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Abstract

Alamouti space-frequency block coding, applied over the carriers of an OFDM system, is considered for obtaining

transmit diversity in an underwater acoustic channel. Thistechnique relies on the assumptions that there is sufficient

spatial diversity between the channels of the two transmitters, and that each channel changes slowly over the carriers,

thus satisfying the basic Alamouti coherence requirement and allowing simple data detection. We propose an adaptive

channel estimation method based on Doppler prediction and time-smoothing, whose decision-directed operation allows

for reduction in the pilot overhead. System performance is demonstrated using real data transmitted in the 10-15 kHz

acoustic band from a vehicle moving at 0.5-2 m/s and receivedover a shallow water channel, using QPSK and a

varying number of carriers ranging from 64 to 1024. Results demonstrate an average mean squared error gain of

about 2 dB as compared to the single-transmitter case and an order of magnitude decrease in the bit error rate when

the number of carriers is chosen optimally.

Index Terms

Underwater acoustic communication, OFDM, MIMO, Alamouti,space-frequency block coding, adaptive channel

estimation.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is considered for frequency-selective underwater acoustic

(UWA) channels as it offers low complexity of fast Fourier transform-based (FFT) signal processing, and ease of

reconfiguration for use with different bandwidths. In addition, by virtue of having a narrowband signal on each

carrier, OFDM is easily conducive to multi-input multi-oputput (MIMO) system configurations.

OFDM-MIMO systems have been considered for UWA channels both for increasing the system throughput via

spatial multiplexing [1], [2] and for improving the systemsperformance via spatial diversity [3]. A large body of

work has also been devoted to single-carrier MIMO systems, addressing issues of space-time coding and iterative

(turbo) equalization [4], [5], [6], [7], frequency-domainprocessing [8], [9], Doppler compensation [10], and time-

reversal methods [11] for spatial multiplexing.
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The focus of our present work is on transmit diversity, whichwe pursue through the use of Alamouti coding

applied across the carriers of an OFDM signal. Space-frequency block coding (SFBC) is chosen over traditional

space-time block coding (STBC) as better suited for use withacoustic OFDM signals. Namely, while the Alamouti

coherence assumption [12] may be challenged between two adjacent OFDM blocks on a time-varying acoustic

channel [3], it is expected to hold between two adjacent OFDMcarriers: Frequency coherence assumption coincides

with the basic OFDM design principle which calls for the carriers to be spaced closely enough that the channel

transfer function can be considered flat over each sub-band.Previous studies in radio communications have also

revealed that space-frequency transmit diversity significantly outperforms space-time transmit diversity in fast fading

environments when the normalized Doppler frequency is large [13], [14].

Two types of approaches have been considered for MIMO OFDM acoustic systems: Non-adaptive, where each

block is processed independently using pilot-assisted channel estimation [1], and adaptive, where coherence between

adjacent blocks is exploited via channel/Doppler trackingand prediction to enable decision-directed operation and

reduce the pilot overhead [2]. Both approaches require front-end synchronization for initial Doppler compensation

through signal resampling [15]. Front-end processing remains unchanged for multiple transmitters if they are co-

located and experience the same gross Doppler effect. Otherwise, multiple resampling branches may be needed to

compensate for transmitter-specific Doppler shifting [16].

Leveraging on the adaptive MIMO-OFDM design [2], we developa receiver algorithm for the SFBC scenario.

Specifically, we decouple the channel distortion into a slowly-varying gain and a faster-varying phase, which enables

us to track these parameters at different speeds. For estimating the channel, we use either the orthogonal matching

pursuit (OMP) algorithm [17] or a newly-developed algorithm based on least squares with adaptive thresholding (LS-

AT). This algorithm computes the full-size LS solution to the impulse response (IR) domain channel representation,

then truncates it to keep only the significant IR coefficients. However, unlike the typical truncated LS solutions

which use a fixed truncation threshold [2], the threshold is determined adaptively so as to provide a proper level of

sparseness. LS-AT is found to perform close to OMP, at a lowercomputational cost. Similar approaches have been

proposed in the literature, where the threshold level is adaptively computed as a function of the noise variance in

the time domain [18], [19]. Once an initial channel estimateis formed, its tracking continues via time-smoothing.

Simultaneously, an estimate of the residual Doppler scale is made for each of the two transmitters, and this estimate

is used to predict and update the carrier phases in each new OFDM block.

The advantages of Alamouti SFBC are contingent upon frequency coherence, which increases as more carriers

are packed within a given bandwidth (the bandwidth efficiency simultaneously increases). However, there is a fine

line after which inter-carrier interference (ICI) will be generated, and this line should not be crossed if simplicity

of Alamouti detection is to be maintained. We assess this trade-off through simulation and experimental data

processing, showing the existence of an optimal number of carriers and an accompanying transmit diversity gain.

The paper is organized as follows. In Sec. II we introduce thesystem model and discuss the channel assumptions.

The receiver algorithm is described in Sec. III. In Sec. IV, results of simulation and experimental data processing

are presented. Conclusions are summarized in Sec. V.
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II. SYSTEM MODEL

We consider a MIMO system withMT = 2 transmitters andMR receivers. OFDM is used withK subcarriers,

equally spaced within the system bandwidthB at ∆f = B/K. The OFDM symbol duration isT = 1/∆f , and a

guard interval (cyclic prefix) of durationTg, sufficient to accommodate the multipath spreadTmp, is added for the

total block duration ofT ′ = T + Tg. The symbols1 are encoded using the Alamouti SFBC scheme, i.e. ifk is the

carrier pair index (k = 0 . . .K/2 − 1), during then-th OFDM block, thesimultaneouslytransmitted symbols on

carriers2k and2k + 1 are, respectively,d2k(n), d2k+1(n) from the first transmitter, and−d∗2k+1(n), d
∗

2k(n) from

the second transmitter.

The channel transfer function observed on the carrierk′ between transmittert and receiverr during then-th

OFDM block is denoted byHt,r
k′ (n), k′ = 0 . . .K− 1. The received signal, corresponding to thek-th coded carrier

pair and ther-th receiving element after FFT demodulation, is given by

yrA
2k (n) =




H1,r

2k (n) H2,r
2k (n)

−H2,r∗
2k+1(n) H1,r∗

2k+1(n)





︸ ︷︷ ︸

Cr
2k

(n)

dA
2k(n) + zrA2k (n) (1)

where

yrA
2k (n) =




yr2k(n)

−yr∗2k+1(n)



 ,dA
2k(n) =




d2k(n)

−d∗2k+1(n)





and

zrA2k =




zr2k(n)

−zr∗2k+1(n)





represents zero-mean additive noise components. IfMR receiving elements are used, their signals can be arranged

into a single vector, so that the system is fully described by







y1A
2k (n)

...

yMRA
2k (n)








︸ ︷︷ ︸

yA
2k

(n)

=








C1
2k(n)

...

CMR

2k (n)








︸ ︷︷ ︸

C2k(n)

dA
2k(n) +








z1A2k (n)
...

zMRA
2k (n)








︸ ︷︷ ︸

zA
2k

(n)

(2)

Based on this model, least squares (LS) data estimates are obtained as

d̂A
2k(n) = [CH

2k(n)C2k(n)]
−1CH

2k(n)y
A
2k(n) (3)

1We use the termdata symbolor just symbol to refer to the information modulated onto each carrier. A group of data symbols assigned to

all carriers during one intervalT is referred to as one OFDM symbol or one OFDMblock. The corresponding time-domain waveform is also

referred to as a block. Several successive blocks form oneframe. Frames are separated by a synchronization preamble.
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A. The Alamouti assumption

The Alamouti assumption, expressed for space-frequency coding, states that the channel does not change much

over two consecutive carriers:

Ht,r
2k (n) ≈ Ht,r

2k+1(n) (4)

When this assumption holds, the channel matrix satisfies theproperty

CrH
2k (n)Cr

2k(n) =
(
|H1,r

2k (n)|2 + |H2,r
2k (n)|2

)

︸ ︷︷ ︸

Er
2k

(n)

I2 (5)

whereI2 is the2× 2 identity matrix. The LS data estimate (3) then reduces to

d̂A
2k(n) =

1
∑

r E
r
2k(n)

CH
2k(n)y

A
2k(n) (6)

Extraction of the transmit diversity gain through summation of individual channel’s energies, and simplicity of data

detection without matrix inversion, form the essence of Alamouti processing.

B. Channel model

We model the UWA channel as

Ht,r
k′ (n) =

∑

p

ht,r
p (n)e− j 2πfk′τ t,r

p (n) (7)

whereht,r
p (n) and τ t,rp (n) represent, respectively, the gain and delay of thep-th propagation path, andfk′ =

f0 + k′∆f is the thek′-th carrier frequency. We further assume that the path gainsare slowly varying with the

block indexn, and that the delays are subject to compression/dilatationcaused by motion at a constant relative

velocity vt,r which does not change over a certain number of OFDM blocks. The delay is consequently modeled

as

τ t,rp (n) = τ t,rp (n− 1)− at,rT ′ = τ t,rp (0)− at,rnT ′ (8)

whereat,r = vt,r/c is the Doppler scaling factor. Our work specifically addresses the case in which both the

transmit and the receive elements are co-located, and the major cause of motion is the motion of the transmitter.

One can then assume thatat,r = at [2].

Synchronization at the receiver is performed independently for each receiving element. The receiver’s reference

time τr0 (0) is inferred from the composite received signal and set to 0. In general, however, one can have both

τ1,r0 (0) 6= 0 and τ2,r0 (0) 6= 0, as the signals arriving from different transmitters may have traversed different

distances. We note, however, that when the transmit elements are co-located and separated by only a few wavelengths

λ0 = c/f0, the difference in the arrival times∆τr0 = |τ1,r0 (0)− τ2,r0 (0)| will be on the order ofλ0/c, e.g. a fraction

of a millisecond forf0 on the order of a few kHz. This delay difference (which is seenin the frequency domain

as an additional linear phase component) is small enough that the resulting phase rotation of the transfer function

Ht,r
k′ (n) will be slow over the carriers. The effect of delay difference will be further quantified through numerical

examples in Sec. IV.
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Given the delays (8), let us decompose the transfer functions (7) as follows:

Ht,r
k′ (n) = At,r

k′ (n)e
jαt

k′ (n) (9)

where

At,r
k′ (n) =

∑

p

ht,r
p (n)e− j 2πfk′ τ t,r

p (0) (10)

are the (complex-valued) gains, and

αt
k′ (n) = 2πfk′atnT ′ (11)

are the incremental phases of the two transmitters’ channels. We note that the phases2πfk′τ t,rp (0) are time-invariant;

hence,At,r
k′ (n) are only slowly varying as dictated by the path gainsht,r

p (n), while the dominant cause of time

variation inHt,r
k′ (n) are the phasesαt

k′(n). We will use these facts in Sec. III to design an adaptive channel tracking

algorithm.

As far as the Alamouti assumption (4) is concerned, it will hold if

At,r
2k+1(n) ≈ At,r

2k (n) ∀k, t, r (12)

and

ej 2π∆fatnT ′

≈ 1 ∀t (13)

In a properly designed OFDM system where∆f ≪ 1/Tmp, the first set of assumptions (12) will hold provided that

initial synchronization is sufficiently accurate with respect to each transmitter, such that∆fτ t,r0 (0)≪ 1 ∀t, r, i.e.

that neither channel exhibits significant phase rotation across the carriers. As mentioned earlier, this is a reasonable

assumption for co-located transmitters. Regarding the second set of assumptions (13), they will hold as well since

∆fT ′ ∼ 1, and the residual Doppler factorsat typically do not exceed10−4 at the output of the digital resampler.

Initial Doppler compensation is effectively achieved during the synchronization phase through signal resampling

by a factor equal to the relative compression/dilation experienced by the received signal. The resampling factor is

measured with the aid of synchronization probes inserted atboth ends of each transmitted frame [15].

III. R ECEIVER ALGORITHM

The key to successful data detection is channel estimation.We focus on a channel estimation method consisting

of two steps: An initial step, which is based on pilots only, and subsequent adaptation, which involves data detection

as well. The initial step constitutes conventional, one-shot (non-adaptive) estimation, and can also be used alone, i.e.

it can be applied repeatedly throughout a frame of OFDM blocks without engaging adaptation (time-smoothing).

Channel estimation is performed independently for each receiving element, and it is based on the Alamouti

assumption. If the Alamouti assumption holds, the receivedsignal can be represented as

yr
2k(n) = D2k(n)




A1,r

2k (n)e
jα1

2k(n)

A2,r
2k (n)e

jα2

2k(n)





︸ ︷︷ ︸

Hr
2k

(n)

+zr2k(n) (14)
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where

D2k(n) =




d2k(n) −d∗2k+1(n)

d2k+1(n) d∗2k(n)



 =
[

d1
2k(n) d2

2k(n)
]

and

yr
2k(n) =




yr2k(n)

yr2k+1(n)



 , zr2k(n) =




zr2k(n)

zr2k+1(n)





Assuming unit-amplitude PSK symbols, we have that

1

2
DH

2k(n)D2k(n) = I2 (15)

Hence, if a particular pair of data symbols is known, the LS channel estimate is obtained directly from (14) as

Ȟr
2k(n) =

1

2
DH

2k(n)y
r
2k(n) (16)

i.e.

Ȟt,r
2k (n) =

1

2
dtH
2k (n)y

r
2k(n) (17)

A. One-shot channel estimation

Pilot-based channel estimation exploits the discrete Fourier relationship between the channel coefficients in the

transfer function (TF) domain and the impulse response (IR)domain, where there are typically many fewer non-zero

coefficients. To estimate a channel withL non-zero IR coefficients, at leastL pilots are needed foreachtransmitter.

Considering a system with a typical multipath spread of about 10 ms and a bandwidth of 5 kHz, the number of

non-zero IR coefficients is on the order of 50. For simplicity, L is taken as a power of 2, and pilotpairs are inserted

evenly, i.e. everyK/L pairs of carriers.

TF coefficients of the pilot carriers are estimated using (16), and the inverse discrete Fourier transform (IDFT)

is applied to obtain the IR coefficients2

ȟt,r
m (n) =

1

L

L−1∑

l=0

Ȟt,r
lK/L(n)e

j 2π lm
L , m = 0 . . . L− 1 (18)

or equivalently in matrix form,

ȟt,r(n) =
1

L
FH

L Ȟt,r(n) (19)

whereFL is an appropriately defined DFT matrix.

1) Sparse channel estimation:In an acoustic channel, it is often the case that the vector ofIR coefficientsȟt,r(n)

is sparse, with onlyJ < L significant coefficients. Methods for sparse channel estimation, and in particular the

OMP algorithm, have been shown to be very effective in such situations [17], [20], [21]. These methods typically

provide a sparse solution̄ht,r(n) that best matches the modelȞt,r(n) = FLh̄
t,r(n) for a given inputȞt,r(n) and

a desired degree of sparsenessJ .

2The IR coefficients are not to be confused with the path gainsht,r
p (n).
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As an alternative to the OMP method, we consider a method of least squares with adaptive thresholding. This

method eliminates the need to set the desired degree of sparseness a-priori, while keeping the computational load at

a minimum. The LS-AT (least squares with adaptive thresholding) algorithm uses the design valueTmp as an upper

bound of the multipath spread, and changes a truncation thresholdγ until the total delay spreaďTmp of the sparse

solution h̄t,r(n) fits into the design value. The threshold is initially set toγ = 0.5 of the strongest coefficient’s

magnitude. The IR coefficients whose relative magnitude is below the threshold are discarded, and if the resulting

delay spread is found to be less than the design valueTmp, the threshold is lowered. Otherwise, it is increased. The

algorithm proceeds in this manner for a pre-determined minimum number of stepsS. Thereafter, it continues if the

threshold is to be raised further, and stops when a decreasing threshold is detected. The number of steps is chosen

according to the desired resolution,2−S. In the numerical analysis of Sec. IV, we employ 20 steps andTmp equal

to the guard interval. The algorithm is formalized in Algorithm 1 table.

The running estimate of the delay spread (line 8 of Algorithm1) is computed as

Ťmp = (LIR − LZ)Ts (20)

whereLIR is the length of̄ht,r(n), LZ is the maximum number of consecutive zeros found in the IR (considering

its circularity) andTs is the sampling period. If the guard time is chosen conservatively, a shorterTmp can be used

to reduce the effects of noise (occasional noise spikes thatmistakenly become interpreted as channel taps). In the

unlikely case that the actual delay spread exceedsTmp, a serious penalty could result. Fortunately, this situation

is easily detectable as it causes the algorithm to return exceptionally high values of the threshold, e.g. above 0.5.

Should that occur, it would serve as an indication thatTmp needs to be increased and the procedure repeated.

Once the sparse impulse responseh̄t,r(n) has been obtained, it is zero-padded to the full lengthK, and the TF

coefficients on all the carriers are estimated as the DFT of the so-obtained1×K vector ĥt,r(n),3

Ĥt,r(n) = FK ĥt,r(n) (21)

The TF coefficients are now used to form the channel matrices needed for data detection.

2) A note on TF coefficients and the∆f/2 correction: The exact value of the initial observation for the first

transmitter,Ȟ1,r
2k (n), which is used as the input to the channel estimator, is obtained using (1) and (17) as

Ȟ1,r
2k (n) =

1

2
d1H
2k (n)yr

2k(n) =
1

2

[

d∗2k(n) d∗2k+1(n)
]




H1,r

2k (n)d2k(n)−H2,r
2k (n)d∗2k+1(n) + zr2k(n)

H1,r
2k+1(n)d2k+1(n) +H2,r

2k+1d
∗

2k(n) + zr2k+1(n)



 =

=
1

2

(
H1,r

2k (n) +H1,r
2k+1(n)

)

+
1

2
d∗2k+1(n)d

∗

2k(n)(H
2,r
2k+1(n)−H2,r

2k (n))

+
1

2

(
d∗2k(n)z

r
2k(n) + d∗2k+1(n)z

r
2k+1(n)

)
(22)

3Because the sparse IR has been obtained by removing samples from ȟ
t,r(n), the resulting transfer function may contain distortion atthe

ends of the spectrum. To avoid this effect, null carriers canbe added at the end of the LS estimates (17) and removed fromĤ
t,r after sparsing

the impulse response.
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Algorithm 1 Least squares - adaptive thresholding (LS-AT)
1: Define:S, Tmp

2: Initialize: γ = 0.5, step = 1, ∆γ = 0

3: ȟt,r(n)← Compute channel IR given by (18)

4: while step ≤ S or (step > S and ∆γ > 0) do

5: for all m do

6: h̄t,r
m (n) =







ȟt,r
m (n) if |ȟt,r

m (n)| > γmaxm |ȟ
t,r
m (n)|

0 otherwise
7: end for

8: Ťmp ← Compute delay spread of̄ht,r
m (n)

9: if Tmp ≤ Ťmp then

10: ∆γ = 2−(step+1)

11: else

12: ∆γ = −2−(step+1)

13: end if

14: γ ← γ +∆γ

15: step← step+ 1

16: end while

17: return h̄t,r(n)

a similar relationship holds for the other transmitter. Considering the fact thatH2,r
2k+1(n) ≈ H2,r

2k (n), and that the

input noise is zero-mean, we have that

E{Ȟ1,r
2k (n)} =

H1,r
2k (n) +H1,r

2k+1(n)

2
≈ H1,r

2k+ 1

2

(n) (23)

Hence, channel estimation will effectively yield a TF coefficient that lies mid-way between the carriers2k and2k+1,

and this fact can be exploited to refine the final estimate. To do so, one can compute the DFT (21) at twice the

resolution, then select every other element of the so-obtained TF vector, starting with a delay of one. Equivalently,

one can compute (21) using the original resolution (K-point FFT) but with an input vector̂ht,r(n) = [ĥt,r
l (n)]K−1

l=0

replaced bŷht,r
1/2(n) = [ĥt,r

l (n)e− jπl/K ]K−1
l=0 .

3) Data detection:Channel matrixĈ2k(n) is now filled with the TF estimateŝHt,r
k′ (n) according to the pattern

(1), (2), and the data symbols are estimated according to (6)as

d̂A
2k(n) =

1

tr
[
ĈH

2k(n)Ĉ2k(n)
] ĈH

2k(n)y
A
2k(n) (24)

These estimates are fed to the decoder if additional channelcoding is used, or used directly to make hard decisions.

In either case, the process of decision making is denoted as

d̃A
2k(n) = dec

[

d̂A
2k(n)

]

(25)
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B. Adaptive channel estimation

The goal of adaptive channel estimation is to exploit the time-correlation present in the channel so as to reduce the

pilot overhead. To do so, we draw on the earlier channel decomposition into the slowly-varying gainsAt,r
k′ (n), and

phasesαt
k′ (n), whose variation in time is dictated by (possibly slowly-varying) Doppler factorsat(n). We target

these sets of parameters individually in order to accomplish effective channel tracking. The adaptive algorithm

proceeds in several steps, carried out for each blockn.

1) Decision making:Let us assume that predictions̃At,r
k′ (n) andα̃t

k′ (n), made at the end of a previous block from

the estimateŝAt,r
k′ (n− 1) and α̂t

k′(n− 1), are available at the beginning of the current blockn. These predictions

are used to form the channel matricesC̃2k(n), k = 0, . . .K/2−1, which are in turn used to make symbol decisions

d̃A
2k(n) = dec

[

1

tr
[
C̃H

2k(n)C̃2k(n)
] C̃H

2k(n)y
A
2k(n)

]

(26)

The symbol decisions are now treated as pilots, of which there may be as many asL = K, and they are used to

update the phases and the channel estimates.

2) Sparse channel estimation:Let us denote the chosen channel estimation algorithm, be itOMP, LS-AT or

similar, byCE(·). This algorithm is applied to obtain the one-shotK-point channel estimate:

Ĥt,r(n) = CE({d̃tH
2k y

r
2k(n)}

K/2−1
k=0 ) (27)

3) Phase tracking:To update the phases, we measure the phase diferencie (angle∠(·)) between the estimates

made for the current block (27) and the outdated estimates from the previous block:

∆αt
k′ (n) = ∠

MR∑

r=1

Ĥt,r
k′ (n)

Ãt,r
k′ (n)e

jα̂t
k′

(n−1)
(28)

The phase difference is thus obtained and the Doppler factors for the current block are now estimated as

ât(n) =
1

K

K−1∑

k′=0

∆αt
k′(n)

2πfk′T ′
(29)

The phases are finally updated as

α̂t
k′ (n) = α̂t

k′(n− 1) + 2πât(n)fk′T ′ (30)

4) Channel tracking:The updated̂αt
k′(n) are now used to compensate for the time-varying phase ofĤt,r

k′ (n)

and the channel gains are updated as

Ât,r
k′ (n) = λÂt,r

k′ (n− 1) + (1− λ)Ĥt,r
k′ (n)e

− j α̂t
k′ (n) (31)

whereλ ∈ [0, 1].

5) Refining the symbol decisions:At this point one can repeat data detection using the updatedestimates.

However, this step may not be necessary, as the entire systemoperation is contingent upon the assumption that the

channel varies slowly enough that the gain/phase prediction is accurate.
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6) Predictions for the next block:Finally, predictions are made for the next block. The gain ispredicted simply

as

Ãt,r
k′ (n+ 1) = Ât,r

k′ (n) (32)

while the phase predictions are made as

α̃t
k′ (n+ 1) = α̂t

k′(n) + 2πfk′ ât(n)T ′ (33)

The gain and phase predictions (32), (33) will be used in the next iteration to form the channel matricesC̃2k(n+1)

required to compute (26).

Initialization: The phases and the Doppler factors are initially set to zero:α̂t
k′(0) = 0 and ât(0) = 0. The

algorithm starts by estimating the channel during the blockn=0, which yields the TF coefficientŝAt,r
k′ (0). Full

operation starts atn = 1 with predictionsÃt,r
k′ (1) = Ât,r

k′ (0), andα̃t
k′(1) = 0.

IV. RESULTS

Fig. 1. Experiment location. The experiment was conducted at 60 miles south-west of Martha’s Vineyard island.

The performance of the SFBC-OFDM system was tested using synthetic data (simulation) as well as real data

collected during the June 2010 Mobile MIMO Acoustic Communications Experiment (MACE’10). The test channel

used for simulation was constructed to reflect the experimental conditions, which are described below.

A. Experiment description

The experiment was conducted by the Woods Hole Oceanographic Institution (WHOI) at a location 60 miles

south of Martha’s Vineyard island (see Fig. 1). During the experiment, the transmitter array was deployed from a

vessel moving in a repeated circular pattern, towards and away from the receiver, as shown in Fig. 2. The geometry

of the experimental channel is shown in Fig. 3.

The experiment lasted for seven days, and the Alamouti SFBC signals were transmitted in the 10 kHz-15 kHz

acoustic band in limited intervals during days 5, 6 and 7. Table I summarizes the signal parameters used in the
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Fig. 2. Ship trajectory. Signals were transmitted from two co-located transmitters moving at 0.5 m/s-2 m/s along the indicated loop and recorded

at a fixed vertical array located at coordinates (0,0).

Fig. 3. Experiment geometry.

experiment. QPSK modulation was used on all carriers, whosenumber ranged from 64 to 1024. Transmission was

organized in frames, each containing 8192 data symbols divided into a varying number of OFDM blocks. The

blocks were separated by a guard interval of 16 ms, and a synchronization probe was inserted at each end of a

frame. With adaptive processing, pilot symbols were used only in the first block. The resulting overhead is 0.78%

(with K = 64), 1.56% (K = 128) and 3.13% (K = 256, 512, 1024). With non-adaptive processing (block-by-block

independent detection) the required overhead is 50% (K = 512) and 25% (K = 1024).4

Fig. 4 shows a snapshot of the channel impulse response (magnitude) obtained directly from the LS estimates.

The channel has a sparse structure, and several of the multipath arrivals are well resolved. The total delay spread

is about 12 ms in this case. Throughout the experiment, however, the multipath spread varied between 5 ms and

16 ms.

B. Simulation results

The simulation test channel is generated according to the expressions (7) and (8), where the path gainsht,r
p

and delaysτ t,rp (0) are initialized using a library of the actual channels from the MACE’10 experiment. Random

variation is added to these path gains using a Ricean model, which was found to provide a good match for this

type of channel [22]. Specifically, the RiceK factors are set toK1 = 5 for the direct path,K2 = 0.5 for the

4A 100% overhead would be needed withK = 256 or less.
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TABLE I

MACE EXPERIMENT SIGNAL PARAMETERS

Bandwidth,B 4883 Hz

First carrier frequency,f0 10 580 Hz

Sampling frequency,fs 39 062 Hz

Number of carriers,K 64, 128, 256, 512, 1024

Carrier spacing,∆f [Hz] 76, 38, 19, 10, 5

OFDM Block duration,T [ms] 13, 26, 52, 104, 210

Guard interval,Tg 16 ms

Symbols per frame,Nd 8192 QPSK

Blocks per frame,N 128, 64, 32, 16, 8

Bitrate, R [kbps] 4.3, 5.9, 7.2, 8.1, 8.7

Channel code Hamming (14,9)
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Fig. 4. Snapshots of channel response observed between the Alamouti pair of transmitters and a common receiver.

bottom-reflected path andK3 = 0 for surface reflections. The random variation follows an AR-1 process with

exponentially decaying time-correlation and Doppler spreadBd.

The arrival time difference (recall the discussion of Sec. II-B) is set to∆τr0 =0.3 ms for all receiving elements,

and the Doppler factors experience a linear increase from 0 at the beginning of a frame to4 · 10−4 at the end of a

frame.

Fig. 5 illustrates the bit error rate (BER) as a function of the number of carriers in an adaptive Alamouti SFBC

OFDM system.5 As a benchmark, we use a single-input multiple-output (SIMO) system implemented with the

same channel estimator as the MIMO system and maximal-ratiocombining (MRC). The SIMO and MIMO systems

operate using the same total transmit power. The MIMO systemperformance is also shown in a configuration with

5Unless stated otherwise, raw (uncoded) BER is shown.
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Fig. 5. Simulation: BER vs. number of carriers. SNR=15 dB,MR = 2 receiving elements, channel Doppler spreadBd = 1 Hz. Label X

indicates full channel inversion (3).

full channel inversion (3), labeled SFBC-X. Each point is a result of averaging over all carriers and 300 frames,

each generated using independent noise and fading realizations.

The SFBC system achieves the best performance with 128 and 256 carriers. With more carriers, performance

degrades because of the gradual loss of time-coherence and the rise of ICI. With fewer carriers, (K = 128 in

this example) there is a gradual loss of frequency coherence, which may eventually start to violate the Alamouti

assumption (4). SFBC-X thus gains a slight advantage atK=128. The very poor performance atK=64 is an artifact

of having insufficiently many pilots to perform channel estimation – at mostK/2 = 32 pilots are available per

transmitter, sufficing to cover only32/B = 6.4 ms of multipath, while the true multipath spread is about twice

as long. (An actual system would not be designed in this manner; the K = 64 MIMO point is included only

for the sake of illustration). The rest of the values represent system configurations in which the trade-off between

frequency- and time-coherence is well resolved.

In Fig. 6 we investigate the effect of synchronization mismatch, i.e. receiver’s sensitivity to the difference in the

times of signal arrival from the two transmitters. The figureshows the mean squared error (MSE) vs. the delay

difference, which is taken to be equal for all the receiving elements,∆τr0 = ∆τ0. As we conjectured in Sec.

II-B, the system can tolerate delay differences that do not produce significant TF phase rotation across carriers,

and the result of Fig. 6 confirms the fact that the performanceremains unaltered for delays up to a millisecond.

The difference in delay of 1 ms corresponds to the travel length difference of 1.5 m, which accidentally almost

coincides with the transmit element spacing used in the MACE’10 experiment. This distance in turn corresponds

to ten wavelengthsλ0 = c/f0 = 0.15 m, a separation that is sufficiently large to achieve spatialdiversity.

In Fig. 7 we investigate the system performance as a functionof the signal-to-noise ratio (SNR), defined as

the usualEb/N0 value. Imperfect channel estimation due to Doppler spread (Bd = 1 Hz) is the cause of the
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Fig. 6. Performance sensitivity to synchronization mismatch between transmitters: MSE vs. delay difference∆τ0(0). K = 256 carriers,

MR = 6 receiving elements.

observable error floor. A known-IR curve is provided as a reference. STBC refers to the space-time implementation

of the Alamouti code as proposed in [3]. The SFBC system outperforms SIMO and STBC in terms of BER by

a factor of 20 and 9, respectively. The system that uses LS with adaptive thresholding for channel estimation as

described in Sec. III-A is labeled as AT, and is compared withchannel estimation based on OMP. We note that the

two algorithms have almost identical performance. LS-AT offers lower computational complexity, and may thus be

preferred. The performance and computational cost of various algorithms will be discussed in more detail in Sec.

IV-C.
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Fig. 7. Performance comparison between SIMO, STBC and SFBC with different channel estimation algorithms: Least-squares with adaptive

thresholding (AT) and orthogonal matching pursuit (OMP).K = 256, MR = 2 receivers,Bd = 1 Hz.

System performance in different channel dynamics, i.e. at different values of the Doppler spreadBd, is illustrated
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in Fig. 8. The gain achieved with SFBC is approximately constant with respect to the SIMO case, provided that

both perform channel estimation every block. However, the STBC system requires longer channel coherence time

and this fact translates to a limited gain and earlier saturation.
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Fig. 8. Performance comparison between SIMO, STBC and SFBC for different channel variation rates. SNR=20 dB,K = 256, MR = 2

receivers.

Finally, in Fig. 9 we investigate the system performance as afunction of the residual Doppler factor introduced

in Sec. II-B. This result clearly demonstrates the advantages of SFBC over STBC on a time-varying channel. While

coding in time requires the channel to remain constant over two adjacent blocks, coding in frequency requires it to

stay constant only over one block. As a result, SFBC tolerates higher residual Doppler scales than does STBC (the

break-away point at which the BER rapidly increases occurs later for SFBC). A second type of advantage is also

evident: As residual Doppler scaling vanished, SFBC mantains better performance. This behaviour is attributed to

better handling of the inherent channel variation present in the Ricean-distributed path gains (described in Fig. 8).

C. Experimental results

Experimental data available for our study included 87 transmissions performed once every 4 minutes. Each

transmission included one frame of OFDM blocks with 64 carriers, one frame with 128 carriers, etc. During the

time when these signals were transmitted, the source moved at a varying velocity, ranging from 0.5 to 2 m/s. The

results of real data processing are presented in terms of BERand MSE averaged over all the blocks and all the

carriers, similarly as with simulation.6 The LS-AT algorithm was used for channel estimation in the experimental

results.

Fig. 10 shows the BER as a function of the number of carriers. We observe a similar trend as with synthetic

data (Fig. 5), with the best performance atK = 256, corresponding to the carrier spacing∆f = 19 Hz. SFBC

6Those frames in which front-end synchronization failed were not included in the statistics.
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Fig. 9. Performance comparison between SIMO, STBC and SFBC for different residual relative velocities. SNR=15 dB,K = 256, MR = 2

receivers,Bd = 1 Hz.

and SIMO are again compared fairly, as the same transmit power was used for both types of signals. Shown also

is the method that uses full matrix inversion for LS data detection (SFBC-X) defined in (3), demonstrating that

simple Alamouti detection incurs only a small penalty when the spacing between carriers is sufficiently large to

violate the channel coherence assumption (12), i.e. for values ofK below 256. The Alamouti assumption is better

justified with more carriers, while the bandwidth efficiencyis simultaneously increased. The MSE gain with respect

to the SIMO case remains approximately constant forK ≥ 256, on the order of 2 dB. AtK = 64 andK = 128,

there is a gradual loss of frequency coherence, and a sufficient number of observations is not provided to cover the

multipath spread in all situations.
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Fig. 10. Experiment: BER (uncoded) vs. the number of carriers. MR = 12 receiving elements. Each point represents an average over all

carriers and frames.
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Fig. 11 shows the MSE evolution in time observed during several hours of one day of the experiment. SFBC

outperforms SIMO-MRC uniformly, by about 2 dB over the 51 consecutive frames. Predicting the MIMO per-

formance gain for a practical system remains difficult due tothe unknown channel statistics. Analytical results,

however, are available for coded OFDM systems operating over channels with specific distortion and known fading

distribution [14], [23], [24], [25]. SFBC-ECC refers to thecase in which error correction coding is exploited by the

receiver to improve the reliability of decisions used for adaptive channel estimation.7 Coding reduces the occasional

MSE excursions (around hours 5 and 6.5) and effectively keeps the MSE below−7 dB throughout all the blocks.

Comparing the MSE performance to the wind speed reveals an interesting correlation. The MSE is higher during

the first three hours while the wind is stronger, and decreases at the end as the wind slows down. The MSE also

behaves less erratically during the calmer wind period. Incidentally, this last period is accompanied by an increased

transmitter velocity, which does not affect the performance. The largest excursions of the MSE are observed at

hours 5 and 6.5 when the wind speed reaches highest values. Increased surface activity during those periods is

believed to cause faster fading on the scattered paths, causing loss in performance of signal processing.
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Fig. 11. MACE experiment, day 5: MSE evolution in time.K = 256, MR = 12 receiving elements.

Fig. 12 shows the sensitivity to synchronization mismatch.For this measurement, signals from different trans-

mitters were sent in successive non-overlapping time intervals, so that they could be synchronized separately and

combined after adding an artificial delay. Similarly as withsynthetic data (Fig. 6), we observe that the performance

remains unaffected for delay differences up to about 1 ms. While the delay difference in the current system geometry

7ECC is used here only to refine the channel estimates, which are then used to estimate the data symbols in the same manner as for the

uncoded case. Compared to the uncoded system, the throughput is reduced by 35%.
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with co-located transmitters is within this limit, we note that additional synchronization techniques become necessary

for cooperative transmission scenarios with spatially distributed transmitters.
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Fig. 12. Performance sensitivity to synchronization mismatch between transmitters: MSE vs. delay difference∆τ0(0). MACE’10 data with

K = 256 carriers,MR = 12 receiving elements.

The∆f/2 correction: In Fig. 13 we investigate the benefits of additional processing applied to the TF coefficient

estimates to correct for the∆f/2 offset (Sec. III-A2). This result shows that the∆f/2 correction provides a gain

when the number of carriers is below the optimum, i.e. when there is a loss of frequency coherence due to the

increased carrier separation. The gain is about 2 dB forK = 64 and 128; 0.5 dB forK = 256, and negligible

thereafter.
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Fig. 13. System performance with and without the∆f/2 correction. Results are shown for a single MACE’10 frame.MR = 12 receiving

elements.

Comparison of sparse channel estimation methods:Finally, we take a closer look at the performance of several

channel estimation algorithms, namely LS-AT, LS with a fixedtruncation thresholdγ and OMP. Fig. 14 shows the



IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. , NO. , 19

performance of LS-AT and LS with a fixed threshold. Clearly, adaptive thresholding outperforms fixed thresholding,

and in fact represents a bound on its performance. The optimal threshold for a givenphysicalchannel depends

on the number of carriers. Specifically, it decreases withK, as more observations are available for the channel

estimator, and, hence, the quality of the estimate improvesvis-à-vis noise.

To illustrate the performance of adaptive thresholding, weshow in Fig. 15 several thresholds found by LS-AT,

where each curve represents the evolution of the threshold used to estimate each transmitter-receiver channel within

an entire frame (32 OFDM blocks forK = 256). Most threshold levels lie in the region between 0.15 and 0.30

but they may change as much as 0.30 from one OFDM block to another. The main reason for the erratic evolution

is the formation of noise peaks away from the useful IR. Thesepeaks appear randomly and cause the algorithm to

occasionally raise the threshold. This observation speaksstrongly in favor of adaptive threshold setting.
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Fig. 15. Adaptive threshold values for different tx/rx pairs during transmission of one MACE’10 frame.MR = 12 receiving elements,K = 256

carriers.

Fig. 16 shows the comparison between LS-AT, the OMP algorithm and the ICI-ignorant algorithm proposed in
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[20]. The latter derives the channel directly from the received signal using a dictionary, which is generated with the

transmitted pilots, and has a small loss in performance mainly because it treats the transmitted data as independent.

The OMP algorithm solves the modeľHt,r(n) = FLh̄
t,r(n) using a stopping criterion that measures the relative

energy contribution of the last tap obtained. When this energy exceeds a pre-defined threshold (specified in dB

relative to the total energy) the algorithm stops and the last tap is discarded [21]. This criterion provides certain

adaptability to the channel; however, the threshold has to be defined in terms of the expected noise and multipath

intensity profile. As a result, OMP achieves the performanceof LS-AT only in certain regions ofK (different for

each threshold). Fig. 17 shows an example of channel responses estimated by LS-AT and OMP algorithms.
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Fig. 17. Example of channel responses (magnitude) estimated by the OMP and the LS-AT algorithms.

The computational costs of fixed thresholding, adaptive thresholding and OMP are compared in Table II. The

table lists the number of operations, the average and the maximum number of iterations required to estimate each
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TABLE II

COMPUTATIONAL COMPLEXITY OF SPARSE CHANNEL ESTIMATION ALGORITHMS FOR AN OFDM SYSTEM WITHK CARRIERS

LS fixed threshold LS-AT (S = 20 steps) OMP (-23dB)

number of operations for initialization K2 + 2K K2 +K 2K2 +K

i-th iteration - 3K i2 + 2iK +K

average (max) number of iterations K=256 - 20.96 (31) 84.45 (119)

K=512 - 20.89 (29) 68.20 (111)

IR. Each estimated IR of lengthK = 256 required an average of2.2 · 106 operations for the OMP algorithm,

while LS-AT executed8 · 104 operations, i.e. it was 20 to 30 times faster while offering comparable performance.

The LS-AT algorithm effectively reduces the number of iterations by virtue of its convergence in the time domain,

whereas the OMP algorithm requires an iteration for each estimated tap. Since it only requires aK size comparison

and less-than-2K size subtraction per iteration, LS-AT is well conducive to aDSP implementation.

V. CONCLUSIONS

MIMO spatial diversity was investigated for underwater acoustic communications through the use of Alamouti

space-frequency coding coupled with OFDM. The use of space-frequency coding, as opposed to space-time coding,

is motivated by the fact that frequency coherence naturallyexists between the carriers of a properly designed (ICI-

free) OFDM system. While it is needed to support FFT-based OFDM channel equalization, frequency coherence

simultaneously supports Alamouti detection, which accomplishes MIMO cross-talk elimination without the need

for matrix inversion.

Space-frequency coded OFDM can be used both in a non-adaptive framework where the receiver detects each

block of K carriers independently, or in an adaptive framework where the receiver exploits the knowledge of a

physical propagation model to track those channel parameters that are varying slowly in time. We proposed a

sparse channel identification algorithm based on least squares with adaptive thresholding (LS-AT), and found that

this algorithm operates close to orthogonal matching pursuit (OMP), at a lower computational complexity. For

the adaptive setting, we proposed an algorithm that targets(i) the Doppler scaling factors corresponding to the

two transmitters of the Alamouti pair, and (ii) the respective channel gains that remain slowly-varying once the

Doppler shifts have been removed. More specifically, adaptive channel estimation targets the slowly-varying, sparse

impulse-response coefficients, and employs further time-smoothing across the OFDM blocks. Channel tracking is

enabled by block-adaptive phase correction, which relies on estimating the Doppler scaling factors to predict each

carrier’s phase for the next OFDM block.

System performance was illustrated through simulation andwith real data recorded in a mobile acoustic channel.

Experimental results demonstrate the feasibility of space-frequency coded OFDM, with a uniform 2 dB gain over

the SIMO benchmark. The gain is contingent upon sufficient frequency coherence, which is notably present in

bandwidth-efficient configurations (256 or 512 carriers in the 5 kHz experimental bandwidth). Using fewer carriers
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which are more widely spaced causes a loss in frequency coherence (there is also an attendant loss in bandwidth

efficiency), while using more carriers causes a loss in time coherence (ICI). Sensitivity to synchronization mismatch

between the two transmitters, i.e. the delay difference in the time of their signal arrivals, was also investigated.

The system was shown to tolerate delay differences typical of co-located transmitters (applications to cooperative

MIMO scenarios with spatially separated transmitters would require scheduling). Interesting observations were also

made by correlating the observed system performance to the environmental data, and in particular the wind speed.

Future work will target the use of differentially coherent detection in the Alamouti MIMO framework.
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