)=c(x)c(y)

(20)

where w(|y−x|) is a suitably chosen radial regularization function such w(|y−x|) = 1 +O(|y−x|4)
as y → x. A local polynomial windowing function [30] that satisfies this condition is shown in Fig. 3.
The O(|y − x|3) terms in (18) and the O(|y − x|2) terms in (19) have been dropped in (20), either
because they result in odd-power terms that integrate to zero or in higher order terms O(|y − x|4)
that only introduce smooth terms to the integrand, and do not affect the discretization in what
follows.

r

wδ(r)

δ

Fig. 3 Windowing function wδ(r) = 1− 35(r/δ)4 + 84(r/δ)5 − 70(r/δ)6 + 20(r/δ)7 for r < δ

The regularized version of the integral of (17) can then be written as:∫
Ω∪Ω0

[−2 [u(y)− u(x)] a(x, y)

|y − x|1+2β
+

px(y)

|y − x|1+2β

]
dy −

∫
Ω∪Ω0

px(y)

|y − x|1+2β
dy (21)

In this form, the integrand of the first term goes to zero as y → x. It is also continuously differentiable
with an integrable second derivative, allowing a trapezoidal rule to be used in the discretization of
the integral.

We consider the discretization of the first integral at a point x = xi on a regular grid with spacing
h. The numerator px(y) of the singularity-removing term in the first integrand, when expanded, has
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two terms with odd-powers of (y − xi) whose integrals vanish, and remaining terms that can be
expressed in the form:

w(y − xi) ci[2(ciu
′
i)
′ − ciu′′i ] (y − xi)2 (22)

where ci = c(xi), ui = u(xi), u
′
i = u′(xi), and u′′i = u′′(xi). We define the quantity

u′′i := ci[2(ciu
′
i)
′ − ciu′′i ], (23)

which admits a symmetric discretization as:

u′′i ≈ ci 1
h2

[
2(ci−1/2ui−1 − (ci−1/2 + ci+1/2)ui + ci+1/2ui+1)− (ciui−1 − 2ciui + ciui+1)

]
(24)

= ci
1
h2

[
(2ci−1/2 − ci)ui−1 − 2(ci−1/2 + ci+1/2 − ci)ui + (2ci+1/2 − ci)ui+1

]
(25)

and that we write as

u′′i =
1

h2
(ki−1ui−1 − (ki−1 + ki+1)ui + ki+1ui+1) (26)

with ki±1 := ci(2ci±1/2− ci). Using O(h2) linear approximations of ci±1/2, we get that ki+1 = cici+1

and ki−1 = cici−1. We note that for the constant coefficient case, with ci−1/2 = ci+1/2 = ci = κ1/2,

the expression of u′′i reduces to the usual central difference formula:

u′′i ≈
1

h2
(κui−1 − 2κui + κui+1) (27)

which appears when regularizing the constant coefficient fractional Laplacian [30]. In fact, the no-
tation u′′i was chosen to reflect the generalization to the variable diffusivity case.

Using the trapezoidal rule, the first integral in (21) can be discretized at point xi as follows

h
∑
j 6=i

[
−2(uj − ui)γij + u′′i

w(|xj − xi|)
|xj − xi|2β−1

]
(28)

where γij = γ(xi, xj). The second integral in (21) can be computed to high precision by a separate
adaptive quadrature since its integrand is non-zero only in a small region around xi:

− u′′i
∫
Ω∪Ω0

w(|y − xi|)
|y − xi|2β−1

dy (29)

Assuming extended Dirichlet conditions in the region Ω0, i.e., uj = 0 for grid points j in Ω0, and
a grid of size N in the interior region Ω, the final discretization of (21) can be written as

(B +D + C)u (30)

where B is an N ×N matrix with entries

Bij =

{
−2hγij , i 6= j

0, i = j
(31)

D is a diagonal matrix with entries

Di = 2h
∑
j 6=i

j∈Ω∪Ω0

γij , (32)

and the last term in (28) together with (29) contribute a tridiagonal matrix C to the discretization.
The tridiagonal sparsity pattern of C is a consequence of (26), and is obviously the same sparsity
pattern of a 3-point discretization of the classical (non-fractional) 1D Laplacian. C is also symmetric
leading to a symmetric discrete operator A = B +D + C.
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3.2 Spatially varying fractional order

We now consider the case of variable order with β(x) a function of the spatial variable. We assume
β(x) varies smoothly and has a bounded derivative β′(x) everywhere, and κ(x) = 1. The spatially
varying kernel is then:

γ(x, y) =
1

|y − x|1+β(x)+β(y) (33)

Expressing β(y) as a Taylor series at point x,

β(y) = β(x) + β′(x)(y − x) +O(|y − x|2) (34)

allows us to express the kernel (33) as the expansion:

γ(x, y) =
1

|y − x|1+β(x)+β(y) =
1

|y − x|1+2β(x)
(1− β′(x)(y − x) log |y − x|+O(|y − x|2)) (35)

Combining (35) with the Taylor series expansion

u(y) = u(x) + u′(x)(y − x) + 1
2u
′′(x)(y − x)2 +O(|y − x|3) (36)

allows us to subtract, locally around y = x, the variable order singularity in the original (4) and
write the integral as:∫ [ −2(u(y)− u(x))

|y − x|1+β(x)+β(y) +
w(|y − x|)

(
u′′(x)(y − x)2 − 2u′(x)β′(x)(y − x)2 log |y − x|

)
|y − x|1+2β(x)

]
dy (37a)

− u′′(x)

∫
w(|y − x|)
|y − x|2β(x)−1 dy + 2u′(x)

∫
w(|y − x|)β′(x) log |y − x|

|y − x|2β(x)−1 dy (37b)

The O(|y − x|2) terms in (35) and the O(|y − x|3) terms in (36) have been dropped in (37), either
because they result in odd-power terms that integrate to zero or in higher order terms O(|y−x|4) that
only introduce smooth terms to the integrand that do not affect the discretization of the regularized
integral.

As with the variable diffusivity case, the regularizing term of (37a) was chosen to make the
integrand go to zero as y → x with an integrable second derivative, allowing a trapezoidal rule to be
used to evaluate the integral. The two integrals of (37b) can be computed either analytically when
the window function w has a simple form or by an adaptive quadrature method.

At a point xi, the discretization of (37a) is then of the form:

h
∑
j 6=i

[ −2(uj − ui)
|xj − xi|1+βi+βj

+ u′′i
w(|xj − xi|)
|xj − xi|2βi−1

− 2u′i
w(|xj − xi|)β′i log |xj − xi|

|xj − xi|2βi−1
]

(38)

where βi = β(xi), βj = β(xj), and β′i = β′(xi). u′i and u′′i are the first and second derivatives at xi
and may be approximated by the usual O(h2) finite difference formulas u′′i ≈ 1

h2 (ui+1 − 2ui + ui−1)
and u′i ≈ 1

2h (ui+1 − ui−1). The discretization of the rest of (37) is of the form:

− u′′i Iai + 2u′iIbi (39)

where Iai and Ibi are the two integrals of (37b) which can be evaluated separately at every point
x = xi with an appropriate quadrature.

As with the variable diffusivity case, the final discretized operator is also of the form A =
B + D + C where B is a dense matrix whose entries involve kernel evaluations, D is a diagonal
matrix that includes extended Dirichlet conditions in Ω0, and C is a tridiagonal matrix resulting
from the regularization of the integral. C is not formally symmetric, however it can be replaced to
O(h2) accuracy by its symmetrized version (C + CT )/2.

The non-symmetric integral formulation of fractional diffusion described in Section 2 may also
be regularized using a similar strategy. The details are described in Appendix A.
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4 Singularity-aware discretization in the multidimensional case

The regularization strategy in the multi-dimensional case is conceptually similar to the one-dimensional
setting. The fractional operator is now

L[u(x)] = −2

∫
Ω∪Ω0

u(y)− u(x)

|y − x|n+β(x)+β(y) a(x,y) dy (40)

In order to discretize the integral in (40), we subtract the singularity so as to obtain a suf-
ficiently regular integrand that allows an n-dimensional trapezoidal rule to be used, and handle
the singularity-correction term by a separate quadrature. We first consider the spatially varying
coefficient κ(x) and then the spatially varying fractional order β(x).

4.1 Variable diffusion coefficient

We consider the case where the two-argument nonlocal diffusion coefficient a(x,y) is defined as the
geometric mean of a diffusion coefficient κ(x), so we write a(x,y) = κ(x)1/2 κ(y)1/2. The case where
the function a(x,y), which must be symmetric, is the arithmetic mean of its two constituents, or
has other forms, can be handled in a similar fashion, and we skip the details.

We consider the evaluation at a point x = xi and make use of the following Taylor series
expansions for u(y) and c(y) := κ(y)1/2, around xi:

u(y) = u(xi) +∇u(xi)
T (y − xi) + 1

2 (y − xi)
T∇2u(xi)(y − xi) + · · · (41)

c(y) = c(xi) +∇c(xi)T (y − xi) + · · · (42)

The term needed to cancel the singularity of (40) at y = xi takes the form

C(y) =
2w(‖y − xi‖) [∇uTi (y − xi) + 1

2 (y − xi)
T∇2ui(y − xi)] [c2i + ci∇cTi (y − xi)]

‖y − xi‖n+2β
(43)

which may be simplified, after removing terms involving odd powers of (y − xi) whose integrals
vanish, to:

C(y) =
w(‖y − xi‖) (y − xi)

T [2ci∇ · (ci∇ui)− c2i∇2ui](y − xi)

‖y − xi‖n+2β
(44)

which involve both the Laplacian and a variable coefficient Laplacian of u(x) at xi. Simplifying
further, by noting that terms that involve cross products of the different components of the n-
dimensional vector (y− xi) also have integrals that vanish, we can write the numerator of (44) as a
sum of terms involving the derivatives of u(x) in the n coordinate directions:

n∑
d=1

w(‖y − xi‖)
[
2ci∂d(ci∂dui)− c2i ∂2ddui

]
(yd − xi,d)

2 (45)

where yd and xi,d are the d-th components of the Rn vectors y and xi, respectively, and ∂d is the
derivative in the d-th direction. Each of the n summands in (45) looks like the one-dimensional
singularity removing term in (22), and we can therefore use a similar discretization to the one in
Section 3.1, to write C(y) as a sum of n terms, each corresponding to a coordinate direction:

C(y) =

n∑
d=1

∂2ddui
w(‖y − xi‖)(yd − xi,d)

2

‖y − xi‖n+2β
(46)

where ∂2ddui := 2ci∂d(ci∂dui)−c2i ∂2ddui, and can be conveniently discretized on a regular grid similarly
to (26), interpreted in the d-th coordinate, i.e., with the i + 1 and i − 1 subscripts referring to the
next and previous grid points in the coordinate direction d, respectively:

∂2ddui ≈ 1
h2 (ki−1ui−1 − (ki−1 + ki+1)ui + ki+1ui+1) (47)
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This allows us to write the complete discretization of (40) for spatially varying diffusion as:

hn
∑
j 6=i

[
−2(uj − ui) aij
|xj − xi|n+2β

+

n∑
d=1

∂2ddui
w(|xj − xi|)(xj,d − xi,d)

2

‖xj − xi‖n+2β

]

−
n∑
d=1

∂2ddui

∫
Ω∪Ω0

w(|y − xi|)(yd − xi,d)
2

‖y − xi‖n+2β
dy (48)

Equation (48) reduces to (28) and (29) of the previous section for the one dimensional case n = 1.
The resulting multidimensional discretized operator can also be written as A = B + D = C where
C is a sparse symmetric matrix resulting from the treatment of the singularity. On a regular grid C
has a memory footprint similar to that of the discretization of the classical Laplacian with 5/7-point
in 2D/3D. For the constant diffusivity case, C reduces to a scaled Laplacian as derived in [30].

4.2 Variable fractional order

For the case of a spatially-varying fraction order, β(y) can be written as the Taylor series

β(y) = β(x) +∇β(x)T (y − x) +O(‖y − x‖2∇2β(x)
) (49)

where the quadratic term is the squared norm with respect to the Hessian at x. This allows the
singular kernel that needs to be regularized to be expressed as:

γ(x,y) =
1

‖y − x‖n+β(x)+β(y) =
1

‖y − x‖n+2β(x)
(1−∇β(x)T (y−x) log‖y−x‖+O(‖y−x)‖2H) (50)

where the matrix H in the quadratic term involves the Hessian ∇2β(x) and the outer product
∇β(x)T∇β(x). These terms do not play an explicit role in the desingularization as we explain
below.

We consider the evaluation of the integral operator (40) at a point x = xi. Combining (50) with
the Taylor series expansion of u(y) of (41), we can write

L[u(xi)] =

∫
Ω∪Ω0

[ −2(u(y)− u(xi))

‖y − xi‖n+β(xi)+β(y)
+ C(y)

]
dy −

∫
Ω∪Ω0

C(y) dy (51)

where the desingularization term is defined as:

C(y) =
w(‖y − xi‖)

(
(y − xi)

T∇2ui(y − xi)− 2(y − xi)
T∇β(xi)∇u(xi)

T (y − xi) log‖y − xi‖
)

‖y − xi‖n+2β(xi)

(52)
The first integral of (51) is no longer singular. Its integrand is zero as y→ xi with enough regularity
in its derivatives to admit a second-order accurate discretization by a trapezoidal rule. We point
out that the higher order terms in (50) and (41) were not included in C(y) because they either
contribute odd terms whose integrals vanish or fourth-order smooth terms that do not affect the
overall resulting smoothness of the integrand. The second integral of (51) can be written as the sum
of two terms, each involving the product of first or second derivatives of u at xi with an integral
independent of u that can be carried out by a separate numerical quadrature.

As in Section 4.1, a further simplification can be performed by noting that terms involving
products of the different components of the n-dimensional vector (y − xi) result in integrals that
vanish. The numerator of (52) can be then written as the sum of n terms, each involving derivatives
of ui and βi in only one of the spatial dimensions:

C(y) =

n∑
d=1

w(‖y − xi‖)
(
∂2ddui (yd − xi,d)

2 − 2 ∂dui ∂dβi (yd − xi,d)
2 log‖y − xi‖

)
‖y − xi‖n+2β(xi)

(53)
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Plugging into (51) results in the final discretization of (40) at xi:

hn
∑
j 6=i

[
−2(uj − ui)

‖xj − xi‖n+βi+βj

+

n∑
d=1

∂2ddui
w(‖xj − xi‖)(xj,d − xi,d)

2

‖xj − xi‖n+2βi
− 2

n∑
d=1

∂dui
w(‖xj − xi‖)∂dβi(xj,d − xi,d)

2 log‖xj − xi‖
‖xj − xi‖n+2βi

]

−
n∑
d=1

∂2ddui

∫
Ω∪Ω0

w(‖y − xi‖)(yd − xi,d)
2

‖y − xi‖n+2βi
dy

+ 2

n∑
d=1

∂dui

∫
Ω∪Ω0

w(‖y − xi‖)∂dβi(yd − xi,d)
2 log‖y − xi‖

‖y − xi‖n+2βi
dy (54)

5 Matrix representation and solution strategies

In this section we describe computational strategies for storing and factoring the discretized oper-
ators resulting from (48), (54), or multi-dimensional versions of (71). As mentioned in Section 1,
representing these operators in their natural dense form is prohibitive because of the O(N2) memory
footprint that would be required. Using the fact these matrices are “data sparse”, i.e., blocks of A ad-
mit low rank approximations, allows substantial reductions in memory to be realized. In Section 5.1,
we describe a blockwise low rank matrix representation and motivate its use, and in Section 5.2 we
show that the representation allows for an efficient left-looking block Cholesky algorithm to operate
directly on the compressed format and generate a factorization in O(N2) operations.

5.1 Blockwise low rank matrix representation

Consider a matrix block Ats where t are row and column indices that correspond to clusters of grid
points in spatial regions Ωt and Ωs, respectively. Ωt and Ωs may conveniently be taken as axis-aligned
bounding boxes of the respective point sets. Standard results [5] regarding the approximability of
nonlocal operators and their inverses (or the closely related Cholesky factors) [20,3,2], which also
apply to fractional Laplacians [24], establish that if the admissibility condition:

max{diam(Ωt),diam(Ωs)} ≤ η dist(Ωt, Ωs) (55)

holds, then the asymptotically smooth kernel γ(x,y) may be approximated on the bounding regions
Ωt and Ωs by a tensor product interpolating polynomial of degree d in each spatial dimension,
γ̄ts(x,y), with an approximation error bounded as [21]:

|γ(x,y)− γ̄ts(x,y)| ≤ C

dist(Ωt, Ωs)σ
qd (56)

where σ is the order of the kernel singularity, i.e., n + 2β and n + 1 + β in the symmetric and
non-symmetric formulations of Section 2, respectively, and q = cη/(cη + 1) < 1 depends on the
admissibility parameter η which is small when Ωt and Ωs are well separated and grows as they
become closer to each other relative to their size. C and c are positive constants.

A consequence of (56) is that a matrix block Ats of size m ×m may be represented by m × k
factors Uts and Vts where the block rank is k ≤ dn, and the approximation has the error bound [5]:

‖Ats − UtsV Tts ‖F ≤
C0|Ωt|1/2|Ωs|1/2

dist(Ωt, Ωs)σ
qd (57)

Similar approximations bounds can also be written in the case of nested bases, i.e., when the low
rank block factorization of Ats is expressed as UtStsV

T
s and the Ut and Vs bases are expressed in

terms of the bases of children clusters of t and s.
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Fig. 4 Matrix structures that exploit local low rank approximations. Red blocks are stored as dense matrix blocks,
while green blocks are stored as low rank factorizations. From left to right: weak-admissiblity H, strong-admissibility
H, and blockwise low rank representations.

Data sparsity may be exploited in the matrix representation in a variety of manners. A popular
way of doing so has been through different flavors of hierarchical (H) matrices. The left panel of Fig. 4
depicts one the simplest such representations with fixed matrix blocking, where every off-diagonal
block touches the diagonal and is stored as a low rank factorization. This structure is alternatively
known as weak-admissibility H-matrix structure, HODLR, or HSS [35] in the case when the low rank
block factorizations are expressed in nested column and row bases. However the weak admissibility
condition is only adequate for essentially one-dimensional problems and in that case direct solvers
are possible [19]. Using the weak admissibility structure for multidimensional problems however
would require very large ranks, that grow as a (fractional) power of N , to reach reasonable accuracy
requirements since in such problems the factor q that appears in (57) is close to 1, and the distance
between point clusters is on the order of the grid spacing for the largest off-diagonal blocks.

The middle panel of Fig. 4 depicts a representation that remedies this rank growth problem by
allowing refinements of all blocks of the matrix, adaptively, as needed. In this representation, the
dense blocks may appear anywhere in the matrix, not just along diagonal blocks, and various blocks
are sized in such a way to allow bounded ranks O(1) to be used everywhere. This representation is
known as a standard or strong-admissibilityH-matrix, orH2 in the case of nested bases, and results in
optimal storage complexities of O(kN logN) and O(kN), respectively, with k being a relatively small
representative local block rank. Unfortunately, the generality of this representation does not allow
for efficient direct factorization algorithms that can be executed on multicore hardware. Therefore,
general H and H2 representations have primarily been used as the main workhorse for iterative
solution methods because matrix-vector multiplication can be performed efficiently [7] with them.

An alternative representation, and the one we adopt here, is a blockwise low rank representation.
Instead of a full hierarchy of levels, this representation introduces only one level between the scalar
operations and the full matrix dimension. Blocks are uniform in size and all off-diagonal blocks
are stored as low rank factorizations, as depicted in the right panel of Fig. 4. The block ranks are
computed adaptively so that a uniform accuracy is maintained in all blocks. Blocks that correspond
to well-separated clusters will require a small rank, while larger ranks are needed in blocks with
clusters resulting in large admissibility constants η in (55). In practical 2D and 3D problems, the
number of blocks requiring large ranks is quite small. Even though this representation does not at-
tain the optimal asymptotic memory footprint of strong-admissibility H representations, substantial
compression is achieved on problems of interest with its O(kN1.5) asymptotic growth because of the
relatively small average ranks that can be achieved, as we show in Section 6. Additionally, by using
the matrix blocks as atomic computational tiles, efficient direct factorization algorithms that benefit
both from data sparsity and rich parallelism are possible, as we describe in Section 5.2 below.

In order to produce small ranks in this tile low rank (TLR) representation, a proper ordering
of the grid points is essential. Ideally, points with indices close to each other should be spatially
clustered together to allow (55) to be satisfied with a small η. A small η results in a small q in (57),
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and therefore in smaller ranks for a given target approximation accuracy. A natural ordering of points
in a regular grid will not, for example, satisfy this requirement. Optimal orderings for minimizing
ranks are generally not known nor are practical. Instead, we use ordering heuristics similar to those
developed for clustering in hierarchical matrices [7].

We first fix the tile size m, which can be tuned to the cache size of the target hardware. The
ordering of the geometric data is then determined by partitioning the grid points using a KD-tree,
with repeated plane splits along coordinate directions, aimed to partition the points into clusters
that are as close to the chosen tile size as possible. The construction is recursive starting from the
whole point set as the topmost cluster. The points within each cluster are sorted by projecting along
the largest dimension of its bounding box and then split into a left cluster whose size is half the
closest power of two of the full cluster multiplied by the tile size and a right cluster containing the
remaining points. This produces a cluster tree whose leaves are all the same size with the possible
exception of the right most leaf, allowing the construction of the tile low rank matrix with just the
final block row and column requiring padding. The resulting ordering of the grid points provides the
structure and the starting point for constructing the matrix approximation and its factorization as
we describe next.

5.2 Matrix factorization in the blockwise compressed TLR format

The first step in the processing is to construct the TLR matrix approximation. We perform this for
every block/tile independently and concurrently. The m×m tiles of the matrix are evaluated, with
each entry requiring a kernel evaluation and, when appropriate, a singularity correction as described
in Section 4. Each tile is then compressed using an adaptive randomized approximation (ARA)
algorithm [22,8]. ARA requires only the sampling of the block being compressed via multiplication
with random vectors. A non-adaptive randomized method generates a fixed rank k approximation
by: (1) sampling using the product Y = AtsX where X is a set of k random vectors, and (2)
orthogonalizing Y = QR to produce an approximate basis U = Q for the columns of Ats. The block
is then projected onto this basis to produce the right low rank factor V = ATU , thus producing the
low rank factorization of Ats ≈ UV T . Adaptive methods that automatically detect the appropriate
rank for a given target accuracy, sample the matrix block Ats one vector at a time, iteratively
constructing the orthogonal basis U until the convergence threshold ‖A − UV T ‖ ≤ ε is satisfied.
Efficient and cache-friendly implementations of ARA are possible, and have been developed for GPU
execution as well [8].

Algorithm 1 Left Looking Cholesky
1 procedure lchol(A,m)
2 nb = size(A)/m . number of tiles per block column
3 for k = 1→ nb do
4 for j = 1→ k − 1 do
5 for i = k → nb do
6 A(i, k) = A(i, k)− L(i, j)L(k, j)T

7 L(k, k) = chol(A(k, k))
8 for i = k + 1→ nb do
9 L(i, k) = A(i, k)/L(k, k)T

Cholesky factorization of the constructed TLR matrix starts with a block factorization algorithm
and operates on off-diagonal tiles using their low rank UV T representations. Algorithm 1 is a high
level description of a left-looking variant of Cholesky, that operates on tiles of size m × m and
updates tiles in the kth column using low rank updates to its left (lines 4–6). The left looking
Cholesky variant has the convenient property that each tile is updated only once during execution.
This is important from a performance viewpoint as it minimizes the number of tile compressions that
have to be performed. Algorithms that update tiles multiple times incur additional costs due to the
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repeated tile compressions that would be necessary to prevent increase in ranks during intermediate
computations.

In addition, the key update operation of lines 4–6

A(i, k) = A(i, k)−
k−1∑
j=1

L(i, j)L(k, j)T = A(i, k)−
k−1∑
j=1

U(i, j)V (i, j)TV (k, j)U(k, j)T (58)

is performed using an ARA operation, i.e., its right hand side is sampled with random vectors as
needed to approximate the output to the target accuracy, allowing substantial parallelism in the
process. In total, the factorization of the constructed TLR matrix can be done in O(kN2) if a block
size of size m =

√
N is used.

We also note here that beyond the savings in operation count from working directly with the
compressed low rank representation, the small size of the low rank data and the regularity of the tile
size allow more effective use of small cache memories. The savings in latency from having the low rank
data reside high on the memory hierarchy produce a significant performance boost because modern
hardware architectures are provisioned for high processing power relative to memory capacity and
memory bandwidth [25]. The numerical results in the next section show the substantial effects of
these combined savings on the performance of the factorization.

6 Numerical Results

Is this section we describe numerical experiments in 1D and 2D to illustrate the effectiveness of the
singularity subtraction technique in the variable coefficient case and the computational savings real-
ized by the TLR format in handling the discretized operators. The code for reproducing these experi-
ments will be available in a branch of the H2Opus software distribution https://github.com/ecrc/h2opus.

6.1 Examples in 1D

κ(x)

1 2−1−2 Ω Ω0Ω0

Fig. 5 Spatially varying nonlocal diffusion coefficient κ(x).

We first consider the variable diffusivity case where the simulation region consists of an interior
region Ω, −1 ≤ x ≤ 1, with homogeneous “Dirichlet” conditions imposed outside Ω in the region
−2 ≤ x ≤ 2. The diffusion coefficient is defined as κ(x) = 1 + bump(x; 0.5, 1.0), where a “bump”
function with support ` = 1.0 centered at c = 0.5, and defined as:

bump(x; c, `) =

{
exp
(
− 1

1−r2
)
, r = x−c

`/2 , |r| < 1

0, |r| ≥ 1
(59)

is added to a uniform background κ = 1. The function κ(x) is plotted in Fig. 5. A constant fractional
order β = 0.75 is used.

We solve the problem for a uniform right hand side f(x) = 1, on regular grids of size N = 64,
128, 256, 512, 1024, and 2048 in Ω. Since there is no readily available analytical solution for this
spatially varying coefficient case, we estimate the error on each grid by using the next finer grid as
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Fig. 6 O(h) decrease in discretization error for sample problems with spatially varying coefficients in 1D: (left)
variable diffusivity κ(x), (right) variable fractional order β(x).

the reference solution, eh = uh − uh/2, and use the sequence of error estimates to compute the rate
of convergence p of the discretization, ‖eh‖/‖eh/2‖ = 2p.

The left panel of Fig. 6 shows the resulting linear decrease in the relative max-norm error with
grid size h = 1/N . We note that the first-order accuracy reached is limited only by the reduced
regularity of the solution itself, which has singular derivatives at the boundaries. The trapezoidal
rule with the singularity treatment can achieve second order accuracy if the solution had more
regularity.

Next, we consider a variable fractional order example defined in the same interior region Ω, −1 ≤
x ≤ 1, also with homogeneous “Dirichlet” conditions imposed outside Ω in the region −2 ≤ x ≤ 2.
A linear spatial variation in β is used, β(x) = 0.7+0.1x, with a constant diffusivity coefficient κ = 1.
As in the previous example, we solve the problem for a uniform right hand side f(x) = 1, on grids of
size N = 64, 128, 256, 512, 1024, and 2048 in Ω. The relative max-norm error is computed from the
difference of two solutions on successive grids. The right panel of Fig. 6 shows the resulting linear
decrease in the error, computed as the max-norm of the difference in two solutions on successive
grids.

A similar convergence behavior is obtained for the non-symmetric formulation. Figure 7 shows
the convergence for problems with spatial variation β(x) = β0 + 0.1x for three different values of β0.
In all cases, the singularity treatment results in solution convergence that is linear. For reference,
the plot also shows the much slower convergence that results without the explicit treatment of the
singularity. We also note that in this case the rate of convergence deteriorates faster as β → 1,
particularly as the grid is refined.

6.2 Variable Coefficients in 2D

In the 2D experiments, we consider the region Ω = [−1, 1]2 extended to [−2, 2]2 where homogeneous
Dirichlet conditions are applied.

A spatial variation of diffusivity is defined as:

κ(x) = 1 + 2.5 bump2D(x, c1, `1, θ1) + 2.5 bump2D(x, c2, `2, θ2) (60)

where bump2D(x, c, s, θ) is a 2D bump function obtained by taking the product of two bump func-
tions in one variable and rotating the result by an angle θ. We use c1 = [0.2, 0.25], c2 = [−0.1,−0.2],
`1 = [1.4, 1.4], `2 = [1.4, 1.8], θ1 = π/4, and θ2 = −π/10. The variation is shown in the left panel of
Fig. 8.

A spatial variation in fractional order is defined as:

β(x) = 0.8− 0.2 bump2D(x, [0, 0], [2, 2], 0) (61)
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β0 = 0.6, no singularity treatment
β0 = 0.6, with singularity treatment
β0 = 0.7, no singularity treatment
β0 = 0.7, with singularity treatment
β0 = 0.8, no singularity treatment
β0 = 0.8, with singularity treatment

Fig. 7 Convergence behavior for variable fractional order of the form β(x) = β0 + 0.1x in the non-symmetric
formulation. For comparison, the behavior without the singularity treatment is also shown.
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Fig. 8 2D spatially variable nonlocal diffusion coefficients used in the numerical experiments: (left) variable κ(x),
(right) variable β(x).

and is plotted in the right panel of Fig. 8.

For both variations, we solve the problem for a uniform right hand side f(x) = 1 on a regular
cartesian grid in Ω of size 162, 322 642, 1282, 2562, and 5122. The error is estimated on each grid by
using the next finer grid as the reference solution. The relative max-norm of the error is plotted as
a function of the number of grid points and the plots shown in Fig. 9. In both cases, we obtain the
optimal rate allowed by the regularity (or rather, lack thereof) of the solution. The error decreases
as O(1/h) where the grid spacing is h = N1/2.

The memory usage of the discrete operator is shown in the left panel of Fig. 10. A dense rep-
resentation would store N2 numbers. For the simulation of size N = 5122 = 262K, this would
require an impractical 500+GB of storage for double precision floating point numbers. By con-
tract, the TLR memory consumption, which approximates the matrix to an accuracy ε = 10−6

(‖Ats−Ats,TLR‖ ≤ 10−6 for all tiles), grows at a much more modest O(N1.5). For the simulation of
size N = 5122, it requires a total of only 6.65GB of memory, with 2.0GB for the dense diagonal tiles
(256 tiles of size m = 1024 each) and 4.65GB for the off diagonal tiles, with an average tile rank k
less than 10. A KD-tree was used to decompose the grid point set recursively, with the leaves of the
decomposition producing the grid ordering and the point clusters that define the matrix tiles. The
tile ranks and therefore the memory consumption can be somewhat controlled by the desired target
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Fig. 9 Convergence results for variable κ(x) and variable β(x). O(h) convergence is observed in both cases, where h
is the grid spacing.

103 104 105
10−3

10−2

10−1

100

101

102

N

M
em

or
y
fo
ot
p
ri
n
t
(G

B
)

TLR
Dense

O(N1.5)

103 104 105
10−2

10−1

100

101

102

N

T
im

e
(s
)

Factorization

O(N2)

Fig. 10 Memory footprint and Cholesky factorization cost of the discrete operator in TLR format.

accuracy of the TLR representation, since the tile ranks are expected to change slowly with ε, as
O(|log ε|n+1).

The right panel of Fig. 10 is a plot of the factorization time for the Cholesky decomposition.
The computations were performed in the TLR format to an accuracy of ε = 10−6 as well, on a
workstation with two Xeon 20-core processors. For the N = 5122 problem, the factorization required
140s. More importantly, the asymptotic growth in runtime is only O(N2), a substantial improvement
over the O(N3) that would be needed for the decomposition in the dense format. Given the triangular
decomposition, a pair of forward and backward passes for computing a solution for a new right hand
side only takes a small fraction of a second in the TLR format for the N = 5122 problem.

Finally, we plot in Fig. 11 the rank distribution of the matrix tiles in the TLR format, both
for the forward operator and its Cholesky factorization. To keep the plots legible, we use a small
representative problem of size N = 1282 = 16K with the variable fractional order of (61), but the
trends are very similar to those of the larger problems. We use a tile size of m = 512 which results
in 32 diagonal tiles shown in red in the heatmap plots. Plots of the distribution of the ranks of the
off-diagonal tiles are shown in the right column of Fig. 11, with an average rank of k = 27.8 for
the forward operator. The triangular Cholesky factor increases the ranks marginally, as can be seen
through the slightly darker shades of the bottom heatmap. The average rank of the off-diagonal
tiles of the Cholesky factor is k = 31.3 and its overall memory consumption (dense diagonal plus
low rank off-diagonals) increases by less than 10% compared to the forward operator. We also note
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Fig. 11 Tile rank distribution in the TLR format for a 16K problem with tile size m = 512: (top) the discretized
operator; and (bottom) its Cholesky factor. Left column shows heatmap plots of the matrices and right columm shows
plots of their (sorted) tile ranks. Only a slight increase in tile ranks of the Cholesky factor is observed, as expected.

that the tile size m provides another tuning knob to control and trade-off memory consumption
vs factorization time, that is useful for high-performance contexts, but we do not discuss this fine
tuning further in this work.

7 Conclusions and future work

We presented a singularity treatment technique that allows the effective discretization of integral
formulations of variable coefficient fractional diffusion equations. A singularity subtracting term
is derived at every point by matching the asymptotic singularity of the variable diffusivity and
variable fractional order kernel through expansion of its various terms. The singularity is subtracted
locally to produce a regular integrand that can be discretized on a regular grid by a trapezoidal
rule. The resulting discretized operator is dense, however, and requires compression to make it
practical for meaningful multi-dimensional simulations. To this end, we propose a tile low rank
representation which partitions the dense matrix into blocks of roughly uniform size, where every
off-diagonal tile is compressed and stored as its own low rank factorization. The blockwise low
rank representation allows substantial compression and a much smaller memory footprint to be
achieved for the fractional diffusion operators, when the grid is ordered in a way that preserves
spatial proximity. A Cholesky decomposition algorithm operates directly on the compressed TLR
representation, and uses an adaptive randomized approximation algorithm to compute the resulting
tiles of the triangular factors, in a left-looking variant of the algorithm that requires only one such
compression per tile.

Numerical experiments confirm the effectiveness of the discretization. Simulations with variable
diffusivity and fractional order in 1D and 2D confirm that the best convergence rate allowed by the
regularity of the solution is reached. In particular, first-order convergence is obtained for problems
with singular derivatives at the boundaries. Analysis of the discretized operator in 2D problems
also confirm the efficacy of the TLR representation in reducing the memory footprint from O(N2)
to O(kN1.5) with small average tile ranks when using a KD-tree induced clustering and ordering
of the grid. A nearly two-order of magnitude reduction in memory compared to a dense format is
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obtained for an N = 262K problem compressed to a 10−6 accuracy. Results also confirm that the
direct factorization of the operator can be done in O(kN2).

These encouraging results point to a number of extensions that we intend to consider in the
future. We have dealt with isotropic coefficients and plan to extend the treatment to the practi-
cally important anisotropic case. We also plan to analyze the effect of discontinuous coefficients.
Our discretization has been on a regular cartesian grid, but can be extended to general geometries
and triangular meshes. In addition, we plan to explore the role of GPUs in accelerating the arith-
metically intensive TLR computations, which we expect should give the computations a substantial
performance boost. Finally, we intend to tackle large scale 3D problems which will likely require
distributed-memory computers and perhaps the use of hierarchical matrices, with their optimal
computational complexities at scale.

A Treatment of kernel singularity in the non-symmetric formulation

In 1D the fractional flux is written as:

Qβ(x) = −κ(x)
dβ(x)

dxβ
u(x) (62)

= −κ(x)ω(x)

∫
Ω

y − x
|y − x|β(x)+2

u(y)dy (63)

Consider the desingularization of the integral of (63),

I(x) =

∫
Ω

[
y − x

|y − x|β(x)+2
u(y)−

(y − x)w(y − x) [u(x) + u′(x)(y − x)]

|y − x|β(x)+2

]
dy (64)

+ u′(x)

∫
Ω

(y − x)w(y − x) [u(x) + u′(x)(y − x)]

|y − x|β(x)+2
dy (65)

The first integrand is now no longer singular and can be readily discretized by a trapezoidal/midpoint rule.
Because the integrals of odd powers of (y − x) evaluate to zero, the expression for I(x) simplifies to:

I(x) =

∫
Ω

[
y − x

|y − x|β(x)+2
u(y)− u′(x)

w(y − x)

|y − x|β(x)

]
dy + u′(x)

∫
Ω

w(y − x)

|y − x|β(x)
dy (66)

Let the local function w(y − xi) have support in a small region δ ≤ y − xi ≤ δ, where δ corresponds to a few cell
widths mh. Then the second term of (66) may be discretized as:

∫
Ω
−u′(x)

w(y − x)

|y − x|β(x)
dy = u′(x)h

i+m−1∑
j=i−m

−
w((xj+1/2 − xi))
|xj+1/2 − xi|β(xi)

= u′(x)C1(xi) (67)

If we denote the last integral of (66) by C2(x), then

C2(xi) =

∫ xi+δ

xi−δ

w(y − xi)
|y − xi|β(xi)

dy (68)

and the final discretization of the flux becomes:

Qβ(xi) ≈ −κ(xi)ω(xi)

h∑
j

(xj+1/2 − xi)uj+1/2

|xj+1/2 − xi|β(xi)+2
+
ui+1/2 − ui−1/2

h
(C1(xi) + C2(xi))

 (69)

C1 and C2 can be computed first for all xi and then used in the discretization of (69).
The fractional diffusion operator is then

dQβ(xi)

dx
≈

1

h

(
Qβ(xi+1)−Qβ(xi)

)
(70)

= −κ(xi)ω(xi)

∑
j

(xj+1/2 − xi+1)uj+1/2

|xj+1/2 − xi+1|β(xi+1)+2
−
∑
j

(xj+1/2 − xi)uj+1/2

|xj+1/2 − xi|β(xi)+2


− κ(xi)ω(xi)

1

h2

(
Ci+1ui+3/2 − (Ci + Ci+1)ui+1/2 + Ciui−1/2

)
(71)

where Ci = C1(xi) + C2(xi).
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