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Abstract: Colonial breeding is widespread among animals. Some, such as eusocial insects, 
may use agonistic behavior to partition available foraging habitat into mutually exclusive 
territories; others, such as breeding seabirds, do not. We found that northern gannets, 
satellite-tracked from twelve neighboring colonies, nonetheless forage in largely mutually 



exclusive areas and that these colony-specific home ranges are determined by density-
dependent competition. This segregation may be enhanced by individual-level public 
information transfer, leading to cultural evolution and divergence among colonies.  

Main Text: Colonial animals are constrained by their colony locations, which are ultimately 
limited by resource availability (1). However, within species, potential colony home ranges 
often overlap, implying competition among colonies may also be limiting (2). In eusocial 
central-place foragers the spatial effects of direct competition among colonies are well 
understood (2). In contrast, the spatial influences of indirect competition and information 
transfer on non-territorial species (e.g. seals, swallows and seabirds), where levels of 
relatedness are much lower, remain conjectural.  For example, the hinterland model (3) 
predicts that breeding  seabirds segregate along colonial lines, because of inequalities in 
travel costs from each colony. Predicted home ranges therefore comprise Voronoi polygons 
(Fig. 1A), as seen in some territorial animals (2). Food availability is assumed to be 
proportional to polygon area, limiting colony size. An alternative model proposes that 
density-dependent competition among colony members is limiting (4). As colonies grow, 
local prey depletion or disturbance requires birds to travel further to provision their young. 
However, this model (‘Ashmole’s halo’) does not consider interactions among colonies and 
tacitly assumes that adjacent colonies’ home ranges overlap (5).  

Indirect evidence exists to support both models (3, 6, 7) and recent tracking studies suggest 
that seabirds and pinnipeds segregate along colonial lines (8-12). However, these studies 
proved inconclusive on the causes and ubiquity of segregation, largely because few colonies 
were sampled or tracking resolution was low. Here we use high resolution satellite-tracks of 
the foraging movements of 184 chick-rearing northern gannets Morus bassanus (hereafter 
gannets) from 12 of the 26 colonies fringing the British Isles (median 17 birds/colony), 
representing ~80% of the area’s breeding population (Fig. 1A, Table S1), to test whether 
among-colony segregation occurs in a model colonial non-territorial central-place forager. 
We then use population- and individual-level models to explore potential mechanisms 
underlying spatial segregation. 

Gannets are wide-ranging (max. foraging range ~700 km) pelagic seabirds that forage in 
patches of enhanced production, primarily on shoaling, mesotrophic fish and to a lesser 
extent fisheries discards (13-15). In almost all cases we tracked birds from adjacent colonies 
simultaneously (16). Individual gannet tracks (Figs. 1B and S1) and percentage Utilization 
Distributions (UDs, Figs. 2A and S2) showed a striking pattern of between-colony variation 
and spatial segregation, within and across years (Fig. S3). The size of 95% foraging UDs was 
strongly dependent (F1,8 = 149.7, p < 0.001, R2 = 0.94, Fig. S4) on square-root colony size 
(N). Likewise, maximum foraging range and trip duration were dependent on N0.5 (Linear 
Mixed-Effects (LME) models, p = 0.002 and < 0.001, Tables S2 and S3). Birds from colonies 
of all sizes divided their time equally between foraging and chick attendance (LME, p = 
0.191, Table S4) and the number of foraging trips/day was negatively dependent on N0.5 
(LME, p = 0.024, Table S5). Prey delivery rate, for which we assume trips/day is a proxy, is 
therefore negatively dependent on N0.5, supporting the prediction that colony size is limited 
by density-dependent competition (4, 6). Contrary to the hinterland model (3), we found no 
relationship between colony Voronoi polygon area and colony size (F1,35 < 0.01, p = 0.699, 
R2 < 0.01, Fig. S5). 

Using empirical relationships between colony size and foraging area, we devised a 
population-level null model of the distribution of foraging gannets, assuming negligible 
competition between birds from neighboring colonies (16). This successfully explains 
among-colony segregation when colonies are far apart but predicts extensive overlap between 



several study colonies, particularly in the Celtic Sea (Fig. 2A). However, observed UDs were 
largely mutually exclusive (Fig S2), overlapping markedly less than predicted (Fig. S6). For 
example, the null Population Overlap Index (POI, the number of potential pairwise 
interactions between birds from adjacent colonies(16)) for Little Skellig and Bull Rock 
(populations ~29,700 and 3700 pairs; separation distance 27 km) was 105,000, whereas the 
empirical estimate was 6000, largely because foraging trips were directed away from closely 
neighboring colonies (Fig. 1B). This pattern differs from the hinterland model in two key 
respects: segregation was not absolute and divisions between the UDs of unequally sized 
colonies were not equidistant between the two (Figs. 1B and S2) but typically occurred closer 
to the smaller colony, a phenomenon also observed in penguins (9). Hence the predictive 
performance of the hinterland model (log-likelihood, L = -0.54, AIC 3691, Table S6) was 
poor in comparison to the null model (L = -0.30, AIC = 2231).  

Given the inability of existing models to explain gannet distribution when colonies are close 
together, we propose a multi-colony extension of Ashmole’s halo (4), which we term the 
density-dependent hinterland (DDH) model. As adjacent colonies grow, foraging ranges 
increase due to prey depletion or disturbance (6) until their home ranges overlap. At low 
densities, birds from different colonies may forage together but as prey availability decreases 
populations respond by spreading down conspecific density gradients to the nearest areas 
subject to a lower rate of exploitation (6). As a first approximation, we assume a simple 
inverse relationship between the exploitation by conspecifics from adjacent colonies and the 
likelihood of new birds foraging in an area (16). However, the trade-off between transport 
and competition costs means birds favor areas close to their own colonies, so density declines 
with colony distance d (10). Hence, when colonies are large or close together segregation 
between home ranges may become absolute. Using these assumptions, we modeled the 
development of spatial segregation as colonies grow (16). We aim to replicate colony growth 
at the onset of the breeding season (9) but note that historical colony growth patterns may 
also influence spatial segregation (6), and that colony sizes are unlikely to be in equilibrium 
(6, 14). Initial comparisons with our tracking data showed that weighting the relative rate of 
exploitation by the d-0.5 improved this model, implying a decline in competitive fitness with 
distance. The DDH model proved a better fit to the tracking data (L = -0.58, AIC = 25440) 
than the null (L = -0.61, AIC = 27015, Table S7, c.f. Figs 2A and B). Furthermore, unlike the 
null, the DDH model successfully predicted the POI (Fig. 6) and the angular displacement of 
the centre of gravity of the 75% UDs from their colonies (circular correlation, observed vs. 
predicted directions, null model, r = 0.214, p = 0.463, n = 12; DDH model, r = 0.761, p = 
0.020, n = 12).The shapes of the UDs predicted by the DDH model were closer to those 
observed (Dice’s Similarity Coefficient s = 0.57, Table S8) than the null model’s predictions 
(s = 0.45) (16). The DDH model’s greater predictive strength was most marked for colonies 
with close neighbors (Fig.2, Table S8). Notably, the DDH model predicts greater foraging 
ranges than the null model (paired t-test, square-root mean distance t24 = 4.542, p < 0.001), 
implying that indirect competition from neighboring colonies diminishes chick provisioning 
rates, limiting colony size (5). 

Like Ashmole’s halo and the hinterland model, the DDH model assumes gannets are ideal 
free foragers. However, seabird prey occurs in widely dispersed, partially predictable patches 
(17). Thus seabirds may not base foraging decisions on personal information (memory) alone 
but may also exploit public information (8, 18), gained by observing conspecifics at the 
colony (19-21) or at sea (22, 23), although empirical evidence remains limited (24). To 
examine these hypotheses, we developed a range of 2D individual-based models of gannets 
foraging from two colonies (30 and 300 individuals), constrained by energy reserves (Table 
1), to determine whether segregation emerges through information sharing (16). Only one 



model, incorporating memory and public information transfer at sea and at the colony, 
produced a significant reduction in overlap between colony UDs (Figs. 3 and S7). Between-
colony segregation rapidly became established and then persisted (Fig. S8), a pattern 
consistent at multiple food patch densities and most marked when colonies were close (Figs 
S9 and S10). 

Public information is probably transmitted unintentionally, as in other colonial species (18, 
21, 23, 25, 26). Several traits make this likely:  Specifically, on arrival and departure from the 
nest, gannets signal visually and audibly. Prior to beginning foraging trips they land on the 
sea, near the colony, frequently departing in groups (14). These behaviors may allow 
conspecifics to follow or copy successful birds (20, 21), channeling information from the 
population to the individual, allowing birds to efficiently select foraging locations where they 
are competitively advantaged over conspecifics from other colonies. While these mechanisms 
are likely to operate over temporal scales of minutes to weeks, gannets have overlapping 
generations and a long pre-breeding period (≥ 4 years), during which they attend colonies 
with increasingly regularity (14, 27). This is thought to allow young birds to learn about prey 
distribution. If this involves public information acquisition, the preconditions exist for 
cultural evolution of foraging behavior over much longer time scales (8, 28).  

Our results suggest that density-dependent competition, rather than territoriality, causes 
spatial segregation in a model colonial central-place forager. Although the mechanisms 
remain unclear, there is increasing recognition that non-territorial colonial central-place 
foragers utilize public information to inform decisions (18, 21, 23, 25, 26, 28). Contrary to 
the prevailing view, we predict that between-colony segregation is the norm when 
aggregations of animals such as bats, seals, bumblebees and birds occur at high densities (i.e. 
when colonies are clustered or large), forcing a re-examination of our understating of their 
foraging ecology. 
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Fig. 1. Gannets tracked from colonies (A) around the British Isles forage in largely mutually-
exclusive areas, despite their potential home ranges overlapping (red - study colonies, yellow 
- others). Home ranges predicted by the hinterland model (3) form Voronoi polygons, 
bounded by lines of equidistance between colonies (black lines). Satellite tracks from184 
individuals (B) show that foraging birds direct their movements away from neighboring 
colonies. Data collected 2011, except St Kilda (SK) collected 2010. Grey lines -200 and 1000 
m isobaths; LS - Little Skellig; TB - Bull Rock (mentioned in the text, Table S1 for colony 
details). 



 
Fig. 2. Density-dependent competition within and between colonies explains large-scale 
among-colony segregation. Observed colony Utilization Distributions (A, colored polygons 
plus 95, 75, 50 and 25% UD contours) are largely mutually exclusive. This is at odds with the 
null model (predicted 75 and 95% UDs solid and dashed lines), which assumes density-
dependent competition only within colonies, predicting broad overlap between some UDs. 
The Density-Dependent Hinterland (DDH) model (B) additionally assumes competition 
between colonies, providing a better fit to the tracking data. 



 
Fig. 3. Individual-based simulations show that overlap between the Utilization Distributions 
(UDs) of two hypothetical colonies (A, solid lines/blue circle - large colony ; dashed lines/red 
circle - small colony) reduces (B) only when birds use private information and gain public 
information prior to departure and during foraging trips (see Table 1 for model rules). 
Isopleths - 50, 75 and 95% UDs. Results shown for 25 prey patches. Error bars show 95% 
CIs. 



Table 1. Rules governing information use in individual-based models of foraging gannets 
(see Table S10 for details). 

Foraging rules Description 

Null Birds forage randomly during each trip 

Memory (ME) Birds return to previously successful locations (private 
information) 

Local Enhancement (ME+LE) ME + uninformed birds may follow informed birds at sea 
(private and public information) 

Information Centre (ME+IC) ME + uninformed birds may follow informed birds from 
their colony (private and public information) 

All Sources Combined 
(ME+LE+IC) 

ME + Uninformed birds may follow informed birds from 
the colony and at sea (public and private information) 
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