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A b s t r a c t .  Fiat and Naor [5] presented at Crypto '93 a new encryption 
scheme designed for broadcast transmissions. The feature of this scheme 
is to allow a central broadcast site to broadcast secure transmissions to 
an arbitrary set of recipients. In this paper we model the problem of un- 
conditionally secure broadcast encryption schemes with an information 
theoretic framework. We obtain tight limitations both on the number of 
private keys associated with each user and on the number of keys gener- 
ated by the center. Finally, we consider the model where interaction is 
allowed in the common key computation phase proving that the interac- 
tion cannot help in decreasing the size of the pieces of information given 
to the users in the broadcast encryption schemes. 

1 Introduct ion  

Key dis t r ibut ion is a central  problem in cryptographic  systems, and is a ma jo r  
componen t  of  the security subsystem of dis t r ibuted systems, communica t ion  
systems,  and  d a t a  networks. I f  users of  a group wish to communica te  using 
symmet r i c  encrypt ion,  they mus t  share a c o m m o n  key. A key dis tr ibut ion scheme 
is a m e t h o d  to  dis t r ibute  pieces of  informat ion  among  a set of  users in such a way 
tha t  each group of  t hem can compu te  a c o m m o n  key for secure communica t ion .  

Various key dis t r ibut ion schemes have been proposed so far. A basic and 
s t ra ight forward  perfectly-secure scheme (which is useful in small systems) con- 
sists of  d is t r ibut ing initial keys to  users in such a way tha t  each potent ia l  group 
of  users t h a t  need to  communica t e  securely, shares a c o m m o n  key. W h e n  we 
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allow all possible subsets of a given size to share a common key the number of 
keys each user has to hold becomes prohibitively large. 

Given the high complexity of such a distribution mechanism, a natural step 
is to trade complexity for security. We may still require that  keys are perfectly 
secure, but  only with respect to an adversary controlling coalitions of a limited 
size. This novel approach was initiated in Blom's work [2] for the case of session 
keys (other related schemes are given in [7, S]). Recently, Blundo, De Santis, 
Herzberg, Kutten,  Vaccaro, and Yung [3] considered key distribution for dynamic 
conferences of a given size. Their scheme has two parameters: t, the size of the 
conference (group), and k, the size of adversary coalitions. They proved a lower 
bound on the size of the user's piece of information of (k+t-l~ times the size ~ t - l J  
of the common key. They then established the optimality of this bound, by 
describing a scheme which meets this limitation. 

Fiat and Naor [5] considered the following scenario for key distribution. There 
is a center C and a set of users H. The center gives some predefined keys to users 
in H. At some point the center wants to enable a privileged subset of users to 
recover a common key in such a way that  coalitions of users that  are not in the 
privileged class have no information on this common key. The center enables 
the privileged users to share a key by broadcasting a message. In such a scheme 
the center, before providing users with prearranged keys, does not know which 
subset to enable. Moreover, this privileged subset can dynamically change. Fiat 
and Naor [5] presented k-resilient broadcast encryption schemes, that  is schemes 
secure against a coalition of at most k non-privileged users. They constructed 
zero-message unconditionally secure schemes in which the center is not required 
to broadcast any message in order for the member of the privileged class to 
generate a common key. In a zero-message scheme each user in the privileged 
set computes the common key from the information he receives from the center 
and from the other privileged users' identities. Since the unconditionally secure 
protocol presented in [5] for the scheme has severe memory requirements, Fiat 
and Naor [5] proposed schemes requiring less keys to be held by each user, but 
these schemes are based on unproven complexity assumptions such as "one-way 
function exists" or "extracting prime roots modulo a composite is hard".  

Our objective is to model the problem of unconditionally secure broadcast 
encryption schemes by using an information theoretic framework. First, we con- 
sider a scenario in which any privileged subset of users enabled by the center 
belongs to a family of possible privileged sets and the coalitions of non-privileged 
users belong to a predefined family. Then, we study the case in which the family 
of privileged users consists of all possible subsets of users. In this way, we put 
restrictions only on the family of coalitions of non-privileged users. In particular, 
when this family consists of all possible subsets of users of cardinality at most 
k this scheme reduces to the k-resilient broadcast encryption scheme described 
by Fiat and Naor [5]. We model such schemes by using the Shannon entropy 3 
mainly because this leads to a simple, compact, and elegant description of the 
schemes and because this approach takes into account all probability distribu- 

3 For a complete treatment of the subject the reader is advised to consult [4, 6]. 
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tions on the keys. We analyze the relations among the number of keys held by 
each user, the number  of keys generated by the center, and the security of the 
scheme. First, we give an information-theoretic definition of the problem. Then, 
we obtain tight l imitations both  on the number  of private keys associated with 
each user and on the number  of keys generated by the center. As a consequence 
of our results, if one wants to design schemes with memory  requirements smaller 
than those in [5], then one has to resort to unproven complexity assumptions such 
as "one-way function (maybe,  with suitable algebraic properties) exists." Tha t  
is, one has to trade smaller memory  requirements with unproven complexity 
assumptions.  Finally, we compare the interactive to the non-interactive setting. 
We show that  interaction cannot decrease the size of the pieces of information 
given to the users in the broadcast  encryption schemes. In order to decrease the 
size of the pieces of information we relax the security requirement. We suppose 
tha t  the interactive broadcast  encryption scheme be secure only a fixed number  
of times, say L In this setting the common key among a set of privileged user 
can be computed  at most  l times. If  we use more than g t imes the scheme, then 
there could be some leaking of information on the (~+ 1)-th common key. In the 
case of one-t ime interactive broadcast  encryption we propose a scheme where 
the user 's information in any privileged set of cardinMity t is only 2(n - 1)/t 
t imes the size of the common key. 
Due to the space limit on this extended abstract ,  all proofs are omitted.  Ask 
either author  for the complete version. 

2 Z e r o - M e s s a g e  B r o a d c a s t  E n c r y p t i o n  

In this section we give a definition of broadcast encryption using an information 
theoretic framework. Consider the following scenario consisting of a center C 
and a set of users U. The center gives some predefined keys to users in /4 .  At 
some point C wants to enable a privileged subset X of users to recover a common 
key in such a way tha t  coalitions of users that  are not in the privileged set X 
have no information on this common key. In such a scheme the privileged set 
ranges into a family of possible privileged sets. The center, before providing users 
with some prearranged keys, does not know which subset to enable. Moreover, 
this privileged subset can dynamically change. In this section we deal with zero- 
message broadcast  encryption schemes, that  is schemes in which the center is 
not required to broadcast  any message in order for the member  of a privileged 
class to generate a common key. 

Suppose tha t  the set of users is U = {U1, U2 , . . . ,Un} .  The distribution 
scheme, tha t  is the algori thm used by the center to generate the pieces of 
information distr ibuted to the users, is randomized. Assume that  the center's 
a lgori thm is fixed. The center generates n pieces Ul,U2,...,u~. The piece ui 
denotes the information given by the center to Ui. To maintain the notat ion 
simpler, we will denote both the users and the sets of possible values of their 
pieces with the same capital  letter; therefore the letter Ui will denote both the 
user Ui and the set where the possible pieces for Ui are taken. Given a set 
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X = { i l , i 2 , . . . , i r }  C_ {1, 2, . . ., n}, where il < i2 < . . .  < it, denote with U x 
the set U,1 • . . .  x U, .  The center's algorithm defines a probability distribu- 
tion on U1 x . .-  x Un, that,  in turn, naturally induces a probability distributioaa 
{Pu x (u)}u~Ux on Ux, for any set X E 2 In]. (We denote with 2 In] the family of 

all sets of elements in {1, 2 , . . . ,  n}, that is 2 In] = 2{1'2"'"n}.) 
Let H(Ux)  = H(U,1 . . .  U.,) be the entropy 4 of the probability distribution 

on U x = U,1 x --- x U, .  Let T C_ 2 In] be the family of sets of indices representing 

the privileged sets of users and V _ 2 In] the family of sets of indices representing 
the coalitions of non-privileged users. Let T = { i l , . . . ,  it} E T be a set of t 
elements. We denote with kT the common key of the users {Ui~, . . . ,  Ui,}. The 
common key kT is computed by privileged users {Ui l , . . .  , Ui,} using only their 
information and identities. We denote by /CT the set of all possible values of 
the common key kT. For any T = { i l , . . . ,  it} E T,  the probability distribution 
on U1 • . . .  x Un naturally induces a probability distribution on/CT, since each 
Uij deterministically computes the common key kT using the information ui~ 
received by the center and the indices in the set T. Let {pxzr(k)}aexzT be the a 
priori probability that  the common key among users Ui~,. . . ,  Ui, is k E/CT, and 
let H(ICT) be its entropy. 

2.1 (T ,  ]2) B r o a d c a s t  E n c r y p t i o n  

In this section we consider zero-message (T, V) broadcast encryption schemes. 
These schemes, for privileged sets of users represented by T,  are secure against 
coalition of non-privileged set of users represented by 12. In these schemes the 
center is not required to broadcast any message in order for the member of 
the privileged class to generate a common key. Since in such schemes the users 
compute the common key without any interaction we will refer to this situation 
as non-interactive model. A zero-message (7", I)) broadcast encryption scheme 
can be defined as follows. 

D e f i n i t i o n l .  Let H = {U1, U2, . . . ,  Un} be a set o f n  users and let T,  V C_ 2["]. A 
zero-message ( T ,  Y) broadcast encryption scheme for H is a distribution protocol 
such that  for any T = { i i , . . . ,  it} E T,  there hold 

1. Any  privileged user can non-interactively compute the common key kT. 
Formally, for all i E T, we have H(ICTIUi) = O. 

2. Any coalition of non-privileged users has absolutely no information on the 
common key kT. 
Formally, for all V E Y such that  V MT = g, we have H(K.TIUv) = H(ICT). 

Definition 1 does not say anything on the entropies of random variables 
and /Cr, , for different T, T '  E 7-. For example, we could have either H(Kr )  > 
H(/CT, ) or H(K:r) < H(/CT, ). Our results apply to the general case of arbitrary 
entropies on keys, but for clarity we state our results for the simpler case that  

4 For definition and properties of information theoretic quantities we refer to [4, 6]. 
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all entropies on keys are equal, i.e. H(/C.) = H(/Cr, ). We denote this common 
entropy by H(K:). 

In a zero-message (T, V) broadcast encryption scheme the knowledge of 
"some" keys does not convey any information on another key. This is formalized 
by next lemma. 

L e m m a 2 .  Let H = {U1,U2, ..., U~} be a set of n users and let r be an integer. 
L e t X ,  Y1, ...,Yr, Z C_ {1,2, . . . , n }  such thatX,  Y~ , . . . ,Y r  E T,  Z E V, Zf3X = 0, 
and Z M Y~ # 0, for i = 1 , . . . ,  r. Then, in any zero-message (T, V) broadcast 
encryption scheme for H it holds that H(IC x I1(wl ...1(w. ) -- H(ICx). 

The above lemma states that  if a key is secure against a set of users Z, then 
it is independent from all other keys known by such a set of users. 

The next theorem states a lower bound on the size of the information held 
by each user in the scheme. 

T h e o r e m 3 .  Let l t  = {U1,U2, . . . ,Un} be a set of n users and let T ,  V C 2 ['~l. 
Suppose that for any privileged set T E T it holds that {1, 2 , . . . ,  n } \ T  E V. Then, 
in any zero-message (T, V) broadcast encryption scheme for/4, for i = 1 , . . . ,  n, 
the entropy H(Ui) satisfies 

H(Ui) > nH(IC), 

wheren=l{TET : i E T } [ .  

In the analysis of (T, V) broadcast encryption schemes we are interested also 
in the number of keys that  the center has to generate in order to construct 
the scheme. To this aim, we define 7(H, T, V, H(K:), A) to be the number of keys 
generated by the center C in a zero-message (T, V) broadcast encryption scheme 
.4 for a set /4 of users, given that  the entropy on the secret keys is H(/C). Since 
we are interested in the minimum number of keys the center has to generate, we 
define 

7(U, T,  V) = inf 7(/1, T ,  V, H(K:), A), 

where S is the space of all zero-message (T, V) broadcast encryption schemes 
for/4 and P is the space of all non-trivial probability distributions on/C. 

Next theorem provides a lower bound on the number of keys generated by 
the center in any zero-message (T, V) broadcast encryption scheme for a set U 
of n users. 

T h e o r e m 4 .  Let/4 = {U1, U2, . . . ,  Un} be a set of n users and let T ,  V C 2 In]. 
Suppose that for any privileged set T E T it holds that {1, 2 , . . . ,  n } \ T  E V. 
Then, in any zero-message (T, V) broadcast encryption scheme for 11 we have 

7(//, T,  V) _> ITI. 
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A possible protocol for a zero-message (T, V) broadcast encryption scheme, 
when for any privileged set T E T it holds that  {1, 2 , . . . ,  n } \ T  E P, can be 
easily realized as follows. For each subset T E T the center uniformly chooses a 
key k r E Z2,~ and gives it to each user Ui where i E T. In such a protocol each 
user U~, for i = 1 , . . . , n ,  holds r~ = I{T e T : i e T}I keys and the center has to 
generate IT] keys. From Theorems 3 and 4 immediately follows that  this protocol 
is optimal both respect the keys held by each user and the keys generated by 
the center. 

2.2 V-Resilient Broadcast Encryption 

We consider the case in which the family of privileged sets consist of all possible 
sets of users, that  is, T = 2M. In this situation there are only restrictions on 
the coalitions of non-privileged users V. A (2['q, 1;) broadcast encryption scheme 
will be simply called V-resilient broadcast encryption scheme. 

The next theorem states a lower bound on the size of the information held 
by each user in any zero-message V-resilient broadcast encryption scheme. 

T h e o r e m 5 .  Let H = {U1, U~, . . . ,Un}  be a set of n users and let 12 C 2[nl. 
In any zero-message V-resilient broadcast encryption scheme for H, the entropy 
H(Ui),  for i = 1 , . . . ,  n, satisfies 

H(Ui) > rill(K:), 

where = I{V e V : i V}I. 

In the following we analyze the number of keys generated by the center to 
set up a zero-message V-resilient broadcast encryption scheme. In this case the 
minimum number of keys 7(H, T, V) the center has to generate will be denoted 
by 7(H, V). 

The next theorem provides a lower bound on the number of keys generated 
by the center in any zero-message V-resilient broadcast encryption scheme for a 
set H of n users. 

T h e o r e m  6. Let H =  {U1, U2,..., Vrt} be a set of n users and let 1~ C_ 2['q. In 
any zero-message V-resilient broadcast encryption scheme for H we have 

v) > IVl. 

We can construct a protocol for a V-resilient scheme generalizing the scheme 
proposed by Fiat and Naor [5] for zero-message k-resilient broadcast encryption. 
This protocol is optimal with respect to both the keys held by each user and the 
keys generated by the center. The protocol is the following. 
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Protocol 1 

1. For each V E 12 the center uniformly chooses a key/% E Z2,-. 
2. The center distributes the key/% to each user U, such that i ~ V. 
3. The common key K:T of the privileged set T E 2 ['q will be the exclusive or 

of all the keys/% such that V C__ {1, 2 . . . . .  n}\T.  

In the above protocol only vi = I{V v : i V}l elements of Z2~ are kept 
by each user. Moreover, the center, in order to realize such a scheme, generates 
v = lYl keys. Thus, the proposed protocol is opt imal  as stated by next theorem. 

T h e o r e m  7. Protocol 1 is optimal with respect to both the keys held by each user 
and the keys generated by the center. 

2.3 k-Resilient Broadcast Encryption 

Fiat  and Naor [5] presented k-resilient broadcast encryption schemes, tha t  is 
schemes secure against a coalition of at most  k non-privileged users. They con- 
structed zero-message unconditionally secure broadcast encryption schemes. In 
our model,  a zero-message k-resilient broadcast encryption scheme can be viewed 
as a zero-message ]2-resilient broadcast  encryption scheme where V = {V E 2 In] : 

Iyl _< k}. 
The next corollary states a lower bound on the size of the information held 

by each user in a zero-message k-resilient broadcast encryption scheme. 

C o r o l l a r y 8 .  Let H = {U1,U2, . . . ,Un}  be a set of n users and let k < n be an 
integer. In any zero-message k-resilient broadcast encryption scheme for H, the 
entropy H(Ui)  satisfies 

k 

j : o  J 

In the following we analyze the number  of keys generated by the center to set 
up a zero-message k-resilient broadcast encryption scheme for a set of n users. 
In this case the min imum number  of keys 7(H, T,  1}) the center has to generate 
will be denoted by 7(n, k). 

The next corollary provides a lower bound on the number  of keys generated 
by the center in any zero-message k-resilient broadcast encryption scheme for a 
set of n users. 

C o r o l l a r y 9 .  L e t H  = {U1,U2, . . . ,Un}  be a set o f n  users and let k < n be an 
integer. In any zero-message k-resilient broadcast encryption scheme for a set 
on n users 7(n, k) satisfies 

k 

j=0 
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A possible protocol for zero-message k-resilient broadcast encryption schemes 
is the one proposed by Fiat and Naor [5]. For each subset B C { 1 , 2 , . . . ,  n}, 
such that  0 < IB[ < k the center generates a key k B and gives it to each user Ui 
where i E {1, 2 , . . . ,  n}\B.  The common key of the privileged set {U~I, . . . ,  Ui,} 
is the exclusive or of all the keys kB, where B C_ {1, 2 , . . . ,  n} \{ i l , . . . , i t } .  In 

k n--1 
( i ) k e y s  the c e n t e r  such a protocol each user holds ~-~i=0 and has to generate 

~ = 0  (~) keys. This protocol is optimal with respect to both the keys held by 
each user and the keys generated by the center. 

3 I n t e r a c t i v e  Z e r o - M e s s a g e  S c h e m e s  

In Section 2 we proved lower bounds on the information held by each user in 
a non-interactive zero-message broadcast encryption scheme. In this section we 
study the case in which we allow interaction among users to set up a common 
key. We extend the definitions of Section 2 to interactive zero-message broadcast 
encryption schemes and show that  the interaction cannot decrease the size of the 
pieces of information given to the users in the broadcast encryption schemes. 
So, in order to decrease the size of the pieces of information we have to relax 
the security requirement. We require that  the interactive broadcast encryption 
scheme be secure only a fixed number of times, say L Finally, we propose a 1- 
t ime interactive zero-message k-resilient broadcast encryption scheme where the 
user's information in any privileged set of cardinality t is only 2(n - 1)/t times 
the size of the common key. 

Let H = {U1, . . . ,  U,~} be a set of users. The algorithm used by the center to 
generate the pieces of information that  will be distributed to the users, as well 
as the users' algorithm to set up the common key, are randomized. Assume that  
the center's algorithm and the users' algorithms are fixed. 

In an interactive zero-message broadcast encryption scheme, each user Ui in 
a privileged set gets a message 7/ from all other users in the same set, based 
on the users' keys. Let Fi be the set of all possible messages of Ui. Given a set 
T = {il, i 2 , - . . , i t }  C {1, 2 , . . . ,  n}, where il < i2 < . . .  < it, denote with F T 

the s e t / ' 1  • "'" •  The center's algorithm and the users' algorithms define 
a probability distribution on F1 • . . .  • F~, that,  in turn, naturally induces a 
probability distribution {pr T ( 7 ) } ~ r r  on F~, for any set T E 2 [nl. 

Let H(FT) = H(F,1 ... F,r) be the entropy of the probability distribution on 

FT = /,1 x .-- • / , .  Given a set T = { i l , . . . ,  it} E 2['q, with/% we denote the 
common key established by users Uil,. . . ,  Ui,, whereas wi th/ (~ we denote the 
set of all possible values of the common key k r . 

Formally, we define an interactive zero-message (T, 12) broadcast encryption 
scheme for n users as follows. 

D e f i n i t i o n l 0 .  Let H = {U1,U2,...,Un} be a set of n users and let T,I~ C_ 
2 [n]. An interactive zero-message (T, ~) broadcast encryption scheme for H is a 
distribution protocol such that  for any T = { i l , . . . ,  it} E 7-, there hold 
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1. Any privileged user can interactively (after an exchange of messages among 
the users in 71) compute the common key k r . 
Formally, for all i E T, we have H(ICTIUi Fi) = O. 

2. Any coalition of non-privileged users in P even knowing the conversations of 
all the possible privileged sets, has absolutely no information on the common 
key ICT. 
Formally, for all V E 13 such that  V A T  = 0, we have H(ICT [Us Frl . . .  Frlrl ) = 

H(K,T). 

As we have done in section 2, it is possible to define both interactive 12- 
resilient and interactive k-resilient schemes. We can prove that,  under the hy- 
pothesis of Definition 10, the same bounds of Section 2 hold. Hence, we get 

1. In any interactive zero-message (T, P) broadcast encryption scheme for H, 
if for any T E T we have {1, 2 , . . . ,  n } \ T  E 12, then the entropy H(U~), for 
i = 1 , . . . ,  n, satisfies H(U~) > riH(/C), where r~ = [{T E T : i E T}[. 

2. In any interactive zero-message V-resilient broadcast encryption scheme for 
H, the entropy H(Ui), for i = 1 , . . . ,  n, satisfies H(Ui) > viH(IC), where 
v ~ = l { V E l 2  : i • V ) l .  

3. In any interactive zero-message k-resilient broadcast encryption scheme for 
k N, with k < n, the entropy H(Ui) satisfies H(Ui) > ~-]d=0 (n;1)H(1C)" 

We have seen that  the interaction cannot decrease the size of the pieces of 
information given to the users in the broadcast encryption schemes. So, in order 
to decrease the size of the information distributed, we relax the security require- 
ment. We allow that  the interactive broadcast encryption scheme be secure only 
a fixed number of times, say L In this situation at most e sets can subsequently 
recover a common key, but which set will be enabled to reconstruct the common 
key is not known a-priori. Hence, the center has to distribute pieces of informa- 
tion in such a way that  any possible set could be a privileged set (akin to what 
happen in the general case of interactive zero-message broadcast encryption). 
An ~-time interactive broadcast encryption scheme is defined as follows. 

D e f i n i t i o n  11. Let H = {U1, U2, . . . ,  Un} be a set o f n  users and let T,  P C_ 2[nl. 
An ~-time interactive zero-message (T, 12) broadcast encryption scheme for /4  is 
a distribution protocol such that  for any T = { i l , . . . ,  it} E T,  there hold 

1. Any privileged user can interactively (after an exchange of messages among 
the users in T )  compute the common key k r. 
Formally, for all i E T, we have H(ICTIU~ F~) = O. 

2. Any coalition of non-privileged users in 12 even knowing the conversations 
of any s among all the possible privileged sets, has absolutely no information 
on the common key k r. 
Formally, for all V E l~ such that  V n T = ~ and for all j l , . . . , j l  E 
{1,2,...,n}, we have H(I~TIUs FT1.--Fr,) =H(/~T) .  
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Beimel and Chor  [1] proposed an interactive k-secure t-conference key distri- 
but ion  scheme (for definition and nota t ion  on k-secure t-conference key distr ibu- 
t ion schemes see [3, 1]) such tha t  for a domain  of  key/C the cardinal i ty of  pieces 
of  every user is I/CI 2+2(h-1)/t. Their  protocol  is based on the non-interact ive k- 
secure t-conference scheme proposed by Blom [2]. In the protocol  we propose,  
the domain  of  keys for a privileged set of  size t will be of  cardinal i ty qt and, 
since the B lom ' s  scheme is used, q mus t  be a pr ime power greater t han  or equal 
to v/-n. Basically, our  protocol ,  depicted in Figure 1., is t ha t  proposed by Beimel 
and Chor  [1] adap ted  to handle the case of  one-t ime interactive zero-message 
k-resilient broadcas t  encrypt ion.  

The  protocol  for 1-time interactive zero-message k-resilient broadcas t  encryp- 
t ion schemes for n users is the following. 

1, 

2. 

3. 

4. 
5. 

Protocol 2 

PREPROCESSING PHASE 

The center distribute to any user U, a independent key k,,c E Zq, where q _> V~ 
is a prime power. 
The center distributes other keys to users according to the Blom's non-interactive 
(n - 2)-secure 2-conference scheme for n users with keys taken from Zq2. 

K E Y - C O M P U T A T I O N  PHASE 

Let T E 2 ["]. Each user Us, with i E T, randomly chooses a key k~ E Zq. 
If T = {i}, then the user U, sends to C the message ki + k,,c rood q. 
If ITI > 1, then the common key kT is computed as follows. 

5.1. Each pair of user Us,U3, with i , j  E T, reconstruct a common key ki j  E 
Zq~. View the joint key as consisting of two sub-keys k~,~ k~'j, both in 
Zq. 

5.2. Each user Ui, with i E T, broadcasts to each other user Uj~ where j E 
T\{i},  the values 

ki+k~,j  m o d q  if i < j  
ki+k['j  m o d q  if i > j .  

5.3. The common key kr is the concatenation of the random k,'s, with i E T. 
Hence, for T = {i1, i2 , . . . ,  i t } ,  the key kT will be 

k T  : -  k ia  o k i z  o . . . o ks~ 

Figure 1. 

The  above protocol  realizes a 1-time interactive zero-message k-resilient broad-  
cast  encrypt ion  scheme as s ta ted in the next theorem. 

T h e o r e m  12. Protocol 2 realizes a one-time interactive zero-message k-resilient 
broadcast encryption scheme for a set of n users in which the domain of pieces 
of every user is q 2(n-D and the common key of each privileged set T of size t is 
chosen in a set of cardinality qt. 
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Clearly, a scheme for an s interactive zero-message k-resilient broadcast 
encryption scheme can be constructed by considering s copies of the scheme 
realized with Protocol 2. 

4 B r o a d c a s t  E n c r y p t i o n  

In this section we analyze broadcast encryption schemes, that  is schemes secure 
against coalitions of non-privileged users in which the center is required to broad- 
cast some messages in order for the member  of the privileged set to generate a 
common key. 

The  center, in a preprocessing phase, knowing neither the privileged set nor 
the value of the common key, generates and distributes some keys to partic- 
ipants in U. The center, in the broadcast-encryption phase, on input the set 
T = { i l , . . . , i t } ,  the common key k r and the informations given to users in 
the preprocessing phase, computes the messages b i l , . . . ,  bi, and broadcasts it 
to users Ui~, �9 . . ,  Ui, respectively. At the end of the broadcast encryption phase, 
only the users Ui's, with i E T, are able to compute the common key k r .  The 
common key k r will be secure against every non-privileged set of user. A nat- 
ural requirement is that  any coalition of non-privileged users has absolutely no 
information on the common key k r even knowing the broadcast messages of all 
other coalition of users. Let us denote with Bi the set of all possible broadcast 
messages for user Ui, and let BT = Bi~ x ---  x Bit. For any T E T ,  the proba- 
bility distribution on F~ induces a probabili ty distribution {pB r (b)}be~r on B r . 
Let H ( B  r )  be its entropy. 

We define a (T, Y) broadcast encryption scheme as follows. 

D e f i n i t i o n  13. Let U = {U1, U2,. �9 Un} be a set of n users and let T,  12 C 2 [hI. 
A (T,  Y) broadcast encryption scheme f o r / / i s  a distribution protocol such that  
for any T =  { i l , . . . , i t )  E T,  there hold 

1. Before knowing the broadcast messages any subset of  users has no informa- 
tion on the value of  the common key k r . 
Formally, for all X C_ { 1 , 2 , . . . ,  n} it holds tha t  H(1CTIUx) = H(I~T). 

2. A f ter  seeing the broadcast message, any privileged user can compute the com- 
mon key k r.  
Formally, for all i E T, it holds that  H(tCTIU~Bi) = O. 

3. Any  coalition of  non-privileged users has absolutely no information on the 
common key kr , even knowing the broadcast messages of  all the possible priv- 
ileged sets. 
Formally, for all V E Y such that  V N T  = ~J, it holds that  H(]C r [U v Brl . . .  BriTi ) 

= H(1Cr ). 

The  next simple theorem states a lower bound on the size of each broadcast  
message in a (T,  V) broadcast  encryption scheme. 
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T h e o r e m  14. Let t t  = {U1,U2, . . . ,  U'*} be a set o f f  users and let T ,  V C 2["1. 
In any (T, V) broadcast encryption scheme for U, the entropy H(Bi) satisfies 
H(B,)  > H(1C). 

As we have done in section 2, it is possible, in this more general setting, to 
define V-resilient broadcast  encryption schemes as well as k-resilient broadcast 
encryption schemes. We can prove that ,  under the hypothesis of Definition 13, 
the same bounds of Section 2 hold. Hence, we get 

1. In any (T,  l~) broadcast encryption scheme for U, if for any T E T we 
have {1, 2 , . . . ,  n } \ T  E V, then, for i = 1 , . . . ,  n, the entropy H(Ui) satisfies 
H(Ui) >_ rill(K.), where 7-/= I{T E T : i E T}I. 

2. In any V-resilient broadcast encryption scheme f o r / / ,  for i = 1 , . . . ,  n, the 
entropy H(Ui) satisfies H(Ui) > viH(K.), where vi = I{V �9 V : i • V}[. 

3. In any k-resilient broadcast encryption scheme for U, with k < n, the entropy 
k 

H(Ui) satisfies H(Ui) >_ )"]~j=0 (nj-l)s(K~) �9 
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