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ABSTRACT

The problem of finding heavy hitters and approximating the fr
quencies of items is at the heart of many problems in datarstre
analysis. It has been observed that several proposed swiLt
this problem can outperform their worst-case guaranteeseah
data. This leads to the question of whether some strongerdsou
can be guaranteed. We answer this in the positive by showwatg t
a class of “counter-based algorithms” (including the papand
very space-efficient REQUENTand SPACESAVING algorithms)
provide much stronger approximation guarantees than quishyi
known. Specifically, we show that errors in the approxinmatio
of individual elements do not depend on the frequencies ef th
most frequent elements, but only on the frequency of the irdn
“tail.” This shows that counter-based methods are the nuzstes
efficient (in fact, space-optimal) algorithms having thi®sg error
bound.

This tail guarantee allows these algorithms to solve tharsp
recovery” problem. Here, the goal is to recover a faithfgresen-
tation of the vector of frequencieg, We prove that using space
O(k), the algorithms construct an approximatign to the fre-
guency vectorf so that the L1 errof|f — f*||1 is close to the
best possible erraning/ || f* — f||1, wheref’ ranges over all vec-
tors with at mosk non-zero entries. This improves the previously
best known space bound of abdi{k logn) for streams without
element deletions (whene is the size of the domain from which
stream elements are drawn). Other consequences of theigai g
antees are results for skewed (Zipfian) data, and guarafuieas-
curacy of merging multiple summarized streams.
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1. INTRODUCTION

Data stream algorithms have become an indispensable tool fo
analyzing massive data sets [21, 27]. Such algorithms aipncto
cess huge streams of updates in a single pass and store actompa
summary from which properties of the input can be discovered
with strong guarantees on the quality of the result. This@gagh
has found many applications, in large scale data processidg
data warehousing [19, 4, 16, 18], as well as in other areab, @sI
network measurements [1, 11, 13, 15], sensor networks [5r&9
compressed sensing [17, 7].

Finding the “heavy hitters” is one of the quintessentialgbeons
in data stream algorithms. Given a stream of items (possifily
weights attached), find those items with the greatest tod .
This is an intuitive problem, that applies to many naturasjions:
given a stream of search engine queries, which are the mmst fr
quently occurring terms? Given a stream of supermarkesaen
tions and prices, which items have the highest total dokdes?
Further, this simple question turns out to be a core subprotaf
many more complex computations over data streams, suchias es
mating the entropy [8], and clustering geometric data [J0jere-
fore, it is of high importance to design efficient algorithfos this
problem, and understand the performance of existing ones.

The problem can be formalized into one of estimating item fre
quencies. In this problem we are given a streaniVoélements
from some universe; the goal is to compute, for each univelese
menti, an estimatorf; that approximates;, the number of times
the element occurs in the data stream (or the sum of associated
weights in a weighted version). Such estimators providecaisat
representation of the data stream, with a controllablestiattibe-
tween description size and approximation error.

An algorithm for frequency estimation is characterized Wy t
related parameters: the spaemd the bounds on the error in es-

1_We measure space in memory words, each consisting of a loga-
rithmic number of bits.



Algorithm Type Space Error bound
FREQUENT[13, 26, 23] | Counter| O(1/e) |fi = fil < el
FREQUENTI[6] Counter| O(1/e) |fi = fil < eFyes®
LoSSYCOUNTING [24] | Counter| O(1/elog(eFh)) | |fi — fil < eFy
SPACESAVING [25] Counter| O(1/e) Ifi — fil < eFy
Count-Min [12] Sketch | O((k/e) -logn) | |fi — fil < €/k - Fs®
Count-Sketch [9] Sketch | O((k/e) -logn) | (fi — fi)? < e/k - Fy<®
This paper Counter| O(k/e) lfi — fil < e/k-F=™

Table 1: Previously known bounds of frequency estimation algorithms.

Fy is the sum of all frequencied;; **

is the sum of all but the top frequenciest;,

r+(k) is the sum of the squares of all but the fop

frequenciesn is the size of the domain from which the stream elements awrdr

timating the f;s. The error bounds are typically of the “additive”
form, namely we havéf; — fi| < €B, for a B (as in “bound”)
that is a function of the stream. The bouBds equal either to the
size of the whole stream (equivalently, to the quanfity where
F, = 3,(fi)P), or to the size of theesidualtail of the stream,

given bny”““), the sum of the frequencies of all elements other
than thek most frequent ones (heavy hitters). The residual guaran-
tee is more desirable, since it is always at least as goodeas; th
bound. More strongly, since streams from real applicatimfitsn
obey a veryskewedrequency distribution, with the heavy hitters
constituting the bulk of the stream, a residual guarantesysnp-
totically better. In particular, in the extreme case when there are

savings very considerable in practice. We also establighugfh
a lower bound that the space usage of these algorithms ignwith
a small constant factor of the space required by any couiger a
rithm that offers the residual bound on error.

The new bounds have several consequences beyond the immedi-
ate practical ramifications. First, we show that they preiet-
ter bounds for thesparse recovenproblem, a streaming analog
of Compressed Sensing [14, 7, 17, 28]. This problem is to find
the best representatigfi of the frequency distribution, so thét
has onlyk non-zero entries. Such a representation captures exact
stream statistics for all bytf — f*||1 stream elements. We show
that using a counter algorithm to produce théargest estimated

only k distinct elements present in the stream, the residual error frequenciesf; yields a good solution to this problem. Formally, let

bound is zero, i.e. the frequency estimation is exact.

Algorithms for this problem have fallen into two main classe
(deterministic) “counter” algorithms and (randomizedietch” al-
gorithms. Table 1 summarizes the space and error boundsmaf so
of the main examples of such algorithms. As is evident from th
table, the bounds for the counter and sketching algorithmsna
comparable: counter algorithms use less space, but hawewor
ror guarantees than sketching algorithms. In practice giewy the

actualperformance of counter-based algorithms has been observed

to be appreciably better than of the sketch-based onesn tfee
same amount of space [10]. The reason for this disparity bas n
previously been well understood or explained. This has ksl
to apply very conservative bounds in order to provide thereds
guarantees; it has also pushed users towards sketch higsrih
favor of counter algorithms since the latter are not peextio of-
fer the same types of guarantee as the former.

Our Contributions. In this paper we show that the good empirical
performance of counter-based algorithms is not an accidbay
actually do satisfy a much stronger error bound than previously
thought. Specifically:

e We identify a general class éfeavy-Tolerant Counter algo-
rithms (HTC), that contains the most popularREQUENT
and SPACESAVING algorithms. The class captures the es-
sential properties of the algorithms and abstracts away fro
the specific mechanics of the procedures.

e We show that any HTC algorithm that hasan error guar-
antee in fact satisfies the stronger residual guarantee.

We conclude that REQUENT and SPACESAVING offer the
residual bound on error, while using less space than skegethgo-
rithms. Moreover, counter algorithms have small constahfso-
portionality hidden in their asymptotic cost compared ® tinuch
larger logarithmic factors of sketch algorithms, makingsh space

S be the set of thé largest entries irf, generated by a counter al-
gorithm withO(k/€) counters. Leff* be ann-dimensional vector
such thatf;" is equal tofi if i € S andf;” = 0 otherwise. Then we
show that under thé,, norm, for anyp > 1, we have

* EFTlCS(k) res(k
Hf‘_'f ”p < ‘Ef%ﬁ7;_ *‘(E; *

This is the best known result for this problem in a streaming

setting; note that the error is always at le@st“*("))'/?_ The best
known sketching algorithms achieve this bound ugit{g log %)
space (sef2, 3, 22]); in contrast, our approach yields a space bound
of O(k). By extracting alkn approximated values from a counter
algorithm (as opposed to just tdy), we are able to show another
result. Specifically, by modifying the algorithms to enstivat they
always provide amnderestimat®f the frequencies, we show that
the resulting reconstruction has error(1+¢)(e/k)" /7 Fye®)
foranyp > 1.

As noted above, many common frequency distributions are nat
urally skewed. We show that if the frequencies follow a Zipfia
distribution with parametery > 1, then the same tail guarantee
follows using onlyO (e ~'/) space. Lastly, we also discuss exten-
sions to the cases when streams can include arbitrary veeight
each occurrence of an item; and when multiple streams are sum
marized and need to be merged together into a single sumkvary.
show how the algorithms considered can be generalized widan
both of these situations.

1.1 Redated Work

There is a large body of algorithms proposed in the litemtur
for heavy hitters problems and their variants; see [10] feuivey.
Most of them can be classified as eitloaunter-basedr sketch-
based The first counter algorithm is due to Misra and Gries [26],
which we refer to as REQUENT. Several subsequent works dis-
cussed efficient implementation and improved guaranteethi®

)1/p



algorithm [13, 6]. In particular, Boset al. showed that it offers The algorithms considered in this paper can be thought ofias a
an F/**") guarantee [6]. Our main result is to improve this to hering to the following form. The state of an algorithm is nep

Ffes(k), for a broader class of algorithms. sented by am-dimensional vector of counters The vectore has
A second counter algorithm is theolssYCOUNTING algorithm at mostm non-zero elements. \We denote the “frequent” set by
of Manku and Motwani. This has been shown to reqivd /e) T = {i | ¢; # 0}, since only this set needs to bg expllcnly sFored.
counters over randomly ordered streams to give: Bn guaran- The counter value of an element is an a_pprc_mmatlon for_ES fr
tee, but there are adversarial order streams for which itires) quency; the error vector of the approximation is denoted, byith
O(1/elogen) [24]. Our results hold over all possible stream or- b = |fi — cil. )
derings. We demonstrate our results with reference to two knov_vn_(munt
The most recent counter solution is thePABESAVING algo- algorithms:  REQUENTand SACESAVING. Although similar,

frithm due to Metwallyet al. [25]. The algorithm is shown to offer  the two algorithms differ in the analysis and their behainqprac-
an F, guarantee, and also analyzed in the presence of data with{iC€: Both maintain their frequent s&t, and process a stream of
Zipfian frequency distribution. Here, we show Eﬁes(k) bound updates. Given a new iteinin the stream which is stored if,

and demonstrate similar bounds for Zipfian data for a lartgessc both simply increase the corre_spondlng counteror, if i ¢ r

of counter algorithms and|T'| < m, then: is stored with a count of. The algorithms
Sketch algorithms are based on linear projections of tiygierecy differ when an unstored item is seen 4 = m- FREQUENT

vector onto a smaller sketch vector, using compact hastitunsc decrements alllstored counters by 1, and .(|mpI|C|t.Iy) tf‘“’.”‘“t

to define th action. G N i term& Bt %) or g7 () any counters with zero count; PEBCESAVING finds an itermy with

o define the projection. Guarantees in term&bf" ™ or £’ smallest non-zero coumt and assigns; — c; + 1, followed by

follow by arguing that the items with thie largest frequencies are ¢; — 0, s0 in effecti replacesj in T. Pseudocode for these algo-

unlikely to (always) collide under the random choice of tlzesin rijthms i’s presented in Figure 1 '

fnctions, and so e lems can efectvly be ‘emoved™f These algoritms are known 0 provice ‘e hite”goara

S e O an tee on the approximation errors of the counters:

alyzed probabilistically, and have a probability of faduthat is

bounded byl/n® for a constantc (n is the size of the domain Definition 1. An m-counter algorithm provides heavy hitter

from which the stream elements are drawn). The Count-Sketch guarantee with constamd > 0 if, for any stream,

requiresO((k/¢) log n) counters to give guarantees on the sum of I

squared errors in terms mr;”"“) [9]; the Count-Min sketch uses 0; < {AiJ Vi

O((k/e)logn) counters to give guarantees on the absolute error

in terms of ] “*(") [12]. These two guarantees are incomparable ~ More precisely, they both provide this guarantee with camist

in general, varying based on the distribution of frequenicie key A = 1. Our result is that they also satisfy the following stronger
distinction of sketch algorithms is that they allow bothipiwe and guarantee:

negative updates (where negative updates can correspatadeto - . i )

tions, in a transactional setting, or simply arbitrary sigvalues, Definition 2. An m-counter algorithm provides/atail guaran-

in a signal processing environment). This, along with the faat tee with constantgA, B), with A, B > 0 if for any stream

they are linear transforms, means that they can be usedve sol pres(k)

problems such as designing measurements for compress&dgsen 0 < 4 Vi

systems [17, 7]. So, although our results show that coutger a { m= BkJ

rithms are strictly preferable to sketches when both aréicgipe,
there are problems that are solved by sketches that cansotesl
using counter algorithms.

We summarize the main properties of these algorithms, along
with the correspond results based on our analysis, in Table 1

Note that the heavy hitter guarantee is equivalent toOtail
guarantee. Our general proof (which can be applied to a broad
class of algorithms) yields krtail guarantee with constants = 1,

B = 2 for both algorithms (for anys < m/2). However, by
considering particular features ofREQUENTand SPACESAVING,
2. PRELIMINARIES we prove ak-tail guarantee with constant$ = B = 1 for any
) ) ) ) k < m following appropriate analysis (see appendices B, C).
We introduce the notation used throughout this paper. The al  The |ower bound proved in appendix A establishes that angteou

gorithms maintain at most: counters which correspond to a “fre- . ) pres(k)

quent” set of elements occurring in the input stream. Thetinp ~ @gorithm that provides an error bound-6f—— must use at least
stream contains elements, which we assume to be integevedret (1 — k)/2 counters; thus the number of countera 5UENTand

1 andn. We denote a stream of si2é by u1, us, ... uy. We use SPACESAVING use is within a small facto(for & < m/3) of the
ug...y as a shorthand for the partial stream uz+1, - . -, uy. optimal.

We denote frequencies of elements byradimensional vec-

tor f. For ease of notation, we assume without loss of generality 3. RESIDUAL ERROR BOUND

that elements are indexed in order of decreasing frequendyat In this section we state and prove our main result on the error

ft > f2>... > fn. Whenthe stream is not understood from con- 4 nq for a class of heavy-tolerant counter algorithms. Agirb

text, we specify it explicitly, e.gf (u....y) is the frequency vector by formally defining this class.

for the partial stream,...,. We denote the sum of the frequencies

by F1; we denote the sum of frequencies except the largest ones by  Definition 3. A value i is z-prefix guaranteedor the stream

F7°*™ "and we generalize the definition to sums of powers of the ..., if after the firstz < s elements of the stream have been pro-

frequencies: cessed; will stay inT" even if some elements are removed from the
n remaining stream (including occurrencesipfFormally, the value

Fpres(k) — Z 2, F,= Fpresm) i is z-prefix guaranteedf 0 < = < s ande¢;(ui...,v1...¢) > 0 for
ikl all subsequences; .. ¢ of u(z41..5,0 <t < s — .



Algorithm 1: FREQUENT(m)

T — 0;

foreach i do

if i € T then

| ¢ +—ci+1,

eseif |T'| < m then
T—TU{i};
c; — 1;

else forall j € T'do
cj —cj— 1,
if ¢; = 0then

L T —T\{j}

Algorithm 2: SPACESAVING ()

T 0
foreach i do
if i € T then

| ci—c+1;
eseif |T| < m then
‘ T —TU{i};
c; — 1;
else
J < argminjer cj;
\; ci —cj+1,
T —TUfi\{5};

Figure1: Pseudocodefor FREQUENTand SPACESAVING algorithms

Note that ifi is z-prefix guaranteed, thens alsoy-prefix guar-
anteed for ally > x.

Definition 4. A counter algorithm isheavy-toleranif extra oc-
currences of guaranteed elements do not increase the Bstima
error. Formally, an algorithm ikeavy-tolerantf for any stream
u1...s, given anyz, 1 < z < s, for which element = wu, is
(z—1)-prefix guaranteed, it holds that

di(ur..s) < 05(U1.. (z2—1)U(zt1)...5) Vi

THEOREM 1. Algorithms FREQUENTand SPACESAVING are
heavy-tolerant.

THEOREM 2. If a heavy-tolerant algorithm provides a heavy
hitter guarantee with constamt, it also provides &-tail guarantee
with constant§ A, 2A), for anyk, 1 < k < m/2A.

3.1 Proof of Heavy Tolerance

Intuitively, this is true because occurrences of an elerakeady
in the frequent set only affect the counter value of that eletyand,
as long as the element never leaves the frequent set, theofals
counter does not affect the algorithm’s other choices.

PROOF OFTHEOREM1. Denotevi.: = U(z+1)...(a+t), With
t < s — xz. We prove by induction onthat for both algorithms

c(ur. 2v1.t) = (U1, (g—1)V1...t) + €
wheree; is thei-th row of I,,, then x n identity matrix; this implies
that
5(U1A..wU1.“t) = 5(U1“_(m71)111.“t)

Base case at t = 0: By the hypothesise;(u;...(,—1)) # 0, hence
when elementt,, = 4 arrives after processing; ..., both FRE-
QUENTand SACESAVING just increase’s counter:

c(ur..z) = c(uy. (z—1)) + €
Induction step for ¢t > 0: We are given that
c(ur.. a1, (a—1)) = (U1, (z—1)V1...t—1)) + €

Note that since is (x —1)-prefix guaranteed, these vectors have
the same support.
Case 1 ¢y, (u1...2v1...¢—1y) > 0. Hence
Coe (U1, (z—1)V1...(t—1)) > 0. For both streamsy;’s counter just
gets incremented and thus

c(ur. zv1.t) = c(ur. 21 (¢-1)) + €w

c(uy.. (z—1)V1...(t—1)) + €v; + €

= c(uy..(e—1)v1...t) + €

Case 2 cy, (u1..2v1...t.—1y) = 0. Note thatv; # ¢ sincei is z-
prefix guaranteed and,, (u;...(z—1)v1...¢—1)) = 0. By the induc-

tion hypothesis, both counter vectors have the same sufgsinf

non-zero entries). If the support is less thanthen the algorithm
addse,, to the counters, and the analysis follows Case 1 above.
Otherwise, the two algorithms differ:

e FREQUENTalgorithm: In this case all non-zero counters will
be decremented. Since both counter vectors have the same
support, they will be decremented by the sameparse bi-

nary vectory = x(T) = ;... 4o €-

e SPACESAVING algorithm: The minimum non-zero
counter is set to zero. To avoid ambiguity, we specify that
SPACESAVING will pick the counterc; with the smallest
identifier ; if there are multiple counters with equal small-
est non-zero value. Let

j= argmin Cj(ulmacvl.“(t—l))
JET(u1.. . 2v1.. (t—1))
and
j = argmin ¢ (U1, (z—1)V1...(t—1))

€T (U1 (2—1)V1...(t—1))
Since: is z-prefix guaranteed, its counter can never become
zero, hencg # 4,5’ # 4. Since
Ci’(ul.“wvlm(tfl)) = Cy (ulm(wfl)vl.“(t—l))
for all 7/ # 4, it follows thatj = ;" and
Cj(ul.“wvlm(tfl)) = Cj’(ulm(w—l)vl.“(t—l)) = M.
Hence both streams result in updating the counters by sub-

tracting the same difference vectpe= Me; — (M + 1)e.,

So each algorithm computes some difference vegtiorespec-
tive of which stream it is applied to, and updates the cosnter

c(u1..av1. (t-1)) =
c(ur...(z—1)V1...(t=1)) + € —

c(uy.. (z—1)V1...t) + €

c(ui...zv1...¢)



3.2 Proof of k-tail guarantee

Let Renove(us...s, 1) be the subsequence of .. with all oc-
currences of valuéremoved, i.e.

empty sequence K¥=20
(u1,Remove(us.. s,1)) if ur #1
Remove(us..s,i) if ur =1

Renmove(ui...s,i) =

wherew:...s, = Rem)ve(u(ml?+1),_wi1 Vi...s,,%2). Since the
x;; values are decreasing, we can continue this argumerit$or
3,4,...,k". We obtain the following inequality for the final stream
Z1...5,

5j(U1ms) < 53‘(21.4.52) Vj

wherez.. s, is the streamu; ., with all “extra” occurrences of
elementsl to k' removed (“extra” means after the firgt occur-

LEMMA 3. Ifiisz-prefix guaranteed and the algorithm is heavy- rences). Thus

tolerant, then
dj(ur...s) < 0j(ut..av1...t) vj
wherev; _ ; = Remove(u(z41)...5,%), With0 <t < s — a.

PROOF Letzi,xs,...,x, be the positions of occurrences of
TN Uiy With s < 21 < 22 < ... < z4. We apply the
heavy-tolerant definition for each occurrence; forjall

di(ur.s) < 05(Ur. (oy—1) Uz +1)...5)
<05 (Ur (o 1) U(zy+1). . (ma— 1) U(ma£1)...5)
<
< 6j(ulmacv1mt)

Note in particular tha®;(ui...,), the error in estimating the fre-
quency ofi in the original stream, is identical 0(u1...,v1...q), the
error ofi on the derived stream, sinéés z-prefix guaranteed. [

Definition 5. An error boundfor an algorithm is a function\ :
N" — R* such that for any stream, .. ,

Oi(ui...s) < [A(f(u1...s))] Vi

In addition, A must be “increasing” in the sense that for any two

frequency vectorg”’ and f” such thatf! < f/’ for all i, it holds
thatA(f") < A(f").

LEMMA 4. LetA be an error bound for a heavy-tolerant algo-
rithm that provides a heavy hitter guarantee with constanThen
the following function is also an error bound for the algtwit, for
anyk,1 <k <m/A:

EA(F) + k + Fye®
m

PROOF Let w;.s be any  stream. Let
D =1+ |A(f(u1...s))]. We assume without loss of generality
that the elements are indexed in order of increasing fregyuen

Letk’ =max {i|1<i<kandfi(ui..s) > D}.

For eachi < k' let z; be the position of thé-th occurrence of
i in the stream. We claim that any< k' is x;-prefix guaranteed:
letv:.. .+ be any subsequence @f,, ;). ; it holds for allj that

05 (ur...x;v1..t) < |A(f(ur...a;v1..¢))] < D

A(f)=A

and soc; (u1...o;v1...6) > fi(ut z;v1.0) — 05 (w1, 2;v1..8)
>D—-D=0.

Let 1,142, .. .1, be the permutation of ...%" so thatz;, >
Tiy > ... > x;,. We can apply Lemma 3 far which isz;, -
prefix guaranteed; for ajl

0j(u1...s) <9 (UL.mi1 Vi...s,)

wherev,.. s, = Rennve(u(xiﬁl)_“s,il).
Sincexs < z1, iz IS wo-prefix guaranteed for the new stream
ULz Vl.s, and we apply Lemma 3 again:

6]’(“14.43) < 5]'(“1.4.:”1 'Ul.“sv) < 6j(u1.4.zi2w14.4sw) v,]

1fa)lhi =KD+ 3 filur)

i=k/+1

Eitherk’ =k, ork’ < kandf;(ui..s) < Dforall k' <i < k;in
both cases we can replakewith k:

If(zrs)lh <KD+ D fi(ua..s)

i=k4+1
We now apply the heavy hitter guarantee for this stream; Ifor a
J:

O(ur.s) < Gj(21.s.)
< {AkD—FZ?:kﬂfi(ulms)J
m
<

AFA ) +E+ Fyes®
m

O

We can now prove theorem 2.

PROOF OFTHEOREM?2. We start with the initial error bound
given by the heavy hitter guarantee(f) = A% and apply
Lemma 4 to obtain another error boudd. We can continue it-
eratively applying Lemma 4 in this way. Either we will eveally
obtain a new bound which is worse than the previous one, iatwhi
case this process halts with the previous error bound; evedscan
analyze the error bound obtained in the limit (in the spifif6}).

In both cases, the following holds for the best error botnd

EA(f) + k + Fye®
m
k+ Fyes®
m — Ak
We have shown that for any stream . .,,,

k+ F{““”J v

A(f)<A

and soA(f) < A

y <
6L(ul.“p) = \‘A m — Ak
We show that this implies the guarantee

Ffes(k)
. < 1 i
0i(ut..p) < Am Ak Vi

Case 1 AF;**™®) < m — 2Ak. In this case both guarantees are
identical: all errors are.
Case 2 AF]**®) > m — 2Ak:
2 s(k
A%RFTe®) >

A(m — Ak)F7=®) >

Ak(m — 2Ak)
A(m — 2Ak) (k: + Ff‘”‘(“)
Fires(k)

k’-’-F{eS(k)
m—2Ak —

m — Ak



4. SPARSE RECOVERIES

The k-sparse recovery problem is to find a representafioso
that f’ has onlyk non-zero entries ¢-sparse”), and thé,, norm
If = Flls = S0, |fi — f1P)Y/? is minimized. A natural ap-
proach is to buildf’ from the heavy hitters of, and indeed we
show that this method gives strong guarantees for freqasrfi@m
heavy tolerant counter algorithms.

4.1 k-sparserecovery

To get ak-sparse recovery, we run counter algorithm that pro-
vides ak-tail guarantee withn counters and creatg using thek
largest counters. These are not necessarilysthr@st frequent el-
ements (with indices to & in our notation), but we show that they
must be “close enough”.

THEOREM 5. If we run a counter algorithm which provides
a k-tail guarantee with constantéA, B) usingm = k(% + B)
counters and retain the top counter values into thg-sparse vec-
tor f/, then foranyp > 1 :

N o< eFres®) prestey1/p
||f—f”p_W+(p )

PROOF Let K = {1,...,k} be the set of thé& most frequent
elements. LefS be the set of elements with titelargest counters.
Let R = {1,...,n}\ (S U K) be the set of all other remaining
elements. Let’ = |[K \ S| = |S\ K|.

Letx: ...z be thek’ elements inS \ K, with ¢, > cqy >
o. > Cay, . Letyr ..y be thek” elements inK \ S, with ¢, >
Cys > ... > cy,,. Notice thatc,, > c,, for anyi: c,, is thei"
largest counter ir \ S, whereas:,, is thei' largest counter in
(KUS)\ (SN K),asupersetaf \ S. Let A be an upper bound
on the counter error& Then for anyi

fyi_ASCyiSCwiSfﬂci""A (1)

Hencef,, < f; + 2A. Let f’ be the recovered frequency vector
(fz; = ca; and zero everywhere else). For gny> 1, and using
the triangle inequalityja + b||, < ||al|, + ||b||, on the vectorf;
restricted toi € R U S and the vector equal to the const&ux
restricted tai € S\ K:

1/p
1f=Flle = [Da—f)"+ D ()
€S iERUK\S
& 1/p
< | DoAY )T
i=1 i€EK\S i€ER
k/ 1/P
< KRPAE D)+ D)
=1 i1€ER
& 1/p
< RYPA [ DT A28)7 4 D)
=1 i€ER
1/p
< BEPAE | D ()
i€ RUS\ K

< 3k1/pA+(FPTES(k))1/p

If an algorithm has the tail guarantee with constaps B), by
usingm = k(% + B) counters we get

EFfes(k)

If=flls < i T (Fyest)re @

O

Note that(F;“**))!/? is the smallest possibl&, error of any
k-sparse recovery of. Also, if the algorithm provides one-sided
error on the estimated frequencies (as is the case REQUENT
and S$ACESAVING), it is sufficient to usen = k(22 + B) coun-
ters, since nowfy, < fo, + A.

Estimating Ff“(k). Since our algorithms give guarantees in terms

of F{'”““), a natural question is to estimate the value of this quan-
tity.

THEOREM 6. If we run a counter algorithm which provides a
k-tail guarantee with constantsA, B) using(Bk + %) counters
and retain the largesk counter values as the-sparse vectorf’,
then:

Fe®A—e) <P —|f|h <P +e)

PROOF To show this result, we rely on the definitions and prop-
erties of setsS and K from the proof of Theorem 5. By construc-
tion of setsS and K, f., < f,, for anyi. Using equation (1) it
follows that

fyi—ASCziSfyi_FA

So the norm off’ must be close to the norm of the béssparse

representative of, i.e. (Fy — F“**")). Summing over each of the
k counters yields

F—F“®_kA< ) <F-F<® 1A
Fre® _pn < B —|f ) < Fre®™ 4 kA

The result follows when settingy = k(2% + B)) so the upper
bound ensured < £ F/**™

4.2 m-Sparserecovery

When the counter algorithm uses counters, it stores approxi-
mate values forn elements. It seems intuitive that by usingall
of these counter values, the recovery should be even béttes.
turns out not to be true in general. Instead, we show thatpbss
sible to derive a better result given an algorithm which gsuan-
derestimateshe frequenciese{ < f;). For example, this is true in
the case of REQUENT.

As described so far, ACESAVING always overestimates, but
can be modified to underestimate the frequencies. In péaticu
the algorithm has the property that error is bounded by thallsm
est counter value, i.eA = min{c;|c; # 0}. So settingc; =
max{0, c; — A} ensures that; < f;. Becausef; + A > ¢; > fi,
fi — c¢; < A and thusc satisfies the samg-tail bounds with
A = B =1 (as per appendix C). Note that in practice, slightly im-
proved per-item guarantees follow by storingfor each non-zero
countere; as the value ofA when: last entered the frequent set,
and using:; — ¢; as the estimated value (as described in [25]).

THEOREM 7. If we run an underestimating counter algorithm
which provides ak-tail guarantee with constant§éA, B) using
(Bk + 4%) counters and retain the counter values into tie
sparse vector’, then for anyp > 1:

/ e\1-1/p res
I =Fl<a+e) (7)) EE®



PROOF Setm = k(£ + B) in Definition 2 to obtain

k n 1/p
||f—f’||p=<z i — )P Z(ﬁ—w)p>

i= i=k+1

re.s(k) p

n 1 1/p
ef res(k)\p
+ Z (fl - )kfp 1 (F )
i=k+1

(o, € resing)
= <k: = () 4 o (] )p>
1-1/
<(1+e) (%) " pres®)

O

5. ZIPFIAN DISTRIBUTIONS

Realistic data can often be approximated with a Zipfian [3§] d
tribution; a stream of lengtlfy, = N, with n distinct elements,
distributed (exactly) according to the Zipfian distributivith pa-
rametera has frequencies

n

1 1
fi= Niag(a) where ((a) = 2
The value((«) converges to a small constant when> 1. Al-
though data rarely obeys this distribution exactly, our fiesult
requires only that the “tail” of the distribution can be bded by
a (small constant multiple of) a Zipfian distribution. Nobet this
requires that the frequencies follow this distributiont the order

of items in the stream can be arbitrary.

THEOREM 8. Given Zipfian data with parameter > 1, if a
counter algorithm that provides A-tail guarantee with constants
(A,B) fork = (%)1/“ is used withm = (A + B) (4 )1/“ coun-
ters, the counter errors are at maosk’ .

PROOF Thek-tail guarantee with constantsl, B) means

Fl'res(k)

N Yigt ”
m— Bk —

A=A C(a) m-— Bk

1 noq 1 n/k 1
E — < —dxr = —/ —dz <
) e & T k‘:(¥71 1 xro

O

A similar result is proved for SACESAVING in [25] under the
stronger assumption that the frequencies are exactly azedetby
the Zipfian distribution.

51 Top-«

In this section we analyze the algorithms in the context ef th
problem of finding topk elements, when the input is Zipf dis-
tributed.

THEOREM 9. Assuming Zipfian data with parameter > 1,
a counter algorithm that provides &’-tail guarantee fork’ =

) (k (g)l/a) can retrieve the topk elements in correct order

usmgO( (& )1/“) counters. For Zipfian data with parameter

a = 1, an algorithm with%’-tail guarantee fork’ = ©(k?Inn)
can retrieve the togk elements in correct order usin@(k?Inn)
counters.

PROOF To get the togk elements in the correct order we need

A< Je — fres1

fe — fr+1

|
pA
9‘2
=
/N
7|~
|
—

>

+ =
—
~
~—

N (k+1)™ -k~
(k+ 1)akza
N ake™! N @

((a) (k+ 12k ((a) (k+ 1)k
Thus we need error rate

O(a/kMt™) fora>1

T 2(a)(k+ D)ok { ©(1/(k*Inn)) fora=1

The result then follows from Theorem 8]

6. EXTENSIONS
6.1 Real-Valued Update Streams

So far, we have considered a model of streams where eachnstrea
token indicates an arrival of an item with (implicit) unit igét.
More generally, streams often include a weight for eaclvalrria
size in bytes or round-trip time in seconds for Internet paska
unit price for transactional data, and so on. When thesehteaye
large, or not necessarily integral, it is still desirablestdve heavy
hitters and related problems on such streams.

In this section, we make the observation that the two counter
algorithms MREQUENTand SPACESAVING naturally extend to
streams in which each update includes a positive real valegght
to apply to the given item. That is, the stream consists detup;,
Eachu; is a tuple(a;, b;) representing; occurrences of element
a; whereb; € RY is a positive real value.

We outline how to extend the two algorithms to correctly g
such streams. For FACESAVING, observe that when processing
each new itenu;, the algorithm identifies a counter corresponding
to a; and increments it by 1. We simply change this to incrementing
the appropriate counter ky to generate an algorithm we denote
SPACESAVINGR. It is straightforward to modify the analysis of
[25] to demonstrate that ACESAVING R achieves the basic Heavy
Hitters guarantee (Definition 1). This generalizeBASESAVING,
since when every; is 1, then the two algorithms behave identically.

Defining FREQUENTR is a little more complex. If the new item
a; € T, then we can simply increases’s counter byb;; and if
there are fewer tham — 1 counters then one can be allocated to
a; and set tob;. But if a; is not stored, then the next step de-
pends on the size af.in, the smallest counter value storediin



If b; < cmin, then all stored counters are reduceddhy Other-
wise, all counters are reduced &y;,,, and some counter with zero
count (there must be at least one now) is assigned snd given
countb;

antee by observing that every subtraction of counter vaioes
given item coincides with the same subtractiomte- 1 others, and
all counter increments correspond to sobp@f a particular item.
Therefore, the error in the count of any item is at mBstm.

We comment that a similar analysis to that provided in Sa@io
applies, to demonstrate that these new counter algorithivesag
tail guarantee. The main technical challenge is genenglithe

definitions ofz-prefix guaranteed and heavy tolerant algorithms in

the presence of arbitrary real updates. We omit the detailaty/sis
from this presentation, and instead we state in summary:

THEOREM 10. FREQUENTR and SPACESAVINGR both pro-
vide k-tail guarantees withA = B = 1 over real-valued non-
negative update streams.

6.2 Merging Multiple Summaries

A consequence of sparse recovery is the fact that multipte su

maries of separate streams can be merged together to cate a
mary of the union of the streams. More formally, consi@istreams,
defining frequency distributiong™ . .. £©) respectively. Given a

summary of each stream produced by (the same) algorithm with

m counters, the aim is to construct an accurate summarfy of

h ;
ijl f(])_

THEOREM 11. Given summaries of each”’) produced by a
counter algorithm that provides A-tail guarantee with constants
(A, B), a summary off can be obtained with #-tail guarantee
with constant§3A4, B + A).

PROOF We construct a summary by first buildingkasparse
vector f') from the summary of /), with the guarantee of equa-
tion (2). By generating a stream corresponding to this veftio
each stream, and feeding this into the counter algorithmpltain
a summary of the distributioff = >~ f'). Now observe that
from this we have an estimated frequency for any iteasc; so
that

£
lei — fil SA=Ap+ ) A
j=1
where each\; is the error from summarizing” by 19 while

Ay is the error from summarizing’. For the analysis, we require
the following bound:
LEMMA 12. For anyn-dimensional vectors andy,
res(k res(k
[F7< B (@) - TP ()] < [lz - ylh

PROOF. LetX denote the set df largest entries of, andY” the
set ofk largest entries of. Let () determine any bijection from
1€ Y\X ton(i) € X\Y. Then

F{e.s(k) (ZC) _ 7e.s(k) Z T — Z i
g X €Y
<D e 2wt D lei—wil
zEY\X iEX\Y ig(XUY)
=Sl —ul < Lo = wl < lle
€Y

Interchanging the roles af andy gives the final result. [

— cmin. FOllowing this, items with zero count are removed
fromT. Then FREQUENTR achieves the basic Heavy Hitter guar-

This lets us place an upper bound on the first component of the
error:

Ay <— A presm g

~—m — Bk
A

S ECP AN 1 = L

where, by the triangle inequality and the proof of Theorem 5,

12
1= £l <SP = £

=1
[ .
<D @RA; + F (F0)
=1
SinceA; < AFT**™ (£0)) /(m — Bk), the total error obeys

4

A 'res(k) res(k) ; ()

A< 2 1)+ 36k + 2F]< P (50)
m — Bk ( =

We observe that

£
ZFTES(k)(f(]) < Fres® (Z u)) Frest g

Jj=1

since 0, Fy M (f9) < 320 300 £ for any T such

that|T| = k. So
A res(k) A res(k)
< -

8 s A (3 + sk (B ()
_ 3A Ak res(k)
*m—Bk<1+m—Bk)F1 (£))

This can be analyzed as follows:

(m — Bk)* — (Ak)?® <(m — Bk)?
(m — Bk 4 Ak)(m — Bk — Ak) <(m — Bk)?
Ak (m — Bk)
<
Y T BE S (At Bk
3A 14 Ak 3A
m — Bk — Bk —(A+ B)k

Hence, we have 834, A + B) guarantee for thé-tail estima-
tion. [

In particular, since the two counter algorithms analyzeeehia
tail guarantees with constar{ts 1), their summaries can be merged
in this way to obtairk tail summaries with constants, 2). Equiv-
alently, this means to obtain a desired erfgrwe need to pick the
number of counters: to be at most a constant factor (three) times
larger to give the same bound on merging multiple summases a
for a single summary.
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APPENDIX
A. LOWER BOUND

THEOREM 13. For any deterministic counter algorithm with

counters, for any, 1 < k < m, there exists some stream in which
res(k)
. . . F
the estimation error of an element is at least—

PROOF The proof is similar to that of Theorem 2 in [6]. For
some integelX, consider two streamd and B. The streams share
the same prefix of siz& (m + k), where elements; ... am4#
occur X times each. After the counter algorithm runs on this first
part of each stream, only. elements can have non-zero counters.
Assume without loss of generality that the ottieelements are
al...ak.

Then streamA continues with elements; . . . aj, while stream
B continues with k£ other elementsz; ...z, distinct from
ai . ..am+x. Both streams thus have total siX§m + k) + k.

For both streams, after processing the prefix of siden + k),
the algorithm has no record of any of the elements in the neimgi
parts of either of the streams. So the two remaining partk loo
identical to the algorithm and will yield the same estimafEsus,
forl < i <k, cq;(A) = c;,;(B). But fo,(A) = X + 1 while
fz;(B) = 1. The counter error for one of the two streams must
be at leastX/2. Note thatF;*** (A) = Xm and F7***)(B) =
Xm + k; then the error is at least

£ Ffe.s(k)
2 T 2m+2k/X
As X — oo, this approaches our desired bound.]

res(k)
Thus an algorithm that provides an error boundfgfj must

use at leastm — k)/2 counters.



B. TAIL GUARANTEEWITH CONSTANTS C. TAIL GUARANTEEWITH CONSTANTS

A= B =1 FOR FREQUENT A= B =1 FOR SPACESAVING
We can interpret the ®EQUENTalgorithm in the following way: The tail guarantee follows almost immediately from thedat
each element in the stream results in incrementing one egunt ing claims proven in [25]:

addition, some number of elements (call this numijesso result ) .
in decrementingn + 1 counters (we can think of thé elements LEMMA 3 IN [25]: If the minimum non-zero counter valuels
incrementing and later decrementing their own counterk Jim thend; < A forall .

of the counters at the end of the algorithji,. We have THEOREM 2 IN [25]: Whether or not elemenit(i.e. i-th most

llells = If ]l — d(m + 1) frequent element) corresponds to thih largest counter, the value

. . . of this counter is at leasf;, the frequency of.
Since there werd decrement operations, and each operation de- f d Y

creases any given counter by at most one, it holds that the fina  If we restrict our attention to thg largest counters, the sum of
counter value for any element is at legst— d. We restrict our their values is at Iea@:f:1 fi. Since in this algorithm the sum of

attention to theé most frequent elements. Then the counters is always equal to the length of the streamllivie
X that:
el = 1flh —d(m +1) > > (fi —d) A < Ml = iy S
=1 - m—k
k
Iflh —dm+1) > —dk+ Zfi thus by Lemma 3
=1 pres(k)
n 5 < P Vi
S fi > dm+1-k) "
il which is thek-tail guarantee with constants= B = 1.
res(k)
d < Fli
- m+1—-k

Since the error in any counter is at mastthis implies thek-tail
guarantee witth = B = 1.



