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We study the space of functions computed by random-layered machines, including deep neural networks
and Boolean circuits. Investigating the distribution of Boolean functions computed on the recurrent and
layer-dependent architectures, we find that it is the same in both models. Depending on the initial
conditions and computing elements used, we characterize the space of functions computed at the large
depth limit and show that the macroscopic entropy of Boolean functions is either monotonically increasing
or decreasing with the growing depth.
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Deep-layered machines comprise multiple consecutive
layers of basic computing elements aimed at representing
an arbitrary function, where the first and final layers
represent its input and output arguments, respectively.
Notable examples include deep neural networks (DNNs)
composed of perceptrons [1] and Boolean circuits con-
structed from logical gates [2]. Being universal approx-
imators [3,4], DNNs have been successfully employed in
different machine learning applications [1]. Similarly,
Boolean circuits can compute any Boolean function even
when constructed from a single gate [5].
While the majority of DNN research focuses on their

application in carrying out various learning tasks, it is
equally important to establish the space of functions they
typically represent for a given architecture and the comput-
ing elements used. One way to address such a generic study
is to consider a random ensemble of DNNs. The study of
random neural networks using methods of statistical
physics has played an important role in understanding
their typical properties for storage capacity and generali-
zation ability [6,7] and properties of energy-based [8–12]
and associative memory models [13,14], as well as the links
between energy-based models and feed-forward layered
machines [15]. In parallel, there have been theoretical
studies within the computer science community of the
range of Boolean functions generated by random Boolean
circuits [16,17]. Both the DNNs and the Boolean circuits
share common basic properties.
Characterizing the space of functions computed by

random-layered machines is of great importance since it
sheds light on their approximation and generalization
properties. However, it is also highly challenging due to
the inherent recursiveness of computation and randomness
in their architecture and/or computing elements. Existing
theoretical studies of the function space of deep-layered
machines are mostly based on the mean field approach,
which allows for a sensitivity analysis of the functions

realized by deep-layered machines due to input or param-
eter perturbations [4,18–20].
To gain a complete and detailed understanding of the

function space, we develop a path-integral formalism that
directly examines individual functions computed. This is
carried out by processing all possible input configurations
simultaneously and the corresponding outputs. For sim-
plicity, we always consider Boolean functions with binary
input and output variables.
The main contribution of this Letter is in providing a

detailed understanding of the distribution of Boolean func-
tions computed at each layer. It points to the equivalence
between recurrent and layer-dependent architectures and
consequently to the potential significant reduction in the
number of trained free variables. Additionally, the complex-
ity of Boolean functions implemented measured by their
entropy, which depends on the number of layers and
computing elements used, exhibits a rapid simplification
when rectified linear unit (ReLU) components are employed,
which arguably explains their generalization successes.
Framework.—The layered machines considered consist

of Lþ 1 layers, each with N nodes. Node i at layer l is
connected to the set of nodes fi1; i2;…; ikg of layer l − 1;
its activity is determined by the gate αli, computing a
function of k inputs, according to the propagation rule

PðSlijS⃗l−1Þ ¼ δ½Sli; αliðSl−1i1
; Sl−1i2

;…; Sl−1ik
Þ�; ð1Þ

where δ is the Dirac or Kronecker delta function, depending
on the domain of Sli. The probabilistic form of Eq. (1)
adopted here is convenient for the generating functional
analysis and inclusion of noise [19,21]. We primarily
consider two structures here: (i) densely connected models
where k ¼ N and node i is connected to all nodes from
the previous layer—one such example is the fully con-
nected neural network with Sli ¼ αlðHl

iÞ, where Hl
i ¼P

N
j¼1W

l
jS

l−1
j =

ffiffiffiffi
N

p þ bli is the preactivation field and αl
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is the activation function at layer l (we will mainly focus on
the case bli ¼ 0; the effect of nonzero bias is discussed in
[22]); (ii) sparsely connected models where k ∈ OðN0Þ—
examples include the sparse neural networks and layered
Boolean circuits where αli is a Boolean gate with k inputs,
e.g., majority gate.
Consider a binary input vector s⃗ ¼ ðs1;…; snÞ ∈

f−1; 1gn, which is fed to the initial layer l ¼ 0. To
accommodate a broader set of functions, we also consider
an augmented input vector, e.g., (i) S⃗I ¼ ðs⃗; 1Þ, which is
equivalent to adding a bias variable in the context of neural
networks; (ii) S⃗I ¼ ðs⃗;−s⃗; 1;−1Þ, which has been used to
construct all Boolean functions [16]. Each node i at layer 0
points to a randomly chosen element of S⃗I such that

P0ðS⃗0js⃗Þ ¼
YN
i¼1

P0½S0i jSIniðs⃗Þ� ¼
YN
i¼1

δ½S0i ; SIniðs⃗Þ�; ð2Þ

where ni ¼ 1;…; jS⃗Ij is an index chosen from the flat
distribution PðniÞ ¼ 1=jS⃗Ij.
The computation of the layered machine is governed

by the propagator PðS⃗Ljs⃗Þ ¼ P
S⃗L−1���S⃗0 PðS⃗0js⃗Þ

Q
L
l¼1

PðS⃗ljS⃗l−1Þ, where each node at layer L computes a
Boolean function f−1; 1gn → f−1; 1g. When the gates
αli or the network topology are random, then the layered
machine can be viewed as a disordered dynamical system
with quenched disorder [19,21]. To probe the functions
being computed, we consider the simultaneous layer
propagation of all possible inputs s⃗γ ∈ f−1; 1gn, labeled
by γ ¼ 1;…; 2n governed by the product propagatorQ

2n

γ¼1 PðS⃗Lγ js⃗γÞ. The binary string SLi ∈ f−1; 1g2n repre-
sents the Boolean function computed at node i at layer L, as
illustrated in Fig. 1. Note that we use the vector notation

S⃗l ¼ ðSl1;…; Sli;…; SlNÞ and Sli ¼ ðSli;1;…; Sli;γ;…; Sli;2nÞ to
represent the states and functions, respectively. Using the
above formalism, the distribution of Boolean functions f
computed on the final layer is given by

PL
Nðf Þ ¼

1

N

XN
i¼1

�Y2n
γ¼1

δðfγ; SLi;γÞ
�
; ð3Þ

where components of f satisfy fγ ¼ fðs⃗γÞ, and angular

brackets represent the average generated by
Q

2n

γ¼1 PðS⃗Lγ js⃗γÞ.
To compute PL

Nðf Þ and averages of other macroscopic
observables, which are expected to be self-
averaging for N → ∞ [26], we introduce the disorder-

averaged generating functional (GF) Γ½fψ l
i;γg� ¼P

fS⃗lγg
Q

γ PðS⃗0γ jS⃗IγÞ
Q

l PðS⃗lγjS⃗l−1γ Þe−i
P

i
ψ l
i;γS

l
i;γ , where the

overline denotes an average over the quenched disorder.
To keep the presentation concise, we outline the GF
formalism only for DNNs in the following and refer the
reader to [22] for the details of the derivation used in
Boolean circuits.
Layer-dependent and recurrent architectures.—We

focus on two different architectures: layer-dependent archi-
tectures, where the gates and/or connections are different
from layer to layer, and recurrent, where the gates and
connections are shared across all layers. Both architectures
represent feed-forward machines that implement input-
output mappings.
Specifically, we assume that the weights Wl

ij in fully
connected DNNs with layer-dependent architectures are
independent Gaussian random variables sampled from
N ð0; σ2Þ. In DNNs with recurrent architectures, the
weights are sampled once and are shared among layers,
i.e., Wlþ1

ij ¼ Wl
ij. We apply the sign activation function in

the final layer, i.e., αLðhLi Þ ¼ sgnðhLi Þ, to ensure that the
output of the DNN is Boolean.
We first outline the derivation for fully connected

recurrent architectures. It is sufficient to characterize the
disorder-averaged GF by introducing cross-layer overlaps

ql;l
0

γγ0 ¼ ð1=NÞPi hSli;γSl0i;γ0 i as order parameters and the

corresponding conjugate order parameter Ql;l0
γγ0 , which leads

to a saddle-point integral Γ̄ ¼ RfdqdQgeNΨ½q;Q� with the
potential [22]

Ψ ¼ iTrfqQg þ
XjS⃗I j
m¼1

PðmÞ ln
X
S

Z
dHMm½H;S�; ð4Þ

where Mm½H; S� is an effective single-site measure

FIG. 1. A deep-layered machine computing all possible 2n

inputs. The direction of computation is from bottom to top. The
binary string SL ∈ f−1; 1g2n represents the Boolean function
computed on the blue nodes of the output layer L. The augmented
vector S⃗I ¼ ðs⃗; 1Þ is used as an example of input here. The
constant 1 is represented by the dashed circle.
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Mm ¼ e
−i
P

l;γ
ψ l
γSlγ−i

P
ll0 ;γγ0 Q

l;l0
γγ0S

l
γSl

0
γ0

×N ðHj0;CÞ
Y2n
γ¼1

P0ðS0γ jSIm;γÞ
YL
l¼1

δ½Slγ; αlðhlγÞ�: ð5Þ

Due to weight sharing, the preactivation fields H ¼
ðh1;…; hLÞ, where hl ∈ R2n , are governed by the
Gaussian distribution N ðHj0;CÞ and correlated across
layers with covariance ½C�l;l0γγ0 ¼ σ2ql−1;l

0−1
γγ0 . Setting ψ l

γ to

zero and differentiatingΨwith respect to fql;l0γγ0 ; Q
l;l0
γγ0 g yields

the saddle point of the potential Ψ dominating Γ̄ for
N → ∞, at which the conjugate order parameters Ql;l0

γγ0

vanish [22], leading to

ql;l
0

γγ0 ¼

8><
>:

P
m
PðmÞhSlγS0γ0 iMm

; l0 ¼ 0

R
dHαlðhlγÞαl0 ðhl0γ0 ÞN ðHj0;CÞ: l0 > 0

ð6Þ

Notice that in the above Gaussian average, all preactivation
fields but the pair fhlγ; hl0γ0 g can be integrated out, reducing
it to a tractable two-dimensional integral.
The GF analysis can be performed similarly for

layer-dependent architectures. Here the result has the same
form as Eq. (6) with ql;l

0
γγ0 ¼ δl;l0q

l;l0
γγ0 , i.e., the overlaps

between different layers are absent [22], implying ½C�l;l0γγ0 ¼
σ2δl−1;l0−1q

l−1;l0−1
γγ0 for the covariances of preactivation

fields. In this case, we denote the equal-layer covariance
matrix as cl ≔ Cl;l.
We remark that the behavior of DNNs with layer-

dependent architectures in the limit of N → ∞ can also
be studied by mapping to Gaussian processes [4,18,27].
However, it is not clear if such analysis is possible in the
highly correlated recurrent case while the GF or path-
integral framework is still applicable [28–30].
Marginalizing the effective single-site measure in Eq. (5)

gives rise to the distribution of Boolean functions

f ∈ f−1; 1g2n computed at layer L of DNNs with recurrent
architectures

PLðf Þ ¼
Z

dhN ðhj0; cLÞ
Y2n
γ¼1

δ½fγ; αLðhγÞ�; ð7Þ

where in the above the element of the covariance matrix
is ½cL�γγ0 ¼ ½C�L;Lγγ0 ¼ σ2qL−1;L−1γγ0 . Note that the physical

meaning of PLðf Þ is the distribution of Boolean
functions defined in Eq. (3) averaged over disorder
PLðf Þ ¼ limN→∞PL

Nðf Þ.
Moreover, Eq. (7) also applies to layer-dependent

architectures since the equal-layer covariance matrix cL

is the same in two scenarios. Therefore, we arrive at the first
important conclusion that the typical sets of Boolean
functions computed at the output layer L by the layer-
dependent and recurrent architectures are identical.
Furthermore, if the gate functions αl are odd, then it can
be shown that all the cross-layer overlaps ql;l

0
γγ0 of the

recurrent architectures vanish, implying the statistical
equivalence of the hidden layer activities to the layered
architectures as well [22].
A similar GF analysis can be applied to sparsely

connected Boolean circuits constructed from a single
Boolean gate α, keeping in mind that distributions of gates
can be easily accommodated. In such models, the source of
disorder are random connections. In layer-dependent
architectures, a gate is connected randomly to exactly
k ∈ OðN0Þ gates from the previous layer and this con-
nectivity pattern is changing from layer to layer. In
recurrent architectures, on the other hand, the random
connections are sampled once and the connectivity pattern
is shared among layers. Note that in Boolean circuits, the
activities at every layer Sli always represent a Boolean
function. For layer-dependent architectures, investigating
the distribution of activities gives rise to

Plþ1ðf Þ ¼
X

f 1;…;f k

�Yk
j¼1

Plðf jÞ
�

×
Y2n
γ¼1

δ½fγ; αðf1;γ;…; fk;γÞ�; ð8Þ

which describes how the probability of the Boolean
function f ∈ f−1; 1g2n is evolving from layer to layer
[22,31]. We note that for recurrent architecture the equation
for the probability of Boolean functions computed is
exactly the same as above [22], suggesting that in random
Boolean circuits the typical sets of Boolean functions
computed on layers in the layer-dependent and recurrent
architectures are identical. Note that the coupling
asymmetry plays a crucial role in this equivalence property
[22,32,33].
The equivalence between two architectures points to a

potential reduction in the number of free parameters in

FIG. 2. Test accuracy of trained fully connected DNNs applied
on the MNIST dataset. Images have been downsampled by a
factor of 2 to reduce training time, and each hidden layer has 128
nodes. Each data point is averaged over 5 random initializations.
The accuracies of recurrent architectures, with weight sharing
between hidden layers, are comparable to those of layer-
dependent architectures.
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layered machines by weight sharing or connectivity sharing
among layers, useful in devices with limited computation
resources [34]. For illustration, we consider the image
recognition task of Modified National Institute of Standards
and Technology (MNIST) handwritten digit data [35]
using DNNs with both layer-dependent and recurrent
architectures (weight shared from hidden to hidden layers
only; for details see [22]). The experiment shown in Fig. 2
demonstrates the feasibility of using recurrent architectures
to perform image classification tasks with a slightly lower
accuracy but significant saving in the number of trained
parameters.
Boolean functions computed at large depth.—We

consider the typical Boolean functions computed in
random-layered machines by examining PLðf Þ in the large
depth limit L → ∞ for specific gates in the following
examples.
In DNNs using the ReLU activation function

αlðxÞ ¼ maxðx; 0Þ, in the hidden layers (the sign activation
function is always used in the output layer), which is
commonly used in applications, all covariance matrix
elements ½cL�γγ0 in the Eq. (7) converge to the same value
in the limit L → ∞, implying that all components of the
preactivation field vector h are also the same and hence the
components of f are identical. Therefore, random deep
ReLU networks compute only constant Boolean functions
in the infinite depth limit, echoing recent findings of a bias
toward simple functions in random DNNs constructed from
ReLUs [22], which arguably plays a role in their gener-
alization ability [36,37].
In DNNs using sign activation function also in

hidden layers, i.e., Eq. (1) enforces the rule
Sli ¼ sgnðPj W

l
ijS

l−1
j =

ffiffiffiffi
N

p Þ, those cross-pattern overlaps

qlγγ0 ¼ ð1=NÞPi hSli;γSli;γ0 i satisfying jqlγγ0 j < 1 mono-
tonically decrease with an increasing number of layers
and vanish as l → ∞, such “chaotic” nature of dynamics
also holds in random DNNs with other sigmoidal activation
functions such as the error and hyperbolic tangent functions
[4,27]. The consequences of this behavior is that for the
input vector S⃗I ¼ s⃗, PLðf Þ is uniform on the set of all odd
functions [22], i.e., functions satisfying fð−s⃗Þ ¼ −fðs⃗Þ.
Furthermore, for S⃗I ¼ ðs⃗; 1Þ, PLðf Þ is uniform on the set of
all Boolean functions [22].
For Boolean circuits, there are also scenarios where the

distribution PLðf Þ has a single Boolean function in its
support or it is uniform over some set of functions
[16,17,38]. The latter depends on the gates α used in
Eq. (1) and input vector S⃗I. For example, in the AND gate
with αðS1; S2Þ ¼ sgnðS1 þ S2 þ 1Þ or the OR gate with
αðS1; S2Þ ¼ sgnðS1 þ S2 − 1Þ [22], their output is biased,
respectively, towardþ1 or −1 [16,22,38]. The consequence
of the latter is that the distribution PLðf Þ has only a single
Boolean function in its support [22,38]. On the other hand,
when the majority gate αðS1;…; SkÞ ¼ sgnðPk

j¼1 SjÞ,

which is balanced
P

S1;…;Sk αðS1;…; SkÞ ¼ 0 and nonlinear
]39 ], is used with the input vector S⃗I ¼ ðs⃗;−s⃗; 1;−1Þ, then

the distribution PLðf Þ is uniform over all Boolean functions
[38], which is consistent with the result of [16].
Entropy of Boolean functions.—Having considered

the distribution of Boolean functions for a few
different examples, we observed that random-layered
machines either reduce to a single Boolean function or
compute all (or a subset of) functions with a uniform
probability on the layer L, as L → ∞. We note that
for the Shannon entropy over Boolean functions
HL ¼ −

P
f P

Lðf Þ logPLðf Þ, these two scenarios saturate
its lower and upper bounds, respectively, given by 0 and
2n log 2. Thus, the entropy HL can be seen, at least
intuitively, as a measure of function space complexity.
In Fig. 3, we study the entropy HL, computed using

Eqs. (7) and (8), as a function of the depth L in random-
layered machines constructed from different activation
functions or gates and computing different inputs. The
initial increase in entropy after layer L ¼ 0, seen in

(b)(a)

(c)

FIG. 3. Normalized entropy and distribution of functions of
deep-layered machines. (a) Normalized entropy HL=2n of Bool-
ean functions computed by DNNs with sign or ReLU activation
in the hidden layers as a function of the network depth L; the
initial condition is set as S⃗I ¼ ðs⃗; 1Þ. (b)HL=2n vs L for Boolean
circuits constructed by MAJ3 or the AND gate with initial
condition S⃗I ¼ ðs⃗;−s⃗; 1;−1Þ. (c) The distribution of Boolean
functions PLðf Þ computed by Boolean circuits with two inputs
n ¼ 2 (the number of all possible functions is 16) is represented
by the sizes of circles on a 4 × 4 grid. Upper panel: MAJ3-gate-
based circuits, in which more functions are created at larger depth
L and PLðf Þ converges to a uniform distribution. Lower panel:
AND-gate-based circuits, in which new functions are created
from L ¼ 0 to L ¼ 1, while PLðf Þ converges to a distribution
with supports in a single Boolean function as network depth
increases.
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Figs. 3(a) and 3(b), can be explained by the properties of
gates used and the initial set of (simple) Boolean functions
at layer L ¼ 0; functions from the layer L ¼ 0 are “copied”
onto layer L ¼ 1, while new functions are also created, as
illustrated in Figs. 3(c) and 3(d). Note that the minimal
depth in ReLU networks to produce a Boolean function is
L ¼ 2. The dependence of entropyHL on L after the initial
increase depends on the specific gate functions used. For
the ReLU activation function in DNNs and the AND gate in
Boolean circuits, the entropies HL monotonically decrease
with L, suggesting that sizes of sets of typical Boolean
functions computed are decreasing with increasing num-
bers of layers L. Random initialization of layered machines
with such gates or activation functions serves as a biasing
prior toward a more restricted set of functions [36,37]. On
the other hand, for balanced gates, with appropriate initial
conditions, e.g., sign in DNNs and majority vote in
Boolean circuits, the entropy HL is monotonically increas-
ing with the depth L, indicating that the sizes of sets of the
typical Boolean functions computed are increasing.
In summary, we present an analytical framework to

examine Boolean functions represented by random deep-
layered machines by considering all possible inputs simul-
taneously and applying the generating functional analysis
to compute various relevant macroscopic quantities. We
derived the probability of Boolean functions computed on
the output nodes. Surprisingly, we discover that the typical
sets of Boolean functions computed by the layer-dependent
and recurrent architectures are identical. It points to the
possibility of computing complex functions with a reduced
number of parameters by weight or connection sharing, as
showcased in an image classification experiment. We also
study the Boolean functions computed by specific random-
layered machines. Biased activation functions (e.g., ReLU)
or biased Boolean gates (e.g., AND/OR) can lead to more
restricted typical sets of Boolean functions found at deeper
layers, which may explain their generalization ability. On
the other hand, balanced activation functions (e.g., sign) or
Boolean gates (e.g., majority) complemented with appro-
priate initial conditions lead to a uniform distribution on all
Boolean functions at the infinite depth limit. It will be
interesting to investigate the functions realized by different
DNN architectures with structured data and by different
learning algorithms [7,40–43].
We also showed the monotonic behavior of the entropy

of Boolean functions as a function of depth, which is of
interest in the field of computer science. We envisage that
the insights gained and the methods developed will
facilitate further study of deep-layered machines.
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[10] M. Gabrié, E. W. Tramel, and F. Krzakala, in Training
restricted Boltzmann machine via the Thouless-Anderson-
Palmer free energy, edited by C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Advances in
Neural Information Processing Systems Vol. 28 (Curran
Associates, Inc., New York, 2015), pp. 640–648.
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Buc, E. Fox, and R. Garnett, Advances in Neural Informa-
tion Processing Systems Vol. 32 (Curran Associates, Inc.,
New York, 2019), pp. 1962–1974.

[38] A. Mozeika, D. Saad, and J. Raymond, Noisy random
boolean formulae: A statistical physics perspective,
Phys. Rev. E 82, 041112 (2010).

[39] Since fSjg are binary variables in the context of
Boolean circuits, linearity is defined in the finite field
GFð2Þ [16,17].
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